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Objective: Concepts of Granger causality (GC) and Granger autonomy (GA) are central to assess
the dynamics of coupled physiologic processes. While causality measures have been already proposed
and largely applied in time and frequency domains, measures quantifying self-dependencies are still
limited to the time-domain formulation and lack of a clear spectral representation. Methods: We
embed into the classical linear parametric framework for computing GC from a driver random
process X to a target process Y a measure of Granger Isolation (GI) quantifying the part of the
dynamics of Y not originating from X, and a new spectral measure of GA assessing frequency-
specific patterns of self-dependencies in Y . The framework is formulated in a way such that the
full-frequency integration of the spectral GC, GI and GA measures returns the corresponding time-
domain measures. The measures are illustrated in theoretical simulations and applied to time series
of mean arterial pressure and cerebral blood flow velocity obtained in subjects prone to develop
postural syncope and healthy controls. Results: simulations show that GI is complementary to
GC but not trivially related to it, while GA reflects the regularity of the internal dynamics of the
analyzed target process. In the application to cerebrovascular interactions, spectral GA quantified
the physiological response to postural stress of slow cerebral blood flow oscillations, while spectral
GC and GI detected an altered response to postural stress in subjects prone to syncope, likely related
to impaired cerebral autoregulation. Conclusion and Significance: The new spectral measures of
GI and GA are useful complements to GC for the analysis of interacting oscillatory processes, and
detect physiological and pathological responses to postural stress which cannot be traced in the time
domain. The thorough assessment of causality, isolation and autonomy opens new perspectives for
the analysis of coupled biological processes in both physiological and clinical investigations.

INTRODUCTION

In the wide field of Network Physiology, the dynamic
activity of a physiological system and the interactions
between two systems are typically analyzed measuring
synchronous time series from the systems and applying
various methods for time series analysis, with the aim of
investigating the underling regulatory mechanisms across
a variety of physiological states and pathological condi-
tions [1]. Typical examples of such analyses are the study
of the cardiovascular control performed on heart period
and arterial pressure (AP) time series [2, 3], the evalu-
ation of cardiorespiratory synchronization assessing how
heartbeats are coupled with the breathing activity [4, 5],
and the investigation of cerebrovascular interactions from
the variability of mean AP (MAP) and cerebral blood
flow velocity (CBFV) [6, 7].

The approaches followed to perform the analysis of
physiological time series are diverse, spanning from pre-
diction methods or spectral analysis applied to an in-
dividual series to measures of correlation and spectral
coherence involving pairs of series [8, 9]. In addition
to non-parametric data-driven approaches, the advance-
ment of techniques exploiting dynamic regression models
in the time domain [10] and the principle of spectral fac-
torization in the frequency domain [11] have fostered the
assessment of dynamic and directed interactions between
coupled time series, offering to physiologists and clini-

cians new powerful tools for the investigation of causal
and oscillatory mechanisms. The principle of Wiener-
Granger causality is undoubtedly driving the efforts in
this direction [12, 13], as documented by the constant
development of measures like the causal coherence [9],
the directed coherence (DC, [14]) and measures based
on the causality framework proposed by Geweke [15, 16].
The latter is particularly important, as it realizes a time
series decomposition that defines a time-domain GC in-
dex and expands it in terms of its frequency content,
providing measures with clear information-theoretic in-
terpretation [17]. This allows to straightforwardly re-
late between each other measures defined in different do-
mains, also providing frequency-specific interpretations
for information-based indexes. Nevertheless, the link be-
tween all the time-domain and spectral measures of GC
has not been fully elucidated yet [17], thus leaving room
for the investigation of new measures.

In parallel to exploring the concept of GC, the analysis
of coupled processes has evolved also studying the role of
autonomous dynamics, i.e. interactions that occur inter-
nally in a process independently of its link with other
processes. In this context, a so-called Granger autonomy
(GA) measure has been put forward in [18], based on a
previously defined notion of degree of self-determination
of a system [19, 20]. The idea behind the concept is that
a target system is autonomous if it is not controlled by
external influences but rather it self-determines its states.
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In line with these definitions, herein we provide an inter-
pretation of GA as a measure quantifying how much the
internal dynamics of a process contribute to determine its
predictability more than the dynamics of other processes
potentially connected to it. Additionally, this measure
has been developed also in the context of information
theory and applied to gain insight about the physiolog-
ical mechanisms governing the autonomous dynamics of
a process [3, 5, 21, 22]. However, differently from GC,
the concept of GA currently lacks of a valid spectral rep-
resentation, as spectral measures able to identify the au-
tonomous oscillations in a process have not been defined
yet.
The present study introduces a framework for the com-

bined assessment of causal interactions and autonomous
dynamics in coupled oscillatory processes. Working in
the context of bivariate linear regression models, we first
embed into the approach for the computation of time-
domain and spectral GC [15, 16] a complementary but
not redundant measure denoted as “Granger isolation”
(GI), which detects the part of the dynamics in a pro-
cess not originating from the other process. Then, we
develop a new spectral measure of GA able to assess
autonomous dynamics in a target process; the measure
is frequency-specific and such that its integration over
all frequencies returns the known time-domain GA mea-
sure. The framework is first illustrated in simulations of
interacting oscillatory processes, showing the ability of
the GC, GI and GA measures to disambiguate indepen-
dent and interdependent oscillations. Then, it is applied
to physiological time series of MAP and mean CBFV
(MCBFV) measured in healthy controls and in subjects
prone to develop postural-related syncope [7, 23]. The
latter is a common clinical problem consisting in a tran-
sient loss of consciousness and postural tone with spon-
taneous recovery, whose underlying patho-physiological
mechanisms are still not fully understood. Here, we evi-
dence the need of computing spectral measures focusing
on specific frequency bands with physiological meaning
to reveal mechanisms which remain otherwise hidden in
a whole-band time-domain analysis, and show the im-
portance of quantifying both causal interactions and au-
tonomous dynamics for a complete assessment of these
mechanisms. The time- and frequency-domain measures
of bivariate interactions provided by the framework are
collected in the GICA Matlab toolbox and available for
free download from
https://github.com/LauraSparacino/GICA_toolbox.

METHODS

This section presents the mathematical formulation of the
measures of GC, GI and GA, computed in both the time and
frequency domains, modelling the interactions between two
stochastic processes via a linear parametric approach. The ap-
proach is grounded on the classical autoregressive (AR) model
description of a discrete-time, zero-mean stationary bivariate
stochastic process Sn = [XnYn]

⊺ given by [10, 17]

Xn =

p
∑

k=1

axx,kXn−k + axy,kYn−k + Ux|xy,n, (1a)

Yn =

p
∑

k=1

ayx,kXn−k + ayy,kYn−k + Uy|xy,n, (1b)

where p is the model order, defining the maximum lag used
to quantify interactions, the coefficients a quantify the time-
lagged interactions within and between the two processes, and
Ux|xy,n and Uy|xy,n are uncorrelated white noise processes

with variance σ2
x|xy and σ2

y|xy. The model (1) is composed by
two auto- and cross-regressive (ARX) models whereby each
process is regressed both on its own past and on the past of
the other process. In compact form, it can be formulated as
Sn =

∑p

k=1
AkSn−k +Un, where Ak is a 2x2 coefficient ma-

trix containing axx,k and axy,k in the first row and ayx,k and
ayy,k in the second row, and Un = [Ux|xy,nUy|xy,n]

⊺.

Granger Causality and Granger Isolation

Given the stochastic processes X and Y , the very popular
concept of GC is formalized quantifying the improvement in
predictability that the past states of a putative driver process
(say X) bring to the present state of the target process (say
Y ) above and beyond the predictability brought by the past
states of the target itself [12]. To implement this concept in
the context of linear regression models, the present state of
the target, Yn, is described first from the past of both X and
Y through the so-called full model (1b), and then from the
past of Y only through the restricted AR model

Yn =

∞
∑

k=1

byy,kYn−k + Uy|y,n, (2)

where byy,k are AR coefficients and Uy|y,n is a white noise pro-

cess with variance σ2
y|y; note that the order of the restricted

AR model is theoretically infinite, and see the supplemental
material (Sect. S1.A,C ) for the identification of its parame-
ters. The predictability improvement is typically quantified
by the logarithmic measure of GC from X to Y [15]

FX→Y = ln
σ2
y|y

σ2
y|xy

, (3)

which takes values going from FX→Y = 0, when the full model
does not yield any predictability improvement (σ2

y|xy = σ2
y|y),

to FX→Y → ∞, when the full model explains completely the
target dynamics (σ2

y|xy → 0). The logarithmic GC measure
(3) has an information-theoretic meaning as for Gaussian pro-
cesses it is equivalent, up to a factor 2, to the transfer entropy
measure [3, 5, 24].

