
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021 1

Tissue Segmentation of Thick-Slice Fetal Brain
MR Scans with Guidance from High-Quality

Isotropic Volumes
Shijie Huang, Xukun Zhang, Zhiming Cui, He Zhang, Geng Chen, Dinggang Shen Fellow, IEEE

Abstract— Accurate tissue segmentation of thick-slice
fetal brain magnetic resonance (MR) scans is crucial for
both reconstruction of isotropic brain MR volumes and
the quantification of fetal brain development. However, this
task is challenging due to the use of thick-slice scans in
clinically-acquired fetal brain data. To address this issue,
we propose to leverage high-quality isotropic fetal brain
MR volumes (and also their corresponding annotations)
as guidance for segmentation of thick-slice scans. Due to
existence of significant domain gap between high-quality
isotropic volume (i.e., source data) and thick-slice scans
(i.e., target data), we employ a domain adaptation technique
to achieve the associated knowledge transfer (from high-
quality <source> volumes to thick-slice <target> scans).
Specifically, we first register the available high-quality
isotropic fetal brain MR volumes across different gesta-
tional weeks to construct longitudinally-complete source
data. To capture domain-invariant information, we then per-
form Fourier decomposition to extract image content and
style codes. Finally, we propose a novel Cycle-Consistent
Domain Adaptation Network (C2DA-Net) to efficiently trans-
fer the knowledge learned from high-quality isotropic vol-
umes for accurate tissue segmentation of thick-slice scans.
Our C2DA-Net can fully utilize a small set of annotated
isotropic volumes to guide tissue segmentation on unanno-
tated thick-slice scans. Extensive experiments on a large-
scale dataset of 372 clinically acquired thick-slice MR scans
demonstrate that our C2DA-Net achieves much better per-
formance than cutting-edge methods quantitatively and
qualitatively.

Index Terms— Fetal MRI, Brain tissue segmentation, Un-
supervised domain adaptation, Cycle-consistency.
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Fig. 1. Typical examples of target and source data. (a) Reconstructed
high-quality isotropic MR volumes (voxel size: 0.75×0.75×0.75 (mm))
with six kinds of annotations for different tissues, including CSF (Cere-
brospinal Fluid), GM (Gray Matter), WM (White Matter), ventricles, cere-
bellum, and brainstem. (b) Clinical-acquired thick-slice MR scans (voxel
size: 0.75×0.75×4.4 (mm)) with low quality. Reconstructed images are
missing some GWs

NON-INVASIVE fetal magnetic resonance (MR) imaging
is an essential technique for early fetal examination, e.g.,

fetal brain development [1]–[4]. Clinically, fetal MR scans
are acquired as thick-slice stacks, and then reconstructed to
generate high-resolution isotropic brain MR volumes. Seg-
mentation of fetal brain tissues from these thick-slice MR
scans is critical for numerous downstream tasks, such as super-
resolution reconstruction of isotropic MR volumes, which
can benefit from the anatomical information provided by the
segmentation. However, even with advanced deep learning
techniques, manual annotation and segmentation of fetal brain
tissue from thick-slice MR scans remain challenging [2], [5]
due to the blurry boundary between the cortical plate and
the cerebrospinal fluid, as shown in Fig. 1 (b), as well as
the anatomic specificity of the developing cerebrum during
different gestational weeks (GWs) [1], [3]. As a result, manual
annotations may be error-prone and unreliable for training
deep neural networks, leading to poor segmentation and anal-
ysis performance.

Significant efforts have been dedicated to fetal brain tissue
segmentation. Existing methods primarily focus on the seg-
mentation of high-quality isotropic MR volumes. For instance,
Gholipour et al. [3] and Dumast et al. [6] proposed traditional
and deep learning methods for fetal brain tissue segmentation
of isotropic MR volumes. Furthermore, challenges [7] based
on isotropic MR volumes have been held to compare fetal
brain tissue segmentation methods. However, a major limita-
tion of these methods is that they require high-quality isotropic
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reconstructed MR volumes, which are not always clinically
available. Furthermore, these methods ignore the significant
potential of thick-slice fetal brain tissue segmentation to fa-
cilitate downstream tasks such as reconstruction, registration,
quantitative analysis, etc. Therefore, there is a great need to
develop an automatic method for accurately segmenting fetal
brain tissues from thick-slice scans. Compared with clinical-
acquired scans, the reconstructed fetal brain MR volumes
have higher quality, isotropic resolution, and more accurate
segmentation annotations, providing key information to guide
the segmentation of thick-slice fetal brain MR scans.

Inspired by this observation, we propose to segment thick-
slice fetal brain MR scans with guidance from high-quality
isotropic volumes. To address the large gap between high-
quality isotropic volume (i.e., source data) and thick-slice
scans (i.e., target data), we employ a domain adaptation tech-
nique to achieve the associated knowledge transfer (from high-
quality <source> volumes to thick-slice <target> scans). In
addition to this domain gap, we describe fetal development
as a special domain shift, which is alleviated by building
longitudinal-complete source data. Specifically, we first regis-
ter high-quality isotropic volumes across GWs to complement
the longitudinal missing ones. The Fourier transformation
is then introduced to decompose all images according to
their frequency maps, providing Fourier Content Code (FCC)
and Fourier Style Code (FSC) that represent high-frequency
domain-invariant content and low-frequency domain-specific
style, respectively. Finally, we propose a Cycle-Consistent
Domain Adaptation Network (C2DA-Net) to learn domain-
invariant structure from FCC and FSC for tissue segmentation.
By leveraging a small set of annotated isotropic reconstructed
MR volumes to guide brain tissue segmentation on the unan-
notated thick-slice MR scans, our method overcomes the
challenges of the large domain gap and the special domain
shift. The main contributions of our work are summarized as
follows:

• We propose to leverage prior knowledge from recon-
structed high-resolution high-quality MR volumes to
guide the brain tissue segmentation of clinically-acquired
thick-slice MR scans.

