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Long-term Dependency for 3D Reconstruction of
Freehand Ultrasound Without External Tracker

Qi Li, Ziyi Shen, Qian Li, Dean C. Barratt, Thomas Dowrick, Matthew J. Clarkson, Tom Vercauteren, and
Yipeng Hu

Abstract— Objective: Reconstructing freehand ultra-
sound in 3D without any external tracker has been a long-
standing challenge in ultrasound-assisted procedures. We
aim to define new ways of parameterising long-term de-
pendencies, and evaluate the performance. Methods: First,
long-term dependency is encoded by transformation posi-
tions within a frame sequence. This is achieved by com-
bining a sequence model with a multi-transformation pre-
diction. Second, two dependency factors are proposed,
anatomical image content and scanning protocol, for con-
tributing towards accurate reconstruction. Each factor is
quantified experimentally by reducing respective training
variances. Results: 1) The added long-term dependency
up to 400 frames at 20 frames per second (fps) indeed
improved reconstruction, with an up to 82.4% lowered ac-
cumulated error, compared with the baseline performance.
The improvement was found to be dependent on sequence
length, transformation interval and scanning protocol and,
unexpectedly, not on the use of recurrent networks with
long-short term modules; 2) Decreasing either anatomical
or protocol variance in training led to poorer reconstruction
accuracy. Interestingly, greater performance was gained
from representative protocol patterns, than from represen-
tative anatomical features. Conclusion: The proposed algo-
rithm uses hyperparameter tuning to effectively utilise long-
term dependency. The proposed dependency factors are
of practical significance in collecting diverse training data,
regulating scanning protocols and developing efficient net-
works. Significance: The proposed new methodology with
publicly available volunteer data and code1 for parameters-
ing the long-term dependency, experimentally shown to be
valid sources of performance improvement, which could
potentially lead to better model development and practical
optimisation of the reconstruction application.

Index Terms— Freehand ultrasound reconstruction,
long-term dependency, multi-task learning, sequence
modeling
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I. INTRODUCTION

DETERMINING the relative 3D spatial positions between
ultrasound (US) images can recover 3D anatomy and

pathology in these images. External spatial trackers such as
those based on mechanical, optical and electromagnetic princi-
ples, enabled many clinical ultrasound applications. Removing
the need for such external devices has attracted decades of
research interest, in order to devise a more portable, accessible
and cost-effective freehand ultrasound system, without being
constrained by line-of-sight [1] or magnetic field interference
[2], particularly preferable in surgical and interventional ap-
plications.

Speckle-induced correlation between near-overlapping im-
ages has been studied to align spatially close US frames [3].
Statistical image correlation was also investigated [4], under
the same assumption. The image slice separation is limited
in this kind of approach, usually chosen to be 0.2 mm. These
methods have focused on inherent correlation between images,
independent of clinical applications with specific protocols
and their intended anatomical content, for estimating spatial
transformation from images.

To improve upon these general approaches, recent data-
driven deep learning-based methods are capable of learning
“global” correlations for determining relative image locations.
Indeed, recurrent neural networks (RNNs) [5], [6], [7], and
transformers [8] have been proposed to model US frames as
sequential data, with reported better spatial localisation. For
example, Luo et al [7] tested ConvLSTM on sequences with
90-120 frames and Miura et al [9] used ConvLSTM with
sequences of 180 frames. This suggests that, even though these
methods lack a physical basis, there is still an advantage to be
gained from image frames that are spatially and temporally
distant, i.e. further than a few neighbouring frames which
may contain shared content or signals. This is referred to as
the long-term dependency in this work2. However, most of
the aforementioned studies have incorporated other innovative
contributions such as novel network training strategies [8],
[10], and added prior knowledge [7]. It is therefore unclear
whether and how much the reported improvement originated
from this long-term dependency.

This work describes a new freehand US sequence encoding
together with a multiple transformation prediction algorithm.

2In other fields such as natural language processing, long-term dependency
may refer to those with much longer distances, therefore is considered an
application-dependent term.
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The correlations within the input US sequence, those between
a large number of output transformations, and the output
dependency on the input sequence can be readily modelled
as hyperparameters of RNNs or, perhaps more interestingly,
feed-forward convolutional neural networks (CNNs). We show
that a large margin of improvement reducing up to 74.5% in
final drift, due to including distant (up to 20s) past frames,
was possible for specific applications.

To investigate factors that resulted in this improvement,
two types of application-specific long-term dependencies are
hypothesized, anatomical dependency and protocol depen-
dency. That is, predicting spatial frame locations is considered
dependent on a) anatomical/pathological content in acquired
images and b) on pre-defined scanning paths, probe move-
ments or orientation patterns during image acquisition by
trained operators. This work utilises the proposed method to
quantify the performance change due to altering these two
factors independently.

We argue in this paper that a better understanding of the
benefits of long-term dependency, by quantifying reconstruc-
tion accuracy as a function of the factorised dependency, is not
only an interesting research topic but also practically impor-
tant. Dependency (hyper-)parameters, defined in Section III-
C, are useful for choosing effective models, whilst identifying
performance-gaining dependency factors may help generalise
these gains, for example by optimising protocols, training
cohort of data and the trade-off between computation cost and
memory requirement from dedicated hardware.

The sequence modelling method was summarised in a con-
ference paper [11]. This work has a different focus on further
developing the methodology specifically for modelling and
assessing long-term dependency, with different experiments
using more than 5 times longer sequences. The added con-
tributions include: 1) A detailed description and motivation of
the proposed input encoding and multiple transformation out-
put method; 2) Presenting extensive experimental results for
demonstrating the improvement from long-term dependency;
3) Based on analysis of the long-term dependency, in terms of
the defined hyperparameters and proposed dependency factors,
a number of interesting conclusions are summarised, some of
which are addressed with quantitative evidence for the first
time; and 4) The code and volunteer data are made available
for public access to ensure study reproducibility and further
research.