To analyze causal interactions in the frequency domain,
the model coefficients can be first represented through the Z -
transform of (1), yielding S(z) = H(z)U(z), where H(z) =
[I −

∑p

k=1 Akz
−k]−1 is the 2x2 transfer matrix, being I the

2x2 identity matrix. Computing H(z) on the unit circle
in the complex plane (H(f̄) = H(z)|

z=ej2πf̄ , where f̄ =
f

fs
∈ [−0.5, 0.5] is the normalized frequency, with f the

frequency and fs the sampling frequency), the 2x2 power
spectral density (PSD) matrix of the bivariate process is
P(f̄) = H(f̄)ΣH∗(f̄), where Σ = E[UnU

⊺

n] is the covari-
ance of Un and ∗ stands for Hermitian transpose [10]. This
matrix contains the PSDs of X and Y and the cross-PSDs
between X and Y as diagonal and off-diagonal elements, re-
spectively. Under the hypothesis of strict causality leading to

https://github.com/LauraSparacino/GICA_toolbox
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diagonality of Σ [10, 25], the PSD of the target process Y can
be factorized as

PY (f̄) = σ2
x|xy|Hyx(f̄)|

2 + σ2
y|xy|Hyy(f̄)|

2. (4)

From this factorization, the squared directed coherence (DC)
from the driver X to the target Y is defined as [14]

|γY X(f̄)|2 =
σ2
x|xy|Hyx(f̄)|

2

σ2
x|xy|Hyx(f̄)|2 + σ2

y|xy|Hyy(f̄)|2
, (5)

measuring the coupling strength from X to Y as the normal-
ized portion of PY (f̄) due to the driver process X. Similarly
to (5), it is possible to define the normalized portion of PY (f̄)
which arises from the target process Y itself as

|γY Y (f̄)|2 =
σ2
y|xy|Hyy(f̄)|

2

σ2
x|xy|Hyx(f̄)|2 + σ2

y|xy|Hyy(f̄)|2
. (6)

The DC measures (5) and (6) allow to decompose the PSD of
the target process as PY (f̄) = PY |X(f̄)+PY |Y (f̄): PY |X(f̄) =

|γY X(f̄)|2PY (f̄) is the part of PY (f̄) due to X, which is usu-
ally referred to as the causal part of the target spectrum;
PY |Y (f̄) = |γY Y (f̄)|2PY (f̄) measures the part of PY (f̄) due
to the process Y itself, which may be thus referred to as the
isolated part of the target spectrum.

Importantly, the DC defined in (5) can be regarded as a
measure of GC from X to Y thanks to its relation with the
logarithmic spectral measure of GC defined by Geweke [15]

fX→Y (f̄) = ln
PY (f̄)

σ2
y|xy|Hyy(f̄)|2

, (7)

which is linked to the time-domain GC measure (3) by the
spectral integration property

FX→Y = 2

∫ 1
2

0

fX→Y (f̄) df̄ . (8)

In fact, combining (4), (5) and (7) one can easily show
that the DC and the spectral GC are linked by the relation
fX→Y (f̄) = − ln(1− |γY X(f̄)|2) [10, 15, 17]. In analogy with
these derivations, here we propose a new spectral logarithmic
measure of Granger isolation (GI) of Y linked to the isolated
part of the target spectrum and hence defined as

fY (f̄) = ln
PY (f̄)

σ2
x|xy

|Hyx(f̄)|2
= − ln(1− |γY Y (f̄)|2). (9)

Moreover, following (8) we provide a new time-domain mea-
sure of GI integrating the spectral measure in (9) over all
frequencies:

FY = 2

∫ 1
2

0

fY (f̄) df̄ . (10)

Intuitively, one might think that the GI measure (10) re-
flects the concept of Granger Autonomy [18], given that it is
derived from the isolated (non-causal) part of the target spec-
trum. However, we will show that the GI behaves differently
than the known GA measure defined from the error variances
of linear regression models [3, 5, 18, 21]; mathematical details
are provided in the following section, together with the def-
inition of a new spectral measure of GA which satisfies the
spectral integration property.

Granger Autonomy

In analogy with GC, the concept of GA is formalized for
a bivariate process assessing the predictability improvement
brought to the present state of the target Y by its own past
states above and beyond the predictability brought by the
past states of the driver X [18]. Operationally, GA is quan-
tified comparing the full model (1b) with a restricted cross-
regressive (X) model whereby Yn is described only from the
past of X:

Yn =
∞
∑

k=1

byx,kXn−k + Uy|x,n (11)

where byx,k are cross-regression coefficients and Uy|x is an in-

novation process with variance σ2
y|x. The derivation of the

parameters of the restricted model (11) is reported in Sect.

S1.B,C of the supplemental material. Then, in analogy to
(3), the predictability improvement is quantified by the loga-
rithmic measure of GA given by [18]

AY = ln
σ2
y|x

σ2
y|xy

, (12)

which quantifies the strength of the autonomous dynamics
of Y comparing the error variances of the models (1b) and
(11). In the case of Gaussian processes, the GA measure (12)
is equivalent, up to a factor 2, to the information-theoretic
measure of conditional self-entropy [3, 5, 21].

Now we derive the spectral representation that leads to the
definition of our new measure of GA in the frequency domain.
To this end, we first describe the bivariate AR model formed
by (1a) and (11) in the Z domain as S(z) = G(z)W(z),
where W(z) is the Z-transform of the noise vector Wn =
[Ux|xy,nUy|x,n]

⊺ and the 2×2 transfer matrix is

G(z) =

[

Gxx(z) Gxy(z)
Gyx(z) Gyy(z)

]

=

[

1−Axx(z) −Axy(z)
−Byx(z) 1

]−1

,

(13)
with Axx(z) =

∑p

k=1
axx,kz

−k, Axy(z) =
∑p

k=1
axy,kz

−k,

Byx(z) =
∑p

k=1
byx,kz

−k. Computing G(z) on the unit cir-

cle of the complex plane (z = ej2πf̄ ) yields the 2×2 complex
transfer function in the frequency domain, G(f̄).

At this point, we note that in (11) the removal of the pre-
dictable autonomous dynamics of the target process makes
them likely to be contained in the residual Uy|x, and thus
not modelled by the element Gyy(f̄) of the transfer function
matrix G(f̄). Since in (1b) these autonomous dynamics are
instead modelled by Hyy(f̄), they can be emphasized compar-
ing the two transfer functions of the full and restricted models.
Accordingly, we propose to assess the strength and frequency-
specific location of the target internal dynamics through the
spectral function

āY (f̄) = ln
|Hyy(f̄)|

2

|Gyy(f̄)|2
, (14)

which captures the balance between the transfer of informa-
tion within the target quantified when the self-dependencies
are modelled and when they are not. We expect that stronger
internal dynamics at the frequency f̄ are reflected by higher
values of |Hyy(f̄)|

2 compared with |Gyy(f̄)|
2, and thus to

higher values of āY (f̄). However, since the full-frequency inte-
gral of both ln |Hyy(f̄)|

2 and ln |Gyy(f̄)|
2 is null [26], we have

that 2
∫ 1

2
0

āY (f̄)df̄ = 0, and thus āY (f̄) will take negative
values at some frequencies, and its full-frequency integral will
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not return the time-domain GA. To counteract these issues,
we introduce the spectral GA measure defined as

aY (f̄) = ln
σ2
y|x|Hyy(f̄)|

2

σ2
y|xy|Gyy(f̄)|2

, (15)

which can be written also as aY (f̄) = AY + āY (f̄), showing
that it consists of a frequency-independent part equal to the
time-domain GA (12) and of a frequency-specific part quan-
tified by (14). Remarkably, the spectral GA measure (15) is
zero over all frequencies in the absence of internal dynamics
in the target process, i.e. aY (f̄) = 0 ∀f̄ if ayy,k = 0 ∀k, and
satisfies the spectral integration property, i.e.

AY = 2

∫ 1
2

0

aY (f̄) df̄ . (16)

In the next section, the properties of the new GA measures
defined here will be investigated in simulated coupled pro-
cesses.