• To bridge the significant gap between the two domains,
we employ the domain adaptation technique to achieve
the associated knowledge transfer, which is effectively
resolved with a registration-based longitudinal source
data completion and a specially-designed cycle-consistent
network, i.e., C2DA-Net.

• Our C2DA-Net (i) incorporates Fourier decomposition to
capture both domain-invariant and domain-specific com-
ponents, and (ii) introduces a cycle-consistent constraint
to ensure anatomical accuracy of features.

• We extensively evaluate C2DA-Net on a large-scale
clinical-acquired fetal MRI dataset, and our results
demonstrate that it achieves promising performance and
outperforms state-of-the-art methods significantly.

II. RELATED WORK

A. Fetal Brain Tissue Segmentation

Tissue segmentation of fetal MR images is crucial to inves-
tigate structural changes in brain development, detect brain
injuries and malformations, and provide prognostic informa-
tion [1]. Several brain tissue segmentation methods have been
proposed for fetal subjects with isotropic reconstructed MR
volumes. Dumast et al. [6] synthesized annotated data that
can be used for domain adaptation, significantly boosting the
segmentation performance of seven brain tissues. Following
a similar idea, Li et al. [8] jointly generated conditional
atlases for brain segmentation. In particular, Payette et al.
[7] organized the Fetal Tissue Annotation (FeTA) Challenge,
where 20 international teams participated and submitted a
total of 21 algorithms for evaluation, significantly boosting the
development of fetal brain tissue segmentation for isotropic
reconstructed high-quality MR volumes.

Despite the progress in this field, most methods are de-
signed for isotropic reconstructed high-quality fetal brain MR
volumes, which are not always available in a clinical setting.
Until now, little attention has been paid to segmenting brain
tissues directly from thick-slice fetal scans that can assist
downstream tasks such as registration, reconstruction, and
neurodevelopment analysis [3], [4].

B. Unsupervised Domain Adaptation

Domain adaptation is a widely-used approach in transfer
learning that aims to improve performance when there is a
domain gap between the source and target data. In medical
image analysis, the domain gap is mainly caused by cross-
modality or inter-scanner variations [9]. Early research focused
on unsupervised-domain-adaptation (UDA) [10]–[14], which
trains on labeled data from the source domain and aims to
achieve good performance on data from the target domain
without access to the labeled data in the target domain [15].

Recently, adversarial learning has been widely used in the
domain adaptation field [10], [11], [14], [16]. The primary
objective is to instruct a discriminator in differentiating inputs
based on their original domain, while the generator con-
currently attempts to misdirect it. Existing methods can be
divided into three categories according to the input of the
discriminator: image-level alignment [13], [16]–[18], feature-
level alignment [14], [19], and their mixture [12]. Cycle-
GAN [16] breaks the rule of requiring paired cross-domain
images in image-to-image tasks and is followed by many
subsequent works. For example, Yang et al. [13] proposed
to minimize the domain discrepancy by exchanging the low-
frequency information provided by Fourier transformation of
cross-domain images. Yang et al. [17] proposed a label-driven
module to reduce the image translation bias for improving
semantic segmentation performance. In addition, a number of
similar works translate the image style of cross-domain to
align the image space [13], [18].

Similar to image-level alignment, feature-level alignment
minimizes the domain discrepancy in the feature space. For
instance, Tsai et al. [14] constructed a multi-level adversarial
network to effectively perform output space domain adaptation
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Fig. 2. Overview of the proposed method for thick-slice fetal brain tissue segmentation. (I) We first register the source images to the target
images at similar GWs to build deformed longitudinal-complete source data. (II) We then extract the FCC and FSC from the input images. (III) The
network flow includes a segmentation network (S) and a generation network (G). An FSC cycle-consistence network trains the MR images in an
unsupervised manner, where feature space alignments are employed.

at different feature levels. Wu et al. [19] constructed a Varia-
tional Autoencoder (VAE) to extract modality-invariant latent
features. Following the success of feature-level alignment
and image-level alignment, their combination is demonstrated
better. Hoffman et al. [12] proposed a model to adapt between
domains using both generative image space alignment and
latent space alignment. Chen et al. [20] transformed the
appearance of images across domains and enhance domain-
invariant of the extracted features for superior performance.

In addition to adversarial learning, UDA in Teacher-Student
networks and disentangled representation has also achieved
great progress. Pham et al. [21] proposed a meta pseudo
labels method, which updates the student based on the pseudo-
labeled data produced by the teacher and also updates the
teacher based on the student’s performance. As a result, the
teacher can generate better pseudo-labels to teach the student.
Different from the disentangled method [22], we perform
Fourier decomposition to extract the high- and low-frequency
portions of an image for domain-invariant and domain-specific
information. These information are employed for segment-
ing fine-grained domain-invariant structures and synthesizing
cross-domain images.