II. RELATED WORK

3D US reconstruction, a promising technique for ultrasound
examination and ultrasound-guided intervention, has advan-
tages over its 2D counterpart in many clinical scenarios, such
as multi-modal registration [12], musculoskeletal assessments
[13], [14], volume visualisation and measurement [15]. A
large number of approaches has been proposed for 3D US
reconstruction, which in this paper are studied using three
categories: 1) scanning with 2D-array US probe, which can
directly acquire 3D US volume [16]; 2) mechanical scanning,
which can efficiently reconstruct the 3D US volume by using
motorized mechanical motor to move the US transducer along

predefined trajectories [17]; 3) freehand 3D US scanning,
which can reconstruct 3D US using spatial-temporal informa-
tion of probe obtained by tracker or trackerless methods.

Despite the perceived flexibility and accessibility associated
with freehand 3D US scanning, a spatial tracker (often exter-
nal) is required which adds on cost and other logistic chal-
lenges, such as maintaining line-of-sight for optical trackers
and avoiding interference for electromagnetic trackers. It has
therefore been a strong research interest in developing track-
erless freehand 3D US reconstruction, which may historically
be further classified into non-deep-learning and deep-learning
based methods.

Many popular non-deep-learning based freehand 3D US
systems are based on utilising speckle patterns in US images
[3]. Although some consider speckle impacts the quality of 3D
US reconstruction with studies trying to suppress speckle to
enhance tissue contrast [18], the correlation of speckle could
be analysed, using statistical or machine learning approaches,
to indicate the likelihood of relative positioning of nearby US
frames, therefore to achieve tracking without external trackers.
Gao et al [19] proposed a wireless and sensorless 3D US
imaging system that relied on adaptive speckle decorrelation
curve to measure the motion of US probe along a single
direction. This study has demonstrated the feasibility of image
based US probe tracking method on phantom and real-tissue
data, although more work remains to be done for allowing
much less unconstrained scanning protocol so they can be
clinically useful.

Deep-learning based approaches, featured with helpful rep-
resentation ability, have been utilized for 3D US reconstruction
[20]. For instance, Guo et al [21] proposed a deep contextual
learning network (DCL-Net), a sequence modelling method
with 3D convolutions, attention module, and a novel case-
wise correlation loss, for 3D US reconstruction. Luo et al
[22] exploited acceleration and orientation data measured by
inertial measurement unit (IMU) to extract velocity informa-
tion that could help estimate elevational displacements better.
They also proposed an online self-supervised strategy for
adaptive optimization of the model to reduce the drift. Based
on this work, Luo et al afterwards proposed a multi-IMU-based
network to reduce noise in IMU data [23], in which a modal-
level self-supervised strategy for IMU information fusion
and a sequence-level self-consistency strategy for estimation
stability enhancement were presented for performance im-
provement, demonstrated by extensive ablation experiments. A
self-supervised learning and adversarial learning based online
learning strategy was presented in [24], along with a motion-
weighted training strategy, for case-wise adaption to unseen
dataset with diverse scanning velocities and poses. Instead
of formulating a transformation into rotation and translation
components separately, Hou et al [25] trained a pose estimation
CNN on manifold SE(3), with a left-invariant Riemannian
metric. This proposed loss, computed on Riemannian geodesic
space, could couple the translation and rotation components,
taking into account the structure of Lie group SE(3). Yeung
et al proposed a pipeline for mapping 2D US images into
3D space with a pairwise comparison module and attention
mechanism [26]. Inspired by [27], Yeung et al parameterised
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the 3D reconstruction with implicit neural representation,
jointly refining the initial pose estimation. A regression CNN
was used in [28] with the continuous rotation representation
[29], demonstrated on both phantom and real fetal data. Wein
et al [30] proposed a pipeline for 3D thyroid assessment,
consisting of tracking estimation, joint co-registration, and
thyroid segmentation.

In summary, deep-learning-based trackerless freehand 3D
US reconstruction seems a promising alternative to previous
approaches without using deep neural networks. Existing
methods estimated probe positions from US sequence that con-
tained more than two frames, with the assumption that long-
term dependency across the sequence can benefit estimation of
current probe positions. However, to our best knowledge, no
existing methods quantified such long-term dependency and
analysed its contributing factors, the two aims of this study.
The hypothesis of long-term dependency will be examined and
defined in the following sections.

III. METHOD

Assume a sequence of 2D US frames S = {Im},m =
1, 2, ...,M , with a sequence length M , and denote the spatial
transformation between ith and jth frames as Tj←i, 1 ≤ i <
j ≤ M . In this work, Tj←i is represented by homogeneous
matrices describing the relative translation and rotation, such
that points p(i) in ith image coordinate system, in [x, y, z, 1]
homogeneous coordinates, can be transformed to jth image
coordinate system, p(j) = Tj←i · p(i), thus describing the
relative positions between the two frames.

A. Input Ultrasound Sequence Modelling
Recurrent models, such as RNNs with long short-term

memory (LSTM) modules [31] and transformers [32] can be
used to model the input sequential US frames. In this work,
we assume a single intended output transformation3 Tj∗←i∗

between two predefined frames i∗ and j∗, and a RNN model
frnn, with network parameters θ, is a function of individual
frames Im at time step m and the internal hidden state h(m−1)

from the previous time step.

Tj∗←i∗ = frnn(Im, h(m−1); θ), for m = M

h(m) = frnn(Im, h(m−1); θ),∀ m ≤ M − 1 (1)

This many-to-one mapping model enables the use of past
frames {Im}m∈[1,i∗−1] and future frames {Im}m∈[j∗+1,M ],
the latter of which necessitates a temporal delay for a real-
time system.

It is worth noting that the system or GPU memory required
for training an unrolled frnn is a function of the entire se-
quence, rather than individual frames, using back-propagation
through time (BPTT) [33]. Algorithms that are less dependent
on sequence length, such as truncated BPTT or alternatives
[34], have seldom been seen in medical imaging applications,

3This assumption of single fixed output is made to enable the hyperparam-
eters described in Section III-C and for investigating image-to-transformation
distance without predictions at multiple time points, further discussed in
Section III-D.

perhaps due to the potentially excessive computation for
training high dimensional image input.

The recurrent models, with the single output at the end of a
sequence, when unrolled, are conceptually equivalent to feed-
forward models with the same output and the entire sequence
as the input. This motivates us to test a CNN fcnn for this
sequence modelling:

Tj∗←i∗ = fcnn(S; θ) (2)

B. Output Multiple Transformation Prediction
Although the sequence modelling described above only

predicts a single transformation at the end of a sequence,
supervision, i.e. ground-truth target transformations, at the
previous time steps are available and were shown to accelerate
training [35], also known as “teacher forcing”. In this section,
a multi-transformation prediction is proposed to use these
additional data.

