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Branching Exponents of Synthetic Vascular Trees
under Different Optimality Principles
Etienne Jessen, Marc C. Steinbach, Charlotte Debbaut, and Dominik Schillinger

Abstract— Objective: The branching behavior of vascular
trees is often characterized using Murray’s law. We inves-
tigate its validity using synthetic vascular trees generated
under global optimization criteria. Methods: Our synthetic
tree model does not incorporate Murray’s law explicitly.
Instead, we show that its validity depends on properties
of the optimization model and investigate the effects of
different physical constraints and optimization goals on
the branching exponent that is now allowed to vary locally.
In particular, we include variable blood viscosity due to the
Fåhræus–Lindqvist effect and enforce an equal pressure
drop between inflow and the micro-circulation. Using our
global optimization framework, we generate vascular trees
with over one million terminal vessels and compare them
against a detailed corrosion cast of the portal venous tree
of a human liver. Results: Murray’s law is fulfilled when no
additional constraints are enforced, indicating its validity in
this setting. Variable blood viscosity or equal pressure drop
lead to different optima but with the branching exponent
inside the experimentally predicted range between 2.0 and
3.0. The validation against the corrosion cast shows good
agreement from the portal vein down to the venules. Con-
clusion: Not enforcing Murray’s law increases the predictive
capabilities of synthetic vascular trees, and in addition
reduces the computational cost. Significance: The ability to
study optimal branching exponents across different scales
can improve the functional assessment of organs.

Index Terms— branching exponents, Fåhræus–Lindqvist
effect, human liver, Murray’s law, synthetic vascular trees,
vascular corrosion cast

I. INTRODUCTION

THE cardiovascular system is responsible for transporting
blood to and from all cells in the human body, leading to

hierarchical networks of vessels, called vascular trees, inside
each organ. According to Murray [1], this hierarchy obeys
scaling relations based on the minimization of the total energy
expenditure of the system. Many factors influence and constrain
this minimization process, such as the type and shape of
the organ supplied, the demand for the organ’s cells, and
the existence of vascular diseases. The goals and constraints
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guiding their structural development and influence on the
vascular system have yet to be entirely understood, even though
extensive work has been carried out for over a century. Thus
the analysis of vascular diseases based on the anatomy and
physiology of the vascular structure remains a challenge.

Murray first described a minimization problem for vascular
segments in 1926 [1], [2]. Here, a single artery (or capillary) is
considered, modeled as a rigid cylindrical tube, and the physical
principles for fluid flow follow Poiseuille’s law. The goal is to
minimize the total power of the vessel, which results (among
other relations) in Murray’s law. It describes the relationship of
the radius of a parent vessel r0 against the radii of its children’s
vessels (r1, . . . ,rn) as a power law with

rγ

0 = rγ

1 + · · ·+ rγ
n. (1)

The branching exponent γ became an essential parameter
for characterizing the branching behavior of vascular trees.
In his original formulation, Murray derives (1) with γ = 3
mathematically for a single branching and notes that it “tends
to hold also in small trees” [2, p. 838].

An extensive number of studies have been conducted to
investigate Murray’s law experimentally [3]–[5]. In general,
exponents between 2.0 and 3.0 were measured. In [6], ex-
ponents were observed even going over Murray’s value of 3
with γ = 3.2. Multiple theoretical studies have analyzed the
possible factors contributing to these branching behaviors. An
extension to Murray’s law was proposed by Uylings [7], which
incorporated the effects of turbulent flow into the minimization
problem. Results show branching exponents as low as 2.33
for turbulent flow. In [8], a vascular model was investigated,
which considered the role of elastic tubes. Compared to rigid
tubes, the effect of pulsatile flow lowered the optimal value to
2.3. Zhou, Kassab, and Molloi [9], [10] generalized Murray’s
law hypothesis to an entire coronary arterial tree by defining
a vessel segment as a stem and the tree distal to the stem
as a crown. They showed that γ deviates from 3.0 even for
steady-state flow and depends on the ratio between metabolic
demand and viscous power dissipation.

