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S ASTRAGT , N T
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Y
t A methodology based on the theory of Boolean equations has
N p— e . ‘
been developed which permits a unified approach to the analysis and .

*

synthgsis of combinabional logic circuits. The type)bf circuits covereé\fy .°

! -

the approach’include both the classical loopless combinational networks as .

~

fwell as those which contain closed Yeedtack loops and thus have internally ~;

[

a sequential character. To that end a general multiple output circuit

-

represented by a Mealy-type machine is studied using characteristic equatiens.

(functions) that describe its internal structure. It is shown how behavioral

[

properties of the circuit are reflected through the solutions of these equa-
tions. Moreover, it is dem6;gtrated that a multiple output incompletely

specified switching function is realized if a < relation is satisfied

By

between the corresponding charZéter'stic functions, This leads to a new

’,
o

unified outlook on functithal decompgosition as used in modular synthesis
procedﬁres. Although the bullding modules are allowed to be sequential cir-
cuits, it is shown undgr which conditions the feedback loops are redundant

with respect to the realeat%on of\a given output characteristic function,

a

> ! - > L3 ) 3 3 .
and thus the existence gonditions of non-degenerate combinational circuits

“

with loops are stated.

o g ' .
The power of the methodology of characteristic functions is then

[ . A

illustrated by showing that computatlonal procedures based qn that approach

can easily be transcribed into operations on either maps or cubical complexes.
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‘ i ‘Moreover, the methodolo'gy is éppiieq. to derive procedures for modular )
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* RESUMES

%

3

Une méthodologie basée sur la théorie des équations Booléennes est
. *

L]
developpée. Cette méthodologie permet une approche unifiée d'analyse et de
i .

synthése de circui'ts logiques combinatoires. I¥s types de‘circuits traités

-

!,’ ’ - . X K} L3
par cette approcne incluent le réseau classique de circuits combinatoires

. / .
sans boucle ainsi qée ceux qui poscedent des boucles de rétroaction (feedback

)

loops) et qui ont Gn caractire interne séquentiel.

% N )

[N

o«

A cette fin, et un utilisant des dquations caractéristiques {fonc-

[}
s
tions)‘qgous étudions la structure interne d'une circuit général & sorties

»

'

multiples représentée par‘une machine du type lealy. En particulier, nous -

prouvons de quelle facon les propriétés de comportement du circuit se
[ , .

refleétent & travers les solutions de ces équations. De plus, nous prouvons °

qu'une 'fonction de commutation non-compldtement spécifiée est rdalisable si
/

une relation << existe eMtre les fonctions caractdéristiques correspondantes,

" , ]
Cette relatjon nous permet de considérer d'une facon nouvelle et unifide la

décomposition fonctionnelle telle qu'utilisée dans les procédures de synthése
“
Ve

modulaire, Quoique JES—modules de construction du circuit peuvent étre de

>

. . L ! . 1
nature séquentielle, nous détermihons dans quelles conditions les boucles de

P . '

rét;ghction sont redondantes par rapport a la rdéalisation d'une fonction

.

caractéristique de sortie. Conséquemment, les conditions d'existence de

A

circuits combinatoires avec boucles sont établies,
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N T )
£a puissance de la méthodolodie des fonctions caractéristiques

v

0 ?

' est illustrée par les procédures de calculs basés sur cette approche qui .

peuvent étre aussi facilement effectués sur des diagrammes standards ou

[ o

sur des complexes cubiques. De plus, la méthodologie est appliquée ala

. ) -

dérivation des procédures de synthése modpla;ré‘de circuits combinatoires

AN I
et 3 la découverte d'erreurs. . ) '

RER
>
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CHAPTH'U 1 \

" INTRODUGTION

1.1 . Historical Background , . . .

L
. '} ’
The application of Boolean algebra %o the design'and analysis

»

of switching networks is considered to be ar indivisible nart of"the theory

of switching circuits since the founding work by Shannon [41]. The

r

structure and properties of Boolean functions have been studied in order

*

to design more reliable, economical and faster digital dircuits and at the -

same time technological advancements and mere curiosity were posing still

Jew problems to the switching theorists. The solution& to some of the

problems gave rise to new theoretical toolqﬂapdkeamputational procedures
AY 1 ! -y

whose only mutual link was that they were based on the laws of Boolean
algebra. Thus the point of view obtained with each such theory was

oY .
usually limited to a particular area, and'it d1d provide little under-

standing of characteristics in common with other problems, At that po{nt,

. ~ /
the Boolean differential calculus [26, ;Zi\j::L developed, and it was

shown that it could be aoplizﬁyih a number of different areas and thus

z

1 3

to form a common philosophy underlying the solutions. Thecsolution steps

>

could be described using formally gimple formulae, bu® unfortunately the
A ’
computations involved in solving actual problems are rather complex.

Newvertheless, some practical results were obtained mainly in the area of

fault detection [6,’26, 3&]. Consequently, there is a need for some ——

3
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A}

.+ other approach which would be no% only formally simple, but would also

-
~ <

yield relatively easy computational algorithms. .

AV Al
o

The potential for the development of such a unifying methodology

was seen by a number- of authors jn the tqggry of Boolean equations (B.E.),
“ £ - . N

%

whose power was even compared with, that of differential equations in elec-

tric circuit theory [17]. Enough mathematical background has been ac-

r

cumulated with respect to the‘properties and methods of. solution of

-Boolean equationg, as nicely summarized in the monograph by Rudeanu [26],

‘

but relatively few switching theerists know about these techniqdés and

D . ) . !

- realize their‘bower. .Consequently, not toe many practical applications

k)

of B.E. to switching circuit design have been discovered so far., Lkven
then, however, the results obtained were of a rather topical charagier,

ining any global insight into the relationship . between the

behdviour of switching circuits and the praperties of Boolean equations,

A tniform survey of the applications can be found in [26] and to a

limited extent in [10]. -Svododa [31] devised a simple tabular method

for solving B.E., and he proposed L Rardware processor [39] which

can be used to produce all elémentary solutions of a given equation.

The machine was simulated by Marin [19, 20] who at the same time \

. . \
developed some of its first practical applications to the Syqthesis of

switching circuits., A summary and extensions of these tech-

I !

i 1 A
»
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t

nique$ can be found in Klir [16, 18]. Brown [3] obtained a method for. -

generating a reduced general solution to B.E. which,éémbined with sone o%)

3
¢

the ideas from [19,‘201,-was used to produce an algorithmic procedure for

’

@

modular synthesis of combinational switching circuits by decomposition [5].

A ;specialized case of synthesis using B.E. was also treated by Brown [4].
¢

The properties and applications of sequential Boolean equations were studied

2

in [, 350, | Ve

]

"The work to be presented here represents an effort to develop

L3

" oo
an understanding of. the relationship between the theory of B.E, and the

-~
-

structure of combinational circuits. The result 1is intended to be

Bl

a methodology which would- permit a unified approach to the solution of

. o

problems related to the analysis and sxnthésis of combinational circuitsa., . .-

The thesis should not be considered as a closed systen of
rules which would provide solutions to a fixed number of problems even

though two direct applications will be shown. Rather, it is t{o provide a

-

philesophical base, ‘from which various types of switching theory prob-

‘-

lems could be tackled in a unified manner. Lts deveTépment was imitially

stimulated by the fact that current methods used in the design and ‘analysis
-~

of combinational dircuits were unable to give :
.% - M ) <

(1) A unique point of view on modular synthesis by

-

decompgsitiop, v s T .