In addition to the intended Tj∗←i∗ , both the CNNs and
RNNs can be adapted to output other M(M − 1)/2 − 14

transformations {Tj←i}, i ̸= i∗or j ̸= j∗. Based on points p(i)n

sampled from ith frame in image coordinates, the proposed
overall multi-transformation loss becomes:

LMTL =
1

N ·M(M − 1)/2

M(M−1)/2∑ N∑
n=1

Dmse(p
(j)
n , p̂(j)n )

(3)
where p

(j)
n and p̂

(j)
n are the same points transformed from

the ith to jth image coordinate systems, p(j)n = T
(gt)
j←i · p

(i)
n

and p̂
(j)
n = T̂j←i ·p(i)n , using ground-truth T

(gt)
j←i and prediction

T̂j←i, respectively. Four image corner points were used in this
work, i.e. N = 4. Mean-square-error (MSE) was used as the
distance function Dmse(·), between x, y and z coordinates of
the two points.

Optimising different transformations to the same image co-
ordinate systems, as in Eq. 3, encourages consistency and min-
imises accumulated error, as previously proposed [11]. Using a
third kth frame for example, when Dmse(T

(gt)
j←i ·p

(i)
n , T̂j←i·p(i)n )

is minimised simultaneously with Dmse(T
(gt)
k←i ·p

(i)
n , T̂k←i ·p(i)n )

and Dmse(T
(gt)
j←k · p(k)n , T̂j←k · p(k)n ), the difference between

T̂j←k · T̂k←i and T
(gt)
j←i is thus implicitly minimised - a form

of accumulated error, so is the difference between T̂j←k ·T̂k←i

and T̂j←i, with equal ground-truth T
(gt)
j←k · T (gt)

k←i = T
(gt)
j←i

- optimising a measure of consistency between sequential
predictions. As these multiple output transformations share
information and impose regulating constraints on each other,
each of them can be regarded as one task in a multi-task
learning framework. The multi tasks consist of one main
task Tj∗←i∗ and other M(M − 1)/2 − 1 auxiliary tasks.
This multi-task learning framework takes advantage of the
shared information among different tasks, which may result
in improved performance over single-task learning framework.
In addition, this multi-task learning framework can predict
various transformations with various intervals, past and future

4For an US sequence with length M , the possible number of output
transformations can be M -combinations of a 2-set C2

M = M(M − 1)/2.
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frames using a common set of layers, making it possible to
compare the performance of different hyperparameters in a
single training run. In practice, when M(M − 1)/2 is large,
τ + 1 transformation tasks, including various transformation
intervals and number of past and future frames, are sampled
due to memory limit, where τ ≤ M(M − 1)/2− 1.

C. Parametric Dependency as Hyperparameters
As formulated in Sections III-A and III-B, the dependency

of transformation prediction can be quantified and illustrated
in Fig. 1. Past- and future- dependencies are represented by
the number of the respective frames, i∗ − 1 and M − j∗.
We propose to use i∗, j∗ and M as hyperparameters of the
models in Eqs. 1 and 2, which are general enough to repre-
sent many scenarios to test the dependency of the predicted
transformation on frames outside of the transformation. For
example, larger i∗ and M−j∗ increase the lengths of past and
future dependencies, respectively, whilst a high M value can
test both. It is noteworthy that tuning these hyperparameters
may therefore aim for an optimum Tj∗←i∗ on the validation
set, rather than the overall loss in Eq. 3. An extension to
this work may investigate cases that predict a future or past
transformation using acquired frames before or after the input
sequence.

Sequence length M determines the largest possible number
of past and future frames that can be used for predicting
transformations. For example, more past and future frames
can be used with a larger M and a smaller transformation
interval. M can be selected based on specific applications.
For this study, the relationship between sampled and tested
sequence lengths and reconstruction performance is reported
in Section V-A.

D. Sequence Sampling and 3D Scan Reconstruction
From available US scans with variable lengths, sequences

S = {Im} with the predefined M are randomly sampled, for
training models in Eqs. 1 and 2. The ground-truth is used
to transform points in the ith image coordinates to the jth

image coordinates, T (gt)
j←i = T−1(calib) · (T

(gt)
world←j)

−1 ·T (gt)
world←i ·

T(calib), where T
(gt)
world←j and T

(gt)
world←i are jth-tool-to-world

and ith-tool-to-world transformations, at the time steps j and
i, obtained from the optical tracker. Thus, the transformation
is independent of the world coordinate system. T(calib) is a
fixed transformation from image to tool coordinate systems,
obtained through spatial calibration. In practice, the left-
multiplying inverse calibration matrix is not used, to which the
loss is invariant to, due to the distance preservation property
of orthogonal matrix. Thus, the loss is computed in the jth

tracking tool coordinate system with a unit of millimeter (mm):
T

(gt)
j←i = (T

(gt)
world←j)

−1 · T (gt)
world←i · T(calib).

During the test, a scan can be reconstructed by predicting
the optimum Tj∗←i∗ from consecutive sequences, such that the
(j∗)th frame from the previous sequence is the (i∗)th frame in
the subsequent sequence. Depending on the application where
localising every possible adjacent frames is required, varying
starting reference frames can be used and the relative locations

between them may be determined by the auxiliary tasks, an
independent initialisation method or potentially fixed with a
predefined protocol. Furthermore, advanced hyperparameter
selection methods, adaptive at different time points, and model
ensembles to combine different predictions (therefore multiple
main tasks) at the same time point, may further optimise the
3D reconstruction. These remain research interests for future
study and are not considered in this work.

E. Evaluation Metrics
As the training loss is computed by using prediction error

on each frame, one direct model generalisation metric frame
prediction accuracy (ϵframe) is computed, as the difference
between prediction p̂

(j)
n and ground-truth points p

(j)
n on the

jth frame, both transformed from the ith frame, ϵframe =
1
N

∑N
n=1 Ddist(p

(j)
n , p̂

(j)
n ), where Ddist(·) denotes the Eu-

clidean distance between two points and N = 4 on four corner
points. This metric is useful for monitoring training and model
development, but may not be indicative of the performance in
predicting Tj∗←i∗ or scan reconstruction.

