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Abstract— Ultrasound shear wave elastography (SWE)
methods are being used to differentiate healthy versus
diseased tissue on the basis of their viscoelastic mechan-
ical properties. Tissue viscoelasticity is often studied by
analyzing shear wave phase velocity dispersion curves,
which is the variation of phase velocity with frequency or
wavelength. Recently, a unique approach using a general-
ized Stockwell transformation (GST-SFK) was proposed for
the calculation of dispersion curves in viscoelastic media
over expanded frequency band. In this work, the method’s
robustness was evaluated on data from five custom-made
viscoelastic tissue-mimicking phantoms and sixty in vivo
renal transplants. For each phantom, 15 shear wave mo-
tion data acquisitions were taken, while 10-13 acquisitions
were acquired for renal transplants measured in the renal
cortex. For each data-set mean and standard deviation
(SD) of estimated phase velocity dispersion curves were
studied. In addition, the viscoelastic parameters of the
Zener model were examined, which were preceded by a
convergence analysis. For viscoelastic phantoms scanned
with a research ultrasound scanner, and for the in vivo renal
transplants scanned with a clinical scanner, the decisive
advantage of the GST-SFK method over the standard two-
dimensional Fourier transform (2D-FT) method was shown.
The GST-SFK method provided dispersion curve estimates
with lower SD over a wider frequency band in comparison
to the 2D-FT method. These advantages are relevant to the
analysis of the mechanical properties of tissues in clinical
practice to discriminate healthy from diseased tissue.
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I. INTRODUCTION

Shear wave elastography (SWE) was proposed more than
two decades ago for the non-invasive evaluation of the me-
chanical properties of tissues [1], [2]. Since then, SWE has
proven to be a useful method for quantifying the viscoelastic
properties of different types of tissue, including liver, kidney,
skeletal muscle, prostate, and heart [3]–[6]. SWE methods
have emerged as a way to distinguish healthy from diseased
tissue based on the viscoelastic properties of the tissue.
Typically, SWE techniques use focused ultrasound beams to
produce an acoustic radiation force (ARF) excitation to gener-
ate propagating shear waves [7], [8]. The shear wave motion
is measured using ultrafast ultrasound imaging techniques.
Then, shear wave velocity in the time- or frequency-domain
is estimated using various techniques, which is related to the
mechanical properties of the tissue.

In the case of viscoelastic media, the wave velocity changes
with frequency, which is called dispersion [9]. Dispersion
curves are plots of phase velocities, or equivalent wavenum-
bers, as a function of frequency and are related to the elasticity
and viscosity of the tissue [10]. The dispersion curves are
often fit with relationships described by rheological models
(e.g., Zener (Standard Linear Solid), Kelvin-Voigt, Maxwell,
Kelvin-Voigt fractional derivative) for better tissue charac-
terization [11]–[15]. Nightingale, et al., noted that there are
large differences in Kelvin-Voigt (KV) fitting parameters for
limited frequency ranges, in particular for highly dispersive
media [15]. These are significant limitations in employing
the KV, and potentially other rheological models for the
frequency domain analysis. Therefore, attention is paid to
estimate robust dispersion curves in viscoelastic materials and
tissues over an extended frequency range, which in turn will
improve the use of rheological models for more accurate tissue
characterization.

To date, many techniques for phase velocity dispersion
curve calculation have been proposed. The most known,
and widely used due to its simplicity, is a two-dimensional
Fourier transform (2D-FT) [16], [17]. The 2D-FT approach of
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spatiotemporal motion data creates the frequency-wavenumber
(f-k) distribution, also known as k-space, that shows the
distribution of shear wave magnitude. The peaks of the f-k
distribution represent the phase velocities of different wave
propagation modes as c(f) = 2πf/k = f/λ. Another
commonly used technique uses a phase gradient to calculate
the phase velocity [18]. In this method, shear wave phases
are measured at each frequency of interest for all spatial
locations, and a linear regression or curve fit is used to
calculate the phase velocity. The phase gradient and 2D-FT
techniques cover the vast majority of research related to the
analysis of dispersion curves in elastic and viscoelastic soft
materials and tissues. Nevertheless, it was shown that more
advanced methods can offer better frequency resolution, and
lower variance in the presence of noise in the measured
data [19]. There are many other techniques for estimating
dispersion relations, including non-parametric, parametric and
high-resolution methods, which can offer better accuracy [15],
[19]–[21]. Among them, a Radon sum, Multiple Signal Clas-
sification (MUSIC), eigenvector, Blackman-Tukey have been
reported.

Recently, a unique approach for shear wave dispersion
curves calculation was proposed for use in viscoelastic ma-
terials and tissues [22]. The proposed method, named GST-
SFK, uses a generalized form of the Stockwell (S-transform)
transform along with the slant f-k analysis. It uses the S-
transform that combines strengths of the short time FT, and
the continuous wavelet transform method to overcome their
weaknesses. The method was investigated on numerical and
experimental phantom data, and also a limited number of ex
vivo and in vivo experimental tissue liver data using single data
acquisitions [22]. The authors have shown the promise of the
GST-SFK method for phase velocity estimation with expanded
usable bandwidth by a factor of two or more in viscoelastic
phantoms and tissues. The GST-SFK approach achieved much
better performance compared to the 2D-FT and high-resolution
(eigenvector) methods, making it very competitive for clinical
applications [22].

In this work, we further explore the use of the GST-
SFK approach for phase velocity estimation in viscoelastic
phantoms and more challenging clinical applications, i.e. renal
transplants. A renal biopsy is the gold standard in kidney
health diagnosis, but it is an invasive procedure, cannot be used
frequently, and can cause complications [23]. Noninvasive
SWE techniques are being studied to discriminate healthy
versus diseased renal tissue [24]–[28]. Renal inflammation is
the initial response to renal injury. Prolonged inflammation
promotes the process of fibrosis, leading to chronic kidney
rejection. The GST-SFK approach can potentially help provide
a more accurate assessment of renal health via providing robust
phase velocity dispersion curves over extended frequency
band.

This article is organized in the following way. First, we
briefly recall the theory for the GST-SFK method proposed
in [22], along with the commonly used 2D-FT approach.
These methods were tested on particle velocity data from five
custom-made tissue-mimicking (TM) viscoelastic phantoms
and sixty in vivo renal transplants. The robustness of the

methods was tested by analyzing the responses for 15 and 10-
13 shear wave data acquisitions at various spatial locations for
the phantoms and renal transplants, respectively. The results
will be followed by a discussion and conclusions.