“ \

-

Y
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h b
(2) A clear understandiwng of the behavé;ur of combina-

<

tional eircuits containing closed feadback loops,

(3) . An approach to fault detection that would be con-

: . N .
» yd

?

» taneously cover various types of faults .under oné ~

)

ststent with circuit desigm procedures amd simul=—" 7 |
|

|

|

|

methodology. ' -6

) ©
Therefore, in order to place the work into proper perspective,
N

it is felt that before outlining the content of tne‘subsequent chapters

{ .
it 1s necessary to present an overview of past advances in the above

3

mentioned areas, . N
’ {

¢

The foundation for the syntheéis of combinational switching

functions by erQ§positiqn was laid down in the work by Ashenhurst [1],
a D

and later expanéé&'b& Curtls ‘fﬂbj;‘ This method of* synthesis proved to
. .
be suitable when logic networks were to be designed in terms of circuit .

' t

modules which implement Boolean functions different from the basic AND,

o

OR and NOT connectives, Therefore, an effort ;as made to state precise
algorithmic procedures based on the théory of decomposition which could be -
applied to synthesize a given switching network wsing, a fixed complete set -
of circuit module functions. Some of these procedures employed modified ,

decomppsition charts [13, 15, 29] as defined in [1, 40], others were



based on algebraic techniques derived from the original decqmpéﬁition
theory as applied to a particular form of representing Boolean functions -
the cutical complexes (arrays) [7, 21, 24, 25, 28, 36]. In general, the

direction taken in these synthesis procedures was to start building the

73

network from the problem”input side, and then to prodress tewards the
&
& +

' A
qutputs by adding qﬁéules as guided by the decomposition theory and

various circuit constraints, The process terminated when a network was

obtained . .which realized the partiéulaf’function, and which satisfied all

the circuit constraints imposed by the designer. This divrection should

-~

be contrasted with that used in the synthésis procedures based on
Boolean equationg [5, 16, 19, 20]. There, the decomposition: proceeds
from the problem output side by selecting a building moduie, and then by

solving the corresponding B.E. a second level function is obtained, etc.,’

~

until all free module inputs are satisfied directly by the problem input
variables. The éynthesis is terminated by the same conditions as before.

Using the new methodology of this thesis, however, these two opposing
\

approaches to modular synthesis can be unified to‘produce a rather flexible

decomposition technique (Chapters 4 and 6)ﬂ ’ :

-
»

Until recently, combinational circuits were constructed in

such a way that they eontained no closed feedback loops, characteristic

{
to sequential machines., Also, the actual building modules Used in e



synthesis procedures were purely combinational circuits. However, it has

been pointed out [12, J14, 30] that some circuits hawlng such closed loops

could still have an overall combinational character, if only their stable
° \] ~

output states were observed, Kautz [14] considered a particular gellular

o :

array strdéture, and"hg demonstrazed that not onfy by riusing the feedgéck
loop would a combinational switchiné function ﬁe géalizéd, but—élso that
the number of gates required to synthésize some multiple output funétions
would be ‘smaller than if done in the loopless conventional way., BEven

though some necessary conditions for the existence of loops in combinational
¢

L]

circuits were stated, their scope was limited to that cellular array structure,

In other words, the tools used for designing classical combinational\networRSQ

are,not directly usable in the synthesis of circuits with loops. As will be
v .

~

seen, however, the methodology developed here is general enough to be

-

applicable to both types of combinational circuits., -

Due to technblogical advances the circuits synthesized grew in

r *

complexity, and eventually they were placed on a single integrated circuit

o
chip. Then, however, the problem of fault detection was encountered, for it
was no longer possible to directly observe the inside activity of such complex

»

monolithic modules., Nevertheless, in the case of combinationalkscircuits,: it

<

would still be theoretically possible to perform exhaustive tests by applying
[

all the possible”combinations of input stimuli and simyltaneously verifying

N
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a ‘ »,
i . . -

->
that correct responses were received at the outputs. With an increasing

—

number of inputs, though, the time needqﬂ to test all the combinations

"becomes rather prohibitlve, and hence new techniques had to be developed.

-
~

These took into account the internal!ééructure of the circuit under test,

and a necessary subset of the possible stimull was determined s6 as %o ailow

¥
4

4/ b
for detection of certain types of faults on the internal circuit lines [5,

9, 34, 37, 38, and many others]. Although the problem of determining these
/

sets has been satisfactorily solved for combinational cireuits, the methods
used differ im approach from the techniques used in designing the networks,

and thus they cannot be effic;enély merged into synthesis algprithms. . .
{ ) -

Moreover, there seems to be no simple general procedure whiéh would cover
variéus types of faults such as single stuck-at-(0, 1) and bridging, as

well as multiplicity of those faults. Again, by applying the new methodology

to this problem, a fault detection procedure has been obtained which is not

only consistent with the sygjhesis method which will be presented in dhapter 6,

but4t also permits a unified treatment of the forementioned types of faults.,

G

)

}

1.2 A Concise Outline of the Thesis ' R

-
P . 8

. LY
The presentation begins in Chapter 2 with a review and in some’

( \

cases a deeper development of certain topics in the theory of Boolean



1

equations, which are pertinept to the subject matter. An algebraic
approach is stressed throughout, at the s’ame time recognizing, ;iowever,
the important.vlsual information content of map ;echnique§viﬁ céses where
fﬁe number of variables involved is relatively small (See also Chapter 5).
(In that sense, there is a Certain disagreement with Rudeanu [26] who
seems to be press%ng‘fﬁr an a%gebraic approach only, v&s a vis switching
circuit applicatioﬁé). The cofcept of a characteristic equatiop is re-
introduced in the sense that it is defined as a single equation of thé
form ¢ = 1, which is solution-equivalent to a glveﬁ system of equations
| . /
tied together by some prespecified mutual relation., Subsequently, the
technique of characteristic equatioﬁs (functions "¢ ) 1is fully employed
in Chapter 3 to describg a general switching circuit with feedback, as
represented by a Mealy-type machine., It is shown, that information about
the steady and transient states of the circuit cgn be extracted from the

corresponding characteristic equations, simply by studying their solution

proﬁerties. The circuit's overall steady state output behaviour is then

v

described throuéh a circuit characteristic function @C (equation

¢C = 1), Furthermore, the analysis of functional realization as it is

performed in Chapter 4 leads to an important definition of an output

characteristic function & . It is shown then, that a circuit realizes

a particular multiple buiput incompletely. specified-switching function .