THEORETICAL EXAMPLES

In this section, we study the behavior of the measures of
GC, GI and GA presented above using simulated AR pro-
cesses. First, we simulate open-loop (Sect. III.A) and closed-
loop (Sect. III.B) bivariate AR processes where the exact
profiles of the spectral measures are computed (with sampling
frequency fs = 1 Hz) from the true values imposed for the AR
parameters. Then, we consider a multivariate system where
the dynamics of two interacting processes are perturbed by a
third process which is not modelled in the calculation of GC,
GI and GA (Sect. III.C ); in this case, estimations are per-
formed from finite-length realizations of the three processes.
Finally, in Sect. III.D we discuss the results of the simula-
tions, using them to support the comparison and interpreta-
tion of the time-domain and spectral measures of GC, GI and
GA.

Open-Loop System

The first simulation reproduces a bivariate AR process
where the driver X and the target Y exhibit autonomous
oscillations at different frequencies, and where a causal in-
teraction from X to Y is simulated. The process is defined
as:

Xn = ax,1Xn−1 + ax,2Xn−2 + Un

Yn = ay,1Yn−1 + ay,2Yn−2 − cXn−1 + Vn

(17)

where U and V are independent Gaussian white noises with
zero mean and unit variance. The autonomous oscillations
in the two processes are obtained placing a pair of complex-
conjugate poles, with modulus ρ and phase 2πf , in the com-
plex plane representation of each process; the AR coefficients
resulting from this setting are a1 = 2ρ cos(2πf) and a2 = −ρ2

[5]. Here, we set ρx = 0.9, fx = 0.3 Hz, so that the au-
tonomous dynamics of X are determined by the fixed coeffi-
cients ax,1 = −0.556, ax,2 = –0.81, and ρy = b · 0.8, fy = 0.1
Hz, so that the strength of the autonomous dynamics of Y ,
which are determined by the coefficients ay,1, ay,2, depends on
the parameter b. Moreover, causal interactions are set from X
to Y at lag k = 1, with strength modulated by the parameter
c.

We consider the two following settings: (i) progressive
strengthening of the internal dynamics in the process Y with
stable causal interaction from X to Y , obtained varying b
from 0 to 1 with fixed c = 0.5; (ii) progressive strengthening
of the causal interaction from X to Y with stable internal dy-
namics of Y , obtained varying c from 0 to 1 with fixed b = 1.
The time-domain values and spectral profiles of the measures
of GC, GI and GA resulting from the two simulations are re-
ported in Fig. 1 and Fig. 2, respectively. The GA measure
AY reflects exclusively the presence and strength of the au-
tonomous dynamics in the target process Y , as it is null when
b = 0 and rises proportionally to b in the first setting and is
constant at varying the coupling from X to Y in the second
setting (Fig. 1A and 2A, circles). Analogously, the GC mea-
sure FX→Y reflects exclusively the presence and strength of
the causal coupling from X to Y , being constant in case of
fixed coupling c = 0.5 (Fig. 1A, triangles) and increasing
with c when b is kept constant (Fig. 2A, triangles). The GI
measure FY is also affected only by the causal coupling (it is
constant when b varies with c = 0.5, Fig. 1A, squares), and is
complementary to the GC measure, as it exhibits an opposite
trend (it decreases at increasing c, Fig. 2A, squares).

The spectral measures of GC, GI and GA localize within
specific frequency bands, related to the oscillations of the two
processes, the effects described in the time domain. Indeed,
the GC and GI measures fX→Y (f̄) and fY (f̄) exhibit respec-
tively a peak and a valley at the frequency of the oscillation
of X that is transmitted to Y (i.e., f = 0.3 Hz, Fig. 1B,C).
The shape of the spectral profile is modulated in both func-
tions by the coupling parameter c (Fig. 2B,C): when c = 0
the GC is null at all frequencies and the GI takes the high-
est values; when c rises towards 1 the GC shows a more and
more prominent peak at 0.3 Hz while the GI flattens progres-
sively. As regards the GA measure aY (f̄), reported for the
two simulations in Fig. 1F and Fig. 2F, we show its decom-
position into a constant part equal to the time-domain GA
measure AY (Figs. 1D,2D) and a variable part āY (f̄) whose
frequency average is zero (Figs. 1E,2E). The spectral GA
shows its highest values at the frequency of the autonomous
oscillations imposed in the target process (i.e., f = 0.1 Hz,
Fig. 2F); when the parameter determining the strength of
this oscillation increases from b = 0 to b = 1, the spectral GA
measures varies from a flat null profile up to a shape with a
well-defined peak (Fig. 1F).

Fig. 1G and Fig. 2G report the spectral profiles of the
transfer functions of the full (1b) and restricted (11) models,
|Hyy(f̄)|

2 and |Gyy(f̄)|
2 respectively, obtained varying the pa-

rameters b and c. These profiles illustrate how the predictable
autonomous dynamics of the target process, in this simulation
located at 0.1 Hz, are captured in the full model by the trans-
fer function Hyy(f̄), but not in the reduced model by Gyy(f̄),
which indeed is flat. This corroborates the choice of the ratio
between |Hyy(f̄)|

2 and |Gyy(f̄)|
2 as a meaningful index āY (f̄)

displaying a peak at the frequency of the target autonomous
dynamics (Figs. 1E, 2E).

Closed-Loop System

The second simulation reproduces a bivariate AR process
where the driver X and the target Y exhibit autonomous
oscillations at different frequencies and reciprocally interact
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b=0 b=1b=0.5

FIG. 1: Dependence of the measures of Granger
Causality, Isolation and Autonomy on the strength of
the internal dynamics in the target process, modulated
by the parameter b in the open-loop system (17). Plots
depict: the time-domain values of the GC, GI, and GA
measures FX→Y , FY , AY (A); the spectral profiles of
the GC measure fX→Y (f̄) (B), GI measure fY (f̄) (C)

and GA measures AY , āY (f̄), aY (f̄) (D-F); the
spectral profiles of the transfer functions of the full (1b)
and restricted (11) models, Hyy(f̄) and Gyy(f̄) (G).

in a closed loop. The process is defined as:

Xn = ax,1Xn−1 + ax,2Xn−2 − dYn−1 + Un

Yn = ay,1Yn−1 + ay,2Yn−2 − cXn−1 + Vn

(18)

where U and V are independent Gaussian white noises with
zero mean and unit variance. The parameters a·,· were set
as in the first simulation (Sect. III.A) to obtain autonomous
oscillations at 0.3 Hz for X and at 0.1 Hz for Y . In addition to
the causal interaction from X to Y modulated by c, a causal
interaction is set from Y to X at lag k = 1, with strength
modulated by the parameter d.

We consider the three following settings: (i) progressive
strengthening of the internal dynamics in the process Y with
stable causal interactions, obtained varying b from 0 to 1 with
fixed c = 0.5 and d = 0.2; (ii) progressive strengthening of
the causal interaction from X to Y with stable internal dy-
namics of Y and causal interaction from Y to X, obtained
varying c from 0 to 1 with fixed b = 1 and d = 0.2; (iii)

c=0 c=1c=0.5

FIG. 2: Dependence of the measures of Granger
Causality, Isolation and Autonomy on the strength of
the causal interaction from driver to target, modulated
by the parameter c in the open-loop system (17). Plots
depict: the time-domain values of the GC, GI, and GA
measures FX→Y , FY , AY (A); the spectral profiles of
the GC measure fX→Y (f̄) (B), GI measure fY (f̄) (C)

and GA measures AY , āY (f̄), aY (f̄) (D-F); the
spectral profiles of the transfer functions of the full (1b)
and restricted (11) models, Hyy(f̄) and Gyy(f̄) (G).

progressive strengthening of the causal interaction from Y to
X with stable internal dynamics of Y and causal interaction
from X to Y , obtained varying d from 0 to 1 with fixed b = 1
and c = 0.5. Fig. 3 reports the time-domain values and the
frequency-domain profiles of the GA obtained in the three
settings. For the sake of brevity, the trends of the GC and GI
measures are not reported because they are identical to those
of the first simulation (Figs. 1, 2) despite the addition of the
causal interaction from Y to X.

