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On gait consistency quantification through ARX
residual modelling and kernel two-sample testing

A. Stihi, T.J. Rogers, C.Mazzá , E.J. Cross

Abstract— Objective: The quantification of the way an
individual walks is key to the understanding of diseases
affecting the neuromuscular system. More specifically,
to improve diagnostics and treatment plans, there is
a continuous interest in quantifying gait consistency,
allowing clinicians to distinguish natural variability of
the gait patterns from disease progression or treatment
effects. To this end, the current paper presents a novel
objective method for assessing the consistency of an
individual’s gait, consisting of two major components.
Methods: Firstly, inertial sensor accelerometer data from
both shanks and the lower back is used to fit an
AutoRegressive with eXogenous input model. The model
residuals are then used as a key feature for gait consistency
monitoring. Secondly, the non-parametric maximum mean
discrepancy hypothesis test is introduced to measure
differences in the distributions of the residuals as a
measure of gait consistency. As a paradigmatic case, gait
consistency was evaluated both in a single walking test and
between tests at different time points in healthy individuals
and those affected by multiple sclerosis (MS). Results:
It was found that MS patients experienced difficulties
maintaining a consistent gait, even when the retest was
performed one-hour apart and all external factors were
controlled. When the retest was performed one-week apart,
both healthy and MS individuals displayed inconsistent
gait patterns. Conclusion: Gait consistency has been
successfully quantified for both healthy and MS individuals.
Significance: This newly proposed approach revealed
the detrimental effects of varying assessment conditions
on gait pattern consistency, indicating potential masking
effects at follow-up assessments.

Index Terms— gait consistency, Auto-Regressive,
maximum mean discrepancy (MMD), multiple sclerosis
(MS), wearable sensors.
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I. INTRODUCTION

GAIT is a multifaceted dynamic process, involving the
coordination of the lower limbs as well as the upper body

[1]. Scientific literature supports the notion that variations
from the “normal walking patterns” may indicate certain
pathological conditions [2]. While methods for identifying
gait impairment have been well-established in research, less
attention has been given to the examination of the longitudinal
progression of gait patterns over time [3].

From an energetic perspective [4], the ideal gait pattern
would be identical across all steps. However, it is well
established that in reality, gait only displays approximate
periodicity [5], and it can also be altered over time
[6]. Therefore, the authors propose that the longitudinal
quantification of gait may be significantly impacted by
the natural fluctuations in testing conditions during clinical
follow-up assessments. Some causes may include marginal
discrepancies in sensor attachment locations on body
segments, time of assessment in the presence of medications,
etc. These might mask subtle degradation or rehabilitation
in pathological populations. As a result of the variability
introduced by these differences, accurately quantifying the
longitudinal gait changes, while removing the influence of the
confounding factors, can be a very difficult task. As such, to
improve diagnostics and treatment outcomes, there is a need
for an objective gait consistency measure, which can quantify
one individual’s ability to consistently repeat the same walking
pattern, regardless of the environment or task. This consistency
measure can be seen as a marker of good motor control
and balance, and the lack of it may indicate neurological or
musculoskeletal problems.

Recent advancements in wearable technology, specifically
inertial measurement units (IMUs), have increased their use
in clinical gait analysis [7]. Due to their flexibility, IMUs
have the potential of being practical solutions for quantifying
gait consistency, allowing clinicians to examine the dynamic
link between the lower limbs and the upper body movements
during walking tests.

In view of the observed variability in the gait pattern,
owing to both environmental and pathological influences, the
current work introduces a novel measure for the consistency
of an individual’s gait. This new tool provides an objective
method for assessing the variability in the gait both within
a single walking test and between tests. This is achieved by
means of two novel components. Firstly, the residuals of a
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dynamic AutoRegressive with eXogenous input (ARX) model
[8] between both shanks and the lower back are used as a
sensitive feature. Secondly, the maximum mean discrepancy
(MMD) [9] is introduced to measure the differences in the
distribution of the residuals. This approach leads to a sensitive
and informative method for evaluating the consistency of the
gait patterns.

A. Related Work

In the field of gait analysis, the term “gait consistency”
has been utilized with various interpretations. Some literature
defines it as the accuracy of the measurement tools
employed to obtain gait data [7], [10]–[12], evaluated
by comparing specific gait features between different
assessments. Conversely, other authors refer to consistency
as the regularity of the gait patterns that recur in each gait
cycle [5], [6]. It is important to note that consistency pertains
to the similarity of gait patterns over a period of time [13],
and therefore having a clear understanding of the concept of
gait consistency is essential in order to differentiate between
natural variability1 disease progression or treatment effects.

Maintaining proper coordination between the lower limbs
and the upper body is essential for consistent gait patterns [1].
The coordination of the trunk and upper body is a requirement
in order to maintain balance and stability during gait [1],
[14], [15]. Similarly, good coordination of the hip, knee and
ankle joints is necessary for proper weight bearing and forward
propulsion during walking [16], [17]. In contrast, the lack of
coordination can manifest through inconsistent gait patterns,
which can also be seen as a result of a specific pathological
condition [2], or associated with a high risk of falls [18], [19].
Recent developments in wearable technology have facilitated
the use of inertial measurement units (IMUs) to effectively
monitor the dynamic relationship between the lower limbs and
upper body [16], [20]. In the relevant literature, numerous
studies have focused on extracting spatio-temporal metrics
from the gait signals [7], [10], [14], [20]–[24]. Although,
this is a viable approach, it has the major disadvantage of
potentially discarding a significant amount of information
which may be beneficial for quantifying the consistency of the
gait patterns [14]. Several other models have been proposed in
the literature to describe the basic acceleration patterns of the
pelvis using physics-informed models, including the inverted
pendulum model proposed by [25] or the dynamic walking
perspective proposed by [4]. Yet, these types of modelling
approaches are a simplification of the actual gait dynamics.
Despite the fact that they can be used to accurately estimate
spatio-temporal parameters in healthy populations [23], they
do not work as well for more complex, pathological gait
patterns. As a result, the gait periodicity and symmetry are
inaccurately estimated [26].