AN L R




‘modular synthesis is then derived, which fumther clarifies the relation-

provided that the subsumming relation is satis{idd between the cor-

o

responding circuit and output characteristic functifons ( ¢(:< ® ). This

1

simple concep't is the corner stone upon which the unification property

! /
of the methodology is based. A generalized decomposition theory for

!
i

. - . - ’)
ship between the internal Sstructure of circuits and the properti?s of

Y

(94 .
Booleaf equations, Chapter 4 .ends by presenting an inquiry into

)
:

the necessity of closed igops in circuits realizing some output characteris-
W,

- A »

tic function,

v

Since any theory would have little meaning in engineering

‘ 1

design unless it can be used to solve some praclical problems, Chapter 5

3 -
-

is devoted to the development of computational tools, while two applica-

\

tions of the methodology are described in Chapter 6. It is demonstrated
that the computational steps which underline the metﬁodology of

characteristic functions can easily be dgnverted to either Wap manipula-

tion procedures or to operations on cubleal complexes (arraye). - This ease

o

.of conversion is,mainly due to the initial independence of the theory with

W '

Y

respect to a particutar data structure. An important point to note is L

A ]

that multiple output functions need not be treated in any special way,

because the methodology permits a unified representation of any function
\ !

by describzng the functional mappings between Boolean spaces in terms of

- s ~
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~

- N
the corresponding "single output” characteristMns.

‘ (
Chapter 6 describes two applications., One deals with a
. / 9 .

unified ?‘:\pproa;h t? algorithmic synthesis of combina;:iona‘l switching‘
functions by modular decomposition, and. the other with"the development
of-a technique for the detection GT‘\;arious types of faults in combina- /
tional ne’tworks (without feedback at the present time), The solution

steps in both cases are unified by the < relation between characteris-

tic functj:ons which signif'ies_, functiona} realization. Consequently, the

procedure for generating fault detection test sets coyﬂd be merged with -

the synthesis algorithm, thus sharing the same routines and data.

5
As a conclusion, a summary of the results obtained and plans
, i ) ' ﬁ
for future research are- presented in Chapter 7. It also brings to light

Ay interesting relation between characteristic functions and fundtion

arrays. ' 1

A% L%
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. CHAPTER 2 .

BOOLEAN ﬁQUATIOb;S (B.E.) -

To facilitate the analysis of switching circuits with the
—— . K '@W“ )
aid of Boolean Equg,;cions, some important definitions and theorens Do

/

dealihg with B.E. are presented. The scope of the presentation is limited

14
only to thosec aspects of B.E.-which are pertinent to the material in the
&
subsequent chapters.

~
~ 1

2.1 Notation ) \

/

For dealing with two state switching elements\ the simplast

* &

Boolean Algebra B2 = <(0, 1), +, *> will be considered. The elements -

- b1
‘ L

- (¥ S
of B, then satisfy the standard axioms of Boolean Algebras [ 7, 11, 16,

2

21, 26 ].' Here are some important relations derived from those axioms:

Let x, v, 2 eB2 be elements of B.A., then

: X+y = 0 <> X =y =0 R .1(2.1)
n X ey = 1 > x =y =1 (2.2)
: X € X order relation : (2.3)

é \ . _
) X<y and y<X > X =y (2.4)
X<y and y<gz - X <3z (2.5)

”

. _ —_ X<x +y 3 y<x+ty (2.6)



X<z and y<z - x+y<z (27?%
X<y and x < z X<y 2 ( ° (2.8)
X gy -> Xx+2gy+tz and X z <y 2 \(2.9) “V;‘f:;,j',
x £y > xX+y = y + Xy = X . (2.10) |
X<y +— xy = 0 « xX+y =1 {2.11)
X =y > Xy+xy =1 « Xy+xy = 0 (2.&)
x <y > Yy <X e , (2.13)
0<x<1 ) o s(2.18)
x+y = 1 —+ x =1 or y = 1 (2.15) f
N
Xy # 0 - 0 or y = 0 (2.16)
The notation : .
4

Xy X0 ¥y Boolean variables i
5 = (xl’ XZ. "t ey Xr) ! .
y = (yi. Yo vees yq) . Vectors of variables (sets)
z = (Zl’ Ty sees zn)'
a;0 Byy Constants in B,
g' = (Q”l, (YZ' see g (yr) L l

Vectors of constants’(sets) e~ o
By (Bys By eees B,) J .
¢, £ Scalar Boolean functions Bg > B,

L [} m

f, g Véctors of functions B, - BD

¢

Xy Y1 Z respectively

~ Sets of st;tes ol



)] . ‘ Empty 'set {
X . ‘
‘ U, n . ] Set union, intersection :
L’ Boolean (+) summation
| ) Boolean () .product
s i
& ’
Zll ' Sum of product form - N
»~
3 - -~
° X o y . Symmetric difference (exclusive "or").
PR ' m (x). ' Minterm function of X such that .
n(8) =1 If @=8 and 0 otheruise
M (x), L Maxterm function of* x such that 8
“ Ma(p_,) =0 if o =8, 1 otherwise \
- &
Eo, f(a) =f(al)+f(az) + .. Summation of f(x) over all states of x
B .
?¢ =2
n o) ==f(cvl) -d‘(az') ... Product of f(x) over all states of x
o € BE ' -
pult 2 . X
rlog, (y) . Ap integer such that ( ~log, (Y)r-1 <
log, (y) < rlog, (v)
4
R,y R Binary relation ( =, <, > )
A Y ) ' g
o lyl » |X] The norm of y and X .
[
- (0
- 3 )
2.2 Definitlions and Theorems .
- . \

Let £ (xy y), g(x, y) be Boolean functions

! »

£=(fy £50 eees £)r g =(gqr 85 +evy ) of the variables

-




N

- 2

o
e

x = (xl, ceey xr), x=‘(y1, vees yq), that is, f, g+ B, + B, .

!

A

+q n

»

‘o~

Furthermore, let fi 'Ri & be a binary retation which represents either

4

e =
fi. g -

or - .
f. < Ei i = 1 ¢ sevy N « X
' -
or A ‘ - S :;u .
. . ‘ 5oy ’L,..
<
. L, S8

-~

Application of (2.11) and (2.12) to the above relations yields

fi—- = g > fi &y + fi g = 1 . (2.17)
- £, < & - Fore =1 (2.18) ‘
£, > g -> £, 0+ éi = 1, - (2.13)

The original system of relations can thus be transformed into’
. ¥

an equivalent system of Boolean eQublities of the form 49, 'Q, y) = 1, .

=1, «esy n, where ¢, stands for one of (2:17)y (2:18) or (2.19) — — .
¢

n

Definition 2.1: Solutiqn to B.E,

-

Let' F(x, y) R g (x, y) be a system of n Boolean relations
with-its.equivalent systemqof Boolean eéuations Q(_)E, x) =1, as
. : { ,
derived above, Then a function y =y (x) 1is a solution to this system

3 ‘J
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if°f(x,y(x)) R g(x, y(x)) ~r%quivalently ¢(x, y(x)) = 1 holds

identically. )

' . -

.- C
jS

Definition 2.2 ¢« -~ » . ¢

Characterisiic function o(x, y) [10, 26] of the system of

—n simulianesus equations ¢i(_;5, X) =1, 4 =1, ...y n, (Def, 2,1) 1is

n ~
defined as ¢(x, y) = 1 ¢>i(_)g, ). )
: i=1 . »

Lemma 2.1 1 [10) 16, 26, 31] _ i
k -

The characteristic equation @(3_, Fx) = 1 1is equivalent to the

7]

system f(x, y) R g(x, y). That is, a function 'y = y(x) 1is a solution to

" £ Rg iff it is a solution to ¢ =1,

Remark The characteristic equation w(x, y) = @ (x, y) = 0 could

however, the form & =1 seems to be more

convenient for describing switching circuits, as will be seen later.