An alternative approach to investigate the effects of different
branching exponents is to construct vascular trees synthetically.
The most well-known generation method here is constrained
constructive optimization (CCO) [11]. This local optimization
approach is directly based on Murray’s minimization principles
and allows to investigate different, albeit constant, values
for γ , like 2.55 [12] or 3.0 [13]. Another approach, based
on Simulated Annealing (SA), included a (single) branching
exponent as an optimization variable [14]. Results show that
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the vascular topology and the metabolic demand significantly
influence the value of the branching exponent. Recently, we
extended the CCO approach to finding a synthetic tree optimal
both in (global) geometry and topology [15]. Finding the
optimal geometry is cast into a nonlinear optimization problem
(NLP), which allows the investigation of various possible goal
functions and constraints.

In this work, we utilize the flexibility of our global optimiza-
tion framework and go beyond previous studies by allowing the
branching exponent γ to vary locally. We consider Murray’s law
to hold if in fact all values coincide. Our goal is to investigate
how the optimal branching exponents change under different
optimality principles. Firstly, we extend Murray’s original
problem by constraining the pressure drop to be equal from the
root to every terminal node. This constraint is widely used for
generating synthetic vascular trees (see [11], [12], [15], [16])
but was not part of Murray’s original formulation. Secondly, we
include a blood viscosity law based on the Fåhræus–Lindqvist
effect [17]. Since we generate vascular trees with one million
terminal vessels, going further than previous studies [18], this
change in apparent blood viscosity becomes significant.

We start by introducing the relevant definitions and as-
sumptions to generate synthetic trees. We then cast our goals
and constraints into NLPs and introduce our optimization
framework and its limitations in more detail. Finally, we
generate full portal venous trees of the human liver with up
to one million terminal vessels and compare them against a
vascular corrosion cast of a human liver [19], [20].

II. METHODS

A. Definitions and assumptions
We represent a vascular tree as a directed branching network

T = (V,A) with nodes u ∈ V and segments a ∈ A. Each
segment a = uv connects a proximal node xu with a distal node
xv. It approximates a vessel as a rigid and straight cylindrical
tube and is defined by its radius ra, length ℓa = ∥xu − xv∥,
volumetric flow Qa and apparent blood viscosity ηa. The
distal nodes of terminal segments are terminal nodes (leaves)
v ∈ L, and the proximal node of the (single) root segment
is the root node x0. A synthetic vascular tree perfuses blood
at a steady state from the root segment down to the terminal
segments inside a given (non-convex) perfusion volume Ω⊂R3,
schematically shown in Fig. 1

As in Murray’s original paper [1], we assume laminar flow
and approximate blood as an incompressible homogeneous
Newtonian fluid. We express the hydrodynamic resistance Ra
of segment a by Poiseuille’s law with

Ra =
8ηa

π

ℓa

r4
a

∀a ∈ A. (2)

The pressure drop over a segment can now be computed as

∆pa = RaQa ∀a ∈ A, (3)

and the pressure at a node v follows with

pv = pu −∆pa ∀uv ∈ A. (4)

We further assume that the (known) perfusion flow Qperf
is homogeneously distributed among all N terminal segments,

0

u

v

w

1

3

2

Fig. 1: Schematic of a vascular tree and its relation to nodes
and segments. Red circles denote a node, and white rectangles
a segment. This tree has a given inflow Q1 = Qperf and equal
terminal outflow Q2 = Q3 = Qterm through each of the outlets
(leaves). Arrows indicate the flow direction from the root node
to the terminal nodes. All terminal nodes are inside the (non-
convex) perfusion domain Ω.

leading to a terminal flow value Qterm =Qperf/N. All remaining
flow values can then be computed using Kirchhoff’s law with
Quv = ∑vw∈A Qvw∀v ∈ V\ (0∪L).

We aim at generating vessels down to the smallest arte-
rioles/venules with typical radii in the range of 0.015 mm
to 0.1 mm. The Fåhræus–Lindqvist effect [21] should be
accounted for at this scale. It describes how the blood viscosity
decreases as the vessel diameter decreases. The tendency of
red blood cells to migrate toward the vessel center is largely
responsible for this effect. In turn, this forces plasma toward
the walls and decreases peripheral friction. At the smallest
vessels with radii approaching the radii of red blood cells,
the viscosity sharply rises again. Pries et al. [17] derived an
empirical relationship for this behavior with

η(ra) = ηp
(
κ +κ

2(
η45 −1

))
, (5)

η45 = Aexp(Bra)−Cexp(DrE
a )+F, (6)

κ =
r2

a

(ra −G)2 , (7)

where ηp is the viscosity of the plasma, which we set to
ηp = 1.125cP. η45 is the relative apparent blood viscosity for
a discharge hematocrit of 0.45. The values of the constants A
to G are summarized in Table I.