This paper deals with the use of a data-based modelling
approach, as it can provide a potentially effective alternative

1For clarification, even though the term “natural variability” is usually
employed to denote the intrinsic variability necessary to maintain balance
and adapt to environmental changes, here it is used solely to denote inherent
fluctuations in the walking patterns recorded over a period of time.

for monitoring the progression of the disease. The model relies
on acceleration measurements taken at the beginning of a
walking test. If properly established, the authors hypothesise
that such a model would be able to reveal changes in the
gait patterns either along the walking test, or at a later stage,
longitudinally, in the event of changes in patient’s health
status. This approach has been inspired by the structural
health monitoring (SHM) field [27], and it leverages an
ARX model, which is a linear representation of a dynamic
system in discrete time. Autoregressive models have been
successfully deployed for structural damage identification
using accelerometer data in [28]–[31]. In SHM, damage
detection algorithms can be constructed by examining the
residual error (i.e., the difference between the measured data
and the model predictions) as a damage-sensitive feature.
Inspired by the concept of monitoring the progress of the
residual error as an indicator of change, the authors believe that
the same approach could work in the field of gait analysis. The
goal is to reveal gait anomalies present in the distribution of
the residuals, which could be caused by gait disabilities due
to the presence of some disease. Consequently, establishing
whether a significant change occurred in the residual patterns
gives raise to the requirement of statistical hypothesis testing.
Fortunately, a suitable objective hypothesis testing method
is represented by the MMD two-sample hypothesis test,
which will be introduced later in Section IV. Thus, this will
contribute to the understanding of gait consistency in both
healthy and pathological subjects, as well as quantifying the
influence of varying environmental testing conditions.

The paper is structured as follows. Firstly, the overview of
the approach is presented with in Section II. Then, an example
dataset used to demonstrate the approach is introduced in
III. In Section IV, the relevant background is presented for
the residual modelling procedure, followed by the details of
the implementation of the MMD-based hypothesis test. Then,
Section V presents the application of the novel methodology
on the dataset presented in Section III. The implications of the
methodology are further discussed in Section VI. Finally, the
paper concludes in Section VII.

II. OVERVIEW OF THE NOVEL APPROACH FOR
ASSESSING GAIT CONSISTENCY

As previously described, the approach for quantifying
gait consistency introduced in this paper consists of two
main components. The first component entails modelling the
dynamic relationship between the upper body and lower limb
acceleration patterns, from which the residual patterns are
obtained. The second component of the process consists in
the introduction of a novel hypothesis test in the field of
gait analysis, used for the quantitative estimation of gait
consistency. In this section, a high-level overview of the
approach will be presented to the reader, while the detailed
modelling procedures are postponed until Section IV.

Following the successful data-based inference approaches in
SHM, the authors propose to capture the dynamic relationship
between the upper body and lower limb movements using a
similar modelling procedure based on ARX-type models [8].
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Fig. 1. Flowchart of the modelling approach.

In such a model, the output of the model is a linear function of
previous or lagged instances of the output and lagged instances
of the inputs. Concerning gait, the trunk acceleration displays
a pseudo-periodic pattern which approximately repeats every
gait cycle [5]. As a result, the acceleration measurements
will be autocorrelated, preventing the use of any statistical
methodology that ignores correlation [32]. If the correlation is
not removed from the original signals, the anomaly detector
may trigger many false alarms and might fail to recognise
any anomalies present due to the presence of the disease, or
indeed due to the inability to walk consistently during walking
tests. However, monitoring the residuals obtained by fitting
an ARX-type model to the observed data can overcome this
problem. In this case, the output of the model is taken as the
3-axial acceleration norm measured at the lower back, while
the two inputs are taken as the acceleration norm measured at
the shanks. If the ARX-type model is a reasonably accurate
representation of the system being modelled, then, the model
residuals should exhibit little to no correlation and should
appear to be white noise, lacking any discernible systematic
pattern.

The philosophy introduced by this modelling strategy is
straightforward: if one identifies a good time-series model
for a particular individual, and, if the respective individual
has a stable and controlled gait, i.e. it remains consistent,
then the model will make good predictions. As a result, the
residuals should have a low variance and be centred at zero. If
the system response is changing, for example due to balance
and coordination deficits, then the previously identified model
will not be able to make good predictions and the variance
of the residual sequence will increase (relative to the stable
condition). When inconsistencies are identifiable within the
residual patterns, something has changed. Various sources can
be responsible for these changes, such as changes in health
condition, differences in testing conditions, etc.

Having established the modelling strategy, it is then
important to decide the objective strategy for determining
the similarity of the residuals. For this reason, an objective
statistical measure is a necessity, along with the corresponding
hypothesis test. The test used in this work is revolved around

the kernel-based [33] computation of the Maximum Mean
Discrepancy [9]. Here, a kernel-based implementation only
requires the user to specify a similarity function, formulated
as an inner product in a feature space, which is infinite
dimensional2 [33]. The full motivation for adopting the MMD
as the preferred statistical measure is postponed until Section
IV.

Once the statistical metric has been established, the only
final requirement is to transform the associated hypothesis
test into an objective measure which can then be used
to quantitatively report the consistency of gait. Among the
other reasons specified in Section IV, one can simply cross-
compare smaller segments of the residual patterns and assess
their similarity, by setting up a hypothesis test. The latter
makes use of the MMD metric and evaluates the dissimilarity
of the distributions between two groups by measuring the
discrepancy between samples drawn from each distribution.
Then, MMD test statistic is computed as the difference
between Hilbert space embeddings [34] of the two sets of
samples being compared. If the difference is large, then it is
likely that the two residual distributions are different and there
is an inconsistency in gait. The total number of comparisons
will be equal to the square of total number of smaller residual
segments (for the graphical illustration refer to Figure 3).
Implementing the hypothesis test across all combinations of
residual segments can then lead to creation of accept-reject
maps, as depicted in Figure 4. The results presented in the
flowchart diagram (Figure 1) are shown purely for their
qualitative aspects and the full explanation and interpretation
will be provided at a later stage in this paper. Finally, the
consistency of gait can then be computed as the percentage
of the number of times the hypothesis test regarded the
distribution of the residual segments as being different relative
to the total number of comparisons.