H

Definition 2,3 + ‘Consistency. ' .

'}

¢ The equation ¢(x, y) =1 1is said to be consistent if it has

-

a solution y = y(x) over all x eBg. : e

, TN

Ko

Theorem 2.1 : [ 10, 26]
I

- -

The e&uation ¢(x, y) = + is consistent iff



+

‘ -

) : 16

L A -
- - 4
e(x) = L _¢(x, B) =1t identically, or equivalently e(x) = 0.
B ¢ B] ‘ :
2
Remark : If c¢(x) =1 does not hold for all x e Bg, the equation
N . -

¢ =1 1is constrained :by c(gc_) =1, and it has a solution, only for such
\
which satisfy c(gc_) =1,

) J
. - .

Definition 2.4 1 Don't car®e statis.ﬂ' ,
! * '

Let X' <= B; define the states of x such that the solutions

»
&

1 can have a "den't care"™ value for x € X',

¥y = y(x) to “¥(x, y)

That is, x € X' 3+ y can assume a{,ny value in Bg. Let then a function

e

d(x} be deffned as d(x) = 3 m_ (x). ,
o ex

N']
A

o v 3

Theoren 2.2 ¢+ [ 5] X

The characteristic function of the equation V¥ (x, y) =1 with

0 ' . 4
d.c. states defined by d(x)'=1 is given as &(x, y) = ¥ (x, y) + d(x).
— Y - . i % . - -

3

Remark 1f the consistency condition c(_{) = 1,' is not satisfied
identically, and the input states are restricted (’cc;nstrained) to x egX
wohere X = {x |'e(x) =1}, then in effect the states in X' = Bg - X
become don't care in the sénse of Definition 2.4. Hence the charac"teristiic

function of the constrained equation bedmes ¢ (x, y) + c(x) (Theorem 2.2).

@

LS

~—



Thus the resulting characteristic equation becomes consistent., MNoreover,
p .

if a system of B.E. is not consistent, and don't care states are

introduced so that d(x) » c(x), then through Theorem 2,2 the system

=~
o

is again consistent, ’

14
L4

" The follgwiné section will describe some of the methods for

-

obtaining the solutions y = y(x) of & (x, y) = 1.

1

. 3
t 4 v
5

2.3 Methods of Solution

Once a problem has been formulated ;n‘fhe form of an equi-
~ v e

N ‘ v .

valent Boolean equatidnp then it isfusually desired to 6htain the i

s $ N
functions 1(5) which satisfy the equation, A number of methods will be

presenfed here with a concise evaluation regarding their applicability.
’ ‘ .

N . . . [

w

¢

.

Definition 2.5 : Types of' solutions.

’ A Y
« " An elementary solution to &(x, y¥'= 1 is a vector function
" y(x) such that” o(x, y(x)) =1 identically. “ ;

A genefal solution n(x, p) 1is a vector function such

that for every value p* of the parameter vector p the function .

, :
n(xdp*) 1is ah elementary solution to ¢ = 1, Also,‘?iven any

N D
AN ¥




1 N . .

“ ) ' | ‘

elementary solution y(x) there exists a valuation 'p* of p such that

r , y(x) = n(x, p*). e

LY

- ' -~

2.3.14  The Method of Successive Elimination [10, 267 ~

Consider the equation’ y a+ y b = 1 of one Unknown Y.
r

1 holds identically.

N\ ‘ L
The equation is consistent if the relation a+ b

1]

4 :

The genéfal solution 1s then gilven by

’»» . y=%+ap,. a,bEB, ) o

. . - where 2 .
p is an arbitrary parareter, p € B .

0

An' elenentary sifiyion may be obtaines bty supstitution of a value p* € B
for pl ey —_.—-—‘

} The equation @(5, 1) =1 1is then solved by a repeated
- ,1

L)

' 0
’ application of the”alove procedure. Namely, by expanding (I)(_)g, I)

about yq, the ekuation“ can be written as

«

| Q(_‘E' Ylvyzv ”"yq-l' 1) yq+<b(§. yl’ Yor eevy }'q_lv 0) i'q = 1
. . -, . r
with B being the algebra of all functions Bzi > Beq ’ (2.20)
.
. . anl it is consistent for, yq if- e
¢’(§o Yln Yor eees }'q_ 1! 1) + ¢(§v Yqr Yor ooy Yq_lv O) = 1 ;

L3
~ ]

"(2.21)

IR
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rxé

r

The same procedure is now applied to the Equation (2.21) of q - 1 unknowns,

and another consistency condition obtained, etc, until only the variable

y1 remains, The consistency condition thus becomes

X ox, B) = 1 (2.22j
B eB%

which is-identical to the result of-Theorem 2,1, If (2,22) holds, the SR
general solution for Yy is Yq = b+ a Py where a and b are

determined through the elimination process just described. It can be

shown that D
2o a = * Z q>(_)£' ;‘:10’2' sw ey aq)’
(0’2!"00’(1)6 B2 »
and
- b = E @(?S, O' 02' LI ] dq) »

‘ -1
(dz,..,dq)eB% /
_The function yl(}_{_. @1) is back substituted into the equation for Yo

and a general solution Yo = yz(z. Py p2) obtained. Then Yy yzf(_\
f .

vD)

substituted into the equation for y3, etc., until yq = yq(_)_c_, Pysr Pq

is generated, That is, the 'general solution

n(x, p) .o

e
i

where

o E = (pl' sy Pq)

°



-~

¢

is a vector of arbitrary parameters ranging over all functions

r

Pt 82 -+ B2 .

If an elementary solution is desired the procedure remaihs
the same, except an glementary‘solu%ion ¥y = yi(g) is chésen by
subsiituting a value for Py» then for Py at the second step of back
substitution (for yz). etc, \E}ﬁally, the solution y = 1(5) is obtained,

Furthermore, since B% is finite, a1l elementary solutions can be ,i

generated by a tree-like struciure. (For large number of variables this

. [ . i
may be quite time consuming). Also, it should be noted that the parameter
. ’ 2
vector p may be redundant in the sense that different valued of P ma&’
LS [
produce the same elementary solution. For a brief discussion of

ped

irredundant encodings of the parameters see the end of Section 2.3.2,

o

—

2.3.,2 Methods Based on Canonical Forms of ¢ [ 3, 10, 164 18, 26, 31]

—

The first method to be described produces elementary solutions

of o(x, y) = 1. The solutions can very easily bYe cxiracted when the

AN
R ;
function ¢ (x, y) is represented as a map (Marquand or other) [ 16, 26, 31 .

&

A

Let the equation ¢ =1 %be given in its disjunctive

o

canonical form
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B @ 5o =1 (223)
. _g: € Bg Be S(g) ) '
where ,
S() = Bg: " for each o € Bg .