Fig. 3A shows that the time-domain GA increases with
the strength of the internal dynamics modulated by b (cir-
cles, light blue to magenta), and remains constant increas-
ing the strength of the interaction X → Y modulated by c
(circles, blue to red). On the other hand, stronger interac-
tions Y → X obtained increasing d determine a slight de-
crease of the time-domain GA AY (circles, yellow to blue).
The spectral expansion of the GA measure allows to identify
the frequency bands where the internal dynamics are local-
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C

c=0

c=1

b=0

b=1

d=0

d=1

FIG. 3: Dependence of the measure of Granger
Autonomy on the parameters b, c and d of the

closed-loop system (18), modulating respectively the
strength of the internal dynamics in the target process,

the causal coupling from X to Y and the causal
coupling from Y to X . Plots depict the time-domain

values of the GA measure AY at varying b (light blue to
magenta circles), c (blue to red circles) or d (yellow to
blue circles) in the range [0, 1] (A), and the spectral
profiles of the GA measure aY (f̄) obtained varying b

(B), c (C), and d (D).

ized. Indeed, Figs. 3B,C,D reveal that the spectral profile
of the GA measure exhibits a peak at the frequency of the
autonomous oscillation imposed in the target process (i.e.,
0.1 Hz). This peak is clearly modulated in amplitude by the
strength of the internal dynamics of Y (parameter b, Fig.
3B), while it changes only slightly at varying the causal in-
teractions between X and Y (parameters c and d), show-
ing small amplitude and frequency modulations (Fig. 3C,D).
Furthermore, the imposition of a feedback effect from Y to
X determines a modification of the spectral profile of aY (f̄),
with the emergence of a second peak around the frequency
of the autonomous oscillations of X (∼ 0.3 Hz) and of a a
reverse peak at higher frequencies (Fig. 3B,C,D). The spec-
tral integration property allows to ascribe the decrease of the
time-domain GA for high values of d to this behavior, as the
negative peak prevails over the positive one at high frequen-
cies, while the low-frequency peak shows preserved or slightly
larger amplitude.

System with Unobserved Confounders

In this section, we study the behavior of the measures of
GC, GI and GA, computed as described in Sect. II for two
processes X and Y , when their dynamics are affected by an
“unobserved” process Z. To do this, we simulate the three-
variate process defined as

Xn = ax,1Xn−1 + ax,2Xn−2 + Un,

Yn = ay,1Yn−1 + ay,2Yn−2 − 0.8Xn−1 − aZn−1 + Vn

Zn = az,1Zn−1 + az,2Zn−2 +Wn,

(19)

where U , V and W are independent Gaussian white noises
with zero mean and unit variance. The coefficients a·,· are set

to obtain autonomous oscillations in the processes depending
on the modulus ρ and phase 2πf of three pairs of complex-
conjugate poles. Here, we set ρx = 0.9, fx = 0.3 Hz, ρy =
b · 0.8, fy = 0.1 Hz, and ρz = 0.8, fz = 0.2 Hz; the strength of
the autonomous dynamics of Y depends on the parameter b.
Moreover, causal interactions are set at lag 1 both from X to
Y , with fixed strength 0.8, and from Z to Y , with strength
weighed by the parameter a.

The analysis is performed on realizations of the three pro-
cesses generated by feeding (19) with white noise observa-
tions, and then computing the spectral GC, GI and GA mea-
sures on the time series relevant to the processes X and Y .
We consider three parameter settings: (I ) a = 0, b = 0, to
simulate the absence of autonomous dynamics in the target
process Y and of effects from the unobserved process Z; (II )
a = 0, b = 0.8, to simulate the presence of autonomous dy-
namics in Y without effects from Z; (III ) a = 0.8, b = 0, to
simulate the effect of the unobserved process Z on the target
Y in the absence of autonomous dynamics. For each set-
ting, 100 realizations of (19) were generated, each of length
N = 500 points, and the spectral measures of GC, GI and
GA were estimated after identifying the bivariate AR model
fitting the time series of X and Y ; the model order was set
using the Akaike Information Criterion (AIC) [10].
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FIG. 4: Analysis of Granger Causality, Isolation and
Autonomy for the simulated system with unidirectional
interactions and confounding effects. Plots depict the
spectral profiles, expressed as average over 100 runs of
(19), of the measures of GC (fX→Y (f̄), A), GI (fY (f̄),
B) and GA (aY (f̄), C) computed in the absence of
autonomous dynamics of Y and confounding effects
from Z to Y (a = 0, b = 0, continuous lines), in the

presence of autonomous dynamics only (a = 0, b = 0.8,
dashed lines), and in the presence of confounding effects

only (a = 0.8, b = 0, dotted lines).

The results of the analysis are reported in Fig. 4, showing
the average spectral profiles of the GC, GI and GA measures
in the three simulation conditions. The profiles of GC and GI
are very similar in the three cases, revealing a clear peak of the
GC, and a corresponding minimum of the GI, at the frequency
of the causal interaction imposed from X to Y (fx = 0.3 Hz,
Fig. 4A,B). This documents that the presence of the unob-
served confounder Z acting only on the analyzed target Y
does not alter significantly the causal interactions from X to
Y . On the other hand, the profiles of GA are substantially
different in the three cases: Fig. 4C shows that the GA stays
uniformly at the zero level when both autonomous target dy-
namics and confounding effects are absent (continuous line),
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peaks at ∼ 0.1 Hz when only the autonomous dynamics are
present (dashed line), and peaks at ∼ 0.2 Hz when only the
confounding effects are present (dotted line). This documents
that the proposed spectral measure of GA captures not only
the autonomous dynamics of Y , but also the regular dynam-
ics simulated in Z and transmitted to Y via the parameter
a.

Interpretation and Comparison of GC, GI and GA

The reported simulations depict the theoretical properties
of the measures of GC, GI and GA developed in this work. We
have shown that, in a bivariate process {X, Y }, the GC and
GA measures capture selectively the causal interaction from
X to Y and the autonomous dynamics of Y , respectively,
either globally or at specific frequencies when measured in
the time or frequency domains. The GI measure behaves in a
complementary way to the GC, decreasing with the strength
of the causal interactions and thus reflecting the degree of
isolation of Y . Importantly, the time- and frequency-domain
formulations of GC, GI and GA are strictly connected by the
spectral integration property, and the spectral representation
allows to identify the oscillations for which causal, non-causal
and autonomous effects take place. This property can be
useful to detect variations in the strength of effects which are
confined within specific frequency bands and can be missed if
investigated in the time domain only.

However, while these interpretations emerge strikingly in
a bivariate system with unidirectional coupling, they can be
challenged when more complex dynamics arise in the pres-
ence of closed-loop or multivariate interactions. For instance,
in the second simulation (Sect. III.B) we showed that the GA
measure is influenced by the imposition of a feedback effect
from the target to the driver; a similar behavior was doc-
umented in a previous work by the conditional self entropy
measure [5], which is formally equivalent to the time-domain
GA. Herein, this dependence is localized in frequency via the
proposed spectral GA measure, which exhibits an irregular
profile with the appearance of a positive peak and a reverse
one around the frequency of the autonomous oscillation in the
driver system (see, e.g., Fig 3B,C,D). Furthermore, the third
simulation (Sect. III.C ) showed that, when an unobserved
process has effects on the target, these effects may alter the
spectral profile of the GA measure in a way similar to that of
autonomous dynamics (see Fig. 4C). This may have implica-
tions in practical applications, e.g. when multiple physiologi-
cal systems interact but only two of them are monitored in a
bivariate analysis.

Further insights on the concepts of “autonomy” and “isola-
tion” are provided in the supplemental material of this paper
(Sect. S2 ), where their meanings are discussed in terms of
target predictable dynamics and non-causal spectral power
and the relevant measures of GA and GI are compared in
theoretical examples. These examples highlight the distinct
nature of the two measures, as they evidence how autonomy
and isolation can coexist in the same bivariate process, be
selectively present, or be both absent.

As regards the relation between the concepts of isolation
and causality, quantified respectively by the GI and GC mea-
sures, we evidence that they are clearly complementary, as an
increase in the causal part of the spectrum implies a decrease
of the isolated part and vice versa (see eqs. (4), (7) and (9)).
However, differently from the corresponding non-logarithmic

DC measures (5) and (6) which sum to 1 at each frequency,
the relation between the GC and GI measures is not triv-
ial. In fact, the logarithmic transformation, which provides
information-theoretic meanings to GC and GI, makes their
sum to vary across frequencies, and this aspect may differ-
entiate their behavior in practical computations; we show an
example in Sect. IV.

APPLICATION TO CEREBROVASCULAR DATA

This section reports the practical computation of the spec-
tral measures of GC, GI and GA on cerebrovascular time se-
ries measured in healthy controls and subjects prone to de-
velop postural-related syncope [7, 23]. Interactions between
mean arterial pressure (MAP) and mean cerebral blood flow
velocity (MCBFV) time series have been largely studied to in-
vestigate the cerebrovascular (CB) control and dynamic cere-
bral autoregulation (CA) in a variety of physiopathological
conditions [23, 27–29]. CB interactions are largely determined
by the so-called pressure-to-flow link, according to which vari-
ations of MAP drive similar changes in CBFV but also trigger
CA responses whereby an homeostatic regulation of CBFV is
looked for [27, 28]. Here, we hypothesize that spectral in-
dexes quantifying both the causal effects of MAP on MCBFV
and the autonomous dynamics of MCBFV can identify bet-
ter than the more commonly used time-domain indexes the
alteration of the physiological control mechanisms related to
CB interactions and to CA occurring with postural stress in
subjects with poor orthostatic tolerance.