For each test scan5, three metrics are reported to as-
sess the reconstructed frames: 1) Accumulated tracking error
(ϵacc.) is the average Euclidean distance of all reconstructed
image pixels between prediction and ground-truth, ϵacc. =

1
J ·N

∑J
j=1

∑N
n=1 Ddist(p

(j)
n , p̂

(j)
n ), where N is the number of

pixels in an image and J is the number of reconstructed
frames using T̂j←i; 2) Volume reconstruction overlap (ϵdice)
is a Dice score, computed as the overlap between the ground-
truth- and prediction- reconstructed scan volumes; and 3) Final
drift (ϵdrift) measures as the average Euclidean distance, over
the four corner points on the last frame of the scan, between
ground-truth and prediction.

F. Factorised Dependency and Reduced Variance
Analysis

Anatomy dependency refers to the long-term dependency
contributed by anatomical self-correlation with respect to
anatomical variance. The common spatial movement pattern
inherent in scanning protocols can also contribute to the long-
term dependency, defined as protocol dependency. The abun-
dance of anatomy and scanning protocol within the training
dataset determines how much long-term dependency exists
and can be learned. As US scan acquired from the same
subject have the same anatomical content, anatomy depen-
dency can be investigated by altering the included number
of subjects. In the volunteer study, the dataset mentioned in
Section IV are acquired by three types of scanning protocols
- straight line shape, “C” shape, and “S” shape, as variance
of scanning protocol is determined by number of scanning
protocols involved. For quantifying anatomical dependency,
the original training set can be re-sampled, at the subject
level, such that a percentage of va = 25%, 50%, 75% of the

5This study was performed in accordance with the ethical standards in the
1964 Declaration of Helsinki and its later amendments or comparable ethical
standards. Approval was granted by the Ethics Committee of local institution
(UCL Department of Medical Physics and Biomedical Engineering) on 20th

Jan. 2023 [24055/001].
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M-j future frames
jth frame
ith frame

Freehand 
ultrasound scan

Sampled sequence 
S = {Im}

Recurrent 𝑓"## / 
Feed-forward 𝑓$##

Predicted transformations

T2←1, T3←1, …, Tj←i, … TM←M-1

...

Recurrent 𝑓"## / 
Feed-forward 𝑓$## T2←1, T3←1, …, Tj←i, … TM←M-1

Recurrent 𝑓"## / 
Feed-forward 𝑓$##

T2←1, T3←1, …, Tj←i, … TM←M-1

Recurrent 𝑓"## / 
Feed-forward 𝑓$##

T2←1, T3←1, …, Tj←i, … TM←M-1

...
...

i-1 past frames

Fig. 1: Illustration of the proposed transformation-prediction algorithm.

subjects are randomly removed, on which the same networks
are trained and subsequently tested on the same test data. The
difference in performance is quantified with respect to the
reduced variance. For investigating the performance changes
due to reduced protocol dependency, two sets of additional
models are trained, ‘straight’ only and ‘c-shape and s-shape’,
using one and two from the three different types of scans.
Together with the models trained on all three types of scans,
they represent three levels of protocol variance, vp = 1, 2, 3.
Anatomical and protocol variances may both relate to various
percentage of frames in a scan, denoted as vl, vl = 50%, 75%,
and can be tested using training scans that are cropped to 50%
and 75% of their original lengths.

IV. EXPERIMENTS

A. Data Acquisition
US data were acquired on an Ultrasonix machine (BK,

Europe) with a curvilinear probe (4DC7-3/40), from 19 volun-
teers on both their left and right forearms. Three trajectories,
straight, c-shape and s-shape, in a distal-to-proximal direction,
were acquired for each forearm. For each trajectory, two
scans were obtained by keeping the US probe approximately
perpendicular of and parallel to the scanning direction, as
illustrated in Fig. 2. Thus, six US scans were acquired on
each forearm, each scan containing 36−430 frames (100−200
mm). The dataset contains 228 scans in total, with statistics
summarised in Fig. 3, and was split into train, validation and
test sets by a ratio of 3:1:1 on the scan level. Images with a
size of 480×640 were recorded at 20 fps. The frequency was
fixed at 6 MHz with a depth of 9 cm, a dynamic range of 83
dB, an overall gain of 48%, and the speckle reduction was set
at median level and the persistence at 3. Spatial calibration
from image to tool coordinates was based on a pinhead-based
method [36], and the temporal difference between the optical

tracker (NDI Polaris Vicra, Northern Digital Inc., Canada) and
imaging was calibrated using the Plus Toolkit [37].

Fig. 2: Photographs of a) the US data acquisition system,
b) various US probe trajectories, and c) various US plane
orientations.

B. Network Development and Implementation
Both CNN- and RNN- based networks were trained using

randomly-selected (τ + 1) tasks with variable M sequence
length, in order to quantify the impact on performance due to
varying long-term dependency, as discussed in Section III-C.
The commonly used and well-established CNN- and RNN-
based networks were adapted in this paper, without excessive
fine-tuning, to benchmark the results. The EfficientNet (b1)
[38] was adapted as a CNN, outputting (τ+1)×6 transforma-
tion parameters using fully connected layer, where τ denotes
the number of auxiliary tasks. EfficientNet has the advantage
of being smaller and more efficient than other CNN networks
while still preserving state-of-the-art performance. The RNN
architecture we used is LSTM with 1024-dimensional hidden
states, for its capacity to capture long-term dependency, uti-
lizing the same EfficientNet (b1) network as feature encoder
(1000-dimensional feature vectors).

In this work, models were trained with M =
10, 20, 30, 40, 49, 60, 75, 100 separately, with τ + 1 =
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(a) (b)

(c) (d)

Fig. 3: Statistics of the dataset: (a) The histogram of scan
length. (b) The distribution of three rotation parameters, be-
tween two adjacent frames. (c) Mean and standard deviation of
distances between consecutive frames. (d) Mean and standard
deviation of accumulated consecutive frame distances.