-

" & solutlon y = X(E) is obtained by a correspondence relating each
} ’ ] .
v o € Bg with a vector y(o) such tkat ¢ (o, y(o)) = 1 identically. The

! ' v
Equation (2.23) then reduces to X m ., () = 1. This equality - °
y(a) :
g es(e) £
- to hold, y(a) has to be chosen as one of the vectors from S(¢), for

each o € Bg . The total number of distinct solutions is thus given as
ng= M .| S(a) | ( 1 stands for arithmetic mulitiplication here).

o6 B -

-2

Clearly, the Equation (2.23) is consistent when Yo, S(a) # #, which

‘

correspénds to Theoren 2,1,

- —_——— - . -

The above method as translated into the form of'map manipula-

tion [ 16, 26, 31] :

Let ¢ (_)5, y_) be expressed in the form of a Marquand maps the states of
r -
’ X labeling the columns (2" of them) and the states of y labeling the
rows (21) of the map. A 1 is placed in the square-yith coordinates
(x*, y*) 1if ¢ (x*, y*) = 1,- the square is marled 0 otherwise. The
resulting map is the discriminant D of the equation[ 31]. Let d(«)
be a column vector of the map D associated with the state x. Then the

1's in ,d(@)define the set S(a) through the associated states of y. Let the

. number of 1's be Nyt Ty = | s(e)] then n_ = T . n.
o € BZ
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J

o

- . Py

The elementary solutions are obtained by decomposing the discriminant D

into its sub-maps Dj' J=1, «euy ner. such that each column of the

.

sub-maps has exactly®ore 1, and Dj €D, Dy # Dj for i # j. Now

the states of y associated with each 1 in D, determine the elementary
e~ o T

solution y7 = yHx)y =1, vers n,s of the original equation, -

Given a complete set of elementary solutions to ¢ (5, X) =1, »

Ad > t

a ggneral solution ‘3(5, 2) may be obtained by introducing a set of

Ty

orthonormal functions of sdne parameters p with éach set S(a). If
a particular valuc R*(ﬂ) for p 1is assigned then a single state '

B e S(g), X = o 1is identified, and hence an elementaxy solution

¥ = ¥(x) =n(x, p*(x)) generated. The general solution 1 is similar

to that obtained by the elimination method., Also the number of parameters
X lEl = q may be the same., However, by proper (economic) encoding of the
orthonornal functions the number of parameters mMay in some cases be reduced.

(Bogee if  max (na) = 2%/2 then only q - 1 parameters may be needed.) [ 3, 26]

T
@e B,
\\ As an example of such an economic encoding the method of =

Brown [ 3 ] will be shown here. As a matter of fact, that method was

programmed for g compuler and used in a combimational circuit synthesis

~-

program [ 5].

e ¢ {x, y)) 1 consistent, let p be a vectol of t

parameters (t defined later), The (reduced) general solution in ternms
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) . w of x and p 1is given using Boolean matrix operations [ 3, 26] as:

3 q .t
\ :
where .
, .
- x| = Q
m(x)  is the minterm vector,| m(x)| = 27,
The number of parameters t 1is determined as follows:
Let (—i-j be the jth’ colunn of the discriminant D (map
considered as a matrix), and let S5 be the number of
1*s in d. ; s=max (s.), j =0, 1,"..., -1,
! RIS !
~_Then 2t & < 2%, ’ ‘
A(p) _1is a matrix of 2% rows and 2" columns obtained
&- ]
. ° from D as follows: .
Let a, be ‘the jth column vector of A. If
- r
.= 1 or O then a, = d,, else if s, > 1 then form
S5 L °F =5 =y j ©
a set Oj of s, orthonormal functions of the t‘para- *
meters p.
O- = 03 LB . }
3 {¢ Jl(E) ’ ’ z Jsj;B)
with . -
Ly " by =0 if 1.74k
sj ’
. P I 4 85 0= 1 being the orthonormality condition.

.



/
. ) * ! /e \\
. Form now ay by the following algorithm: s
“ r
. k=1: for m=1 +to 2 do
> B if d. = 0 +then a . = 0 .
mj mnJ
else 8y = cjk(g);
kR = k+1;
vend m . %

1
The' decomposition matrix 1s defined recursively as:

4

Klf (o0 1)
\‘\ |
“ Kz - -klh | k1
' 00 , 11|
) ki d
_ e K;k —|- ki $, ki T
+1 O a0 e O I‘ 1 sey 1 :

For more detail and examples see Reference [3, 5].

"
N

™

¢ 2.3.3 Applica%ion of Lowenheim's Theorem [ 25, 27]

Consider a consistent equation ¢ (x, y) =1 (If not con-
L 4

\

e

FA—

sistent then apply Theorem 2.2 or as in[ 26, 27 1) Léwenhein's theorem

states:

r
Given a consistent B.E, ¥ (y) = 1 in an arbitrary Boolean algebra

B, then a general solution has the form

o
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where
h is an elementary solution, ¥(h) = 1, and .

P 1is an arbitrary parameter over BY, LS

—

/

Accop@ingsto [27], if B 4is considered to be the algebra of all func-

tions of x then the general solution to ®(x, y) =1 is given as:

*

n(x, p) = d(xyp(x)) « y(x) +0(x, p(x)) + p(x)  (2.24)

4
« where

I VI .
y(x)  istany elementary solution of ¢ = 1,
E(i) is an arbitrary vector over all functions R
r , e
B2 +°B%' ,E]t\ = g, cu
Y ' If this approach (L) to the generation of n(x, p) is

compared with the method of successive eliminations (SE), and with the
. ) :

methods similar to Brown's (B), then: ‘ :

(L) Requires knowledge of an elementary solution, .

Y theveafter the procedure for obtaining
n(x, p) 1is very simple, however:“ |p | = q.
. - R}




°

-

(SE) No knowledge of an&elemgntﬁry solution is required;
-however, aigebraic manipulation is more .eompl aﬁéé

than in (L), | p | = q. ‘ ) | .