II. METHODS AND MATERIALS DESCRIPTION

A. S-Transform-Based Method (GST-SFK)
A generalized Stockwell transformation combined with a

slant f-k analysis was proposed for shear wave phase velocity
estimation in [22]. The GST-SFK method uses a generalized S-
transform for a time-frequency decomposition of a signal with
a frequency-dependent Gaussian window. The generalized S-
transform can be described as

S[v(τ)](τ, f, β) =

∫ +∞

−∞
v(t)

[
|f |√
2πβ

e−
f2(τ−t)2

2β

]
e−i2πftdt,

(1)
where the time-frequency resolution is controlled by the β
scaling factor, which changes the width of the scaled Gaus-
sian window. The function S indicates the time-frequency S-
transform of the time variable v(t) signal, f is a frequency and
τ is responsible for controlling the position of the Gaussian
window in the time domain, t. For a narrow window in the time
domain, the S-transform resolution in the frequency domain
decreases, and inversely, widening the Gaussian window in the
time domain increases the frequency resolution.

A shear wave wave field, v(x, t), is transformed to the time-
frequency using Eq. (1). Then, a series of 2D complex-valued
functions of the time and distance is calculated as

V (x, τ) = S[v(x, t)](τ, f, x). (2)

Next, the one-dimensional complex-valued slant-phase
function, P , is considered. The P function in a form

P (x) = V

(
x,

x

um
= τ

)
(3)

is considered for a selected frequency, steering group velocity
u = x/τ , and the constant time. It is computed for a number
of steering group velocity values um, a maximum distance xm,
and a maximum time tm, i.e. um = xm

tm−m∆t with ∆t being
the time sampling rate. Following, the slant-phase function
amplitude is calculated as

Λ(u, f, k) =

∣∣∣∣∫ +∞

−∞
P (x)e−2iπkxdx

∣∣∣∣ . (4)

The Λ parameter is a spectral amplitude distribution with
the steering group velocity, frequency, and wavenumber co-
ordinates, respectively. A maximum amplitude of Λ(u, f, k)
over all steering group velocities is taken for the dispersion
curves calculation, which can be described as

K(f, k) = max
u

[Λ(u, f, k)] . (5)

Then, phase velocity dispersion curves were computed from
finding the peaks in the K(f, k) distribution. It should be
noted that in the GST-SFK method each frequency is treated
independently and no extrapolation process is used. The GST-
SFK method utilizes the slant f-k transform and the general-
ized S-transform to convert data from the time-space domain
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to the frequency-phase velocity domain, effectively mitigating
noise at each frequency and reducing spatial spectral leakage
artifacts [22].

B. Two-dimensional Fourier Transform (2D-FT)
The two-dimensional Fourier transform (2D-FT) is the most

used method for phase velocity dispersion curve calculation in
biomedical ultrasound. It belongs to a class of non-parametric
approaches which are based on the idea of estimating the
autocorrelation sequence of a random process from a set of
measured data [19].

The 2D-FT is performed in the temporal and spatial domains
to obtain an estimate of the frequency-wavenumber, f-k, distri-
bution. Next, the f-k distribution is converted to phase velocity
curves which can be done in two different ways, from finding
the peaks in the f-k distribution along a given search direction,
or zero-crossing locations after applying a gradient operator
[20]. The coordinates of the peaks or zero-crossing locations
are then used to calculate the phase velocity as c(f) = 2πf/k.

In this work, maximum peaks from the f-k distribution were
detected for each frequency. To extract the main shear wave
mode from the detected peaks, the peaks corresponding to the
shear wave mode were tracked for the closest value. Then, the
coordinates of the localized peaks were used to calculate the
phase velocity c(f).

C. Tissue-Mimicking Viscoelastic Phantoms
Five viscoelastic, custom-made, tissue-mimicking (TM)

phantoms (CIRS, Inc., Norfolk, VA, USA, manufactured
in 2017-2018) were used for the purposes of determining
shear wave phase velocity estimation robustness, using the S-
transform-based method. They are denoted as phantoms with
Roman numerals I-V for this paper. The reference mechanical
properties of these phantoms are unknown. Shear wave acqui-
sitions were performed with a Verasonics system (V1, Vera-
sonics, Inc., Kirkland, WA, USA), and a linear array transducer
(L7-4, Philips Healthcare, Andover, MA). Data were taken for
each phantom, for different spatial positions, corresponding to
15 data acquisitions, to explore biases related to dispersion
curves calculation. The ARF push beams were generated and
focused at 21.56 mm in depth. The push duration, and the push
frequency were 400 µs and 4.09 MHz, respectively. A plane
wave acquisition, using three plane waves that were coherently
compounded (-4◦, 0◦, +4◦), was used [29]. The effective
frame rate after compounding was 4.167 kHz. The shear wave
particle velocity motion data were calculated from the in-
phase/quadrature (IQ) data using an autocorrelation algorithm
[30]. The particle velocity signals, shown in a Supplementary
Material, were measured in the lateral segment length starting
from 0 to 30 mm, and were averaged over a range of 5 mm in
the axial direction centered at the focal depth, before starting
to determine the dispersion curves.

D. In vivo Renal Transplant Data
Sixty in vivo renal transplant subjects were also used to

test the robustness of the GST-SFK method, for clinical use.

TABLE I: In vivo renal transplant data divided into four groups based on the
inflammation and Interstitial Fibrosis and Tubular Atrophy (IFTA) presence.
Group A corresponds to healthy subjects. All groups consisted of 15 subjects
each.