III. PROPOSED METHOD

We resolve the domain adaptation task with a novel unsuper-
vised domain adaptation framework, where a cycle-consistent
network is proposed to capture the fine-grained structure. Fig.
2 shows an overview of the proposed C2DA-Net for fetal brain

tissue segmentation with thick-slice MR scans, which consists
of three key components: 1) longitudinal-complete source data
construction; 2) Fourier code extraction; and 3) the jointly
trained generator and segmentor with cycle consistency.

It should be noted that our model works with thick-slice
MR scans, implying that the inter-slice differences are large
[1], [5]. Therefore, we design our model as a 2D network,
instead of 3D one.

A. Longitudinal-complete Source Data Construction
To address the issue of severe missing data in longitudinal

source data, we register the source images to the target images
with close GWs using ANTs toolkit [23] to build deformed
longitudinal-complete source data, as shown in Fig. 2. I and
Fig. 3. This deformation aligns the source images with the
target images, filling in missing GWs and maintaining a similar
geometric structure. We combine the deformed source images
with the original source images to create longitudinal-complete
source data, enabling the network to learn more about de-
velopmental characteristics. Note that the source and target
images are not necessarily to be paired for the segmentor,
allowing for a flexible and generalizable network that can
handle complicated data composition and involve all data in
the training process.

B. Fourier Code Extraction
UDA typically involves training a network to achieve dis-

entanglement of representations. In this work, we propose to
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Fig. 3. Illustration of the longitudinal-complete source data construction
procedure. The source images are registered to the closest GWs
target images. The deformed source images and the original source
images form longitudinal-complete source data, which were fed to the
segmentor.

leverage the Fourier transform to efficiently extract disentan-
gled representations, which are referred to as Fourier Style
Code (FSC) and Fourier Content Code (FCC).

Specifically, given the MR volume of a fetal brain subject
x ∈ RH×W×N , which consists of N slices, we extract
its frequency map using the Fast Fourier Transform (FFT)
algorithm (i.e., F (·)) [24]. Accordingly, F−(·) is the Inverse
Fast Fourier Transform (IFFT) that maps the frequency signals
back to images. To decompose the frequency signals for
extracting style and content codes, we define a binary map
(i.e., Mα), where the values are all zeros except for the center
region determined by a ratio factor α:

Mα =

{
1, (h,w, n) ∈ α× [−H : H,−W : W,−N : N ]

0, otherwise
(1)

where α is empirically set to 0.05 in our case. Note that the
coordinates of the center of Mα is (0, 0). We then apply the
Mα to the frequency map to obtain FSC, i.e.,

FSC = F−(Mα ◦ F (x)). (2)

◦ represents the Hadamard product, i.e., element-wise matrix
multiplication. Similarly, the FCC is defined as:

FCC = F−((1−Mα) ◦ F (x)), (3)

where the 1 ∈ RH×W×N represents a matrix of all ones.
The procedure of extracting FSC and FCC is illustrated in

Fig. 2 II. The FCC captures the content information while dis-
carding domain-specific style information, leading to improved
segmentation performance across domains. Additionally, we
incorporate a cycle generation network to better comprehend
the fine-grained, domain-invariant anatomy, where FSC pro-
vides the domain-specific style information as input to the
generator along with the prediction map. In general, the
Fourier code is a reliable and effective method for disen-
tangling domain-invariant content and domain-specific style
information, facilitating accurate thick-slice fetal brain tissue
segmentation by utilizing high-quality isotropic volumes to
their full potential. The details of the framework are described
below.

C. Cycle-consistent Domain Adaptation Network
1) FCC for Domain Adaptive Segmentation: Fig. 2. II shows

appearance of the FCC. As can be observed, FCC can capture
the structural details at the boundaries and provides plentiful
domain-invariant edge information.

2) FSC for Cycle-Consistency: Cycle consistency learning
is a well-known technique and has been widely employed in
machine translation [25], image synthesis [16], etc.

In the field of UDA, Giancarlo et al. [25] proposed a
pixel-wise anomaly detection framework to find dissimilarities
between input and generated images. However, the use of only
a segmentation map for synthesis can only provide structural
information, which may not be sufficient to bridge the domain
gap in styles between different domains. In this work, we
are inspired by [13] and consider FSC as a simple style
code, which allows our framework to better capture domain-
specific style information and achieve improved segmentation
performance across domains.

Specifically, for each input 2D MR image xi representing
the i-th slice in fetal brain subject x, our image translation
cycle should be able to bring xi back to the original image.
This is achieved through the forward cycle consistency proce-
dure: xi → FCCi → S(FCCi) → G(S(FCCi),FSCi) ≈ xi,
where S(·) and G(·) represent the segmentor and generator,
respectively. This procedure is illustrated in Fig. 2 II and III.
The accuracy of the segmentation provides promising image
prediction, and vice versa for incorrect segmentation. This
consistency principle acts as a constraint for improving the
segmentation of fetal brain tissues, and its superior perfor-
mance will be demonstrated in our ablation study (Section
IV-D).