(B) No explicit knowledge of an elemenggry solution
- ; - . -

required, | p | caA also be smaller thahﬂ q in some
cases, It requires the formation of D and the )

associaked sets of orthonormal functions. (Actually
all eleméntary solutions are known implicitly through
D, the;r enumeration must be made to determine t,) A J

higher number of variables requires large maps (matrices)

D and A - the dimensions beiﬁg 2T x 29,

Comparison of the methods generating elementary solﬁtions. namely,

Svoboda's method (S)[ 17, 26, 31] and that of successive elimination
\

(sE), yields:

_(S) Constructionof D as in (B), very simple for small
number ;f variables, hyperplanes of solutions can
be obtained [ 17, 18] . A hardware processor has
been designed and simulated [ 16, 19, 201, (The

i method could be transcribed into algebralic notation

- rather than that of maps.) .
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(sE) The method is algepraic in nature, no large maps
- ' o
) requlred. The number of steps in the procedure rd
1

‘ is smaller than in (S); however, hyperplanes of S

solutions are more difficult to identify, '

' ) - \

2.3.4 Some Other Methods , [26] . )

If the system of relationsﬂ f1 Ri €y i =‘1, vesy N, lcan
be transformed into a set of linear equations

s R q. . '
‘Z—- 'ai\"]. yj = bi' ;‘-’:1, esey Iy o
j=1 N .
where aij' bi may be f?n?tions of Xx, then the problem can be
expressed in the form of a linear Boolean matrix equation AX = Bj The
solution(s) may thus be obtained by appinng the theory bf matri
:6"" - * ™
equations.*» However, for applications in switching circuit design, this
, 3

approach does not have much value, sikce the problem can seldofi’be simply

stated in the form of a system of linear equations,

- The equation ¢ (x, y) = 1 may also be sdlved by the method

of undetermin%g coefficients, However, q -2r unknown coefficients
> &

Cy 1 =1, teey q 2r, must be introduced through which the original

equation is transfzfmed into a system of 2% truth equations

ei(g) = 1. Solutions to this systeﬁ then yield the elementary solutions

t

¢»

{



1(5).\by a back substitution of the coefficient values. Although simple,

ihe method seems to complicate the }roblem by introducing gq. 2F

- -

unknowns instead of the q original ones., Therefore, except for »

problems with small r and q, the metnod has a.very little practical

!

Som& Properties of. Solutions of B,.E.

Th¢ material to be presented hdke is mostly Briginal and

! ; B \
will be used quite extensively in the subs?gaent chapters. Assume . ,

-

o (x, x) = 1 consistent,

Lemma 2,2:  Identity solution,

7 -
-
»

The equation ¢(x, y) = 1 has an elementary solution(s)

such that some y; € ¥ 1s an identity (yi =1 or y, =~é§ iff ‘the

equation

[

]
OIS

¢(5v Ylt ey yi-l’ 1, Yi+1v seny yq) '(2025)~

or ' . v

@(I, }’1, te 0y y

n
[

|

i

»
i-10 Oy Yiqgqr oo yq)

.
) - A
- - R
.

is consisteni




/' To determine whether the equation ¢(x, y) =1 has an

=
v

- -

identity solution for some subset of the variables Y+ the above

Lemma 2.2 can be applied repeatedly with respect_to the variables in the

subset, If, however, an identity solution for all ¥5-€ ¥-is-sought —-
(simultaneously) then a more compact procedure is stated in the following

. ¢

theorem, -
L)
Theorem 2.3: Identity in y.

The equation ¢(x, y) =1 has an identity solution y* e B% |

if "the equation

‘P(_)_(., l) = (D(l(_vx) = 1

is Dpoonsistent with respect to the inverse solutions x = x(y). The o

entity solution(s) y* is (are) then obtained &s a solution of the

(2.26)




»

Let y*'=8 éB% be an identity solution, then _, ’ 1

<I>.7(3c_', ‘B_)M;Ni holdé indép—;ndently of ic_. g 1is aléo the>uniqye sblution"
e ‘ ‘ 1 o

< o - o
e L . .
to ! * ¢ < - o D
. . . - ,

. " o) o m(y) =1 . . (2.28)

T e T
“ } X

hence c . $ . ' e

‘.

L ma(_)s) . mg(l) € (%, y) . J

aGBg

h \ ¥

Consistency condition of (2.28) w.r.t. x =Rx) is

z z m (v) m (y) . .
r nT = 8 > - . =
Y e'B2 o eua , -
2B W) e ,
he EEZ o 632 -

imich is not *lentically equal to 1, hence (2.28) is i~consistents
- '

2
e E , 4

v *
“zration of (2,29) ~.i a summatlion over 1. ve Ll yields
- £

-

2

:,(l) > fz ‘t(;’v ::_)
BI‘ . :
o ‘xe 2 * »
% Yo N . -
. o
That is, S ’ 0
N c(y) =, " ¥e,y) < mg (1), o . T
e By o,
e 0 - \ ,



therefo;e, g\\§§ a solution to (2.26).

\
\

Lonside? now 4’65, Z) = 1 to be inconsistent with respect

to X =x(y)s Let By +senB, be the solutions to c(y) = 0. Then

<

1

—

"L _¥(e,By) = 0 forall i=1, .., ki
' a€B : ST
- T2
That is,. . .
.‘;(Q' B,) = 0, b (
» aeBr p i
. - 2
= "’ and thus ,
= s . ° r
. . #(xpy) w70 identically forall xeB;
- and i-= 1' o8 0y kl
Or - . ’
. ¢ (x, Ei) = 1 * by negating the above equality.
’ ) Q.E.D.
. ' ¢
f '3 . P
"Remark: )

The exiétence of an identity solution means that the variables x

Y

LY

are redundant in some solutions,’

s %

!

-
I3

. —ml"‘_
‘d)(g, x) = 1 1is that of having a-unique elementary solution., This

.
£

B

6 w v 4‘
Another important prdpegty of a consistent equatlon
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.

~r

-piqpertytcan_ea5ily_le~ue;i£ied_by_analyzing_ihe_discrimimani_mag_D_.La_unique-__———_
solution exists if each column of D contains a single 1. However, for 7

1

~

algebraié processing a different approach is ﬁeéded, which is stated
/

in the following theorem and its,éorolla:&:

3

Theorem 2,4 1  Unique solution. ,

The equation ¢(x, y) =1 has a unique solution for a

. *
Yy € X iff ‘ s
I @(?g, alg veoy ai_lg 1' Q%.'*'l, seey Q’q) Y @(?&’aigtno'Ui_1|Oin+1'noo'ag)}= 0
~1 . -
(Q’i...-. O‘l:,’;_l,-.-, Q’q)'quz' '.(0’1,'..., ai-i, Q'i+1yonn| dq) GB%
(2,30) -
identically.
Proof': - .

I
%

Apply the method of successive eliminations (Section 2.3:1) to

éolve the equation, with- &i being eliminated at the last step befg;;

subsumming., This step can be written as

- ' ¥
CFMx) vy al) - 1 .
where -
b(z) = X Q(zy dl' s sy ai_ig Og Qi+1, seay Q’q) !

q-1
(ai'...'gavi"i, ai+1’ooo, Qq) [ BZ
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and ' » \\

a.(?ﬁ) = ) @1(2(_, dl| saey ai_ly 1' di+1, ve0y aq)

q-1
(algcncg di_l, ai_‘_l....r. aq) € BZ

The general solution is then ,y, = b(x) + a(x) p;» There is a unique

elementary solution yi(z) if the general solution is independent of Py .

that is, when B(x) » a(x). Or equivalently (2.11) as b(x) * a(x) = 0.
) - —

fr .
N u Q.E.D.

o

There is a unique solution y(x) to &(x, Ij =1 if

i
o

rooo(x) o+, a(x) » identically,
i=1

where ay and bi are the°same as in Theo?em 2.4,

’

/ 3
o

/

Proof: Trivial,

\

The following discussion will now cover a property of B.E.
which is of importance for the definition of circuit charac}eristic
’ .

‘function as introduced in Chapters 3 and k.