Subject Group IFTA Inflammation Group velocity, MEAN±SD [m/s]

A No No 2.35 ± 0.49
B No Yes 2.53 ± 0.70
C Yes No 2.39 ± 0.81
D Yes Yes 2.26 ± 0.38

Shear wave measurements were conducted on human subjects
scheduled to undergo protocol biopsy. The kidney imaging
and measurements were carried out prior to the biopsy under
a protocol approved by the Mayo Clinic Institutional Review
Board. Written informed consent was obtained prior to scan-
ning. The examinations were carried out by an experienced
clinical sonographer. During the tests, the ultrasound probe
was positioned to find a longitudinal plane of the kidney,
and the region-of-interest (ROI) was positioned in the middle
of the kidney to make measurements in the renal cortex.
Data acquisition was performed using a Logiq E9 ultrasound
system equipped with C1-6-D curved array transducer (Gen-
eral Electric Company, Wauwatosa, WI, USA). Up to 10-13
acquisitions were taken for each subject. The ARF push beams
were focused at the edges of the ROI and directional filtering
was used upon the shear wave field to extract the leftward from
rightward traveling shear waves. Ultrasound data were taken
to measure the shear wave motion with a frame rate of 2.412
kHz. When analyzed, the data were manually selected from
the renal cortex based on B-mode images. The particle velocity
signals, shown in Supplementary Material, were measured in
the lateral segment length starting from 0 to 21.3 mm.

The biopsy tissue histology was analyzed by Mayo Clinic
nephropathologists and characterized using the Banff criteria
[31], [32]. We noted the presence of inflammation, interstitial
fibrosis, and tubular atrophy. In this data set, there were cases
of mild to moderate disease in the aforementioned categories.

Subjects were divided into four groups: A - healthy subjects;
B - subjects with inflammation and no interstitial fibrosis and
tubular atrophy (IFTA); C - subjects with IFTA, but no in-
flammation; and D - subjects with IFTA and inflammation. All
four groups are summarized in Table I. All groups consisted of
15 subjects each. For each subject group, the corresponding
values of group velocities are given, which were estimated
using a space-time thresholded motion search [33].

E. Zener Rheological Model

Based on the phase velocity estimates over a given fre-
quency range, the elasticity and viscosity parameters were de-
duced. In this work, we used the Zener rheological viscoelastic
model. The Zener model is composed of a dashpot (viscosity,
η) and two spring elements (Young’s moduli, E1 and E2).
The stress-strain relationship of the Zener model is given in
the form [34]

σ(t) + τσ
∂σ(t)

∂t
= E1

[
ε(t) + τe

∂ε(t)

∂t

]
, (6)
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where the relaxation time τσ = η/E2, the retardation time
τe = η/E1 + η/E2, and τσ 6 τe. Solving Eq. (6) leads to
the frequency-dependent phase velocity of the Zener model,
which can be written as

Vs(ω) =

√
2

3ρ

A2 +B2

(E2
2 + η2ω2)

(
B +

√
A2 +B2

) , (7)

where A = ηωE2
2 , B = E1E

2
2 + η2ω2(E1 + E2). ρ is the

density and ω is an angular frequency, i.e., ω = 2πf . When
E2 reaches a very high level, the Zener model begins to behave
like the Kelvin-Voigt viscoelastic model.

In order to estimate E1, E2 and η parameters, Vs(ω) was
estimated using a nonlinear least-squares problem (NLSQ) in
a form

[E1, E2, η] = min
E1,E2,η

||Vs(f)− Vph(f)||22. (8)

Equation (8) was numerically solved using the MATLAB
solver lsqcurvefit. The Zener fit was done using two sets of
frequency ranges: a short one (with reduced variability and
SD) that one would select based on the phase velocity curves
estimated using the 2D-FT method, and an extended frequency
range. The short frequency range used for the KV fit and the
TM phantoms was: 150-400 Hz for Phantom I, 150-1400 Hz
for Phantom II, 150-1400 Hz for Phantom III, 150-700 Hz for
Phantom IV, and 150-600 Hz for Phantom V. The extended
frequency range of 150-1800 Hz for the TM phantoms was
used.

Three frequency ranges were used for renal transplants, i.e.:
• Case 1: a fixed frequency range of 200-450 Hz, where all

groups (except D for 2D-FT) had a coefficient of variation
(CV) < 30%;

• Case 2: a fixed frequency range of 200-900 Hz;
• Case 3: frequency range starting from 200 Hz up to the

maximum frequency for which CV < 30% for a given
subject group and given approach.

Coefficient of variation, defined as CV = SD
MEAN · 100%

shows the degree of variation relative to the sample mean. The
lower the CV, the smaller the variation. For each curve fit the
norm of residuals (NoR) was measured. The norm of residuals,
i.e., the squared L2-norm of the residual, is a measure of the
goodness of Zener fit, where a smaller value indicates a better
fit than a larger value [35].

F. Statistical Tests

In this study there were three factors of interest: group (4
levels, Groups A, B, C, D), method (2 levels, 2D-FT and
GST-SFK) and frequency (24 levels). Analysis was performed
using three-way fixed effect ANOVA with two factors repeated
(method and frequency). Each group had 15 subjects (i.e.,
a total of 60 subjects). Multiple observations within each
combination of group by method by frequency for each patient
were summarized as mean ± standard deviation. These means
of the phase velocity at each level (i.e., a total of 2880 = 15
subjects x 4 groups x 2 methods x 24 frequencies) were used
as an outcome variable in this analysis. Given that we have

three factors, we used Mauchly’s sphericity test to decide on
the appropriateness of a multivariable approach. A statistically
significant p-value (p < 0.05) for this test indicates that
correlations between each pair of repeated measures are not
the same. An assessment of statistical significance for each of
the main effects and the two-factor and three-factor interaction
terms (group by method, group by frequency, method by
frequency and group by method by frequency) were assessed
using a test based on Pillai’s trace.

For each of the methods, the extent of variability relative to
mean was assessed using the coefficient of variation, which
is the ratio of standard deviation to mean. This was done
separately within each group and for all frequencies.

We compared estimated E1, E2, and η parameters for Cases
1, 2, and 3 as described below. We used a Wilcoxon rank
sum test for pairwise comparison to determine if there were
differences between the median values of the subject groups.
Specifically, we investigated if there were any significant
differences in the results when comparing healthy subjects
(group A) with other groups (B, C, D) in a pairwise manner.

III. RESULTS

A. TM Phantoms

Shear wave particle velocity motion data for custom-made
TM viscoelastic phantoms were examined. Shear wave spa-
tiotemporal data and the frequency-wavenumber (f-k) distri-
bution, also known as k-space which shows the distribution
of shear wave energy, reconstructed based on the 2D-FT, and
GST-SFK methods were shown in a Supplementary Material
in Fig. S1. Phase velocity curves calculated for all the TM
viscoelastic phantoms, and 15 data acquisitions acquired for
each phantom, were plotted in Fig. 1a. Based on all data
acquisitions collected for various spatial locations, mean and
standard deviation (SD) curves were calculated in the fre-
quency domain and plotted in Figs. 1b and 1c.