Subjects and Experimental Protocol

The analyzed time series belong to a database previously
collected to study the short-term physiological regulation in
subjects prone to neurally-mediated syncope and healthy con-
trols via the analysis of spontaneous variability of systemic
variables [7, 23]. The study included 13 subjects (age: 28± 9
years; 5 males) with previous history of unexplained syncope
(SYNC, reporting >3 syncope events in the previous 2 years)
and 13 age-matched healthy subjects (non-SYNC, age: 27±8
years; 5 males), enrolled at the Neurology Division of Sacro
Cuore Hospital, Negrar, Italy. The protocol consisted of 10
minutes of recording in the resting supine position, followed
by 60° head-up tilt test. All SYNC subjects experienced
presyncope signs (i.e., a vasovagal episode characterized by
hypotension and reflex bradycardia leading to partial loss of
consciousness) during the tilt session; when signs were re-
ported, the subject was returned to the resting position and
a spontaneous recovery occurred. None of the non-SYNC
subjects experienced presyncope symptoms during tilt.

The signals analyzed in this study are the electrocardio-
gram (ECG, lead II), the continuous AP measured at the
level of middle finger through a photopletysmographic device
(Finapres, Enschede, The Netherlands), and the CBFV sig-
nal measured at the level of the middle cerebral artery by
means of a transcranial doppler (TCD) ultrasonographic de-
vice (Multi-Dop T, Compumedics, San Juan Capistrano, CA,
USA). From these signals, the variability series of MAP and
MCBFV were extracted on a beat-to-beat basis by taking
the average of the AP and CBFV signals measured between
the local minima occurring in the signals after each heartbeat
detected from the ECG. For each subject, three sequences
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TABLE I: Time-domain indexes of mean and variance of MAP (µX [mmHg], σ2
X

[mmHg2]) and MCBFV (µY [cm/s], σ2
Y

[(cm/s)2])
shown as mean±std.dev. across subjects for the different groups (non-SYNC, SYNC) and experimental conditions (REST,
ET, LT). Statistically significant differences assessed via paired Wilcoxon test with Bonferroni-Holm correction for multiple
comparison: ∗, REST vs. ET, REST vs. LT; #, ET vs. LT.

non-SYNC SYNC

REST ET LT REST ET LT

µX [mmHg] 98.84 ± 17.33 95.16 ± 12.17 92.94 ± 11.61 84.42 ± 13.96 97.16 ± 17.50∗ 93.53 ± 15.64∗

σ2
X [mmHg2] 14.22 ± 14.79 15.38 ± 9.11 14.56 ± 9.46 9.08 ± 6.78 13.61 ± 7.26 15.08 ± 6.99

µY [cm/s] 72.02 ± 23.14 62.12 ± 21.52∗ 61.09 ± 15.72∗ 64.42 ± 17.25 56.25 ± 17.06∗ 48.12 ± 18.08∗#

σ2
Y [(cm/s)2] 12.74 ± 8.20 20.42 ± 11.42∗ 15.42 ± 10.38 34.67 ± 72.69 41.56 ± 95.99 32.20 ± 56.31

of 250 consecutive synchronous values of MAP and MCBFV
were selected for the analysis, corresponding to the following
experimental conditions: (i) supine rest (REST); (ii) early tilt
(ET), starting after the onset of the head-up tilt maneuver,
excluding physiological transients and limiting the influence of
non-stationarities over the analysis; (iii) late tilt (LT), start-
ing at least 5 minutes after the onset of the tilt maneuver for
non-SYNC subjects, and occurring just before the pressure
decrease due to presyncope for SYNC subjects. Selection of
the sequences was performed randomly in each experimental
condition and repeated if non-stationarities of the mean and
the variance were present. The series were visually inspected
and eventually corrected through cubic spline interpolation,
with corrections not exceeding the 5% of the overall length of
the sequence.

Further information about the experimental protocol, sig-
nal acquisition and variability series extraction can be found
in [7, 23].

Data Analysis

The time series extracted for each subject in the three
experimental conditions were regarded as realizations of the
MAP (process X) and MCBFV (process Y ) discrete-time pro-
cesses. These processes were assumed as uniformly sampled
with a sampling frequency equal to the inverse of the mean
heart period < HP > (fs = 1

<HP>
).

First, classical time domain markers such as the mean and
variance of MAP (µX , σ2

X) and MCBFV (µY , σ2
Y ) were com-

puted. Then, the series were pre-processed reducing the slow
trends with an AR high-pass filter (zero phase; cut-off fre-
quency 0.0156 Hz) and removing the mean value. A bivari-
ate AR model in the form of (1) was fitted on each pair of
pre-processed series using vector least-squares identification
and setting the model order p according to the multivariate
version of the AIC (maximum scanned order = 14); the se-
ries and the PSD profiles were visually inspected and model
orders were manually fixed where necessary, i.e. where too
many or few spectral peaks were observed. After AR identifi-
cation, the time-domain and spectral measures of GC, GI and
GA were obtained computing the parameters of the restricted
models (2) and (11) from the estimated full-model parame-
ters and then applying the derivations presented in Sect. II.
Fig. 5 reports an example of MAP and CBFV time series,
together with their estimated PSDs and spectral GC, GI and
GA profiles, measured for a representative subject. The spec-
tral measures of GC from MAP to MCBFV, GI of MCBFV,
and GA of MCBFV (respectively, fX→Y , fY , and aY ) were

integrated within the two frequency bands of physiological
interest for CB variability, i.e. the very-low frequency (VLF,
f ∈ [0.02, 0.07] Hz) and low frequency (LF, f ∈ [0.07, 0.2] Hz)
[30], as well as over the whole frequency range [0, fs/2] to get
the time-domain values FX→Y , FY , and AY .

Surrogate data analysis

To test the statistical significance of the GC, GI and GA
measures, a bootstrap method using explicit model equations
extracted from the data [31] was implemented. The method
generates surrogates of the observed time series X and Y ac-
cording to the null hypothesis of absence of causal coupling
from X to Y (H1), or absence of internal dynamics within
the process Y (H2). Specifically, each original MAP series
was fitted with the ARX model (1a), while the correspond-
ing MCBFV series was fitted with the AR model (2) to test
H1 and with the X model (11) to test H2. Then, in each
case, pairs of surrogate time series were generated feeding the
models with noise realizations obtained shuffling randomly
the samples of the estimated residuals.

One-hundred pairs of surrogate time series were obtained
iterating this procedure, and the time-domain and spectral
measures of GC, GI and GA were computed at each iteration.
The significance of the measures, computed either in the time
domain or integrating the spectral function over the VLF or
LF bands, was assessed comparing the values obtained on the
original time series with the confidence limits of the surrogate
distribution computed with 5% significance. Specifically, the
GC, GI and GA were deemed as statistically significant if
their value was respectively above the 95th percentile of the
GC distribution over surrogates generated under H1, below
the 5th percentile of the GI distribution over surrogates gen-
erated under H1, and above the 97.5th or below the 2.5th of
the GA distribution over surrogates generated under H2. A
representative example is illustrated in Fig. 5C,D.

Statistical analysis

The distributions of the time-domain markers as well as
of GC, GI and GA computed across subjects for each group
(SYNC and non-SYNC) were tested for normality using the
Anderson-Darling test. Since the hypothesis of normality was
rejected for most distributions, and given the small sample
size, non-parametric tests were employed to assess the statis-
tical significance of the differences of each index across condi-
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FIG. 5: Example of Granger Causality, Isolation and Autonomy analyses for a representative non-SYNC subject in
the REST condition (model order: p = 7). (A) MAP and CBFV time series measured as realizations of the

processes X and Y for this subject. (B) PSD profiles of the MAP series, PX , and of the MCBFV series, PY . (C)
Spectral profiles of the GC from MAP to MCBFV (fX→Y , green) and of the GI of MCBFV (fY , light blue). (D)
Spectral profile of the GA of MCBFV (aY , yellow). In C and D, the distributions of the spectral GC, GI and GA
measures computed from surrogate time series are depicted as shaded areas, median (black lines) and percentiles

(grey lines, computed with a 5% significance level).

tions. Specifically, the one-way Friedman test was employed
to assess the significance of the differences across conditions,
followed in case of rejection by a post-hoc pairwise comparison
carried out through the paired Wilcoxon test with Bonferroni-
Holm correction for multiple comparison (n = 3) to assess
the differences between pairs of distributions (REST vs. ET,
REST vs. LT, ET vs. LT). All the statistical tests were car-
ried out with 5% significance level.