TABLE I: Numerical values of the empirically derived constants
for the Fåhræus–Lindqvist effect, as described by [17].

Parameter Value Unit

A 6.0 1
B −170.0 mm−1

C 2.44 1
D −8.08 mm−E

E 0.645 1
F 3.2 1
G 0.00055 mm

This relationship is depicted in Fig. 2 for the relevant radii
between 0.015 mm and 10 mm.
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Fig. 2: Change in apparent blood viscosity due to the Fåhræus–
Lindqvist effect as approximated by Pries et al. [17]

B. Design goals and constraints

1) Murray’s minimization problem: The original minimization
formulation by Murray states that the total power of a vascular
tree consists of the metabolic power required to sustain blood
Pvol and the viscous power Pvis required to pump blood from
the root down to the micro-circulation. The cost function of a
tree is then defined as

fT = Pvol +Pvis = ∑
a∈A

mbπℓar2
a +

8ηa

π

ℓa

r4
a

Q2
a, (8)

where mb is the metabolic demand of blood in µWmm−3. As
described in [15], we can now include the nodal positions
x, the lengths ℓ and radii r as well as the blood viscosities
η in the vector of optimization variables y1, leading to y1 =
(x, ℓ,r,η). We add physical lower bounds ℓ−, r− and η− and,
for numerical efficiency, upper bounds ℓ+, r+ and η+. The
best geometry is then found in the rectangle defined as

Y1 = R3|V|× [ℓ−, ℓ+]A× [r−,r+]A× [η−,η+]A. (9)

Our NLP “Power minimization” finally reads:

min
y1∈Y1

∑
a∈A

mbπℓar2
a +

8ηa

π

ℓa

r4
a

Q2
a (10)

s.t. 0 = xu − x̄u, u ∈ V0 ∪L, (11)

0 = ℓ2
uv −∥xu − xv∥2, uv ∈ A, (12)

0 = ηa −η(ra), a ∈ A. (13)

Eq. (11) fixes the position of terminal nodes and Eq. (12)
ensures consistency between nodal positions and segment
length. The third constraint in Eq. (13) enforces the Fåhræus–
Lindqvist effect as defined in Eq. (5). Without this constraint,
the NLP describes the original minimization problem of Murray
extended to an entire vascular tree, and hence we expect that
every solution will satisfy Murray’s law with γ = 3.

2) Enforcing equal pressure drop: In Murray’s original
formulation, no consideration of the resulting pressure values
at terminal segments was given. This terminal pressure is a

crucial parameter for the regulation of blood flow and blood
velocity at the microcirculatory domains. Since we assume
these domains are roughly homogeneous across the organ and
have equal demand, the pressure should not differ significantly.
Therefore we enforce equal pressure at each terminal segment
by adding the pressure pv at each node as a new unknown in
our (second) NLP with variables y2 = (x, ℓ,r,η , p), leading to

Y2 = R4|V|× [ℓ−, ℓ+]A× [r−,r+]A× [η−,η+]A. (14)

Secondly, we constrain the pressure drop between the root
and the terminal nodes as a prescribed constant value ∆p. Since
the viscous power at each segment a is directly proportional
to the pressure drop by a factor of Qa, the total viscous power
Pvis becomes a constant. Thus, we can remove it from the cost
function. Finally, we can drop the constant factor mb, leading
to a minimization goal proportional to the tree volume VT. This
formulation is used in most synthetic tree studies, e.g., [11],
[12], [14]–[16]. Our NLP “Volume minimization” then reads:

min
y2∈Y2

∑
a∈A

πℓar2
a (15)

s.t. 0 = xu − x̄u, u ∈ V0 ∪L, (16)

0 = ℓ2
uv −∥xu − xv∥2, uv ∈ A, (17)

0 = pu − pv −
8ηuv

π

ℓuv

r4
uv

Quv, uv ∈ A, (18)

0 = pu, u ∈ L, (19)
0 = p0 −∆p, (20)
0 = ηa −η (ra) a ∈ A. (21)

Remark 1: Murray’s law, as stated in Eq. (1), is again not
enforced explicitly with a prescribed value of γ . Instead, we
allow a different value at each node and compute the resulting
branching exponent γ using the Newton-Raphson method after
the optimization is finished.