2Although there are a large number of kernels available, in practice, certain
options are frequently used due to their general applicability. For instance the
Gaussian/RBF kernel is a widely adopted choice, and it is also the kernel
function employed in this work.
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III. A CASE-STUDY TO DEMONSTRATE THE PROPOSED
APPROACH

A. Participants
The dataset used in this work consists of inertial

measurement unit (IMU) acceleration recordings from 2
groups of subjects. The first group (group A) consisted of
14 healthy controls (HCs, with no history of musculoskeletal
or neurological disorders which might affect their balance or
mobility) and 26 individuals with multiple sclerosis (MS).
The latter is a neurogenerative disease characterised by the
inflammatory-mediated demyelination of the axons in the
central nervous system [35], primarily manifesting through
gait balance and coordination deficits [20], [35]. The first
group of subjects completed the baseline test and the retest
on the same day, one hour apart. The sensors were not
repositioned between the two tests. An additional group
(group B) consisting of 23 HCs and 24 individuals with MS
performed the retest one week apart from the baseline test.
This was done to introduce natural variability in changing
assessment conditions and its effect on gait consistency within
a period in which the disease status would not change. The
severity of the disease for the patients with MS was assessed
through the Expanded Disability Status Scale (EDSS) [36].
The subjects with relapse-remitting MS were only included
in the study if no relapse occurred for 30 days prior to the
baseline test and had stable treatments for the past three
months. The study was approved by the NRES Committee
Yorkshire & The Humber-Bradford Leeds (Ref: 15/YH/0300)
and by the North of Scotland Research Ethics Committee (Ref:
17/NS/0020). All subjects provided written informed consent
before entering the study.

B. Gait assessment and initial processing
Gait data was collected using three tri-axial IMUs, (OPAL,

APDM Inc, Portland, OR, USA, sampling frequency, 128
Hz, accelerometer range ±6 g), attached to the body
through elastic straps, on the anterior aspect of both
lower shanks and on the lower back (L4 – L5). The
sensors were configured for synchronised recording using the
manufacturer’s provided access point. The sensing axes of the
sensors were approximately aligned to the anatomical planes.
Group A performed the baseline test by walking along a 14-
m corridor, while the group B walked along a 10-m corridor,
going back and forth for 6 minutes. The schematic of the
testing procedure is illustrated in Figure 1. All participants
were instructed to walk at their self-selected pace. Resting was
allowed, if needed. Additionally, walking aids were permitted,
only if used daily.

Following the procedure detailed in [20], all turns and
resting breaks were automatically removed, and only straight-
line walking bouts of steady-state walking were included in the
following analysis. To mitigate the end effects before and after
the turns, the first and last strides in a walking bout were also
excluded from the analysis. The gait events were identified
from the shank angular velocity signals, as described in [20].
For the sake of brevity, the details of the gait events algorithms
used are not replicated here. To avoid the effects of possible

undesired minor movements of the sensors between sessions,
it was decided to only work with the raw 3-axial acceleration
norm signals. For full details of the data collection and pre-
processing, the readers are referred to [20].

IV. MEASURING GAIT CONSISTENCY

A. Part 1 - ARX Time series residual modelling

Time series analysis represents a statistical framework
concerning the extraction of significant statistics or
characteristics of the sequence of observations for various
purposes, ranging from model identification to forecasting of
future values from current and past values [37]. As discussed
in the previous sections, the entire philosophy introduced by
the first part of this work consists of monitoring the residual
sequences once an ARX model is fit to the gait data. It
should also be noted that the following section is a specific
introduction only to the modelling strategy used in this work.
For a more comprehensive overview regarding time-series
modelling approaches the reader is referred to [8]. Here, the
ARX model can be written in the following form, where the
output y at time t, is given by:

y(t) =

na∑
i=1

aiy(t−1)+

2∑
j=1

nb(j)+1∑
k=1

bj(k−1)uj(t−k+1)+e(t)

(1)
where na is the number of lags for the output (in this case the
lower back 3-axial acceleration norm), nb(j) is the number
lags for the corresponding input (the left or right shank 3-
axial acceleration norm), ai is the i-th output coefficient, uj

is the j-th system input and its corresponding coefficient is
bj . Finally, the noise is represented by e(t). Note that the
inputs also contain the static regression, as the lower limb and
upper body movements occur simultaneously. Additionally,
Equation 1 is only valid for one-step ahead predictions. It
is also noteworthy that the modelling procedure proposed
here is only applicable if the sampling rate (which is defined
as the inverse of the time interval between two consecutive
measurements, and determines the temporal resolution of the
data) is maintained constant between baseline and follow-up
assessments. In the case of this work, the sampling rate has
been kept constant at 128Hz across all measurements.

The parameters of the ARX model can be fit to minimise the
one step ahead prediction error using ordinary least squares.
Remembering that the dataset used in this work consists of
individuals performing a walking test, going back and forth
along a straight corridor, the coefficients were computed using
the gait acceleration signals measured during the first straight-
line walking bout for all combinations of model orders, where
na and nb were varied from 1 to 15. The model order can then
be selected using the Bayesian Information Criterion (BIC)
[38] on a validation set. In the case of this work, the validation
set consisted in gait data measured during the second straight
line walking bout. The preferred model is then selected as the
one corresponding to the minimum BIC, which is defined as:

BIC = −2 ln(L̂) + p ln(N) (2)
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TABLE I
DEMOGRAPHICS TABLE

Age Gender MS Subtypes Walking assistive devices
Mean (SD) N male PP RR SP None Unilateral Bilateral

G
ro

up
A

HC (n=14) 27.4 (3.7) 8 - - - 14 0 0
MS (n=26)

EDSS = 3.9
44 (13.1) 5 2 23 1 19 5 2

G
ro

up B

HC (n=23) 49.4 (8.0) 7 - - - 23 0 0
MS (n=21)

EDSS = 5.1
56.5 (10.4) 6 0 0 21 10 8 3

PP = primary progressive, RR = relapse remitting, SP = secondary progressive

where L̂ is the maximum value of the likelihood estimate
of the model tested, given the data, p denotes the number
of parameters used by the model, and N is the number
of observations. The BIC allows for the comparison of
different model structures. It was deemed an appropriate model
selection criterion, as it introduces a penalty term for the
number of parameters used in the model, reducing the chances
of overfitting [39].