Pre-processing of the time series, GC, GI, and GAmeasures
estimation, surrogate data analysis and statistical analysis
were all performed using MATLAB 2021b (The Mathworks,
Inc.).

Results and Discussion

Table I depicts the results - in terms of time-domain mark-
ers (mean µ and variance σ2) of the MAP and MCBFV se-
ries computed in the two analyzed groups during the three
experimental conditions. The trends of these markers docu-
ment the expected CB response to the orthostatic stress in
subjects prone to syncope and controls [23, 29, 32]. Specifi-
cally, the average MCBFV decreased significantly during tilt
in both groups as a consequence of the physiologic cerebral
vasoconstriction associated with the orthostatic challenge. In
the SYNC group, the drop of µY was more marked during LT
and was accompanied by a significant increase, during both
ET and LT compared to REST, of the average MAP, likely
reflecting a progressive weakening of CA mechanisms which
occurs with prolonged postural stress. The variability of the
two series did not show evident trends across conditions, ex-
cept for an increase of σ2

X during ET.
Fig. 6 reports the results of the analysis of causal, iso-

lated and autonomous dynamics performed in the time and

frequency domains. All the time-domain measures do not
exhibit significant changes across the three analyzed experi-
mental conditions (Fig. 6, left plots). On the other hand, the
evaluation of the same measures within the frequency bands
of physiological interest for this application (i.e., VLF and
LF) highlights some evident variations during the orthostatic
stress, also differentiating the response between syncope sub-
jects and healthy controls (Fig. 6, middle and right plots).
These different behaviors of time-domain and spectral mea-
sures evidence the need, for this physiological application, of
assessing causal and autonomous dynamics in the frequency
domain to capture mechanisms that remain otherwise hidden
if a whole-band time-domain analysis is performed.

The spectral analysis reveals, for the SYNC group, a sig-
nificant increase of the GC from MAP to MCBFV and a sig-
nificant decrease of the GI of MCBFV during both epochs
of head-up tilt (ET, LT) compared with REST (Fig. 6A,B);
the changes are observed in the VLF band for both mea-
sures, where they occur together with a marked increase in
the number of subjects for which the GC and GI were sta-
tistically significant according to the surrogate data analysis,
and also in the LF band for the GI measure. Methodologi-
cally, this finding confirms the simulation results showing that
GC and GI provide complementary information, but also sug-
gests that the two measures are not fully dependent on each
other. Here, when assessed in specific frequency bands, the
two measures describe physiological mechanisms with a differ-
ent degree of discrimination: the tilt-induced enhancement of
the influences of MAP on MCBFV is better captured by the
GI measure. Physiologically, the presence of stronger causal
interactions along the pressure-to-flow link during tilt, de-
tected in the subjects prone to develop postural syncope but
not in the healthy controls, may be indicative of a defective
CA, i.e. of a reduced intrinsic ability of the cerebral vascu-
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FIG. 6: Analysis of Granger Causality, Isolation and Autonomy for the cerebrovascular time series measured in
subjects prone to postural syncope (SYNC) and healthy controls (non-SYNC). Plots depict the distributions across
subjects (individual values and violin-plots) of the GC from MAP to MCFV (A), of the GI of MCBFV (B), and of
the GA of MCBFV (C) computed in the time domain (left plots) and integrating the spectral functions within the
VLF band ([0.02, 0.07] Hz, middle plots) and the LF band ([0.07, 0.2] Hz, right plots). For each group and band,

measures are computed at REST (blue) and during the early phase (ET, orange) and the late phase (LT, green) of
head-up tilt; for each distribution, the mean and interquartile range are depicted by the white circle and vertical
line, respectively, while the width of the violin plot denotes probability density. Values above each distribution
indicate the number of subjects for which the measure was deemed as significant according to surrogate data

analysis. Statistically significant differences assessed via paired Wilcoxon test with Bonferroni-Holm correction for
multiple comparison: ∗, REST vs. ET, REST vs. LT; #, ET vs. LT.

lar bed to maintain a stable perfusion despite blood pressure
changes. Indeed, the increased causal coupling indicates that
the variability of MCBFV is determined to a larger extent by
the variability of MAP, and that the autoregulatory mech-
anism cannot respond fast enough to compensate for pres-
sure changes. This interpretation agrees with that of previous
studies in which a loss of CA has been associated with an in-
creased link between AP and CBFV [6, 33]. The physiological
mechanisms leading to the weakening of CA in the subjects
prone to syncope are complex, and possibly include hyper-
capnia (i.e., augmented arterial carbon dioxide pressure) [34],
which has been associated to upwards shift of the coherence
between MAP and CBFV at frequencies < 0.1 Hz [34], and
vasoconstriction (i.e., reduction in the diameter of large ves-
sels) [32], which can have an effect on the measured MCBFV
since the Doppler ultrasound measures blood flow velocity
and not absolute flow.

As regards the autonomy measure, the spectral analysis
evidences a progressive reduction of the GA of MCBFV com-
puted in the VLF band moving from REST to ET, and from
ET to LT (Fig. 6C); the decrease is evident and statistically
significant for each pairwise comparison in the non-SYNC
healthy controls, while it is less marked and significant only
comparing REST vs. LT in the syncope subjects. The de-
crease of GA with tilt indicates that the internal regulatory
mechanisms of MCBFV acting in the VLF band loose pro-

gressively their strength during prolonged postural stress. As
the decrease is evident particularly in the healthy controls, it
seems to have a physiological rather than pathological origin;
therefore, it should not regard the dynamic CA expressed in
terms of interdependence between pressure and flow, which is
indeed not efficiently represented by the GA measure. More
likely, the decrease of GA reflects the reduced strength of
exogenous effects, i.e., effects acting on MCBFV indepen-
dently of MAP. Such effects might include the occurrence of
hypocapnia with the orthostatic challenge in healthy subjects
[35], which may have an impact on arteriolar vessel caliber,
and thus on blood flow velocity. This impact, which is not
observed nor quantified in our AR model, might alter the
autonomous dynamics of CBFV and thus enter the computa-
tion of GA. A simulation example investigating the effects of
unobserved confounders is provided in Sect. III.C.

This preliminary application presents some limitations.
First, since the small size of analyzed group of subjects may
represent an issue when one aims to generalize results to an
entire population, the use of larger datasets is needed to con-
firm the results obtained here. Furthermore, in physiological
applications where multiple complex interactions often arise,
the effects of unobserved confounders are likely to occur as we
have shown in the simulated settings. Therefore, the exten-
sion to multivariate datasets including signals possibly acting
as confounders, as well as the development of multivariate
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extensions of the proposed measures of GC, GI and GA, are
envisaged for future studies.

CONCLUSIONS

The aim of this study was to explore, in addition to the
well-known measure of Granger causality, the concepts of iso-
lation and autonomy in coupled physiological processes, with
emphasis on their frequency domain representation. In this
context, we develop a framework where already known and
novel time-domain measures of GC, GI and GA are obtained
as the full-frequency integral of their spectral counterparts.
The framework allows quantification of the concepts of causal-
ity, isolation and autonomy either considering the overall dy-
namics of the observed bivariate process or the oscillations at
specific frequencies of physiological interest. Our theoretical
derivations and experimental results document that the GI
measure is complementary to GC but not trivially related to
it, while GA reflects the regularity of the internal dynamics
of the analyzed target process.

The frequency-domain formulation of GC, GI and GA is
particularly useful for the analysis of dynamic processes which
are rich of oscillatory content, as it allows to elicit physiolog-
ical mechanisms which can be hidden in time domain due
to the mixing with other spectral effects. This potential is
demonstrated in our application to cerebrovascular interac-
tions where the spectral measures highlight responses to pos-
tural stress which cannot be traced by the time-domain anal-
ysis. In particular, our results suggest that GA quantifies the
frequency-specific physiological response to postural stress of
the slow CBFV oscillations, while GC and especially GI char-
acterize the pathological response related to the impairment
of the dynamic autoregulation of CBFV preceding the onset
of postural-related syncope.