3) Additional optimization variants: To better isolate the
individual influence of different factors, we define additional
variants of our two minimization problems. Firstly, we simplify
both problems to a constant apparent viscosity ηconst = 3.6cP,
removing η from the vector of optimization variables and
dropping the corresponding constraints Eq. (13) and Eq. (21).
Secondly, we investigate the influence of the metabolic demand
mb and the total pressure drop ∆p. We consider values between
0.1 µWmm−3 and 1.0 µWmm−3 for the metabolic demand, but
note that estimates of this parameter vary significantly [22]. For
the total pressure drop, we set the terminal pressure to pterm =
6mmHg and vary the root pressure between 10 mmHg and
14 mmHg. Finally, for each variant, a separate tree is generated,
where Murray’s law (see Eq. (1)) is enforced directly with a
single exponent γopt, included in the optimization variables. All
variants include the same root flow Qperf = 1.1Lmin−1. We
note that in our tests different values of Qperf had no significant
effect on the branching behavior between vessels and only led
to different scaling of the vessel radii.

C. Applicability to vascular systems
Before we describe our generation framework in more detail,

we discuss its limitations. Specifically, how the assumptions
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of Section II-A limit the applicability of our framework for
certain types of vessels.

First, the assumption of a tree-structured network only
holds down to the entry of the microcirculation (vessels with
radii between 15µm to 35µm). From here, the tree structure
transmutes into a mesh-like network of capillaries, which is
not covered by our current model.

Second, the assumption of Poiseuille flow constitutes a strong
limitation on the type of vessels we can adequately describe.
The pulsatility introduced by the heartbeat can hinder the
flow from fully developing a parabolic velocity profile. The
significance of this effect is characterized by the dimensionless
Womersley number α [23] for each vessel a with

αa = ra

(
ωρ

ηa

) 1
2
, (22)

where ω is the angular frequency and ρ the density of blood.
At Womersley numbers over 10, the flow lags behind the
pressure wave by approximately 90 degrees, and the velocity
profile has a plug-like shape [24]. This effect can only be
neglected for Womersley numbers under 1. Assuming constant
frequency and density, the Womersley number is mostly based
on the radius of the vessel. For a resting heartbeat of 1Hz
and a blood density of 1000kgm−3 vessels with radii over
8mm have significant pulsatile effects, whereas vessels with
radii under 1mm can be assumed to allow Poiseuille flow to
develop fully. Thus for vascular trees, pulsatile effects are only
significant at root vessels but quickly diminish after only 3 to
4 consecutive branches. For these first branches, however, the
additional energy dissipation introduced by the pulsatile flow
is again not covered by our current model.

Lastly, we assume a homogeneous distribution of flow (in
all cases) and an equal pressure drop to each terminal node (in
the case of “Volume minimization”). In reality, this assumption
will not hold, even for healthy organs, as different parts of
the organ will be perfused differently. While it is not part of
this study, we wish to point out that the algorithm is capable
of including arbitrary heterogeneous distributions of flow and
pressure drops. However, localized effects like arterial dilation
caused by, e.g., limited oxygen supply, are not accounted for
in our current model and should be part of further studies.

D. Generation framework

We generate our synthetic trees using the framework intro-
duced in [15], which we summarize in the following. First, we
generate Ntopo terminal nodes on a regular cubic grid inside
our organ’s volume. The root position is manually set and
connected to the geometric center of the volume, which in
turn is connected to all terminal nodes. We swap segments
to explore new topologies from this initial (fan-shaped) tree.
A swap detaches a segment from its parent and connects
it with another segment. After each swap, the geometry is
optimized by solving the corresponding NLP. The newly created
topology is accepted on the basis of an SA approach. After
topology optimization, we grow the tree using a modified CCO
approach. Here, we optimize the global geometry each time
after adding Ngeo new terminal nodes and then increase Ngeo

heuristically based on the current density of the tree. Notably,
we drop the local optimization of branching positions and set
them to their flow-weighted mean, similar to [25]. Due to our
repeated global geometry optimization, this simplification has
no significant impact on the final tree structure. In the last
step of the optimization, we delete all segments that reached
the lower bound ℓ− (degenerate segments), possibly creating
n-furcations (n ≥ 3).