45, 80, 124, 157, 165, 177, 197, 218 sampled tasks6. This re-
sults in 16 RNN/CNN networks. To study the effect of long-
term dependency on reconstruction accuracy, the same CNN
and RNN models were adapted with input sequence length
M = 2 (i.e. only using two adjacent US frames as input
and outputting the transformation between them), used as the
baseline. The motivation is to investigate the effect of long-
term dependency, with and without further input frames. A
recent method for freehand 3D US reconstruction, DCL-Net
[21] has also been implemented for comparison. In addition, 4
models with re-sampled M = 20, 49, 75, 100 were trained us-
ing the same strategy to quantify the performance change due
to altered dependency, i.e. reduced anatomical and protocol
variance, detailed in Section III-F.

For all networks, a minibatch size of 32, Adam optimizer,
and learning rate 10−4 were used. The minibatch size and
optimizer were empirically selected based on validation set
performance, and the learning rate 10−4 were tested among
{10−3, 10−4, 10−5}. To test the dependency hyperparameters,
results from varying M , i∗ and j∗ were computed. Each net-
work was trained for at least 20,000 epochs until convergence,
for up to 9 and 4 days on Ubuntu 18.04.6 LTS with a single
NVIDIA Quadro P5000 GPU card, for RNNs and CNNs,
respectively. All the results are reported on the test set unless
otherwise specified.

The optimum predicted transformations, evaluated on the
validation set, will be regarded as the main task. However,
which one is optimum is unknown before training the model.

6As the number of tasks is one of the major sources of computational
complexity and memory consumption, we have selected and tested a subset of
all possible transformation predictions, with various transformation intervals,
and past and future frame numbers.

Therefore, equal weights are given to different tasks to ensure
a fair opportunity for each potential main task. In addition,
tuning the explicit weighting between tasks may be partially
redundant given the large number of auxiliary tasks and dif-
ferent configurations when varying the three hyperparameters,
M , i∗ and j∗, some of which are equivalent to weighting the
tasks differently. For example, less auxiliary tasks correspond
to a bigger weight on the main task, and vice versa.

V. RESULTS

A. Results with Varying Dependency Hyperparameters7

Fig. 4 summarises the performance of ϵacc. with respect to
past- and future- frames, from all the models, with all available
training data, described in Section IV. The reconstruction error
decreases when more past frames are used. For example,
using 74 past frames, the CNN and RNN achieved ϵacc.
of 9.44 ± 0.50 mm and 10.04 ± 0.56 mm, respectively.
Both represent statistically significant improvement (p-value
< 0.001), based on unpaired t-test at a significance level at
α = 0.05, compared with that from the baseline (i.e., M = 2,
ϵacc. = 22.75 mm) and DCL-Net (ϵacc. = 22.15 mm). The
influence of past frames is further illustrated in Figs. S-3 to S-
6 in Supplementary Material, showing that ϵacc. decreased
with more past frames, when the number of future frames is
fixed. Fig. 5 also illustrates better reconstruction from longer
sequence length.

Other interesting observations include: 1) When using fewer
than 25 added past frames, the improvement is not obvious.
For example, with 20 past frames, no statistically significant
difference was found between the baseline and either CNN
(p-value=0.762) or RNN (p-value=0.815); 2) There was no
statistically significant difference found between CNN and
RNN, which may suggest that feed-forward models are equally
competent in modelling US sequences with limited length,
compared to the more “specialised” RNNs; 3) The same
trend was not found when future frames increased. This
was first suspected to be caused by non-constant scanning
speed, as illustrated in Fig. 3 (d). Additional experiments are
illustrated in Fig. 6 to investigate the relationship between
the reconstruction performance and scanning speed. The two
models are trained using re-sampled train data with relatively
constant speed and a reversed frame order. No evidence shows
the correlation between ϵacc. and the scanning speed.

Table I shows the effect of sequence length on recon-
struction performance, using the best CNN models among
sampled tasks, evaluated by four evaluation metrics. It can
be concluded that larger M generally results in a smaller
reconstruction error, due to the utilization of a relatively larger
long-term dependency, i.e. more past and future frames. On
the other hand, larger M corresponds to higher computational
complexity, reflected in speed of forward/backward process
and model convergence.

Fig. 7 shows the train and validation losses, trained with
the varying train sets. A relatively larger number (20,000) was

7Other reconstruction metrics yielded the same conclusions as summarised
above, and these detailed results are provided in Supplementary Material for
brevity.
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empirically selected as the maximum training epoch to train
the model until convergence. Although validation loss begins
to increase after a relatively rapid decrease, the best model
used during inference stage are selected based on the perfor-
mance on the validation set. Although the aim of this work
is primarily to analyse the hyperparameters, consistent results
on the validation set were also obtained, shown as in Fig. 7.
This suggested the feasibility to tune these hyperparameters for
optimum reconstruction for specific applications, on available
validation sets.
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Fig. 4: ϵacc. with respect to dependency, from CNN (a) and
RNN (b). The means and standard deviations of ϵacc. are plot-
ted over all test scans, from models with M = 20, 49, 75, 100.

TABLE I: Mean and standard deviation of best performance of
four metrics, among all sampled tasks, with regards to various
M by using CNN-based model, trained on all train data. Note:
ϵdice is computed on the perpendicular scans as an example.

M ϵframe ϵacc. ϵdice ϵdrift

2 0.53 ± 0.46 22.75 ± 17.51 0.50 ± 0.29 29.59 ± 19.53
10 0.46 ± 0.56 19.28 ± 13.25 0.54 ± 0.30 26.55 ± 13.29
20 0.39 ± 0.36 16.59 ± 11.45 0.58 ± 0.27 22.92 ± 11.56
30 0.38 ± 0.35 19.37 ± 12.86 0.60 ± 0.25 27.70 ± 15.70
40 0.33 ± 0.35 16.50 ± 9.21 0.63 ± 0.26 23.83 ± 14.95
49 0.32 ± 0.22 18.69 ± 10.44 0.56 ± 0.27 28.62 ± 17.62
60 0.25 ± 0.10 14.08 ± 8.37 0.64 ± 0.26 22.78 ± 16.73
75 0.24 ± 0.09 11.12 ± 6.60 0.75 ± 0.23 18.20 ± 14.17
100 0.19 ± 0.08 4.01 ± 4.01 0.77 ± 0.17 7.24 ± 8.33