~
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7

Consider the following problem: Let ¢1(§. z) =1 and

¢b(£' 2y y) =1 be two consistent equations with respect to the

¢

z(x) and y = y(x, z) respectively, where | x| =r, .

n

solutions z
7

| 2] =n, |y|=q. It is desired to determine all the functions

¥ = y(x) generated by the solutions z(x) of- 43(5, z) =1

&(x, 2(x), y) = 1.

f
' 4

through the second equation

An approach to this problem would be fahéolve @1 =1 for:

all z(x), substitute all these elementary solutions for z in o
P4 )

and then solve theresulting equation for y(x). However, a more compact

2= 5

method is obtained by first finding the characteristic function (equation)

f the system of two" equations @1 =1, o, = 1 related'as stated above.

-

RN

That isy»to find an equation ¢(5, X) = 1 such that its solutions are

precisely. the solutions to the original problem,

4

Lemma 2,3

z I}
| :
The charactefistic equation &(x, y) = 1 (function ¢ ) of

a system of two consistent equations @1(5, z) =1 and ¢2(5, z, y) =1

such that the solutions I(Z); of ¢ =1 are cquivalent to the solutions

of

\____/—-’—\ﬁ

>

o, (% 2(x)y y) =1 with o,(xy 2(x)) =1 is piven by

‘b(_)_(_u X) . A z ( (bi(Ev x) M ¢2(§9 he Z)) 7/1 (2'31)

Yy €B

NS

Al

A\




N . The consistency condition: <I>1(5, z) =1 has at least one

solutidn z(x); <I>2(_)§, z, y) =1 has at least a single solution y(x, )
Hence the canonical forms of ¢, and ¢, can be expressed as
’ - - .
o, (x,2) = I i} (n(x) + = m(2)
here
i.‘Sof = {X | Ql(g. X) = 1} ¢ 56 '
Oplx zy) = F (n(x) * T ) (mfz) * "z mg(¥)))
o € B, ye B, g € S(W |
where ' L
,. Gy 8] oy v D) - 11 A B
_ ) S
By (2.31)
. N T ‘
S el y) .= o {3 (@ oz (nfz) 2 ng (¥) )}
' n
(ﬁeBZ o €B 5 N eSd B (-;SO!Y
= T . (mafg_) . " mﬂ(l)? = 1 (2.32)
o EBZ Y GSd
3 ‘Q' eSQY
v
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s

Show that for any solution z{x) of &, =1 the solutions
» ' B ~
y(x) of <I>2(_>_(_, z(x), y) =1 are also solutions of
¢ (x,y)=1:
¢
bl 20y D) = 1 (a5 (@) + T ()
o€ B ye B, B eS
( =" "2 2 oy
s ¢ (mfx) s omx) = o (x )
~ T
@ € B, Y € Sd
- : €S
B & Sy,
Therefore, any y(x) solution of  &,(x, z(x), y) = 1. 1s
, a solution of @ (xy'y) =1 as well, .
<kb)  The converse - for any solution y(x) of ¢ (x, y) =1 there

exists a function z(x) such that  o,(x, z(x), y(x)) =1

and~ (I>1(_>5, _z_(gc_)) = 1 identically

Let y(x) be a solution of (2.31). Then % ]
' ) : . W
000 7 y(x) = I () 1 (a2 T my(xe)))
e B, ye B, Bes,
= ¢ .m(x) (2 nf2),
o eUB)Z: Y €5}
. e
where *
v / < '
Sy = {y | xle) e S; 3
»
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Clearly, ¥ a, S # ffy since y(x) is a solution of (2.32),

ST T T I T TIITE maer T S (AT e e e e e

that is, <I>2(5, z, y(x)) =1 is consistent w.r.t. a
solution z(x). Also, if y(o) € de_ then y e s, fOf
the same reason, Hence S' <« § , and

) o o

<I>2(_3_g, z, y(x)). <€ ¢1(5. z). Thus any solution 3z(x) of

q’g(.’Sg z, y(x)) =1 1is a solution of ”@1(5, z) =1 too.

~ Q.E.D,

>

2.5 Evaluating Remarks

Q

It has been shown how a characteristic function (equation) of
a system of Boolean relations can be formej. Also, some theorems stating
g
basic properties of characteristic equations, such as consistency, inclusion
of don't care states, etc.,, have been presented, Once a problem is stated
i
in the form of a system of B.BE.,, and its characteristic function obtained,
L} «
it is usually desired to obtain all or only some of the solutions. For
this reason, a concise description of the main methods of solution was
——ineludeds - The petheds -ean-be -subdivided into-these-producingJjust—elenentary — —— ..

solutions, and thosg which generate a general solution. The latter can

further be subdivided into 3 groups, namely; .
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AM

- (1) No knowledge of an elemeniary solution needed - successive

o -

eliminations,
(2) A single elementary solution needed - Lowenheim's Theorem.

)
(3) Knowledge of all ef%mentary solutions needed (even if only

- /

, in-ap implicit form of a canonical expression of ¢ ) - .

- N

Brown's method or others with economic encoding,

Depending on the tools used, all the methods may be classified

as 3

-

(1) Using maps (Marquand or other) - canonical forms of ¢,

.84 Svoboda's method.

(2) Algebrasc - ¢ can be in any form - successive eliminations,

Lowenheim.

’
re

(3) Combination of 1 and 2 - economic encoding, e.g., Brown's method,

A method which is most appropriate to a given application will
be used in the subsequent chapters., Algebraic methods will be used ex-

cluéively in the thecoretical parts and in the examples which require more

*

*

than 6 variables, ‘ _ (

Certain important types of solutions were discussed in Section 2.4,
Y

The identity and the unique-solution(theorems, and the Lemma 2.3 will play a =~

=Y
key role in the chanters to follow.,
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CrAPTER 3

T e SRS ANALYSIS OF COMBINATIONAL CIRCUITS

3.1 Introduction

L]

; It is usually assumed that combinational switching circuits

contain no feedback loops, theiT response being dependent only on the

x present state of the input-varisblesv—In-turn, sequential circuits
Lol
contain feedback loops, hence their response depends not only on the

present input state, btut also on its past values. However, as a numter

of authors have pointed out [12, 1&, 30], the presence of closed loops in

Bt

switching circuits will not affect their overall combinational character
in some cases. Moreover, the circuit ipﬁplémentation may require less

gates than the loopless equivalent which reatlizes the same combina#iona’l

¥
1

function,

Kautz [ 1¥] has considered a one dimensional unilateral

cellular array of identical cells connLctedJ in a closAednloop‘.‘ He stated

- A Ry,
‘ \ Lo g

conditions under whichsuch a circuit with a closed loop would not, dégenerate. \
. -,
Also, it was shown that the same functions implemented in the nore

classical way would require a higher total number of NOR gates. , /

Furthermore, the possitility of loops in combinational circults ,
may arise as a natural phenomenon when proper general synthesis procedures

I3 '
’ using fixed libraries of PMilding modules (combinationa} and sequential)




Lo

are used. However, before such a general synthesis procedure can be

)

“developed, a close inquiry into the behaviour and decomposition oF
such generalized combinational circuits is required,’ An attempt of such

{

an analysis-is presented in this and the following chapter.