We then classify the hierarchy throughout the finished tree
by assigning each segment an order number corresponding to
the Strahler ordering method [26]. Leaf nodes are assigned the
order 1. Then, going upstream, parent nodes are assigned a
Strahler order according to the following rule: A parent node
is assigned the maximum order of its children. If all children
have the same order, the parent is assigned the order of its
children plus 1.

Remark 2: The complete optimization framework is only
applied once to obtain a common topology. We solve each
NLP variant with this topology to get the corresponding global
geometry. We chose this method to focus on the geometry
changes and to allow a direct comparison of branching
exponents and radii at the same branch types.

III. RESULTS

A. Computational complexity

We first investigate the computational complexity of our
framework, which can be formally divided into a growth part
based on CCO and an optimization part based on the NLPs. As
described in more detail in [25], one can achieve polynomial
complexity in the number of terminal nodes N for CCO by
using the tree as a binary search tree to connect new terminal
points efficiently. We further reduce the computational effort
by setting the new branch location to the flow-weighted mean
instead of computing the local optimum. These design decisions
allow us to grow a synthetic tree up to the microcirculation.
Thus, the most critical part of the framework is the optimization
part, which consists of the geometry optimization during
growth and the topology optimization of the initial tree. During
topology optimization, each iteration consists of swapping two
segments and globally optimizing the new geometry. Each swap
between two segments only requires updates along the path
up to the lowest common ancestor. This part of the algorithm
scales at worst linearly, and the performance of the topology
optimization depends on the performance of solving the NLP,
which we investigate in the following.

We solve the NLPs using the interior point code Ipopt
[27] with the linear solver Mumps [28]. All computations
are executed on a desktop computer with 64 GB of random-
access memory (RAM) and an AMD Ryzen 9 7950X @5Ghz
processor with 32 threads. The computation times of our NLPs
for different numbers of terminal segments are depicted in
Fig. 3 It is apparent that the solution effort for all NLP variants
scales polynomially with N, in fact even superlinearly with
moderate exponents below 1.5. Power minimization performs
best as it has the fewest number of optimization variables and
constraints. The inclusion of equal pressure and the Fåhræus–
Lindqvist effect both lead to higher computation times. To
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Fig. 3: Computation time and estimated polynomial scaling of
the different NLP variants. Each measurement constitutes the
median of 100 test computations.

estimate the performance gain that we achieve by dropping
Murray’s law, we include it as a constraint in the NLP “Volume
minimization”, both with the fixed branching exponent γ = 3
and with a single value γ left free for optimization. The resulting
computation times are shown in Fig. 4. Enforcing Murray’s law
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Fig. 4: Effects on computation time and scaling when directly
enforcing Murray’s law with fixed and variable γ for the case
of ”Volume minimization” with constant blood viscosity. Each
measurement constitutes the median of 100 test computations.

increases the solution effort substantially. Moreover, it leads to
larger complexity exponents, which becomes significant during
topology optimization and for denser trees.

For instance, the computation time for solving the “Volume
minimization” NLP with 1,000,000 terminal segments almost
doubles from approximately 65min to 118min when including
Murray’s law.

B. Overall structure of the synthetic portal vein

The full synthetic portal vein tree for the case of “Volume
minimization” with variable viscosity is depicted in Fig. 5.
The perfusion volume of the liver was around 1.500 cm3 and
we used physiological parameters adapted from [16], namely
a total pressure drop of ∆p = 4mmHg and a root inflow of
Qperf = 1.1Lmin−1. The left side shows the complete tree
inside the non-convex liver domain with two zoom levels. The
tree splits into four major branches, which further split into 8
main branches. These results align with previous results of a
sparser tree in [15] and highlight that the removal of Murray’s
law and the inclusion of the Fåhræus–Lindqvist effect have
only a minor influence on the topology of the major vessels.

For a detailed comparison between the different optimization
variants discussed in Section II-B.3, we summarized the
results in Table II. Here, a column represents the results of
a single variant, with the first four columns corresponding
to the NLP “Power minimization” and the last four columns
corresponding to the NLP “Volume minimization”. For “Power
minimization”, we included the results for metabolic demands
mb of 0.1 µWmm−3 and 1.0 µWmm−3. Similarly, for “Volume
minimization”, we included the results for root pressures proot
of 10 mmHg and 14 mmHg. The last row indicates the results
of each variant after enforcing a single (optimal) branching
exponent γopt.