B. Ablation Study with Reduced Dependency Factors
The reconstruction performance for different models trained

with various variance-reduced training sets (Section III-F)
is shown in Fig. 8, evaluated using ϵacc. and ϵframe, with
increasing past frames. In practice, the reduction in either
anatomical or protocol dependencies generally led to expected
poorer performance. For instance, the model trained with only
‘straight’ scans yielded highest reconstruction errors in both
ϵacc. and ϵframe, worse than baseline model (M = 2) even
when the past frame number is high. This suggested that
the improved reconstruction accuracy contributed by the long-
term dependency (e.g., seen with more than 70 past frames),
was considerably reduced by mismatched protocol variances
between train and test sets. To a lesser extent, removing 75%
training subjects resulted in similar performance reduction.
The other variance reduction models (‘c-shape and s-shape’,
75% training subjects or 75% scan length) yielded much
less substantial performance losses, suggesting the current

levels of anatomy or protocol variance still include long-
term dependency and benefit the reconstruction. The same
conclusion can be drawn when only perpendicular or parallel
scans are sampled for testing (as shown in Fig. 9).

VI. DISCUSSION

Many previous studies have focused on improving the
networks and their training strategies [8], [10], including those
with prior knowledge [7] and additional sensors, such as
IMU [22]. These developments are not necessarily specific to
utilising long-term dependency, and may be applied in addi-
tion to the proposed input encoding and multi-transformation
prediction to further advance the performance. The presented
work adopted established CNNs and RNNs for providing the
uncomplicated results to quantify the advantageous long-term
dependency, as the first step towards maximising its utility.

These results suggested that 1) Both the hypothesized
anatomical and protocol dependency are likely to be factors
for long-term dependency-improved reconstruction, shown in
Section V-B; 2) Between the two, the protocol dependency
is more likely to be the predominant source for the benefits
from including long-term dependency; and 3) The interesting
difference consistently observed between the past and future
frames, in contributing to reconstruction accuracy, remains
unexplained and a subject of investigation in our ongoing
study. It is important to emphasize the application-specific
nature of the second conclusion. The forearm dataset used
in this paper may be considered specific in a number of
aspects, including anatomical content richness, compared with
other anatomical targets. As a result, conclusions drawn in
this study may need further evaluation, when a different data
set is considered. The proposed methodology however shall
still be applicable and fit-for-purpose for different clinical
indications. Future work should thus aim to access tracked
ultrasound data from different clinical usages. Furthermore,
3D visualisation in addition to its geometric reconstruction
of US volume can be crucial for many applications, which
should be investigated further for its clinical applicability. It
is worth noting that the influence of scanning speed, image
quality, and overlap between adjacent frames remains open
research questions for freehand US reconstruction, and may
affect the robustness and generalisation of the tested recon-
struction method, in turn may be specific to our conclusion
on long-term dependency. In addition, definitions for these
factors also remain an open research question and multiple
potential solutions have been proposed, such as protocol-
adaptation [39] and application-specific quality-control [40].
The generalisability of our conclusion should be interpreted
with respect to individual applications and reconstruction algo-
rithms, although the methodology of factorising the long-term
dependency may nevertheless be useful. Besides, quantifying
the difference between the anatomy and protocol dependency
can also be application-dependent, with varying practical costs
for changing their complexity. Further experimental results for
these applications are mandatory. What is more, US images
acquired using different ultrasound scanner/probe, by different
researchers, may be different due to the specific parameter con-
figurations and the intra- and inter-variability of the acquired
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20baselineground truth 49 75 100

Fig. 5: Reconstruction from baseline and various M = 20, 49, 75, 100, with a selected transformation of T18←8, T32←30,
T69←64, and T94←92, respectively. The trajectories are ‘S’ shape, ‘C’ shape, straight line shape, and straight line shape, from
left to right, respectively.

(a) (b)

Fig. 6: ϵacc. with respect to dependency, trained using re-
sampled train data with relatively constant speed (a) and a
reversed frame order (b), with a CNN model. ϵacc. is shown
as the mean and standard deviation over all scans in the test
set, computed using models with M = 20, 49, 75, 100.

(a) (b) (c)

Fig. 7: Train and validation loss of models trained with all
data in train set (a), straight data in train set (b), and 25%
subject reduction of the train set (c).

US images. Therefore, acquiring various types of dataset by
using various kinds of ultrasound scanner/probe, by a number
of researchers, is our future research focus, which can be used
to test the generalization of the conclusion.

VII. CONCLUSION

This work proposed a new parametric dependency based on
frame encoding and multi-tasking transformation, to quantify
dependency factors originated from anatomical and protocol
characteristics. The experiments showed that long-term de-
pendency based on either recurrent or feed-forward models
can significantly improve reconstruction, and the improvement

was dependent on the frame-to-transformation distance and
transformation intervals. It was also found that the scanning
protocol and, to a lesser degree, the anatomical content are
both important in utilising the long-term dependency. As the
proposed approach is based on the multi-task learning frame-
work, negative transfer among tasks could lead to inferior
performance. The ongoing work investigates methods such as
task grouping [41] to further improve the main task and for
potentially utilising multiple main tasks.
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SUPPLEMENTARY MATERIALS

TABLE S-I: Mean and standard deviation of average perfor-
mance of four metrics, over all sampled tasks, with regards
to various M by using CNN-based model, trained on all train
data.

M ϵframe ϵacc. ϵdice ϵdrift

2 0.53 ± 0.00 22.75 ± 0.00 0.50 ± 0.00 29.59 ± 0.00
10 0.51 ± 0.03 20.29 ± 1.48 0.46 ± 0.07 28.15 ± 1.92
20 0.45 ± 0.04 18.91 ± 2.10 0.46 ± 0.08 26.79 ± 3.33
30 0.47 ± 0.06 21.37 ± 1.32 0.41 ± 0.10 30.56 ± 1.96
40 0.46 ± 0.06 21.13 ± 2.20 0.43 ± 0.10 30.80 ± 3.00
49 0.46 ± 0.08 23.89 ± 3.88 0.37 ± 0.10 35.04 ± 5.13
60 0.39 ± 0.09 21.16 ± 5.20 0.41 ± 0.12 32.48 ± 7.57
75 0.37 ± 0.07 21.29 ± 4.91 0.34 ± 0.16 29.17 ± 6.43
100 0.32 ± 0.06 16.35 ± 6.33 0.23 ± 0.15 20.26 ± 7.19

TABLE S-II: Mean and standard deviation of best performance
of four metrics, over all sampled tasks, with regards to various
M by using RNN-based model, trained on all train data.