For the source and target domains, we compute the MSE
loss between G(S(FCCi),FSCi) and xi, denoted as Lsyn.
Similarly, for each segmentation result S(FCCi), G and S
should also satisfy backward cycle consistency: S(FCCi) →
G(S(FCCi),FSCi) → S(G(S(FCCi),FSCi)) ≈ S(FCCi).

We further add a discriminator D(·) to encourage the
encoder of segmentor SE(·) to extract the domain-invariant
feature with an adversarial loss defined as:

Ladv =EFCC(s)

[
log

(
D

(
SE

(
FCC

(s)
i

)))]
+ EFCC(t)

[
log

(
1−D

(
SE

(
FCC

(t)
i

)))]
. (4)

We employ cycle consistency to facilitate self-supervised
learning of the target data and fully capture the relationship
between the segmentation map and the generated results. This
leads to accurate segmentation results at both global and local
levels, without relying solely on adversarial learning for UDA.

Using FSC as the style code is a straightforward and effec-
tive method for medical images with fixed anatomy and similar
content, as demonstrated by our experiments in Section IV-
D. Also, incorporating FSC improves the performance of
both the segmentor and the generator by providing pixel-level
constraints.

3) Learning Process: The segmentation network and gener-
ator network are trained in an end-to-end manner. The total
loss function L consists of three components, including the
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Fig. 4. Architectures of segmentor, generator, and the correspond-
ing discriminator. “Conv/Deconv(k, n, s)” denotes the convolutional or
deconvolutional layer with kernel size k × k, stride s, and n output
channels; “input(a,c)” represents the size and channels of the input;
The sizes of the 2D slice, FCC, segmentation map, and FCC are all
128×192; “FC(n1, n2)” represents the fully connected layer with input
channel n1 and output channel n2.

segmentation loss L(s)
seg, the synthetic losses L(s)

syn (source
domain), and L(t)

syn (target domain) from generator and the ad-
versarial losses Ladv from D(·). Mathematically, L is defined
as follows:

L = L(s)
seg + γLadv + β(L(s)

syn + L(t)
syn), (5)

where β = 3.0 and γ = 0.1 are hyper-parameter set
empirically. The generator is discarded at the testing stage,
while the FCC images of the target domain directly go through
the segmentation network to generate the final segmentation
results.

D. Network Configuration and Implementation Details

1) Network Backbone: The entire network consists of a
generator G(·), a segmentor S(·), and a discriminator D(·),
each of which is built with a 2D convolutional neural network
illustrated in Fig. 4. Both the segmentor and generator are
jointly trained in an end-to-end manner. Note that the input
of the segmentor is FCC, which is generated with the FFT
implemented using Pytorch.

2) Implementation Details: The proposed method was im-
plemented using the PyTorch platform in Python. For data
preprocessing, we first rotate the original MR image with
an arbitrary angle ranging from 0◦ to 360◦ and an origin at
image center. The images are then resized to 128×192 as the
input of the segmentation network. We trained the model on
an RTX3060 GPU with a learning rate of 1.0 × 10−4 using
the Adam optimizer to optimize the generator and segmentor
parameters. The discriminator is Adam-optimized every three
epochs with a learning rate of 1.0× 10−5 during the training.

IV. EXPERIMENTS

A. Dataset
We have collected a large-scale dataset consisting of thick-

slice MR scans of 372 prenatal fetuses from maternity hospi-
tals. The original source data contains 25 reconstructed vol-
umes ranging from 25 GWs to 29 GWs [26] with a voxel size
of 0.75×0.75×0.75 (mm). We transform the original source
data using the method described in Section III-A and update
the source data based on registration. The target data contains
372 thick-slice scans ranging from 22 GWs to 33 GWs with a
voxel size of 0.75×0.75×4.4 (mm). We use all source images,
and randomly select 210 target ones for training, 60 target
images for validation, and 102 for testing. The ground truths of
all subjects are annotated by professional doctors. All images
are preprocessed with fetal brain segmentation [5] and bias
field correction [27], and further normalized with z-score.

B. Experimental Settings and Evaluation Metrics
We compared our framework with several cutting-edge

approaches, including:
• W/o domain adaptation (WoDA): Segmentation is per-

formed with only the basic segmentor, which is consid-
ered as the lower bound performance of this task. There is
no adversarial learning. The generator module is trained
on the source domain and used directly on the target
domain without undergoing any adaptation for the target
domain.

• Full supervision (FS): This approach is built on the
proposed method and is trained on both target and source
domains with corresponding ground-truth labels, which is
regarded as the upper bound performance.

• FDA [13], AdaptSegNet [14] and CyCADA [12]: These
are representative UDA approaches, where the FDA and
AdaptSegNet align different domains in the image space
and feature space, respectively. In contrast, CyCADA
aligns different domains on both feature and image
spaces.

• Pham et al. [21]: In this approach, the teacher and student
networks are updated using pseudo labels to improve the
performance of the unannotated data.

• ANTs [23]: This approach directly registers the source
images to the target images of the nearest GW to get the
corresponding label.

• C2DA-Net (Ours): This is our approach described in
Section III.

For a fair comparison, all the networks utilize the same
backbone.

The quantitative comparison is presented in Table I, where
the Dice similarity coefficient (Dice) and the Average Symmet-
ric Surface Distance (ASSD) [28] are introduced to evaluate
the accuracy of the segmentation results.