For “Power minimization”, an increase in metabolic demand
mb from 0.1 µWmm−3 to 1.0 µWmm−3 leads to an increase
in viscous power Pvis, shown in the first row of Table II,
by around 364 % and a reduction in volume VT, shown in
the second row Table II, by around 53 %. Similarly, for the
“Volume minimization”, an increase in the root pressure from
10 mmHg to 14 mmHg leads to a 320 % increase in viscous
power and a 51 % reduction in volume. The Fåhræus–Lindqvist
effect had a minor influence. It decreased the viscous power by
around 1 % and the total volume by around 4 % in all cases.

C. Vessel radii

The root radius rroot is shown in the third row of Table II.
It decreased by 31 % after the metabolic demand mb was
increased for “Power minimization”. Similarly, in the case of
“Volume minimization”, it decreased by 30 % after the root
pressure proot was increased to 14 mmHg. In all cases, the
Fåhræus–Lindqvist effect had a minor influence on the root
radius with changes less than 0.1 %. However, a significant
decrease in radius can be observed for vessels between Strahler
orders 1 and 6, shown in Fig. 6. In both NLP cases, this decrease
was highest at the terminal vessels with 2 % for “Power
minimization” (Fig. 6a) and 1.5 % for “Volume minimization”
(Fig. 6b). A notable difference between both cases is the
variance of radii at each Strahler order. In the case of “Power
minimization”, the highest variance is observed at Strahler
order 6, whereas the terminal radii are constant. In the case of
“Volume minimization”, the highest variance is at the terminal
segments and decreases as the Strahler order increases.
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Fig. 5: Complete synthetic vascular tree of the portal vein of a human liver with 1,000,000 terminal vessels (”Volume
minimization” with variable viscosity and proot = 10mmHg). Two zoom levels highlight the hierarchical structure at different
scales. The radii are between 5.1mm (root vessel) and 0.017mm (smallest terminal vessel)

TABLE II: Comparison of the results between the different variants of our two minimization problems as introduced in
Section II-B.3. The branching exponents γopt in the last row (marked with *) are the results of separate runs for each variant,
where a single constant branching exponent was enforced.

Power minimization Volume minimization

mb = 0.1µWmm−3 mb = 1.0µWmm−3 proot = 10.0mmHg proot = 14.0mmHg

Parameter ηconst η(r) ηconst η(r) ηconst η(r) ηconst η(r)

Pvis in mW 2.67 2.65 12.34 12.23 3.33 3.33 13.99 13.99
VT in mm3 53,400.60 52,283.94 24,786.36 24,042.08 50,413.84 49,158.58 24,587.02 23,154.13
rroot in mm 5.35 5.35 3.64 3.63 5.10 5.09 3.56 3.54
pterm in mmHg [10.34,11.68] [10.41,11.73] [1.15,10.67] [1.74,10.98] 6.00 6.00 6.00 6.00
γ 3.00 [2.90,3.00] 3.00 [2.90,3.00] [1.75,3.01] [1.76,3.17] [1.43,3.00] [1.46,3.08]
γopt (constant) 3.00* 2.91* 3.00* 2.92* 2.84* 2.76* 2.82* 2.74*

D. Pressure drop

After “Power minimization”, the terminal pressures are not
constant across the tree but exhibit a wide range of values,
see Table II row 4 column 1–4. This range widens further
for higher metabolic demands and also increases the mean
total pressure drop from the root to the terminal segments,
shown in Fig. 7. In Fig. 8a, the pressure values at different
Strahler orders are shown for mb = 0.1µWmm−3. Pressure
values drop and variances increase with decreasing Strahler
order. Including the Fåhræus–Lindqvist effect leads to slightly
higher pressure values for the Strahler orders 1 to 6. The
terminal pressures after “Volume minimization” are fixed to
pterm = 6mmHg as enforced by Eq. (18) – Eq. (20). The
effect of these constraints is highlighted in Fig. 8b for root
pressure proot = 10mmHg. In contrast to “Power minimization”,
variances are significantly higher at the intermediate Strahler
orders 3 to 11. Furthermore, the influence of the Fåhræus–

Lindqvist effect is more pronounced, decreasing the pressure
values between Strahler order 2 to 10.