Dispersion curves computed for the softest phantom, Phan-
tom I, and for all fifteen data acquisitions have high variation
starting from 500 Hz, for the 2D-FT method (the top row in
Fig. 1a). This results in increased mean phase velocity which
was also enlarged with increasing frequency. This variation
was presented as standard deviation in Fig. 1c, where SD
values slightly increase up to approximately 0.18 m/s in the
frequency range from 400 to 660 Hz, and then drastically
jumps to 2 m/s and above. The GST-SFK approach on the
other hand, provides much more stable dispersion curves
between all the acquisitions, up to almost 1900 Hz, where
SD values do not exceed 0.08 m/s.

The 2D-FT approach, for Phantom II, provided robust
estimates up to approximately 1400 Hz with low SD values
at the level of 0.06 m/s. Then, above 1400 Hz mean phase
velocity for 2D-FT was discontinued and underestimated,
besides having small SD (<0.01 m/s). In turn, the GST-
SFK method estimated robust phase velocity curves for all
frequency band with SD values being lower than 0.01 m/s.

Measurements carried out on Phantoms III, IV and V also
revealed the advantage of the GST-SFK method over the 2D-
FT technique. It can be seen that phase velocity has higher
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Fig. 1: Phase velocity curves calculated for the 2D-FT (black dots), and GST-
SFK (red diamonds) methods. Results were computed for the CIRS tissue-
mimicking viscoelastic phantoms, for (a) 15 data acquisitions. (b) mean, and
(c) standard deviation (SD) were calculated on the basis of all acquisitions
from (a).

(a) E1 (b) E2 (c) η (d) NoR

Fig. 2: Box plots calculated for estimated Zener parameters Young’s modulus,
E1 (a), Young’s modulus, E2 (b), viscosity, η (c), and the norm of residuals,
NoR (d), for GST-SFK and 2D-FT methods. White circles represent mean
values, whereas a solid line within the box corresponds to a median value.
Results are presented for the TM viscoelastic phantoms I-V. The top row
presents results for the Zener fit performed using a short frequency ranges:
150-400 Hz for I, 150-1300 Hz for II, 150-1400 Hz for III, 150-700 Hz for
IV, and 150-600 Hz for V. The bottom row shows estimates for the Zener
fit done using an extended frequency range from 150 to 1800 Hz for all the
phantoms. Note the logarithmic vertical axis for the norm of residuals.

variability as the frequency increases, between different data
acquisitions for 2D-FT. This results in a significant increase
in SD, and deviations in the mean phase velocity. The reliable
mean phase velocity, calculated using 2D-FT, was up to
approximately 1500 Hz, 1200 Hz and 700 Hz, for Phantoms
III, IV, and V, respectively. For these frequency ranges, the SD
values were at the level below 0.20 m/s. While the GST-SFK
approach had estimated stable phase velocity curves over the
entire frequency band, with SD values at the level below 0.10
m/s for Phantoms III and IV, and 0.20 m/s, for Phantom V,
respectively.

Figure 2 shows box plots calculated for estimated Zener
parameters E1, E2, and η, and the norm of residuals, NoR, for
GST-SFK and 2D-FT methods. Results for five TM phantoms
investigated in this work are presented. The bottom and
top edges of the box indicate the 25th and 75th percentiles,
respectively. The white circles represent the mean values,
while the solid line in each box corresponds to a median value
of the phase velocity, respectively. Outliers were plotted for
values greater than r3 + wl(r3 - r1) or less than r1 - wl(r3 -
r1), where wl = 1.5 is the maximum whisker length, and r1
and r3 are the 25th and 75th percentiles of the sample data,
respectively.

Box plots for all the phantoms and E1 (Fig. 2a, top row),
E2 (Fig. 2b, top row), and η (Fig. 2c, top row) were at a
comparable level for the two methods and the short frequency
range, except for the 2D-FT approach and Phantom I, for
which the E2 had a large boxplot. The NoR values also
oscillated at the same level between the 2D-FT and GST-SFK
methods (Fig. 2d).

For the extended frequency range, box plots with lower vari-
ability were estimated for the Zener viscoelastic parameters E1

(Fig. 2a, bottom row), E2 (Fig. 2b, bottom row), and η (Fig.
2c, bottom row), for the GST-SFK method compared to the
2D-FT technique for Phantoms I and III-V. It was caused by
much lower phase velocity variation at higher frequencies for
the GST-SFK method, where the norm of residuals was below
0.1 m2/s2, compared to the 2D-FT method, for which NoR
oscillated between 104-106 for Phantoms I and III-V (Fig.
2d). The NoR parameter for Phantom II was below a value of
0.1 m2/s2 for the two methods, which gave robust viscoelastic
Zener parameters estimation.

B. In vivo Renal Transplants

The experimental in vivo renal transplant data were investi-
gated using the GST-SFK approach and the 2D-FT method for
shear wave phase velocity estimation, for clinical applications.
Results for these two methods were compared and evaluated.
Four groups of subjects were examined as discussed in Sec.
II-D, and summarized in Table I. Spatiotemporal shear wave
particle velocity signals for one subject from each group, and
the two-dimensional, normalized by wavenumber maxima f-k
distribution maps, as well as, two-dimensional phase velocity
results, with marked maxima of the phase velocity were
shown in Fig. 3. Results for additional subjects were shown
in the Supplementary Material in Figs. S7, S11, S15, S19.
Phase velocity curves calculated for the 2D-FT and GST-SFK
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Fig. 3: (a) Spatiotemporal shear wave particle velocity signals. The frequency-wavenumber (f-k) distribution reconstructed based on the (b) 2D-FT, and (c)
GST-SFK methods. The f-k maps are normalized by wavenumber maxima in the frequency direction. Phase velocity reconstructions based on the (d) 2D-FT,
and (e) GST-SFK methods, for shear wave motion measurements. The phase velocity maps have superimposed markers corresponding to the maximum peaks
of the phase velocity. Results were calculated for Groups A-D in vivo renal transplants, for randomly selected data acquisitions.

methods, for 10-13 data acquisitions, were evaluated. Results
were summarized in Figs. 4, 5, 6, and 7, for groups A-D,
respectively. Individual phase velocity dispersion curves for
all data acquisitions were plotted in sub-figures (a). The mean
and SD, calculated on the basis of all acquisitions, were shown
in sub-figures (b) and (c), respectively.