M ϵframe ϵacc. ϵdice ϵdrift

2 0.57 ± 0.44 26.33 ± 15.99 0.41 ± 0.33 34.54 ± 18.10
10 0.37 ± 0.30 17.29 ± 11.13 0.62 ± 0.24 24.35 ± 13.57
20 0.37 ± 0.29 16.29 ± 9.82 0.61 ± 0.26 24.98 ± 13.11
30 0.37 ± 0.31 19.36 ± 11.53 0.59 ± 0.26 28.53 ± 15.85
40 0.30 ± 0.15 17.07 ± 8.97 0.61 ± 0.26 26.96 ± 15.65
49 0.27 ± 0.16 15.32 ± 7.89 0.65 ± 0.22 24.21 ± 15.84
60 0.26 ± 0.10 14.53 ± 7.64 0.66 ± 0.21 22.58 ± 14.15
75 0.23 ± 0.10 10.64 ± 6.09 0.77 ± 0.12 17.09 ± 11.24
100 0.20 ± 0.07 4.27 ± 3.66 0.73 ± 0.23 6.97 ± 6.79

TABLE S-III: Mean and standard deviation of average perfor-
mance of four metrics, over all sampled tasks, with regards
to various M by using RNN-based model, trained on all train
data.

M ϵframe ϵacc. ϵdice ϵdrift

2 0.57 ± 0.00 26.33 ± 0.00 0.41 ± 0.00 34.54 ± 0.00
10 0.42 ± 0.03 18.53 ± 0.82 0.50 ± 0.09 25.74 ± 1.25
20 0.45 ± 0.05 18.14 ± 1.07 0.48 ± 0.08 27.36 ± 1.51
30 0.48 ± 0.05 21.44 ± 1.11 0.43 ± 0.10 31.24 ± 1.74
40 0.43 ± 0.08 21.24 ± 3.33 0.42 ± 0.11 31.91 ± 4.75
49 0.45 ± 0.11 21.38 ± 5.31 0.43 ± 0.11 32.59 ± 7.79
60 0.39 ± 0.08 20.84 ± 3.78 0.41 ± 0.13 31.23 ± 5.61
75 0.38 ± 0.09 20.75 ± 4.97 0.40 ± 0.13 30.44 ± 7.03
100 0.34 ± 0.09 16.80 ± 6.78 0.22 ± 0.13 20.87 ± 7.80

TABLE S-IV: Mean and standard deviation of best perfor-
mance of four metrics, among all sampled tasks, with regards
to various M by using CNN-based model, trained on straight
train data.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.51 ± 0.31 31.84 ± 17.16 0.45 ± 0.29 39.88 ± 19.33
49 0.43 ± 0.26 23.83 ± 14.05 0.57 ± 0.25 35.22 ± 25.10
75 0.40 ± 0.24 13.06 ± 7.09 0.66 ± 0.22 22.77 ± 17.92
100 0.48 ± 0.25 13.00 ± 23.79 0.64 ± 0.26 22.30 ± 41.10

TABLE S-V: Mean and standard deviation of average perfor-
mance of four metrics, over all sampled tasks, with regards
to various M by using CNN-based model, trained on straight
train data.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.57 ± 0.04 39.85 ± 2.03 0.25 ± 0.10 48.20 ± 3.42
49 0.55 ± 0.07 31.93 ± 4.02 0.29 ± 0.11 42.33 ± 4.86
75 0.48 ± 0.07 30.28 ± 9.17 0.31 ± 0.16 38.83 ± 10.42
100 0.92 ± 0.52 58.46 ± 22.81 0.13 ± 0.10 59.04 ± 24.95

TABLE S-VI: Mean and standard deviation of best perfor-
mance of four metrics, among all sampled tasks, with regards
to various M by using CNN-based model, trained on c-shape
and s-shape train data.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.48 ± 0.65 23.17 ± 19.62 0.51 ± 0.32 30.29 ± 18.02
49 0.40 ± 0.40 17.62 ± 8.39 0.60 ± 0.28 28.17 ± 20.22
75 0.25 ± 0.13 10.04 ± 6.78 0.78 ± 0.14 17.10 ± 13.16
100 0.24 ± 0.13 4.00 ± 2.72 0.80 ± 0.13 6.74 ± 7.19

TABLE S-VII: Mean and standard deviation of average per-
formance of four metrics, over all sampled tasks, with regards
to various M by using CNN-based model, trained on c-shape
and s-shape train data.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.55 ± 0.04 25.02 ± 1.84 0.38 ± 0.08 33.06 ± 3.10
49 0.54 ± 0.08 24.71 ± 4.92 0.35 ± 0.10 35.96 ± 6.67
75 0.39 ± 0.08 22.68 ± 4.86 0.34 ± 0.14 32.30 ± 6.38
100 0.33 ± 0.07 17.38 ± 7.54 0.25 ± 0.14 21.34 ± 8.36

TABLE S-VIII: Mean and standard deviation of best perfor-
mance of four metrics, among all sampled tasks, with regards
to various M by using CNN-based model, trained on train
data with subjects reduction rate of 25%.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.44 ± 0.40 19.64 ± 9.04 0.53 ± 0.30 27.42 ± 10.79
49 0.32 ± 0.32 15.27 ± 7.48 0.63 ± 0.28 24.88 ± 15.80
75 0.24 ± 0.12 10.35 ± 6.27 0.73 ± 0.13 17.31 ± 11.62
100 0.20 ± 0.07 4.49 ± 4.21 0.76 ± 0.20 8.40 ± 9.08

TABLE S-IX: Mean and standard deviation of average perfor-
mance of four metrics, over all sampled tasks, with regards to
various M by using CNN-based model, trained on train data
with subjects reduction rate of 25%.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.50 ± 0.04 22.45 ± 2.64 0.39 ± 0.08 31.87 ± 3.94
49 0.46 ± 0.09 22.89 ± 4.64 0.40 ± 0.10 34.06 ± 6.47
75 0.40 ± 0.08 22.37 ± 5.34 0.34 ± 0.15 31.87 ± 7.30
100 0.32 ± 0.06 15.49 ± 5.15 0.24 ± 0.15 19.74 ± 5.96