E. Branching behavior
The resulting branching exponents of all variants are

summarized in row 5 of Table II. For “Power minimization”
with constant viscosity ηconst, the exponents are constant with
γ = 3.0 across all branches regardless of metabolic demand mb.
This confirms our expectation, and it can easily be proved by
standard theory using a certain separability property of the NLP.
In contrast, the inclusion of the Fåhræus–Lindqvist effect leads
to deviations from 3.0, with branching exponents reaching
a minimum of 2.9. For ”Volume minimization,” exponents
are not constant even for constant blood viscosity because
the pressure constraints introduce global coupling conditions
across the tree. Instead, most values fall between 2.0 and 3.0,
with the smallest outliers having values of 1.43.
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Fig. 6: Influence of Fåhræus–Lindqvist effect on vessel radii for different Strahler orders
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Fig. 7: Density plot of the total pressure drop from root vessel
to terminal vessels for the power minimization under different
metabolic demand

For a more detailed comparison, the probability density
function of the branching exponents for both optimization cases
is compared in Fig. 9. The influence of the Fåhræus–Lindqvist
effect shifts most branching exponents from a constant 3.0 to
2.9 during “Power minimization” (Fig. 9a). During “Volume
minimization” with constant blood viscosity, most exponents
are at 3.0 (Fig. 9b in red) and are shifted to 2.9 when including
the Fåhræus–Lindqvist effect (Fig. 9b in green).

Fig. 10 highlights the distribution of mean branching expo-
nents across different branch types. Each cell (i, j) corresponds
to a branch with child segments of Strahler order i and j. In
Fig. 10(a) the effect of variable blood viscosity on “Power
minimization” is depicted. The branching exponents decrease
if the Strahler order of either child decreases, leading to the
smallest branching exponent of 2.9 at branches with two
terminal segments. If both child segments have a Strahler order

over 8, the mean branching exponent is at its maximum of
3.0. The effect of enforcing equal terminal pressure is shown
in Fig. 10(b). Here, the higher the difference between the
Strahler orders of both children is, the smaller the branching
exponent is. Again, the smallest mean branching exponents are
observed at branches connecting two terminal segments with a
value of 2.76. Fig. 10(c) shows the accumulated effect of both
constraints with a minimum mean exponent of 2.7, again at
terminal branches.

F. Comparison to vascular corrosion cast

We now directly compare our synthetic trees against a
corrosion cast of the portal vein of the human liver [20]. The
corrosion cast was imaged at a resolution of 102 µm, which
allowed to recover vessels down to approximately 0.5 mm.
Further imaging was done on a smaller sample (about 88 x 68 x
80 mm) at a resolution of 71 µm. For this sample, vessels down
to a diameter of approximately 0.08 mm were recovered. More
detailed information on the human liver, vascular corrosion
casting, and micro-CT scanning can be found in [19]. To
allow a direct comparison between our synthetic data and the
generation notation used for the vascular corrosion cast in [20],
we employ an ordering scheme based on [4].

In Fig. 11a, the radii per generation (radius-adjusted Strahler
order in reverse) are compared between the “Power mini-
mization” with mb = 0.1µWmm−3, the volume minimization
with proot = 10mmHg and the corrosion cast data, including
measurements and a best-fit trend line, based on the least sum
of square errors. The synthetic trees’ radii fit the data and trend
line well for the generations 5 to 15. Notably, they significantly
deviate for the first four generations, especially against the
measurements with errors of around 25%. In contrast, the
number of vessels in Fig. 11b of both synthetic trees fit the
data of the corrosion cast well for all generations.
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Fig. 8: Influence of Fåhræus–Lindqvist effect on pressure values of the distal nodes of vessels for different Strahler orders
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Fig. 9: Effect of enforcing variable viscosity and equal pressure onto the branching exponents

IV. DISCUSSION

The exclusion of Murray’s law simplifies our two optimiza-
tion problems and automatically allows the branching exponents
to vary locally. Both problems can generate synthetic trees with
similar geometry and topology, if the parameters are chosen
appropriately. Different parameter choices can change the final
tree significantly, most notably due to the change in vessel radii.
A higher root flow Qperf increases the viscous power required to
pump blood (right summand Eq. (10)) and the pressure drop at
each vessel (Eq. (18)). In both cases, this leads to an increase in
vessel radii. A higher blood viscosity leads to similar behavior
as it also increases the viscous power and the pressure drop at
each vessel. For Power minimization, we choose the metabolic
factor mb to be the same at each vessel. Thus, different values
for mb do not influence the branching exponents. However, a