Similar performance between the 2D-FT and GST-SFK
methods can be seen for frequencies up to about 300 Hz.
Then, the 2D-FT approach estimated dispersion curves were
highly scattered within the measured acquisitions, making
calculated results above 300 Hz unreliable. The mean phase
velocity curves had a discontinuous trend which is unrealistic
for physical media. Additionally, the SD curves showed a
sharp increase in the SD value (often exceeding 2 m/s and
more), e.g., starting at 300 Hz for subject A1, and starting
from 400 Hz for subjects A2, and A3, respectively, from the
group of healthy subjects, A. Similarly, a sudden increase in
SD occurred in other renal transplant subjects and the 2D-FT
method, for which similar cut-off frequencies can be evaluated.

On the other hand, the GST-SFK method outperformed the
2D-FT approach in higher frequency ranges. Variation of the
GST-SFK dispersion curves, in sub-figures (a), was lower than
for the 2D-FT. The SD curves for GST-SFK up to the above-
mentioned cut-off frequencies were approximately on the same
level as for 2D-FT. Then, with increasing frequency the GST-
SFK method outperformed the second technique. The GST-

SFK was able to maintain estimated phase velocity curves
with SD values below 1 m/s for twice the frequency range
and more. For an example, considering the same healthy
subjects as above, SD values for subject A1 were below 1
m/s up to 920 Hz, and up to approximately 1200 Hz (the
Nyquist frequency) for subjects A2, and A3, respectively. In
addition, most examined subjects did not exhibit discontinuous
SD curves for GST-SFK, as opposed to the 2D-FT approach.

Figure 8 shows the mean phase velocity and the SD curves
for the four groups described in Table I. Box plots of the
phase velocity, for the four subject groups investigated, were
calculated for the frequency range from 100-1200 Hz, with
an interval of 100 Hz. Results were summarized in Fig. 9 for
the GST-SFK method (Fig. 9a), and the 2D-FT approach (Fig.
9b).

Box plots became more separated within the investigated
subjects groups with increasing frequency for the GST-SFK
method. Similar separation was not observed for the 2D-FT
method in Fig. 9b. Mean values in the box plots became much
wider for frequencies starting from 500 Hz and they were at
a similar level between each subject group. It is worth noting
that different phase velocity ranges in Figs. 9a and 9b were
used.

Figure 10a shows the CV calculated for the phase ve-
locity, computed in a frequency range from 100-1200 Hz,
for the GST-SFK (dashed lines), and 2D-FT (solid lines)
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Fig. 4: Phase velocity curves calculated for the 2D-FT (black dots), and
GST-SFK (red diamonds) methods. Results were computed for the normal
(Group A) in vivo renal transplants. Results were calculated for (a) 13 data
acquisitions. (b) mean, and (c) standard deviation (SD) were calculated on
the basis of all acquisitions from (a).
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Fig. 5: Phase velocity curves calculated for the 2D-FT (black dots), and
GST-SFK (red diamonds) methods. Results were computed for the in vivo
renal transplants, for subjects with inflammation and no IFTA (Group B).
Results were calculated for (a) 13 data acquisitions. (b) mean, and (c) standard
deviation (SD) were calculated on the basis of all acquisitions from (a).

methods, respectively. The shaded gray area corresponds to
CV < 30%, and horizontal lines indicate maximum frequency
values before exceeding that region. The localized maximum
frequency values for CV < 30% were: 1050, 550, 450, and
900 Hz, for the GST-SFK approach and subject groups A-D,
whereas for the 2D-FT method these frequencies were 450,
250, 300, and 100 Hz for the same subject groups, respectively.
The frequency range meeting this criterion was approximately
twice as high for GST-SFK as for 2D-FT, for subject groups
A, B, and C. For subject group D, this criterion was not met
for 2D-FT.

Coefficient of variation difference between the two methods
is shown in Fig. 10b. The CV for frequencies up to 400 Hz
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Fig. 6: Phase velocity curves calculated for the 2D-FT (black dots), and
GST-SFK (red diamonds) methods. Results were computed for the in vivo
renal transplants, for subjects with IFTA but no inflammation (Group C).
Results were calculated for (a) 13 data acquisitions. (b) mean, and (c) standard
deviation (SD) were calculated on the basis of all acquisitions from (a).
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Fig. 7: Phase velocity curves calculated for the 2D-FT (black dots), and GST-
SFK (red diamonds) methods. Results were computed for the in vivo renal
transplants, for subjects with IFTA and inflammation (Group D). Results were
calculated for (a) 13 data acquisitions. (b) mean, and (c) standard deviation
(SD) were calculated on the basis of all acquisitions from (a).

was at approximately the same level, i.e. 25±5% for the two
methods investigated and subject groups A, B, and C. At the
same time, the CV difference for subject group D and between
the two methods was at the level of ∼15%. Above 400 Hz,
higher separation of CV between the GST-SFK and 2D-FT
methods was present, with the highest CV difference observed
for subject groups A and D. Groups B and C exhibited lower
CV difference between the two methods but still, the CV
values for the GST-SFK method were almost two times lower
than for the 2D-FT approach.

Findings from the statistical analysis suggest that the using
a multivariable approach for three-factor ANOVA with two re-
peated factors is appropriate (p-value from Mauchly’s spheric-
ity test < 0.0001). For testing the main effects, there was no
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Fig. 8: Phase velocity curves calculated for the 2D-FT (black dots), and GST-
SFK (red diamonds) methods. Results were computed for the in vivo renal
transplants, for subject groups A-D. All groups consisted of 15 subjects each.
Results were calculated for (a) mean, and (b) standard deviation (SD).

(a) GST-SFK

(b) 2D-FT

Fig. 9: Box plots calculated for the phase velocity computed in a frequency
range from 100-1200 Hz. White circles represent mean values, whereas a
solid line within the box corresponds to a median value. Phase velocity was
computed for the in vivo renal transplant data, for subject groups A-D. All
groups consisted of 15 subjects each. Results were presented for the (a) GST-
SFK, and (b) 2D-FT methods, respectively. Note the different vertical ranges
for each plot.