TABLE S-X: Mean and standard deviation of best performance
of four metrics, among all sampled tasks, with regards to
various M by using CNN-based model, trained on train data
with subjects reduction rate of 50%.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.47 ± 0.42 20.56 ± 9.62 0.49 ± 0.29 30.02 ± 15.26
49 0.34 ± 0.19 16.07 ± 9.01 0.57 ± 0.22 24.28 ± 17.53
75 0.27 ± 0.11 10.22 ± 6.42 0.71 ± 0.16 19.22 ± 13.09
100 0.29 ± 0.20 4.02 ± 3.82 0.83 ± 0.08 7.61 ± 9.38
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(a) (b)

Fig. S-1: The reconstruction performance with regards to future long-term dependency. The performance is shown as the mean
and standard deviation of ϵframe and ϵacc. over all scans in the test set, from models with M = 20, 49, 75, 100. All models
trained with different variance-reduced data are tested on the same original test set. (a) Performance of ϵframe with regards
to the number of future frames. (b) Performance of ϵacc. with regards to the number of future frames.

(a) (b)

(c) (d)

Fig. S-2: The reconstruction performance with regards to the future long-term dependency. The performance is shown as the
mean and standard deviation of ϵframe and ϵacc., from models with M = 20, 49, 75, 100, trained with different variance-
reduced data, tested on parallel or perpendicular scans in the original test set: (a) Performance of ϵframe on parallel scans.
(b) Performance of ϵacc. on parallel scans. (c) Performance of ϵframe on perpendicular scans. (d) Performance of ϵacc. on
perpendicular scans.
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TABLE S-XI: Mean and standard deviation of average perfor-
mance of four metrics, over all sampled tasks, with regards to
various M by using CNN-based model, trained on train data
with subjects reduction rate of 50%.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.53 ± 0.05 24.46 ± 4.46 0.38 ± 0.07 34.87 ± 6.09
49 0.50 ± 0.08 24.35 ± 4.91 0.34 ± 0.10 35.12 ± 7.16
75 0.41 ± 0.07 22.13 ± 4.73 0.33 ± 0.15 31.47 ± 5.84
100 0.40 ± 0.06 19.19 ± 7.27 0.24 ± 0.16 22.73 ± 7.80

TABLE S-XII: Mean and standard deviation of best perfor-
mance of four metrics, among all sampled tasks, with regards
to various M by using CNN-based model, trained on train
data with subjects reduction rate of 75%.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.55 ± 0.49 26.62 ± 14.07 0.50 ± 0.25 37.02 ± 16.19
49 0.42 ± 0.34 18.51 ± 9.72 0.56 ± 0.30 29.50 ± 19.37
75 0.32 ± 0.21 12.01 ± 7.46 0.62 ± 0.28 20.93 ± 13.01
100 0.41 ± 0.24 7.83 ± 9.08 0.75 ± 0.17 13.66 ± 15.94

TABLE S-XIII: Mean and standard deviation of average per-
formance of four metrics, over all sampled tasks, with regards
to various M by using CNN-based model, trained on train
data with subjects reduction rate of 75%.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.58 ± 0.02 30.03 ± 1.37 0.36 ± 0.08 41.24 ± 2.45
49 0.56 ± 0.06 28.53 ± 4.23 0.30 ± 0.10 39.93 ± 5.13
75 0.50 ± 0.09 28.75 ± 7.59 0.24 ± 0.13 39.82 ± 10.05
100 0.48 ± 0.06 28.38 ± 10.89 0.15 ± 0.15 32.40 ± 10.87

TABLE S-XIV: Mean and standard deviation of best perfor-
mance of four metrics, among all sampled tasks, with regards
to various M by using CNN-based model, trained on train
data with half length.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.45 ± 0.40 22.58 ± 12.88 0.55 ± 0.25 31.77 ± 20.22
49 0.36 ± 0.31 15.72 ± 7.17 0.63 ± 0.21 24.83 ± 15.46
75 0.28 ± 0.09 10.79 ± 6.19 0.70 ± 0.22 19.06 ± 14.47
100 0.21 ± 0.08 3.80 ± 3.42 0.72 ± 0.27 6.54 ± 6.81

TABLE S-XV: Mean and standard deviation of average perfor-
mance of four metrics, over all sampled tasks, with regards to
various M by using CNN-based model, trained on train data
with half length.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.53 ± 0.05 23.89 ± 1.32 0.40 ± 0.08 34.67 ± 2.29
49 0.53 ± 0.08 22.84 ± 3.59 0.35 ± 0.11 34.70 ± 5.04
75 0.51 ± 0.11 23.13 ± 6.55 0.28 ± 0.16 33.85 ± 8.66
100 0.43 ± 0.12 18.11 ± 8.75 0.15 ± 0.15 22.78 ± 10.07

TABLE S-XVI: Mean and standard deviation of best perfor-
mance of four metrics, among all sampled tasks, with regards
to various M by using CNN-based model, trained on train
data with 75% length.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.41 ± 0.37 18.76 ± 11.11 0.53 ± 0.25 27.33 ± 13.54
49 0.31 ± 0.27 17.15 ± 9.87 0.58 ± 0.28 26.48 ± 19.58
75 0.23 ± 0.10 12.16 ± 8.40 0.73 ± 0.15 20.24 ± 15.60
100 0.19 ± 0.06 3.19 ± 2.36 0.78 ± 0.13 6.46 ± 5.39

TABLE S-XVII: Mean and standard deviation of average
performance of four metrics, over all sampled tasks, with
regards to various M by using CNN-based model, trained on
train data with 75% length.

M ϵframe ϵacc. ϵdice ϵdrift

20 0.47 ± 0.04 20.96 ± 1.35 0.39 ± 0.09 30.03 ± 2.07
49 0.45 ± 0.08 21.77 ± 2.90 0.40 ± 0.11 32.41 ± 3.83
75 0.39 ± 0.08 20.07 ± 3.81 0.39 ± 0.13 29.34 ± 5.32
100 0.32 ± 0.07 13.97 ± 4.88 0.24 ± 0.13 18.17 ± 6.01
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