The next step in the ARX processing workflow consisted
of computing the model residuals vector, R, calculated as
the difference between the measured data and the model
prediction, as indicated by Equation 3. Here, Y is the output
vector, X is the input matrix and θ̂ is the ARX coefficients
vector.

R = Y −Xθ̂ (3)

Once an appropriate model is selected, the residuals are
computed across all the remaining straight-line walking bouts
of the baseline test, as well as during all the straight-line
walking bouts of the retest. This assessment was done in order
to capture any variations in the system dynamics during the
retest and to allow the quantification of consistency of the
gait patterns. Given the test-retest availability of data, the main
benefit of this approach is that once the orders and coefficients
of the ARX models have been established at the baseline,
they do not have to be determined again at a later stage. As
will be discussed in the following sections of the paper, this
condition will prove to be extremely useful at highlighting
the influence of the confounding factors. Therefore, extracting
the model residuals represents the foundation of the workflow
presented in this paper. The second part of the workflow
consists of monitoring the model residuals, assuming that the
residual pattern across a walking test remains similar, given
that the person performing the test has a stable and controlled
gait, i.e. it is consistent. The determination of whether two
sequences of residuals are consistent across different time
points involves statistical hypothesis testing, which provides
a means of quantifying the degree of gait consistency.

B. Residual pattern comparison – the Maximum Mean
Discrepancy as the preferred statistical metric

Assumptions regarding the form of the residual distributions
should not be made without scrutiny. Consequently, it
becomes a necessity to explore flexible approaches to
accurately quantify the discrepancies observed between
repeated measurements and provide an objective comparison

between the test and retest residual patterns. To this end,
a statistical metric is required, along with a corresponding
hypothesis test, which should:

1) quantify the differences between residual patterns using
an objective approach, while providing the clinicians
with consistent and interpretable results.

2) account for the complete form of the distribution, and
not just a small number of statistical moments.

3) provide non-parametric estimations with convergence
guarantees for the density estimations, so that it can be
applied to any given distributions.

While the first point on the requirements list is obvious
and is targeting operator bias, the following two need further
introduction. Due to the natural variability in the gait patterns
in both healthy and pathological populations, no two residual
distributions must be assumed to be the same. Therefore, this
inevitably raises some problems since no a-priori knowledge
about the form of the residual distributions should be assumed.
The kernel trick offers a solution to this problem by allowing
for the assessment of an infinite number of statistical moments
through the use of inner products in a feature space [33]. This
approach extends the comparison of distributions, rather than
specifying which features to focus on in advance.

The Maximum Mean Discrepancy (MMD) [9] is a metric
which fulfils all the requirements specified above and is
defined as the maximum difference between the mean kernel
embeddings of features [40]. Specifically, the unbiased MMD
can be formally estimated as follows:

MMD2(X,Y) =
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj)+

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj)

(4)

where X and Y are the two residual distributions to
be compared, xi and yi are samples drawn from these
distributions, and m and n are the corresponding sample sizes
of X and Y respectively. To clarify, X, and Y are stated as
probability measures, but generally, will be utilised in the form
of a probability density function (PDF).

Although, there are many kernel types that can be selected
for the computation of the MMD, one of the most popular
choices is represented by the radial basis function (RBF)
kernel [9], [41], defined as:
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Fig. 2. Visualisation of the aggregate sample matrix KZ and the permuted matrix, KZperm. The first 1000 samples correspond to a region of
1000 datapoints within a residual signal, while the last 1000 correspond to a different sequence of 1000 datapoints within a different residual signal.
Here, x and x′ are independent variables with distribution X, y and y′ are also independent variables with distributions Y, where x′ and y′ are
independent copies of x and y within the same distributions. x̃ and ỹ are independent variables drawn from the permuted distributions X̃ and Ỹ.
The red lines are used just for delimitation purposes.

k(x, y) = exp

(
−||x− y||2

2σ2

)
(5)

where σ is the parameter controlling the of bandwidth of the
kernel. While Gretton et al. [42] suggest setting up the kernel
bandwidth using the median heuristic of the aggregate sample
(i.e., concatenating the two datasets into a single sample), there
is no theoretical understanding of when this is a good choice,
and in some cases, it might not be the optimal solution [43],
[44]. Therefore, an optimization procedure would be better
suited for this application, which is to be discussed in the
upcoming paragraphs.

C. MMD hypothesis test

To quantify the consistency of gait, one could pose the
question of whether the two residual distributions to be
compared are similar, and set up a hypothesis test. Given a set
of independent observations drawn from two distributions X
and Y, the hypothesis test is used to differentiate between the
null hypothesis and the alternative hypothesis via comparison
of the test statistic with a particular threshold. Here, the
null hypothesis was set up as H0: X = Y, whereas the
alternative hypothesis is H1: X ̸= Y. The procedure detailed
in Algorithm 1, involving the MMD-based hypothesis test is
presented here for completeness. Setting up the hypothesis test
starts by computing the kernel embedding matrices Kxx′ ,Kyy′

and Kxy , followed by the computation of the MMD test
statistic, according to Equation 4. Then, the aggregate sample
matrix, KZ, is formed, as detailed in Line 3, Algorithm 1.
This pre-computation avoids the quadratic-time computational
cost in the forthcoming permutation loop. In order to create
artificially symmetric distributions, a bootstrapping procedure
is employed to establish the objective threshold (see Figure
2) [45]. This procedure is performed a specified number of
times, indicated by the variable “no permutations”. During
each iteration, the MMD is recalculated for the permuted
distributions. Finally, the distances are then sorted in ascending
order of magnitude and the threshold is selected as the distance
corresponding to the desired confidence level. If the threshold
is exceeded by the test statistic, then the test rejects the null

hypothesis, as there is not enough evidence to believe that
samples x and y were drawn from the same distribution.
Otherwise, the null hypothesis that the two distributions are
the same is accepted.