(a)

(b)

Fig. 10: (a) Coefficient of variation (CV) calculated for the phase velocity
computed in a frequency range from 100-1200 Hz, for the GST-SFK (dashed
lines), and 2D-FT (solid lines) methods, respectively. The shaded gray area
corresponds to the CV < 30%, and horizontal lines indicate frequency values
before exceeding that region (1050, 550, 450, and 900 Hz, for the GST-SFK
approach and subject groups A-D, and 450, 250, 300, and 100 Hz for the
same subject groups, and the 2D-FT method). (b) CV difference between the
two methods. Phase velocity was computed for the in vivo renal transplant
data, for subject groups A-D. All groups consisted of 15 subjects each.

statistically significant differences between the groups (p =
0.2530). However, the main effects of method (p < 0.0001)
and frequency (p < 0.0001) were statistically significant. This
suggests that the phase velocity values were higher for the 2D-
FT compared to the GST-SFK, when adjusted for group and
frequency and outcome values were statistically significantly
different at various frequencies when adjusted for group and
method. While testing interaction terms, only interactions
between method and frequency were statistically significant
suggesting that the outcome values were significantly different
among various combinations of method and frequency. Other
two-way interactions and a three-way interaction were not
statistically significant (all p values > 0.05).

Plots of the coefficient of variation suggest that the variabil-
ity relative to mean is higher for the 2D-FT compared to the
GST-SFK method, and the coefficient of variation generally
tends to increase at higher frequency values.

Based on the phase velocity curves estimated for all the
subject groups and acquisitions, Zener viscoelastic parameters
were estimated, using frequency ranges used in Cases 1-3,
and the results are presented in Fig. 11. Similar as for the
TM viscoelastic phantoms, box plots were calculated for (a)
Young’s modulus, E1, (b) Young’s modulus, E2, (c) viscosity,
η, and (d) the norm of residuals, NoR, for GST-SFK and 2D-
FT methods, and the results were grouped by subject type.
The lower the NoR value, the better the accuracy of the fit of
the rheological Zener model to the data. This in turn, gives
the more reliable E1, E2, and η estimates in Figs. 11a, 11b,
and 11c.
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(a) E1 (b) E2 (c) η (d) NoR

Fig. 11: Box plots calculated for estimated Zener parameters (a) Young’s
modulus, E1, (b) Young’s modulus, E2, (c) viscosity, η, and (d) the norm
of residuals, NoR, for GST-SFK and 2D-FT methods. White circles represent
mean values, whereas a solid line within the box corresponds to a median
value. A fixed frequency range of 200-450 Hz was used for the Zener fit in
the top row, for both techniques, where all groups (except D for 2D-FT) had
CV < 30% (Case 1, top row). The middle row presents the Zener fit for
frequency range of 200-900 Hz (Case 2, middle row). The bottom row shows
the Zener fit for frequency range starting from 200 Hz up to the maximum
frequency for which CV < 30% for a given subject group and given approach
(Case 3, bottom row). Results are presented for the in vivo renal transplant
data, for subject groups A-D. All groups consisted of 15 subjects each.

The p-values resulting from the Wilcoxon rank sum test,
which was performed on the estimated Zener parameters are
presented in Table II. For Case 1, three statistically significant
groups were identified for the GST-SFK approach, while the
p-value was below 0.05 for comparing groups A-B and E1,
and η for the 2D-FT approach. For Case 2, both methods had
p < 0.05 for groups A-B for η. The GST-SFK method yielded
p-values below 0.05 for group A-C in Case 3 for Young’s
modulus E2. In contrast, for the 2D-FT method two groups
were observed with statistically significant estimates, i.e., A-C
for E1 and η. None of the tested methods showed statistically
significant results comparing groups A vs D.

IV. DISCUSSION

In this research work, we investigated a recently proposed
approach, called GST-SFK, for robust calculation of shear
wave phase velocity in viscoelastic phantoms and in vivo
renal transplants. The GST-SFK method was assessed with
shear wave particle velocity data induced by ARF. Data were

TABLE II: The p-values resulting from the Wilcoxon rank sum test, which was
performed on the estimated Zener parameters presented in Fig. 11. Results are
reported for the in vivo renal transplant data. Shaded areas highlight p-values
below 0.05.

Young’s modulus, E1 Young’s modulus, E2 Viscosity, η
Phantom Method

A-B A-C A-D A-B A-C A-D A-B A-C A-D

GST-SFK 0.003 0.017 0.065 0.663 0.141 0.178 0.024 0.724 0.178Case 1
2D-FT 0.044 0.101 0.494 0.756 0.310 0.663 0.015 0.254 0.820

GST-SFK 0.237 0.633 0.520 0.548 0.254 0.520 0.008 0.633 0.093Case 2
2D-FT 0.633 0.078 0.120 0.852 0.663 0.917 0.044 0.141 0.178

GST-SFK 0.443 0.110 0.120 0.071 0.001 0.419 0.290 0.290 0.093Case 3
2D-FT 0.330 0.033 — 0.165 0.002 — 0.419 0.290 —

Case 1: Upper Limit: 400 Hz;
Case 2: Upper Limit: 900 Hz;
Case 3: Upper Limit: CV < 30%.

acquired for 15 and 10-13 spatial locations, for each examined
phantom and subject, respectively. In the previous work, the
GST-SFK method was initially tested on single acquisitions for
TM phantoms [35]. Custom-made TM phantoms were tested
on a research ultrasound platform resulting in an effective
frame rate of 4.167 kHz, whereas the in vivo renal transplants
were studied using a clinical scanner with almost two times
lower sampling rate, i.e., 2.412 kHz. The robustness of the
GST-SFK method was tested based on multiple acquisitions
and calculations of the mean phase velocity and standard
deviation.

The results of the mean phase velocity for the TM phantoms
were similar for both the GST-SFK and 2D-FT methods,
for the first part of the frequency range, i.e. up to 400 Hz
for Phantom I, 1450 Hz for Phantoms II and III, 1300 Hz
for Phantom IV, and 700 Hz for Phantom V. After these
frequency ranges, only the GST-SFK approach gave stable
results with very low SD values below 0.10 m/s, making the
entire frequency band useful and trustworthy. The observed SD
was caused by the fact that all fifteen data acquisitions for each
phantom were acquired at different spatial positions, and the
upper phantom scanning area was 7.5 x 18 mm for rectangular
Phantom III, and 11 cm diameter for other cylindrical-shaped
phantoms. All acquisitions were acquired in random locations
that covered the entire phantom scanning area. The true level
of dispersion or level of viscoelasticity was unknown but
expected to insignificantly vary for custom-made phantoms
[36].