We report the mean and standard deviation of the metrics
in the format of mean± std.

C. Comparisons and Analysis
First, we provide the lower bound (WoDA) and upper bound

(FS) performance on the target domain. As shown in Table
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TABLE I
QUANTITATIVE EVALUATION OF THE PROPOSED METHOD AND COMPETING METHODS. VEN., CER. AND BRA. ARE SHORT FOR VENTRICLES,

CEREBELLUM AND BRAINSTEM, RESPECTIVELY. THE BEST SCORES ARE IN BOLDFACE. ↑ INDICATES THE HIGHER THE SCORE THE BETTER AND

VICE VERSA FOR ↓.

Method
Dice [%] ↑ ASSD (mm)↓

CSF GM WM Ven. Cer. Bra. Mean CSF GM WM Ven. Cer. Bra. Mean
WoDA 86.5±2.4 70.0±4.1 88.6±2.6 65.9±9.9 76.3±21.0 57.8±8.5 74.2±5.7 0.4±0.1 0.5±0.2 0.5±0.1 1.0±0.3 3.3±3.0 1.7±0.4 1.2±0.5

FS 91.9±1.6 76.3±3.3 91.7±1.1 87.6±3.9 90.4±4.1 84.4±3.7 87.0±1.5 0.2±0.0 0.3±0.0 0.3±0.0 0.4±0.1 0.4±0.1 0.6±0.1 0.4±0.1
FDA [13] 87.6±2.3 68.4±3.5 88.9±1.9 73.9±6.2 71.8±14.3 57.4±13.7 74.7±5.7 0.3±0.0 0.4±0.1 0.5±0.1 0.8±0.2 6.5±2.2 1.7±0.6 1.7±0.4

AdaptSegNet [14] 86.8+2.3 69.4±3.9 88.7±2.0 65.1±12.0 78.3±21.3 59.9±8.1 74.7±5.6 0.4±0.1 0.4±0.1 0.5±0.1 1.0±0.3 2.3±3.1 2.1±0.5 1.1±0.6
CyCADA [12] 87.6±2.4 69.6±4.2 89.2±2.1 75.3±9.3 78.8±20.8 59.3±10.3 76.6±6.1 0.3±0.0 0.4±0.1 0.5±0.1 0.8±0.3 4.5±5.8 2.0±0.4 1.4±1.0

Pham et al. [21] 88.0+2.4 72.1±2.9 89.2±2.0 73.7±9.4 80.8±19.7 61.3±10.8 77.5±5.3 0.3±0.0 0.4±0.1 0.5±0.1 0.8±0.3 1.1±0.9 1.6±0.4 0.8±0.2
ANTs [23] 76.0+3.8 43.8±6.9 80.8±3.9 52.0±8.7 78.9±7.6 64.9±8.9 66.1±4.4 0.6±0.1 0.6±0.1 1.0±0.2 1.3±0.4 0.8±0.3 1.2±0.5 0.9±0.2

C2DA-Net (Ours) 89.9±2.2 74.1±2.7 90.5±1.3 83.4±5.5 88.9±4.8 78.9±7.1 84.3±2.1 0.2±0.0 0.3±0.0 0.4±0.1 0.5±0.1 0.4±0.2 0.8±0.2 0.4±0.1

Input GT FS FDA AdaptSegNet CyCADA Pham et al. Ours (C!DA-Net)

22 GWs

25 GWs

27 GWs

30 GWs

33 GWs

Fig. 5. Qualitative comparison of different methods for subjects at 22 GWs, 25 GWs, 27 GWs, 30 GWs, and 33 GWs, respectively. Typical results
are shown row-by-row. The red, green, deep blue, yellow, shallow blue and purple stand for CSF, GM, WM, ventricles, cerebellum, and brainstem,
respectively.

I, the main difference between WoDA and FS comes from
the intrinsic domain gap between two domains. Notably, for
tissues with small volumetric sizes such as GM, ventricles,
cerebellum, and brainstem, our method significantly outper-
forms WoDA (e.g., 70.0% vs.74.1; 65.9% vs. 83.4%; 76.3%
vs. 88.9%; 57.8% vs. 78.9%), implying that our network
captures fine-grained anatomical structures and is sensitive to
small tissues in fetal brain tissue segmentation. Besides, it
can also be observed that, for GM segmentation, the FS only
gains 76.3% Dice accuracy, which is lower than other tissues.
The underlying reason is that the GM has significant variation
in different subjects [29], increasing the difficulty of accurate

segmentation.
Next, we compare our method with state-of-the-art UDA

methods to validate its effectiveness. The quantitative and
qualitative comparisons are presented in Table I, Fig. 5 and
Fig. 6. Our method achieves the best performance in the seg-
mentation of six tissues and multi-view images, demonstrating
the advantages of the proposed method in domain adaptation
based segmentation. An interesting observation is that the
three state-of-the-art UDA methods provide relatively small
performance improvement, which can be explained from two
aspects. First, the limited intensity contrast among different tis-
sues can pose a challenge for methods that align different do-
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Axial 
view

Coronal
view

Sagittal
view

Input GT FS FDA AdaptSegNet CyCADA Pham et al. Ours (C!DA-Net)

Fig. 6. Qualitative results of different methods in three orthogonal views from a single subject. Typical examples are shown row-by-row.