Algorithm 1 MMD Hypothesis test
1: Compute Kxx′ = k(x, x′), Kyy′ = k(y, y′) and Kxy =

k(x, y)
2: Compute the MMD test statistic as:

testStat = E[Kxx′ ] + E[Kyy′ ]− 2E[Kxy]

3: Store KZ =

(
Kxx′ Kxy

Kyx Kyy′

)
4: for i = 1 : no permutations do
5: Permute elemets of KZ and construct:

KZperm =

(
Kx̃x̃′ Kx̃ỹ

Kỹx̃ Kỹỹ′

)
6: Compute the permuted MMD as:

MMDperm = E[Kx̃x̃′ ] + E[Kỹỹ′ ]− 2E[Kx̃ỹ]
7: Store MMDperm in MMDperm array

8: end for
9: Sort MMDperm array

10: Compute threshold as the distance corresponding to the
desired confidence level

11: if testStat > threshold then
12: Reject null hypothesis: H1: X ̸= Y
13: else
14: Accept null hypothesis: H0: X = Y
15: end if

D. MMD Kernel bandwidth optimization
From Equation 5 it is noted that the bandwidth

hyperparameter (σ, controlling the width of the kernel) needs
to be objectively established. As mentioned previously, setting
up σ as the median pairwise distance among the aggregate
sample is not desirable. Gretton et al. [9] showed that this
method is not suitable for large datasets, since it can lead
to significant type-II errors (i.e. when the two distributions
are regarded as being the same by the hypothesis test,
despite being different in reality). In a different study, Gretton
et al. [44] proposed an optimization procedure for large
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Fig. 3. Illustration of the data bin comparisons. On the left, the dotted lines represent the divisions of the residuals bins to be compared against
the remainders. The arrows represent the two-sample comparisons. On the right, the comparison map is shown. This will then allow the user to
visualise the location of the inconsistencies in the residual signals.

sample sets, by selecting linear combinations of kernels
which minimize type-II errors and therefore improve the
robustness to false negatives of the MMD when used as a
test-statistic for a two-sample hypothesis testing. Moreover,
the RBF kernel embedding allows for an increased resolution
for characterising any given distributions. This effectively
translates into the embedding of an infinite dimensional vector
of statistical moments, resulting in an asymptotic guarantee
that the hypothesis test will capture any distribution and
become overly sensitive to the infinitely small differences,
which is not appropriate.

Noting the above observations and recognising that, in
practice, the MMD is rarely applied to large datasets consisting
of more than a couple thousand data points, the residual signals
were divided into smaller segments consisting of 1000 data
points, which are referred to as data bins in the following
paragraphs. In the context of the dataset used in this work,
which contains test and retest data, the MMD hypothesis test
was employed to compare all the residuals bins from baseline
test vs. baseline test (T-T), baseline test vs. retest (T-R),
retest vs. baseline test (R-T) and retest vs. retest (R-R). This
procedure, which is depicted in Figure 3 led to the creation of
an accept-reject map, which can be visually interpreted using
the examples provided in Figure 4.

Upon visual inspection of residual signals corresponding to
the MS group, it was noticed that, in several cases, the residual
variance is increasing towards the end of a walking test,
which might be an indication of fatigue over prolonged periods
of walking. Thus, to compare the consistency of the gait
patterns between the two tests, and to capture the seemingly
fatiguing behaviour described previously, it was then decided
to optimize the bandwidth of the kernel by minimizing the
accuracy of the test in the area of the map enclosed by the
dotted lines in the T-T quadrant, (i.e., using the first half of the
baseline residuals), assuming that a person can walk relatively
consistently during half of the baseline test. For clarification,
this optimization procedure was employed across both groups
of subjects.

More formally, the optimal bandwidth with an L2
regularization imposed was calculated as:

σoptim= argmin
σ

(accuracy(σ) + σ2) (6)

To arrive at the optimal kernel bandwidth for each subject,
it is important to ensure the robustness of the solution in a
couple of ways. Since typical optimization schemes involving
gradient descend are not feasible here due to the bootstrapping
procedure involved in the hypothesis testing, a gradient-free
optimization method was chosen. To ensure convergence to a
global minimum, multiple runs of fmincon interior-point and
fminbnd MATLAB-built in algorithms have been used, with a
search interval restricted to [0.0001, 10] and a cost function
value tolerance set to 1e-5. For the extensive descriptions of
the optimization algorithms used, the reader is referred to
[46]–[48] or [49], [50] for fmincon and fminbnd respectively.
Finally, the value of the bandwidth corresponding to the
minimum function value of all runs was taken as the optimal
value.

Once the optimal bandwidth is found, a counting task
follows. The MMD-hypothesis test is implemented, by
comparing all the residual bins as described previously, and
the accept-reject map is populated with the results returned
by the hypothesis test as a yes/no survey of whether the null
hypothesis is accepted for each of the comparisons. Finally, the
percentage of null hypothesis rejections is computed in each
of the quadrants (T-T, T-R, R-T and R-R) as a measure of gait
consistency. A higher percentage signifies a higher number of
gait anomalies found in the residual patterns and therefore
a less consistent gait. This final counting step concludes
the workflow of the proposed methodology for the objective
quantification of gait consistency.

V. DEMONSTRATION ON THE CHOSEN CASE STUDY

The effectiveness of this newly proposed approach,
comprising of utilizing ARX modelling and MMD-hypothesis
testing, for determining gait consistency is evaluated in this
study by applying it to the dataset discussed in Section III.
The objectives targeted here are (1) to verify whether the
consistency of gait is altered by the presence of a locomotor
disease (i.e., MS in the case of this work) and (2) quantify the
effect of variations in testing conditions.
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Fig. 4. Left: Typical residuals patterns for a HC (top) and an MS (bottom) individual. Right: Examples of the corresponding accept-reject maps.
Here, the red lines mark the T-T, T-R, R-T and R-R quadrants. Gait inconsistencies in the form of null hypothesis rejections are flagged by the grey
squares across all bin comparisons.