The results for the in vivo renal transplants showed greater
variation compared to the TM viscoelastic phantoms for the
following reasons. First, the examinations were carried out by
experienced clinical sonographers, and subjects were asked
to hold still during the examination but this did not prevent
all movement of the kidney. Moreover, all 10-13 acquisitions
were made in a loop after having previously located the ARF
beam in the renal cortex in the middle of the kidney in
a longitudinal plane. Every movement of the body caused
the ARF beam to move from the previously set position.
Therefore, each acquisition could potentially contain varying
amounts of information derived from the renal cortex and other
tissue parts, such as the renal fascia or medulla. Hence, the
clear differences for the estimated dispersion curves between
consecutive data acquisitions of the same subjects. Second,
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the spatiotemporal shear wave motion data measured for renal
transplants had a shorter lateral segment length compared to
the TM phantoms, and the curvilinear probe was used with a
resulting spatial resolution of 0.2396 mm, while for the linear
probe and TM phantoms it was 0.154 mm. Shorter data records
may generally produce higher variation [19]. Third, the spatial
window for the shear wave motion data selection was manually
chosen during the processing to make sure the data was in
the cortex. This could have caused additional discrepancies
in the final results. Fourth, almost two times lower sampling
rate was used to record the data, again reducing the quality
of the recorded shear wave motion data. Fifth, the directional
filtering used to separate leftward from rightward traveling
shear waves could produce some artifacts. Sixth, the lateral
segment length was shorter for the in vivo case compared to
the CIRS phantoms. Seventh, the study population was limited
to mild to moderate categories of disease.

With all of the above factors in mind, noticeable standard
deviation of the phase velocity was expected for examined sub-
jects. Nevertheless, dispersion curves estimated using the GST-
SFK approach significantly improved the results compared to
the 2D-FT technique, reducing the standard deviation several
times for frequencies close to 800 Hz and above. The level of
the observed standard deviation most likely comes from the
movement of the tissue and the additional factors described in
the previous paragraph.

In addition, in this work, box plots were plotted and the
coefficient of variation was examined on 60 subjects after renal
transplant, based on the GST-SFK and 2D-FT phase velocity
results. The obtained results confirmed better robustness (lower
SD and NoR values) of the GST-SFK method over the 2D-
FT method, providing more stable results, which has a great
promise in clinical applications.

To ensure that the Zener model is an appropriate rheological
model for the data sets investigated in this work, we conducted
a convergence analysis in the frequency domain. The purpose
of this analysis was to assess the stability of the Zener model
curve fit and examine the behavior of its parameters, namely
E1, E2, and η. We initiated the convergence analysis by
fitting the Zener model to the data within an initial frequency
range of 200-300 Hz. Subsequently, we incrementally ex-
tended the frequency range by 25 Hz up to 2000 Hz for
the CIRS phantoms and up to 1100 Hz for the in vivo renal
transplants. A convergent model should exhibit parameters
that stabilize at a constant level and remain unchanged as
the frequency range increases, with the aim of achieving
the lowest NoR values. Therefore, we conducted a thorough
examination of the behavior of E1, E2, and η as the frequency
range expanded. The analysis focused on observing if these
parameters reached a plateau and maintained consistent values,
indicating convergence of the Zener model to the data sets
under investigation. Additionally, we evaluated the NoR values
associated with each parameter estimation to quantify the
goodness of fit and ensure that they were minimized as the
frequency range increased. If the NoR values were found
to be higher than 1 m2/s2, indicating that the curve fit was
not sufficiently accurate, we considered the estimated Zener
model parameters to be unreliable. In such cases, where the
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Fig. 12: Convergence analysis of the Zener model fit. Results were computed
for the in vivo renal transplants, for sample data acquisitions. The mean phase
velocity curves obtained using the 2D-FT and GST-SFK methods were used
for fitting.

NoR values exceeded the threshold, we did not consider the
obtained parameter values to be trustworthy. This approach
ensured that only robust and accurate parameter estimates
were taken into account for further analysis and interpretation.
Similar investigation was performed for two parameter the
Kelvin-Voigt (KV) model, and the results were summarized
in the Supplementary Material.

Figure 12 illustrates sample convergence plots of the Zener
model fit for selected in vivo renal transplants, while ad-
ditional plots can be found in the Supplementary Material.
The convergence analysis was conducted based on the mean
phase velocity curves obtained using the 2D-FT and GST-SFK
approaches.

The analysis revealed that the E2 parameter exhibited the
highest variation across the entire frequency range tested com-
pared to other parameters. Specifically, for shorter frequency
ranges (e.g., <600 Hz for A1, <400 Hz for B1, etc.), the
E2 parameter exhibited significantly higher values, indicating
that the behavior of the Zener model resembled that of the
KV model. In such cases, the KV model appeared to be
also appropriate, as evidenced by the very low NoR values
observed within these frequency ranges. This observation
was supported by the convergence analysis performed for
the KV model, which is presented in the Supplementary
Material. However, when considering a wider frequency range,
the KV model is no longer relevant, and the Zener model
becomes more appropriate. In this wider range, all three
parameters of the Zener model begin to stabilize having low
NoR values, indicating convergence. Therefore, it is impor-
tant to consider the frequency range under investigation to
determine the appropriate rheological model, with the Zener
model demonstrating suitability for wider frequency ranges
compared to the KV model. Sample fitted analytical phase
velocity curves calculated using the Zener model for various
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Fig. 13: Mean phase velocity dispersion curves (gray dots) measured using the
(a) 2D-FT and (b) GST-SFK methods. Each figure contains fitted analytical
phase velocity curves calculated using the Zener model for various frequency
ranges, i.e.: 200-400 Hz, 200-600 Hz, and 200-900 Hz. Results were computed
for the in vivo renal transplants for subjects.

frequency ranges are shown in Fig. 13. Readers are referred
to the Supplementary Material where additional results were
presented.