Possible limitations of the proposed approach stand in its
bivariate formulation, which prevents from treating multivari-
ate interactions among time series, and in the fact that the
role of instantaneous effects among the processes, i.e. interac-
tions occurring at zero lag [17, 36], is not explicitly addressed.
Therefore, future developments of the proposed framework
are envisaged to expand it toward the analysis of multivari-
ate processes, so as to investigate the impact of unobserved
confounders (such as, in our application, respiration and ar-
terial carbon dioxide [34, 37]) on the measures of causality,
isolation and autonomy. Methodologically, this can be done
using vector driver processes in place of a single scalar process,
leading to quantify the degree of isolation of the target system
in the multivariate case. Moreover, the inclusion of instanta-
neous effects in the analyzed parametric models, though not
always straightforward [36, 38, 39], is recommended to provide
a complete picture of causal, isolated and autonomous effects
emerging in the time and frequency domains from dynamic
interactions.

SOFTWARE ACCESSIBILITY

The Matlab Software relevant to this
work is available for free download from
https://github.com/LauraSparacino/GICA_toolbox.
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AUTOREGRESSIVE MODELS

The classical autoregressive (AR) model description of a discrete-time, zero-mean stationary bivariate stochastic
process Sn = [XnYn]

⊺ is given by [1, 2]

Xn =

p
∑

k=1

axx,kXn−k + axy,kYn−k + Ux|xy,n, (1a)

Yn =

p
∑

k=1

ayx,kXn−k + ayy,kYn−k + Uy|xy,n, (1b)

where p is the model order, defining the maximum lag used to quantify interactions, the coefficients a quantify the
time-lagged interactions within and between the two processes, and Ux|xy,n and Uy|xy,n are uncorrelated white noise

processes with variance σ2
x|xy and σ2

y|xy collected in the 2x2 covariance matrix Σ (Σ =

[

σ2
x|xy 0

0 σ2
y|xy

]

if the bivariate

process is strictly causal). The model (1) is composed by two auto- and cross-regressive (ARX) models whereby each
process is regressed both on its own past and on the past of the other process. In compact form, it can be formulated

as Sn =
∑p

k=1 AkSn−k +Un, where Un = [Ux|xy,nUy|xy,n]
⊺ and Ak is the 2x2 coefficient matrix Ak =

[

axx,k axy,k
ayx,k ayy,k

]

quantifying the interactions within and between the two processes at lag k.

Restricted model for Granger Causality and Granger Isolation

Given the two stochastic processes X and Y , the concept of Granger Causality (GC) is formalized quantifying the
improvement in predictability that the past states of a putative driver process (say X) bring to the present state of
the target process (say Y ) above and beyond the predictability brought by the past states of the target itself [3]. To
implement this concept in the context of linear regression models, the present state of the target, Yn, is described first
from the past of both X and Y (respectively, Xp

n = [Xn−1...Xn−p]
⊺ and Y

p
n = [Yn−1...Yn−p]

⊺) through the so-called
full model (1b), and then from the past of Y only through the restricted AR model

Yn =

∞
∑

k=1

byy,kYn−k + Uy|y,n, (2)

where byy,k are autoregressive coefficients weighing the past samples of Y and Uy|y,n is a white noise process with
variance σ2

y|y. Note that the order of the restricted AR model is theoretically infinite [4]; in practice, the model is

implemented using q lags, with q sufficiently large. Combining (2) and (1a), a new bivariate AR model is designed
where Yn is described as a function of Yq

n = [Yn−1...Yn−q]
⊺ only, while the regression on Xn remains unchanged:

Xn =

p
∑

k=1

axx,kXn−k + axy,kYn−k + Ux|xy,n

Yn =

q
∑

k=1

byy,kYn−k + Uy|y,n.

(3)

The coefficient matrix is here written as A
Y
k =

[

axx,k axy,k
0 byy,k

]

, and quantifies the interactions within and between

the two processes at lag k when Y is described through the AR restricted model obtained by truncating at lag q the
description of the past of Y (2). Note that the measure of Granger Isolation (GI) is also derived from (3), quantifying
the degree of isolation of the putative target process Y with respect to the causal effects brought by the putative
driver process X .

http://arxiv.org/abs/2307.09551v1
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Restricted model for Granger Autonomy

In analogy with GC, the concept of Granger Autonomy (GA) is formalized for a bivariate process assessing the
predictability improvement brought to the present state of the target Y by its own past states above and beyond
the predictability brought by the past states of the driver X [5]. Operationally, GA is quantified comparing the full

model on Yn (1b) with a restricted cross-regressive (X) model whereby Yn is described only from the whole past of
X , being the order of the X model theoretically infinite:

Yn =

∞
∑

k=1

byx,kXn−k + Uy|x,n, (4)

where byx,k are cross-regression coefficients weighing the past samples of X and Uy|x,n is a noise process with variance
σ2
y|x. Thus, combining (1a) and (4) where the order is approximated with q lags, a new bivariate AR model is designed

where Yn is described as a function of Xq
n = [Xn−1...Xn−q]

⊺ only, while the regression on Xn remains unchanged:

Xn =

p
∑

k=1

axx,kXn−k + axy,kYn−k + Ux|xy,n

Yn =

q
∑

k=1

byx,kXn−k + Uy|x,n.

(5)

The coefficient matrix is here written as A
X
k =

[

axx,k axy,k
byx,k 0

]

, and quantifies the interactions within and between

the two processes at lag k when Y is described through the X restricted model obtained by truncating at lag q the
description of the past of X (4).

Identification of restricted model parameters

The restricted model coefficients, byy,k and byx,k, and the variance of the AR and X model residuals, σ2
y|y and σ2

y|x,

appearing in (2) and (4) respectively, can be identified starting from the covariance and cross-covariance matrices
between the present and past variables of the two scalar processes X and Y . For jointly Gaussian processes, these
matrices contain as scalar elements the covariance between two time-lagged variables taken from the processes X
and Y , which in turn appear as elements of the 2x2 autocovariance of the whole observed 2-dimensional process Sn,
defined at each lag k ≥ 0 as Γk = E[SnS

⊺

n−k], where E[·] is the expectation operator. In this study, we follow the
procedure described in [6, 7], which exploits the possibility to compute Γk from the parameters of the bivariate AR
formulation (1) of the process Sn via the well-known Yule–Walker equations:

Γk =

p
∑

l=1

AlΓk−l + δk0Σ, (6)

where δk0 is the Kronecher product. In order to solve this equation for Γk, with k = 0, ..., p− 1, we first express the
bivariate AR model (1) in compact form as ψn = Aψn−1 +En, where:

ψn = [S⊺

nS
⊺

n−1...S
⊺

n−p+1]
⊺;

A =











A1 . . . Ap−1 Ap

I . . . 0 0

...
. . .

...
...

0 . . . I 0











;

En = [U⊺

n01×2(p−1)]
⊺.

(7)

Then, the 2p× 2p covariance matrix of ψn, which is defined as Ψ = E[ψnψ
⊺

n] and has the form

Ψ =











Γ0 Γ1 . . . Γp−1

Γ
⊺

1 Γ0 . . . Γp−2

...
...

. . .
...

Γ
⊺

p−1 Γ
⊺

p−2 . . . Γ0











, (8)



3

can be expressed as Ψ = AΨA
⊺ + Ξ where Ξ = E[EnE

⊺

n] is the 2p × 2p covariance of En. This last equation
is a discrete-time Lyapunov equation, which can be solved for Ψ yielding the autocovariance matrices Γ0, ...,Γp−1

[7]. Finally, the autocovariance can be calculated recursively for any lag k ≥ p by repeatedly applying Yule-Walker
equations (6) up to the desired lag q, starting from the parameters of the bivariate AR representation of the observed
Gaussian vector process in (1). In this work, we selected q = 20.
To summarize, the procedure described above is based first on computing the autocovariance sequence of the

bivariate process (1) from its AR parameters (Al, with l = 1, ..., p, and Σ), which are previously identified through
the vector least square approach, and then on rearranging the elements of the autocovariance matrices for building
the auto- and cross-covariances to be used in the computation of the AR parameters byy,k and σ2

y|y, and of the X

parameters byx,k and σ2
y|x, appearing in (2) and (4) respectively. The identification of the restricted models in (3)

and (5), as well as of the full model in (1), will be then followed by their representation in the Z domain and the
computation of frequency-specific measures of GC, GI and GA.