TABLE II
QUANTITATIVE RESULTS AT DIFFERENT GESTATIONAL WEEKS.

GWs Dice [%] ↑ ASSD (mm)↓
CSF GM WM Ven. Cer. Bra. Mean CSF GM WM Ven. Cer. Bra. Mean

22 89.08 74.13 88.75 78.34 91.37 74.55 82.70 0.08 0.13 0.12 0.22 0.05 0.69 0.21
23 89.16 73.75 87.88 81.66 89.20 60.80 80.41 0.08 0.14 0.18 0.26 0.14 0.93 0.29
24 87.70 75.28 91.19 90.48 81.59 73.02 83.21 0.09 0.13 0.14 0.08 0.27 0.43 0.19
25 86.43 71.62 91.42 83.70 92.01 78.29 83.91 0.10 0.19 0.13 0.22 0.09 0.37 0.18
26 89.70 77.71 93.49 70.86 93.02 87.55 85.39 0.08 0.12 0.12 0.30 0.09 0.30 0.17
27 89.26 78.55 90.74 84.91 90.53 77.55 85.26 0.08 0.12 0.13 0.21 0.12 0.37 0.17
28 87.88 75.44 91.67 84.87 93.05 81.39 85.72 0.07 0.13 0.14 0.21 0.09 0.41 0.18
29 91.60 74.68 90.27 92.54 88.25 87.76 87.52 0.08 0.16 0.17 0.09 0.21 0.35 0.18
30 92.39 72.36 91.44 85.88 88.75 83.19 85.67 0.09 0.20 0.17 0.13 0.26 0.34 0.20
31 87.09 73.68 91.15 70.64 92.83 79.09 82.41 0.12 0.15 0.17 0.29 0.12 0.52 0.23
32 86.63 56.60 87.81 78.59 94.42 87.06 81.85 0.13 0.26 0.25 0.28 0.09 0.35 0.23
33 89.23 72.68 90.72 69.25 81.82 74.59 79.71 0.09 0.20 0.21 0.31 0.30 0.54 0.28

mains in image space, which can result in limited improvement
in low-intensity contrast areas. Second, the target and source
domain data are with the same imaging modality (i.e., T2-
weighted MR images), making it difficult to extract domain-
invariant features and avoid falling into a local optimum during
adaptation. The low Dice accuracy of ANTs suggests that
the registration process is not precise enough for achieving
accurate segmentation. To demonstrate the advantage of our
method, we provide five qualitative segmentation samples from
different GWs in Fig. 5. It can be observed that our method
matches the ground truth well, especially at the boundaries
between brain tissues with limited intensity contrast.

We present further experiments to evaluate the generaliza-
tion ability of our method. Specifically, we demonstrate that
our approach can accurately segment fetal brain tissues even
for gestational weeks (GWs) that are not in the source domain.
The quantitative and qualitative prediction results for different
GWs are presented in Table II and Fig. 7, respectively. It
can be observed that our method achieves high mean Dice
accuracy at all GWs, demonstrating the generalization ability
of our method. Moreover, the results at GWs within the
original source (i.e., 25 GWs to 29 GWs) are consistently
better than those at GWs within the deformed source (i.e., 22
GWs to 24 GWs and 30 GWs to 33 GWs), indicating that the

variance in GWs is also a crucial domain shift. This excellent
performance indicates that our method not only addresses the
domain shift between the source and target domains, but also
effectively adapts to differences in GWs.

D. Ablation Study

There are four key components in our method, including 1)
registration for source data, 2) FCC extraction, 3) the generator
and 3) discriminator for adversarial learning in the segmentor.
As the FSC is a critical component of the generator, and
without it, the synthesis would not be valid, we consider
the FSC to be a necessary ingredient of the generator. To
validate the effectiveness of the different components proposed
in our method, we design the following ablated versions of our
method:

• Reg: This ablated version only has a segmentor trained
on the registered source images which are described in
Section III-A and directly applies the trained model to
the target data for segmentation.

• Reg-FCC: In this ablated version, we augment the Reg
with the FCC, so that the segmentor takes the FCC of
registered source images as input and applies the trained
model to the FCC of target data for segmentation.



8 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

TABLE III
ABLATION STUDIES OF THE KEY COMPONENTS OF OUR METHOD FOR FETAL BRAIN TISSUE SEGMENTATION.

Method
Dice (%) ↑ ASSD (mm)↓

CSF GM WM Ven. Cer. Bra. Mean CSF GM WM Ven. Cer. Bra. Mean
WoDA 86.5±2.4 70.0±4.1 88.6±2.6 65.9±9.9 76.3±21.0 57.8±8.5 74.2±5.7 0.4±0.1 0.5±0.2 0.5±0.1 1.0±0.3 3.3±3.0 1.7±0.4 1.2±0.5

Reg 89.9±2.3 70.2±5.5 87.8±4.5 75.8±6.8 82.3±18.9 74.1±8.1 80.0±5.0 0.3±0.1 0.4±0.2 0.6±0.2 1.0±0.5 1.3±1.6 1.3±0.7 0.8±0.4
Reg-FCC 87.9±2.7 72.0±3.8 88.4±2.5 76.1±5.0 85.7±7.7 77.0±7.2 81.2±2.4 0.3±0.0 0.4±0.1 0.5±0.1 0.7±0.1 1.0±1.0 0.8±0.2 0.6±0.2