Based on the phase velocity curves estimated using the
2D-FT method, one could possibly select a frequency range
from 200 up to 400 Hz (Figs. 4-7). For this frequency range,
the E1 values for healthy subjects (A) were better separated
from other groups for the GST-SFK approach compared to
the 2D-FT method (Fig. 11, top row). In addition, the NoR
parameter for the 2D-FT approach was higher than for GST-
SFK meaning that the estimates for the 2D-FT method should
be trusted less. The E2 values had larger boxplots for the GST-
SFK approach compared to the 2D-FT method. However, if
we broaden the frequency range for the Zener fitting (Case 2,
where the Zener fit was performed for frequency range of
200-900 Hz), we note that the NoR parameter was higher
than 20 m2/s2 for the 2D-FT approach and we can not
trust the estimated viscoelastic parameters for this method. In
contrary, the GST-SFK exhibited NoR below 1 m2/s2 making
the estimates more reliable. If we make the frequency range
dependent on the CV coefficient (Case 3: from 200 Hz up
to the maximum frequency for which CV < 30% for a
given subject group and given approach), the separation of
E2 values between groups A-C was statistically significant
for the GST-SFK method, and both Young’s moduli were

statistically significantly different for the 2D-FT approach.
The η parameters were not statistically significantly different
(p < 0.05) for any of the method, for the extended frequency
range used. Noteworthy, the phase velocity curves for the
subject group D estimated using the 2D-FT approach did not
have CV < 30%, hence it could not be used for KV fitting
(Case 3, bottom row in Fig. 11). In addition, the goodness
of Zener fit was much better for the GST-SFK approach, for
limited frequency range tested. The NoR values were similar
across the groups of different subjects for the GST-SFK.

Changes to E1, E2 and η have been noticed along with the
frequency range, which may raise the question of which set of
values and frequency range is trustworthy. Both estimates are
correct, for the shorter and larger frequency ranges, if we keep
in mind what bandwidth was used for the Zener fitting. The
shorter frequency range has less information about frequency-
dependent phase velocity. The E1, E2 and η estimates for
shorter and larger frequency ranges may differ as different
amounts of information were taken into account for Zener
fitting. From these observations, we can conclude that the
phase velocity at higher frequencies contains information that
allows better separation of E1, E2 and η between groups.

The main difference between the E1, E2 and η estimates
for CIRS and the kidney data is that for the TM phantoms they
were estimated from different acquisitions, but for the kidney
data E1, E2 and η were estimated from different patients.

In this work, we tested the robustness of our method based
on four groups of subjects including healthy subjects and
subjects with present IFTA and/or inflammation. This shows
that the GST-SFK approach can be further applied to SWE
data from different stages of kidney health for its noninvasive
diagnosis, which is out of the scope of this work, due to the
limited amount of data.

For each experimental data set, extended usable bandwidth
with lower standard deviation and the CV, was observed for
GST-SFK. Having shear wave phase velocity responses for
wider frequency band improves rheological models responses
compared to the limited frequency ranges, as noticed for
instance in [15], [37]. This translates into a statistically sig-
nificant separation of Zener parameters and lower norm of
residuals achieved for the Zener rheological model, for the
GST-SFK approach compared to the 2D-FT method, as shown
in this work. Therefore, the GST-SFK approach is a very
promising tool which can be combined with various rheologi-
cal models for better in vivo renal transplants characterization
and to discriminate healthy versus diseased tissue, which is
also out of the scope of this work. This could be extended
for use in other soft tissues and for characterizing shear
wave dispersion slope over a larger bandwidth [38]–[40]. In
addition, robustness of the GST-SFK method could be adopted
for Local Phase Velocity Imaging (LPVI) method in order to
improve two-dimensional mapping for higher frequencies [14],
[41], [42].

The vast majority of available research has focused on
characterizing the viscoelastic properties of the in vivo kidney
using the KV model fitting approach [43]–[49]. The Aixplorer
Mach 30 ultrasound scanner from Hologic was utilized to
estimate shear elasticity and viscosity within the ranges of
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5-10 kPa and 2-3 Pa·s, respectively [43]–[45]. Some limited
data also exist, employing the shear dispersion ultrasound
vibrometry (SDUV) method, which involves generating shear
waves at frequencies that are multiples of 100 Hz [46]–[49].
The reported range of viscoelastic parameters obtained through
SDUV aligns closely with the values reported by Maralescu
et al. in human studies [43]–[45].

In our work, we adopted a different approach based on
convergence analysis and employed the Zener viscoelastic
model to deduce viscoelastic parameters. It is important to
note that the Zener model has distinct interpretations compared
to the KV model. However, when comparing the estimated
dispersion phase velocity curves in our study to those reported
in [46], [47], we observe similar results, particularly when
examining the same frequency ranges. This suggests that,
our findings are consistent with existing literature, further
contributing to our understanding of the viscoelastic properties
of the in vivo kidney within the context of the frequency ranges
examined.

The computational time for the in vivo subjects, after shear
wave motion reconstruction, was approximately 4.3 seconds
for dispersion curves calculation using GST-SFK and a MAT-
LAB R2020a (Mathworks, Natick, MA) implementation on a
stand-alone PC. This computational time may need reduction
before implementing the GST-SFK method on a clinical ultra-
sound scanner, which is one of the current limitations of this
method. Sixty subjects were investigated in this work, and the
groups were relatively small, which is one of the limitations
of this work.

V. CONCLUSIONS

This work demonstrates the S-transform-based (GST-SFK)
method robustness for the evaluation of shear wave phase
velocity dispersion curves used in clinical applications. The
method was examined on experimental viscoelastic phantom
data as well as on in vivo renal transplant tissue data. Fifteen
data acquisitions per phantom and 10-13 data acquisitions
per in vivo data were used to test the performance of the
method. Compared to the 2D-FT, the GST-SFK approach
obtained better performance and extended usable bandwidth
for all the data examined. More importantly, phase velocity
variance was highly reduced and SD curves did not exhibit
discontinuities over frequency range. It is noteworthy that
the fitting of the rheological model should be preceded by a
convergence analysis in order to be able to estimate which
model best represents the measured dispersion curves and
in which frequency range. The GST-SFK method could be
used in further in vivo renal transplant data evaluation for
assessment of chronic allograft rejection, and other soft tissues
characterization.
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