higher value directly increases the total metabolic power to
maintain blood (left summand Eq. (10)) and decreases vessel
radii. A metabolic factor of mb = 0.1µWmm−3 leads to more
realistic radii than a value of 1.0 µWmm−3. This is in line
with estimated values around 0.03−0.04 µWmm−3 for venous
trees [22], [29]. Similarly, a root pressure of proot = 14mmHg
results in a pressure drop of ∆p = 8mmHg, which is related
to portal hypertension. To allow such a high pressure drop, the
vessel radii need to be decreased to unrealistic small values. In
comparison a root pressure of proot = 10mmHg leads to vessel
radii, which are comparable to measurements of the vascular
corrosion cast.

Under power minimization, the radii are at their individual
local optima, i.e., the radius of each segment can be solved
independently as the minimum of the metabolic demand and
the viscous power dissipation. This observation is in line with
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Fig. 11: Comparison of synthetic trees (with variable viscosity) against corrosion cast data [20]

the findings of Murray and explains the constant branching
exponent of 3 in Table II. The variations in radii for Strahler
orders 2 to 12 in Fig. 6a are based entirely on the branching
type, which is completely defined by the flow values of the
child segments.

For volume minimization, no such simplification can be
made, as the constraint of equal pressure creates dependencies
between segments on the same path to the root. This constraint
also forces radii to deviate from their local optima, which
means a deviation from the branching exponent γ = 3.0. The
highest deviations are found at branches between two terminal
segments because they can be adjusted to a given pressure
drop without significantly increasing the tree’s volume. Given
the same length, they also constitute a higher pressure drop
than segments with bigger radii.

The inclusion of the Fåhræus–Lindqvist effect reduces the
viscosity of smaller vessels, which can lead to different viscosity
values between a parent vessel and its children. Consequently,
the corresponding branching exponents also deviate from γ =
3.0, as can be observed in Fig. 10. In contrast, the effect on
bigger vessels is negligible and results in constant exponents
γ = 3.0, as seen in Fig. 10(a), for branches where both children
have Strahler orders over 8.

While the generated trees generally fit the corrosion cast data
well, the underestimation of the largest radii (generation 1 to 4)
is significant. One reason for this underestimation is likely that
the vessels of the portal venous tree are not completely circular
and elliptical [20]. A bigger amount of pressure is thus required
to drive the same amount of flow through such an elliptical
cross-section. A second reason could be the negligence of
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pulsatility, leading to smaller energy dissipation at the largest
vessels of the synthetic tree. Despite the higher Womersley
numbers at these early generations, however, we suspect that
this dissipation has only a limited effect on the underestimation
of the vessel radii.

V. CONCLUSION

Our optimization framework can handle complex constraints
and goal functions while generating synthetic trees up to
but not including the capillary level of the microcirculation.
We used our framework to investigate the local branching
behavior for different constraints and goal functions. Branching
exponents automatically lie in the experimentally predicted
range between 2.0 and 3.0. Even small changes to Murray’s
original optimization problem, like the inclusion of variable
blood viscosity, significantly affect the optimal branching
exponents of vessels. Our synthetic trees closely follow the
vascular corrosion cast of a human portal venous tree, with
significant deviations only in the largest vessels.

Without enforcing any pressure constraint, terminal pressures
vary by up to 1.0 mmHg, leading to highly heterogeneous
boundary conditions for the microcirculation. In contrast,
enforcing equal terminal pressure in its current form leads to
pressure variations up to 2.0 mmHg in the intermediate vessels
of the mesocirculation. Both these results need to be critically
evaluated and compared against measurements of real vascular
trees. In the future, we plan to include pulsatile flow effects,
improving our framework’s computational ability. Furthermore,
shear stress, a critical parameter for vascular growth, must also
be incorporated into the model.

A more mature version of this model, specifically the
ability to predict optimal branching exponents under different
constraints, could have many potential applications in the
medical field. An example would be to predict and relate
the branching behavior across the scales to vascular diseases.
These predictions could improve the interpretation of medical
images by giving valuable input to the functional assessment
of organs. Another application lies in the emerging field of
tissue-engineered products [30]. Here, tissue is bio-printed
and requires an optimal vascular tree to support its cells. Our
framework would allow to construct these trees under various
possible design goals and constraints.
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