Reg-G 90.6±2.2 73.4±3.7 89.3±2.6 82.0±7.3 85.6±14.1 77.8±7.1 83.1±3.3 0.2±0.0 0.3±0.1 0.5±0.1 0.5±0.2 0.7±0.7 0.8±0.2 0.5±0.2
Reg-FCC-G 88.2±2.6 73.0±3.2 90.3±1.3 83.7±5.4 87.8±4.1 78.6±4.1 83.6±2.1 0.3±0.0 0.3±0.0 0.4±0.1 0.5±0.2 1.7±1.4 0.8±0.3 0.7±0.3
C2DA-Net 89.9±2.2 74.1±2.7 90.5±1.3 83.4±5.5 88.9±4.8 78.9±7.1 84.3±2.1 0.2±0.0 0.3±0.0 0.4±0.1 0.5±0.1 0.4±0.2 0.8±0.2 0.4±0.1

Fig. 7. Segmentation performance of our method for six tissues at
different GWs, ranging from 22 to 33 GWs, with the original source data
ranging from 26 to 29 GWs.

• Reg-G: This ablated version augments the Reg with a
generator, and the segmentor takes the registered source
images and target images as input. The generator accepts
the combination of prediction and the corresponding FSC
as input to synthesize the original image. Note that the
generator is discarded during the testing stage.

• Reg-FCC-G: We augment the Reg-G with the FCC in
this ablated version. The segmentor takes the FCC of
registered source and target data as input.

• C2DA-Net (Reg-FCC-G-Adv): This is the full version of
our method, which combines all the four key components
together.

We also include the low bound (i.e., WoDA in Section IV-B)
for better evaluation of different ablated versions.

1) Effectiveness of Registration: The source data building
based on registration is the key technique to tackling the
challenge of the domain gap between GWs and is the reason
why the ablated version “Reg” achieves promising improve-
ment, as shown in Table III. In our original source data,
there are several missing GWs compared with the target
data, which is a common issue in longitudinal fetal MRI.
However, the development characteristics of the fetal brain are
mainly reflected in the ventricles, cerebellum, and brainstem
at these GWs, thus WoDA method works worse on these
three tissues. After registration, the domain gap caused by the
missing GWs is reduced and the segmentation performance of

the aforementioned tissues has greatly improved. Compared
to “WoDA”, “Reg” boosts the Dice accuracy of ventricles,
cerebellum and brainstem by a large margin of 9.9%, 6.0%
and 16.3%, respectively.

2) Effectiveness of FCC: As described in Section III-C.1,
the domain-invariant anatomical structure provided by FCC is
a key element of our method and can improve the robustness
of segmentation performance. As listed in Table III, by taking
FCC as input of the segmentor, the standard deviation of both
Dice and ASSD results has reduced significantly, especially
for cerebellum, where “FCC” decreases the Dice standard
deviation of “Reg” and “Reg-G” by 11.2% and 10.0%, re-
spectively. Experiments have shown that the FCC effectively
captures subtle frequency variations at the boundaries and
supplies a substantial amount of domain-invariant information
in the image space. This advantage benefits the segmentor in
learning domain-invariant features and enhances its stability
and generalizability in the segmentation of fetal brain tissue.

3) Effectiveness of Generator: The generator is a crucial
component for correcting the fine-grained segmentation error,
especially in regions where there is no clear intensity differ-
ence between adjacent tissues. The use of the generator in
our method improves the Dice accuracy of both “Reg-G” and
“Reg-FCC-G” by 3.1% and 2.4%, respectively. In particular,
the ventricles benefit greatly from the addition of the generator,
with improvements of 6.2% and 7.6%, respectively. A notable
observation is that the generator improves the Dice accu-
racy for every tissue, indicating its effectiveness in capturing
anatomically-correct and domain-invariant brain structures.

4) Effectiveness of Adversarial Training: Adversarial learn-
ing is a powerful technique that we use in C2DA-Net to align
the features extracted from source and target domain data. This
technique has been demonstrated to be effective in various
studies [10]–[12], [14], [16] and our results in Table III and
Fig. 8 confirm its effectiveness in our method.

E. Component of the Fourier Code

In the Fourier code described in Section III-B, the hyperpa-
rameter α plays a crucial role in determining the information
of FCC and FSC. To investigate the impact of α, we set
α to 0.02, 0.05, 0.1, and 0.2, respectively. As illustrated in
Fig. 9, a smaller α provides a clearer FCC and a more
blurry FSC, and vice versa. However, since the generator
relies on the FSC to generate realistic synthetic images, it
is crucial that the FCC and FSC reach a balance between
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Input GT WoDA Reg Reg-FCC Reg-G Reg-FCC-G C!DA-Net

Fig. 8. Qualitative results of the ablation study in two samples. The last five columns correspond to the five controlled experiments in Table III.

0.02 0.05 0.1 0.2

FCC

FSC

Fig. 9. Visualization of FCC and FSC under different α values.

TABLE IV
SEGMENTATION PERFORMANCE OF OUR METHOD UNDER DIFFERENT α.