Restricted model for GC and GI

The AR model (2) can be written in compact form as Yn = ByyY
q
n+Uy|y,n, where Byy = [byy,1...byy,q] is the vector

collecting all coefficients. From this representation, taking the expectation E[YnY
q⊺

n ] and solving for Byy yields:

Byy = ΣYn,Y
q
n
·Σ

−1
Y

q
n
, (9)

where ΣY
q
n
is the q × q autocovariance matrix of Yq

n defined as ΣY
q
n
= E[Yq

nY
q⊺

n ], while ΣYn,Y
q
n
is the 1 × q cross-

covariance matrix of Yn and Y
q
n, defined as ΣYnY

q
n
= E[YnY

q⊺

n ]. The matrices ΣY
q
n
and ΣYnY

q
n
are extracted from

Γk. Then, the variance of the AR residuals σ2
y|y in (2) is computed as:

σ2
y|y = σ2

y −ΣYn,Y
q
n
·Σ

−⊺

Y
p
n
·Σ

⊺

Yn,Y
q
n
, (10)

where σ2
y = E[Y 2

n ] is the variance of Y .

Restricted model for GA

Analogously to (9), the X model coefficients byx,k in (4) are computed as:

Byx = ΣYn,X
q
n
·Σ

−1
X

q
n
, (11)

where Byx = [byx,1...byx,p], ΣX
q
n
is the q× q autocovariance matrix of Xq

n defined as ΣX
q
n
= E[Xq

nX
q⊺

n ], while ΣYn,X
q
n

is the cross-covariance matrix of Yn and X
q
n, defined as ΣYn,X

q
n
= E[YnX

q⊺

n ]. The matrices ΣX
q
n
and ΣYn,X

q
n
are

extracted from Γk. Then, the variance of the X residuals σ2
y|x in (4) is computed as:

σ2
y|x = σ2

y −ΣYn,X
q
n
·Σ

−⊺

X
q
n
·Σ

⊺

Yn,X
q
n
. (12)

INTERPRETATION OF GRANGER ISOLATION AND GRANGER AUTONOMY

In this section, we elaborate on the definition of the proposed measures of Granger Isolation and Granger Auton-
omy in the frequency domain, and provide further interpretation analyzing them in theoretical examples of coupled
processes.
As pointed out in the main text, the concept of GA reflects the internal information in the target, being always zero

in the absence of internal dynamics. Consequently, finding it higher than zero means that autodependency effects
take place in the target process itself. The underlying idea is based on the consideration that a target system is
autonomous if it is not controlled by external influences (i.e., driver processes) but self-determines its states [5, 8, 9].
In this sense, under the assumptions of Gaussianity and linearity [10], the concept of GA is formalized quantifying the
improvement in predictability that the past states of the target bring to the present state of the target itself above and
beyond the predictability brought by the past states of the driver [5, 7, 11]. This definition relies on the identification
of full and restricted AR models, whereby the partial variance of the present state of the target conditioned on the
knowledge of the past states of the driver (4) is compared to the partial variance of the present state of the target
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conditioned on the knowledge of the past states of both the driver and the target (1b) [5, 7, 11]. If the latter is reduced
with respect to the former, the GA measure increases in accordance with the predictability improvement brought by
the past of the target system. On the other hand, the GI is derived directly from the spectrum decomposition of the
target process, expressed as the sum of causal and non-causal contributions, considering the non-causal contribution;
as such, it quantifies that part of the target spectrum which cannot be explained by the driver, thereby informing
about how much the target dynamics are “isolated” with respect to the driver process.
To visualize these concepts, here we study the behavior of the measures of GC, GI and GA using AR processes

simulated in four different settings. Specifically, we consider a bivariate AR process Sn = [XnYn]
⊺ whose dynamics

are described by the following linear AR model:

Xn = ax,1Xn−1 + ax,2Xn−2 + Un

Yn = ay,1Yn−1 + ay,2Yn−2 − cXn−1 + Vn
(13)

where U and V are independent Gaussian white noises with zero mean and unit variance. The observed driver X
is simulated as an AR process with an autonomous oscillation obtained placing a pair of complex-conjugate poles,
with modulus ρx = 0.9 and phase 2πfx, fx = 0.3 Hz, in the complex plane representation of the process [7], so
that its autonomous dynamics are determined by the fixed coefficients ax,1 = −0.556, ax,2 = –0.81. The autonomous
dynamics of the target Y , which are determined by the coefficients ay,1, ay,2 related to the complex-conjugate poles
with modulus ρy and phase 2πfy, depend on the parameter b in such a way that ρy = b · 0.8 (with fy = 0.1 Hz).
Moreover, a causal interaction is set from X to Y at lag k = 1, with strength modulated by the parameter c. We
consider four parameter configurations, in which the driver dynamics are fixed and the target process Y is simulated
as: (i) an isolated Gaussian white noise with zero mean and unit variance (b = 0, c = 0); (ii) an isolated AR process
with an autonomous oscillation at fy = 0.1 Hz (b = 1, c = 0); (iii) an AR process with no autonomous oscillations but
influenced by X at lag k = 1 (b = 0, c = 1); (iv) an AR process with an autonomous oscillation at fy = 0.1 Hz and
causally driven by X at lag k = 1 (b = 1, c = 1). For each setting, a pair of time series Y and X of length N = 500 is
generated from the AR model parameters feeding the model with white noise realizations. Then, model identification
is performed for the bivariate process Sn, setting the model order at the value p = 2. The spectral profiles of the
measures of GC, GI and GA resulting from the generated time series are reported in Fig. 1.
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FIG. 1: Spectral behaviour of measures of GC (fX→Y , purple line), GI (fY , orange line) and GA (aY , light blue
line) in different simulation settings. In each of these settings, the driver process X is simulated as an AR process
with an autonomous oscillation at 0.3 Hz. (A) setting (i), isolated process without autonomous dynamics: the

target is a Gaussian white noise with zero mean and unit variance. (B) setting (ii), isolated process with
autonomous dynamics: the target is a process with self-dependencies featuring a stochastic oscillation at 0.1 Hz.

(C) setting (iii), non-isolated process without autonomous dynamics: the target is a process Y with no
self-dependencies but causally driven by X . (D) setting (iv), non-isolated process with autonomous dynamics: the

target is a process with self-dependencies featuring an oscillation at 0.1 Hz, and is causally driven by X .

Results confirm that GI and GA measures reflect different behaviours of the target system. Fig. 1A reports the
results relevant to the setting (i); the absence of internal dynamics for Y (i.e., AR model coefficients relating the
history of the target to its present state) is reflected by the flat spectrum of aY (f̄), while the spectral profile of the
GI, together with the GC, ensures the “isolation” of the target with respect to the driver. Indeed, while the GC is
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uniformly zero at all frequencies, thus reflecting the absence of causal interactions from X to Y , the spectral profile of
the GI is characterized by a reverse peak at the frequency of the autonomous oscillation of the driver. These findings
hold again in case of an AR target process Y whose dynamics are only self-determined (Fig. 1B, setting (ii)). On
the other hand, in case of a well-established causal interaction from X to Y (Fig. 1C, setting (iii), and Fig. 1D,
setting (iv)), the GC shows a clear peak at the frequency of the autonomous oscillation of the driver, and the GI
still owns a reverse peak at the same frequency. This finding is quite interesting, since it emerges that the profile of
the GI may be related to the time- and frequency-domain behaviour of the driver, which indeed remains unaltered
in all the settings (AR process with an autonomous oscillation at 0.3 Hz). In another simulation, which has not been
shown here for brevity, we found that the spectral profile of the GI is flat and uniform at all frequencies when X is
an isolated Gaussian noise. This suggests that the reverse peak of the GI, when present, may give indications on the
frequency-specific location of a possible driving effect reducing the degree of isolation of the target process. These
results seem to confirm that the measure of GI has a dual role. First, it quantifies that part of the target spectrum
which cannot be explained by the driver, i.e., how much the target dynamics are “isolated” with respect to the driver
process. Moreover, it gives also an information on the frequency-specific location of the “isolation” phenomenon, thus
allowing to identify the spectral bands where this is less/more accentuated. On the other hand, the spectral profile
of the GA is in line with what we expect to find, i.e. a positive peak in presence of an autonomous oscillation of the
target process whereby it is located (Fig. 1B,D), or conversely a flat spectrum for aY (f̄) whether the target has no
internal dynamics.
In conclusion, the differences between the two measures come out clearly. The two concepts of “isolation” and

“internal dynamics” reflect different mechanisms occurring in the target process, as one does not rule out the other.
They can coexist in the same process (Fig. 1D), exist independently of each other (Fig. 1B,C), or not exist at all
(Fig. 1A). Still, it is fundamental to investigate the pairwise interactions between the target and the driver through
the three discussed measures, in order to have a complete overview of how two processes interact and/or oscillate
independently of each other.
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