Fig. 5. Summary of the results. (A) - one-hour apart group, (B) - one-week apart group. The horizontal line inside the boxes represents the median
value, with the box showing the interquartile range. The whiskers indicate the 2.7 standard deviations range, considering a Gaussian distribution.
The outlying data is shown using red crosses. * represents statistical significant difference, ns represents a non-significant result.

To begin with, ARX model coefficients were computed on
the training set (consisting of the first straight line walking
bout of the baseline test), while the model order has been
established on the validation set (using the second straight line
walking bout of the baseline test). Then, once the model order
and coefficients have been established, the model residuals
were computed across the entire baseline test and retest.
Examples of the residual patterns for a HC and an individual
with MS, when the retest has been performed one hour apart,
can be seen in Figure 4. Here, the baseline test is highlighted
by the blue region, while the red region marks the retest.
Moreover, the training and validation regions for constructing
the ARX models are marked by the blue dotted lines at
the beginning of the baseline test. Upon visual inspection,
qualitatively, it can be seen that this HC is able to maintain
a stable gait throughout both tests, as the variance of the
residuals remains relatively constant. The individual affected

by MS, on the other hand, displays an inconsistent gait during
the retest, when compared to the baseline test. An increase in
the variance of the residuals is also noted towards the end of
the retest. Next, the corresponding accept-reject maps can also
be seen on the right in Figure 4. These were created by cross
comparing the residual bins using the MMD-hypothesis test,
for which the number of permutations was set to 500, and the
confidence level was set to 99%. Firstly, the HC accept-reject
map in Figure 4 shows the clear consistent gait pattern of the
HC subject, as only a few grey squares are visible, indicating
which residual bins were different from the rest, as the null
hypothesis was rejected. In contrast, the accept-reject map for
the individual affected by MS confirms the qualitative findings
in the corresponding residual plot, as the grey areas in the T-
R and R-T quadrants further reinforce the gait inconsistencies
between the two repeated tests.

Once the test-retest residual sequences and the accept-reject
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maps have been computed for all the participants in this case
study, further statistical analysis was required to accomplish
the two rather exploratory objectives of this study. Therefore,
the statistical comparison of the percentages of null hypothesis
rejections as a measure of gait anomalies in all the quadrants
of the accept-reject map was performed using the Mann-
Whitney U-test with a minimum significance alpha level of
1.25%, following Bonferroni correction, which accounts for
the multiple comparisons (α∗ = 0.05 / 4 comparisons). Type
II error was evaluated using Cohen’s d estimate, where values
of 0.1, 0.3 and 0.5 were used as thresholds for small, medium,
and large effect sizes, according to [51]. All statistical tests
discussed in this paragraph were performed in MATLAB
2021b (MathWorks, Inc., Natick, MA, USA).

The comparison between the percentages of null hypothesis
rejections in all the quadrants of the accept-reject maps are
shown in Figure 5. The statistical comparison between the
HC and MS groups who completed the retest one hour apart
is shown in Figure 5A, while Figure 5B shows the comparison
for those who completed the retest one week apart.

Analysing Figure 5A, as indicated by the T-R and R-T
comparisons, significant differences in the consistency of gait
patterns of MS subjects were found even when the retest was
performed one hour apart (p = 0.0002 and p = 0.0003 for T-R
and R-T respectively). Although not significant (p = 0.0208),
the T-T comparison suggests that the MS group displayed a
higher number of gait anomalies during the baseline test. This
is also indicated by the large effect size (d = 0.77) recorded
for this comparison and might be interpreted as an indication
of fatigue or balance and coordination difficulties during
prolonged periods of gait. On the other hand, a statistically
significant higher number of gait inconsistencies was recorded
during the retest for the MS group (p = 0.0048), as indicated
by the R-R comparison, while the HC group showed a variance
decrease. It should be noted that although, the T-R and R-
T comparisons appear identical, they are not, due to the
bootstrapping procedure involved in the MMD hypothesis test.
Large effect sizes were recorded across all comparisons for the
first group.

Analysing Figure 5B, no significant differences between
the HC and MS groups were found across all comparisons.
Interestingly, the within-test comparisons (T-T and R-R) do
not show a difference between HCs and MS, in contrast
to the differences found within group A. Moreover, a small
effect size was recorded across all comparisons. The associated
descriptive statistics characterising the boxplots are presented
in Table II.

VI. DISCUSSIONS

ARX residual modelling has been put forward as a new
way of attempting to reveal gait inconsistencies for both
healthy and pathological individuals. The idea of monitoring
the residuals can immediately highlight departures from the
normal stable gait, as a change in the residual pattern of
a dynamic model of gait. This difference occurs when the
previously identified ARX model is not able to make a
good prediction, due to significant changes in the system’s

dynamics. Interestingly, although the model orders and
coefficients are individually selected for each participant, once
computed at the beginning of the baseline assessment, they
do not have to be recomputed again. This advantage proved
to be extremely useful at highlighting the influence of the
confounding factors present at the follow-up assessment. It
should also be noted, that given the uniqueness of the gait
patterns, the models are not transferrable between individuals,
as a result of significant differences in the number of
lags and coefficients. Furthermore, it was observed that
residual patterns obtained during the train and validation
walking-bouts were not affected by the presence of severely
impaired movement, slow walking, asymmetry, compensatory
movements, or the utilization of walking aids. Inconsistencies
were observed at later points during the baseline assessment
or the one-week apart retest. Additionally, another inherent
advantage of employing the proposed approach is that it avoids
the need for gait event identification algorithms, which can be
susceptible to inaccuracies due to the aforementioned factors
that impact their accuracy.