α
Dice [%] ↑

CSF GM WM Ven. Cer. Bra. Mean
0.02 86.7±2.8 72.6±4.5 88.7±3.4 82.1±6.6 84.5±11.7 76.8±7.4 81.9±3.1
0.05 89.9±2.2 74.1±2.7 90.5±1.3 83.4±5.5 88.9±4.8 78.9±7.1 84.3±2.1
0.1 90.5±2.0 73.4±3.4 89.8±1.7 83.5±4.8 87.7±5.2 78.4±7.4 83.9±1.8
0.2 88.2±1.6 68.5±4.0 88.0±3.2 80.5±3.0 85.8±4.7 78.9±4.0 81.7±1.8

texture/structure and domain-invariant information. Therefore,
choosing an appropriate α is essential for achieving optimal
performance. In our experiments, we found that the best results
are obtained with α = 0.05, which thus serves as a default
setting in our method.

V. DISCUSSION

In this work, we propose a novel registration framework
to address the challenge of multi-GW image segmentation
in fetal brain MRI. We introduce the use of Fourier code
to represent the domain-invariant structure and the domain-
specific style, which is then fed into a cycle-consistency net-
work for anatomically-correct tissue segmentation. We provide
a comprehensive analysis of the proposed method, highlighting
the benefits of utilizing isotropic reconstructed high-quality
target domain data, the effectiveness of GWs adaptation in
fetal brain tissue segmentation, and the significance of Fourier
code in segmentation tasks.

TABLE V
QUANTITATIVE EXPERIMENTAL RESULTS FOR THE TARGET DOMAIN DATA

IN FETA 2021.

Method
Dice [%] ↑

CSF GM WM Ven. Cer. Bra. Mean
2D (Ours) 90.3±1.5 72.9±5.4 89.5±2.0 81.0±5.9 89.6±4.8 78.1±6.5 83.6±1.6
2D (FS) 92.9±1.1 77.9±4.0 92.8±1.3 87.6±3.6 93.1±2.1 90.8±1.8 89.2±1.0

3D (Ours) 88.0±2.3 73.8±3.5 90.2±1.3 84.9±5.1 89.6±3.1 80.7±4.6 84.5±0.9
3D (FS) 95.2±0.6 82.5±4.1 94.8±1.2 91.8±2.8 94.7±1.8 94.2±2.0 92.2±1.4

1) Exploit the Feta 2021 Dataset as the Target domain:
To investigate the generalization ability of our method, we
perform additional experiments with the data from Feta 2021
challenge dataset, which consists of 80 T2 fetal brain scans
reconstructed using two different methods [4], [30].

Since both the source and target domains are isotropically
reconstructed high-quality volumes in this dataset, we extend
our framework to the 3D version for optimal performance. We
train our C2DA-Net from scratch using 25 MR volumes from
source domain (25-29 GWs) and 50 MR volumes from target
domain (21-35 GWs). We compare the 2D and 3D versions of
C2DA-Net (i.e., 2D-Net and 3D-Net) by testing on 15 target
MR volumes ranging from 21 to 35 GWs. In addition, we train
our 2D and 3D methods on labeled data from both source and
target domains, which provides the upper bound performance.
As shown in Table V, the mean Dice accuracy of 2D-Net
is 83.6%, which is comparable with 3D-Net (84.5%). This
implies that the 3D network tends to exacerbate the domain
shift induced by development differences and image styles
at the 3D level. On the other hand, 2D networks are more
efficient and less sensitive to overfitting. Hence, our method
based on 2D network is robust for the domain adaptation task,
especially for clinically-acquired thick-slice scans.

2) GW Adaptation and Fourier Code: Segmenting fetal brain
tissue is a challenging task due to large variation of anatomical
change across different GWs. By utilizing deformed source
images, our method outperforms state-of-the-art techniques,
which rely on style or feature adaptation. Specifically, direct
registration can perform well in tissue matching, as shown
in Table I (i.e., ANTs), and the deformed source data can



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

improve performance significantly as shown in Table III (i.e.,
Reg). This demonstrates that the deformed source data can
improve performance without strict alignment with the target
data.

In Section III-C.1, we argue that the FCC represents
domain-invariant structure as it lacks the style feature. In
contrast, the FSC contains the style feature and enables the
generator to synthesize images of different domains. Based
on comparison results in Table III, we can draw the fol-
lowing conclusions: 1) The FCC is effective in improving
the robustness of segmentation, demonstrating the domain-
invariant characteristics of FCC, and 2) the FSC can efficiently
incorporate style code into the generator’s input to ensure
cross-domain cycle consistency, making it a practical and
effective approach.

VI. CONCLUSION

In this paper, we have proposed a novel cycle-consistent
domain adaptation network, C2DA-Net, which can leverage a
small set of annotated isotropic volumes to guide tissue seg-
mentation of clinically-acquired thick-slice scans. In C2DA-
Net, we first construct the longitudinally-complete source
data to adapt to the target data distributed across various
GWs. Then, Fourier transformation is introduced to extract
domain-invariant (i.e., FCC) and domain-specific (i.e., FSC)
information, which are used for effective training. Finally,
the integration of a generator enables our network to op-
erate in a self-supervised manner, making the segmentor
capture anatomically-correct cycle consistency at both image
and feature levels. Experimental results on a clinical dataset
indicate that our C2DA-Net is effective in fetal brain tissue
segmentation and outperforms the state-of-the-art methods.
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