After successfully implementing the residual modelling
task, quantifying gait consistency through evaluating the
similarity of residual sequences at various time points was
approached by utilising non-parametric statistical hypothesis
testing. For this task, a non-parametric hypothesis test is
a necessity. Therefore, in the second part of the proposed
methodology, this paper introduced the MMD-hypothesis test
which offers a kernel-embedding of the distribution of the
residuals, being able to account for all the information present
in the distributions. This is advantageous because end users
are not required to specify a-priori the particular features of
residual distributions that the statistical test should detect.
Instead, the kernel trick allows the user to effectively assess
infinite statistical moments through the use of inner products
in a feature space [33]. Finally, this paper also presented the
accept-reject maps as a way of objectively quantifying gait
consistency. The idea of monitoring the ARX model residuals
is fundamentally connected to the requirement of a hypothesis
test, as the two parts of this newly proposed methodology
can only exist in conjunction. Next, it is perhaps important to
revisit and further discuss the meaning of the results presented
in Section V.

The development of this methodology enabled the first
objective to be addressed. This objective aimed to assess
whether the presence of a disease alters the consistency of
gait. Here, the disease in question was MS, which is known
to manifest through gait balance and coordination deficits.
Clearly, Figure 5A highlights that even when the retest is
performed one-hour apart, and all the external factors were
controlled (i.e., the sensors were not removed and repositioned
between the two repeated recordings, the subjects wore the
same shoes, and enough time was allowed for resting in
between the two tests), the individuals affected by MS have
difficulties maintaining a stable and consistent gait. Because
of this, the proposed methodology might have the potential of
being a viable tool for verifying the effect of short-term clinical
interventions, such as the Remote Ischaemic Preconditioning
(RIPC) [52]. In addition to this, the increased sensitivity of the
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TABLE II
DESCRIPTIVE STATISTICS FOR THE INVESTIGATED COMPARISONS, TOGETHER WITH P-VALUES FOR THE INDEPENDENT MANN-WHITNEY U TEST

WITH BONFERRONI CORRECTION AND ASSOCIATED EFFECT SIZES

HC (A) MS (A) HC (B) MS (B) HC vs. MS (A) HC vs. MS (B)
Median (min, 25th percentile, 75th percentile, max) p-value (d)

T-T (%)
4.33 17.25 18.83 16.20

0.0208
(0.77)

0.8694
(0.10)

(0.17, 2.98, (0.39, 10.58, (1.90, 10.21, (5.10, 10.21,
16.62, 31.74) 24.11, 58.69) 30.01, 37.78) 24.25, 50.38)

T-R (%)
16.44 48.14 46.23 61.06

0.0002
(1.33)

1
(0.07)

(0.57, 5.09, (14.33, 30.91, (17.69, 35.96, (9.38, 30.20,
27.39, 61.62) 75.03, 99.90) 88.13, 100) 89.44, 100)

R-T (%)
16.73 48.98 45.54 61.98

0.0003
(1.32)

0.9812
(0.07)

(0.57, 4.88, (15.06, 30.21, (18.11, 36.17, (8.33, 29.90,
27.48, 61.62) 75.18, 99.79) 87.88, 100) 89.35, 100)

R-R (%)
5.20 18.20 13.28 15.19

0.0048
(0.84)

0.7070
(0.12)

(0.48, 2.82, (1.21, 8.66, (3.17, 8.49, (1.22, 6.69,
9.09, 36.73) 31.76, 57.18) 22.95, 41.94) 23.44, 56.12)

kp− value < 0.05 (k = number of multiple comparisons, equal to 4) are in bold.
A: Group 1, who performed the retest one hour apart; B: Group 2, who performed the retest one week apart.

method yields it suitable for quantifying the within-test gait
consistency in pathological populations, yielding an overall
consistency metric, given that less data is used for the kernel
bandwidth optimization task.

The second objective examined whether gait consistency
affected is influenced by alterations in testing conditions.
The results presented in Figure 5B clearly highlight that
further work is required to generalize the models and remove
the influence of the confounding factors. In this case, their
influence seems to be greater than the influence of the disease
itself, which might mask the evolution of the gait patterns at
follow up assessments. Here, the one-week interval between
tests enabled the proposed methodology to be evaluated
under more realistic follow-up assessment scenarios, where
changes in sensor placement, differences in the time of
assessment, prior physical activity before testing, differences
in subject’s footwear, and other factors might occur. To
clarify, the included MS subject did not undergo any disease-
related therapeutic interventions and the one-week apart was
deliberately chosen to ensure a stable disease status during
the study period. Therefore, by controlling these factors,
the effects of disease progression or treatment effects were
isolated. The findings of the study revealed statistically
significant results for the healthy population when comparing
the baseline assessment with the one-week apart retest. These
results highlighted the presence of natural variability in gait
patterns. If the modelling approach had demonstrated sufficient
generality, the authors would have expected no significant
differences for the T-R and R-T comparisons using group
B. Such outcomes would have indicated successful isolation
of the natural variability. Remarkably, the same problem is
well known in the SHM field [53]–[56], which is where
the inspiration for this modelling approach comes from. This
highlights the fact that the confounding factors arose from
environmental changes in testing conditions are detrimental to
the assessment of the condition of the system being analysed,
regardless of the nature of the system (i.e., being a person, a
bridge, a plane etc.). To mitigate these problems, various tools
were developed in SHM, such as cointegration [55], [56], and
seem worthy of investigation for the future work.

Because of the nature of the analysis, the findings of this
case-study cannot be directly compared to any results already
presented in the relevant literature. While the introduced
concepts are fundamentally different, perhaps the closest
resembling study is the work of Angelini et al. in [7], who
assessed the between-session reliability of several temporal,
variability and balance gait metrics using data collected one-
week apart from the same group (B) of HCs and patients
affected by MS. The study investigated between-session gait
metrics reliability, which refers to how consistent the included
gait metrics remain over time. Good to excellent agreement
between the two repeated tests was reported. In contrast,
the present study directly investigated the consistency of the
gait patterns themselves and found significant inconsistencies
between test-retest gait patterns. Although the same group of
subjects was used for the one-week apart comparison, this
outcome was expected, due to the increased sensitivity offered
by the ARX-based method and the MMD-based hypothesis
test. In addition to this, several other studies attempted to
quantify the reliability of several spatio-temporal metrics for
subjects affected by MS. Morris et al. [57] quantified gait
consistency during over a five-hour interval, from morning to
afternoon in MS patients, and provided a comparison to HCs.
The study revealed that even though the gait metrics obtained
for the patients with MS were different when compared to
those extracted from HCs, they remained consistent throughout
the monitoring window, in contrast to the results of the short-
term comparison presented in this study. However, the analysis
did not include a comprehensive set of gait metrics, as only
the gait speed, cadence, stride length and double limb support
percentage were examined. In addition to this, the study was
based on the 10-meter walking test, which is known to suffer
from lack of precision [58]. Another study utilising test-
retest data was the attempt of Berg-Hansen et al. [24] to
measure the potential effects of rehabilitation for MS subjects.
Significant differences from test to retest were found for all
spatio-temporal parameters included in the study. Yet, because
no control group was included in this study, the presented
outcome cannot be attributed to the active rehabilitation and
cannot be either attributed to varying testing conditions. On the
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other hand, our case-study included the control group and has
shown that gait inconsistencies have the potential of serving
as an indicator of the presence of MS, when the environmental
testing conditions are maintained constant.

It is also worth discussing the possible influence of walking
aids and the presence of asymmetry on the results, as the latter
is often considered an indicator of MS [20]. Here, the novel
data-driven approach utilized in this study extends beyond
the investigation of normal gait patterns and can effectively
analyse complex pathological gait, regardless of its severity
or the use of walking aids. To test the robustness of the
proposed methodology, 18 individuals affected by MS who
relied on walking aids were also included. Consequently, our
findings indicated that the presence of walking aids did not
negatively affect the residual modelling task. This suggests that
employing an adequate number of lags to comprehensively
capture the dynamic relationship between the lower limbs
and the upper body ensured that the residuals resembled
white noise without discernible patterns. Moreover, it is also
important to note that the ARX modelling procedure presented
here inherently deals with situations where asymmetry
between the lower limbs is present, i.e. instances characterised
by temporal differences, variations in signal amplitude, or
noisier acceleration signals recorded on one leg in comparison
to the other. This aspect is being handled by treating the
left and right limbs as separate entities and assigning a
varying number of lags and unique coefficients, as needed. The
model parameters are automatically tailored to accommodate
asymmetry effectively, using the BIC, as explained in Section
IV. Furthermore, is it also worth noting that the methodology
presented in this work is not intended to replace traditional
gait analysis, but rather to serve as a valuable augmentation
to the clinical assessment of gait consistency.

Having stressed the advantages and potential uses of
the newly proposed methodology for gait consistency
quantification, some though must also be given to the
possible limitations. The first obvious limitation concerns the
subject specific ARX models, since no significant within-test
differences were found between HCs and MS, except for the
RR comparison in group A. There are a few reasons for these
results. Firstly, if the model learns the already impaired gait
pattern of an individual with MS and if that particular subject
sustains the same impaired gait pattern throughout the entire
walking test, the residuals will still resemble white noise and
have a low variance. Secondly, the bandwidth optimization
was performed using the first half of the baseline test data.
While this approach is ideal for verifying the gait consistency
between repeated tests, it might mask important deviations
from the norm of the baseline data. To counteract this problem,
a feasible alternative would be to use a smaller proportion
of the baseline data to for the optimization of the kernel
bandwidth. Moreover, it is also important to acknowledge
that although the study utilized raw acceleration data, in
future applications where device-agnostic methodologies are
desired, filtering techniques could be implemented prior to
the ARX modelling task. However, in this particular case,
such a requirement was unnecessary as the same devices were
consistently employed throughout the data acquisition process.

For the second part of the methodology, a potential
disadvantage of the MMD-based hypothesis test is the
computational overhead. Yet, this was reduced by avoiding
the quadratic-time computational cost in the permutation
loop. Moreover, even though the T-R and R-T comparisons
may not always be the same (due to the bootstrapping
procedure involved in creating the two artificially symmetric
distributions), the differences are negligible, and the
computational time can be further reduced in half, if only
considering the upper or lower diagonal matrices of the accept-
reject map. A possible improvement would be to use the
updated versions of the MMD, such as its linear time estimate
[44] or the B-tests [59].

VII. CONCLUSION

The present paper has introduced a novel methodology
for objectively quantifying gait consistency for both healthy
and pathological individuals. While clinical conclusions are
probably not advisable, instead, it is perhaps more important
to discuss the main ideas introduced by this paper and their
future usages. The idea of a data-based modelling approach,
in the form of ARX residual modelling, has been applied in
the context of gait analysis. The aim has been to investigate
whether monitoring the residuals can lead to insight into, or
enhancement of, the understanding of gait consistency in both
healthy and pathological populations. Thus, once an ARX
model has been established, good predictions can only be
obtained providing a stable and controlled gait, similar to
the one displayed during the learning phase. As a result, the
residuals should have a constant variance. On the contrary,
in the presence of gait inconsistencies, an obvious departure
from the constant residual variance should be recorded. This
modelling approach immediately lends itself for monitoring
the consistency of gait during clinical walking assessments.
However, obtaining an objective measure of gait consistency
is only possible if the residual modelling is used in conjunction
with statistical hypothesis testing. To this end, the MMD-
based hypothesis test has been introduced, offering enhanced
sensitivity to gait inconsistencies. Finally, by considering
smaller data segments, an objective measure of consistency
has been provided, by cross comparing all the smaller data
segments.

The result of the most immediate importance for gait
analysis community is that this newly proposed methodology
revealed the detrimental effects of varying assessment
conditions on gait pattern consistency. Therefore, the obvious
direction of the future work targets the elimination of
environmental variations, which will then allow the long-term
monitoring of gait progression in longitudinal studies.
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