The analysis methodology is centered around the theory

of Boolean equations and their characteristic functions as presented in
4 )

Chapter 2., It will be applied to a general sequential circuit

A
(asynchronous) with the aim'of determining the circuit's properties per-

\
tinent to combinational behaviour. v/

3.2 Basic Concepts s ®
3 N

Without loss of generality, let a genaral switching circuit

be represented by an asynchronous Mealy-type mAchine,

Resolution Level: .

“

Let all variables describing the behaviour of the circuit be

y

Ed

considered at the level given by the two distinct values 0, 1 of Bz’,

Furthermore, let the activit& f the circuit te observed at discrete |

time instances 0, 1,..., t, t+1,...; the time interval between two <con-

secutive imtances t,, t,,, being defined by, the transition time A t

€

P




-—

. needed by the circult to go from one state of the internal state variables ’ i
' o P ~ L
to the next one, regardless of whether that next state is stable or'is )
going to change in the t1+1' ti+2 transition period. If the state is
. ' [
, stable then let the intervals be fixed and equal to the time interwal N
fw .
' needed for the last transition to take place, until the next change of
3
S the input stimulus - next transition period. B
3
Definition 3.1: A
General Switching Circuit (GSC) is represented by a first
order finite state asynchronous Mealy machine (Figure 3.1)
\ ""m:’ : ' .o
M o= (X, Y, 2, £, g) : ' .
where : L.
~e . \ -
.
i . X - finite set of input states (stimuli) \ r
} . ( T\ \
, Y - finite set of output. stdtes (responses)
1 ’ "., * ﬁ
Z - finite set of ibternal states
f - output vector function y
- - g - “state trargition vector function. .,

Furthermore, let

a?



P -

describe the behavidur of the circuit at time t, where

t t t t
X = (xi, Xov vees xr) € X
t t t t
11 = (Y19 .th se sy Yq) € Y 3

t _t t
z = (ziv er‘--'v Zn) € 2 ‘

o .

are the stimuli, the response, and the internal state of GSC at time ¢,

o ¢
L3

respectively, and

t+1 ( t+1 t+1 t+1)

_Z_ — Zl 1] zz ] co 0y Zn G Z

»

the next internal state generated by g.

i

Also, let the functions f, g be represented by ideal

o

.

combinational circuits (without feedback loops) with no internal delays,
the transition times then being determined and fixed to At by external
“

delay elements .(a fundamental model of M).

s}

Moreover, let

I

represent the present state of the\iircuit at

any time,

n

ES

7! the next state generated by g, z' % g(z, g),

x eXs 2z, z'e I,
-

2 be the set of all internal states which can possibly -
be feached from any state z € Z for the input

x=q ek,
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(¢ I ) o
. z = U z , z = B -2, . °
gex o 2 [ .
. 1 4 -
— g . - - . I
¢ 7 ¢ - ?
.
- )
'
X -
= ‘ £(x,z2) >y

g(x,2), /=) &t circuit £

circuit g ,ﬂ

1r

0¥

FIGURE “3 1. GENERAL SWITCHING CIRCUIT.

[\ Definition 3.2 Ao .
< . ..

8- >

State transition characteristic function <I>g(_)5. z, z*) [8, 26, 35]

-

is defined as the characteristic function (Definition 2,2) of: the system

of B.E.



z' = g(x, z). . ;

—-— . @

A Fhat i3, .

“
A}

n
@E(;S. z,2') = I (zi . 8&(22' z) + -Z.i ‘ éi(i'_z_))
: 1=1 .

o
o

for x€X and z €2, and Qg(ﬁ. Zy g') =0 for 56}1, z'e, Zy»

Definition 3.3 ‘ X
? | ’ ) ' -

Stable state charaqteristic function d)-z(gc_. g') is defined as

the characteristic function of ‘the system of B.E,

[

z' = g(x, z"). . /

—

<

That is, . )
i ’ .
. n

() gy (xe 2) * E e g (x 20)

s .
¢ (?_(_’ Z') ’ $
i=1

g —

it

l
& . - -
for xeX, 2'€Z, and d z(gc_, z') =0 for xeX, z'elZ

v

-

Definition 3.4 : &

\ %
Next state characteristic function- <I>Z(2c_, z') 1is defined

# -
in terms of 'Qé(gg, z, z') as oo .

L) - ¢
@z(xv Z'). = L $ (Ev 8y E')-
g - - n g . .
g GEB2 ‘e

4
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El

K

. .
Definition 3.5: Termindl state function,

4 R A
G(I}Z. gR)' is defined as_a function giving the terminal

-

+k+ o , .
state gz, = gt k1 reached by an input sequence , . .

T

. q - *
+ \
L= (zt, lc_p”, veey _)gt k) from an initial state zp = g_t € Z.

A

t+k thke
(x* 7, glx !

c it
4 _Z_T -= G(Ik'“—Z‘R) = 5 X 9 eesy E(z '«‘:ZR)) o-o) .

i

Definition 3.6 : Stability. ‘ ' ¢

o

k]

Given an initial state zp anda stimilus x = o €X, the
' . . T4

~ . °

' GSC 1s sald to be stable for o and z; if for an input sequence

y Zg
+ . cF "
L= (zt, gt-”, ooy g_t+k) such, that” _)gt 1. ar L =0, 1, seby-ky |
_there exists a finite k such that . ] ) s
® o ' ' Tj ’
G(Ikv :%R) = G(Ik+jo ER)

. ; .
for =1, 2, 3, «.. That is, with a constant stimulus o a stable

state is reached after a finite rumber of transitioms (k).

If the circuit is stadle for all possible 2g € Z then: -
-

it is stable at X = .
A

- @ . R
1f there ig no such finite k then the circuit is

oscillatory (with respect to 2z) for that x =o and zp

- —
-

*Even thou“gh a circuit may be osclllatory for some « and

’
]

Zpo not all intprnal variables Zie z have to oscillate., Therefore,




o

stabllity of a variable z, € z can be defined similarly as in

Definition 3.6.

-
ety

Definition 3.7 + - Simple oscillations, » ) o

s

(3

If the circuit is osoiilatory (Definition 3.6) for some_

-z
"

X =¢a and Zpy then it has simple oscillations at o if there is no
L

other initial state Zpo # 2g4 such that the circuit would be stable for

Y

o and Zpoe

- - o4

For instance, the state diagram as shown in Figure 3.2

.)S = (xl' xz) .

z = {1, 2, 3, 4, 5}




~ describes a circults which is oscillatory for x = (0, 1) &nd Zpy = 5

47

//2’ - .

v

e . “

and stable for the sdme x, but 3z, = 4. Therefore, by Definition 3.7

R2

it does not have simple oscillations at x = (o, 1). By changing the {

circuit so that the stimulus causing-the 4 +3 and 3 +3 +transitions

is (1, 1), the new circuit would have simple oscillations at x = (0, 1),
since there is no other transition caused by that x which would bring

the circuit to a stable state,

5

v

3 ‘
Definition 3.8 1 Steady state.
g

A circuit has reached steady state (conditions) for a
stimulus x = € X if it isin a stab&é/;tate or is oscillatory.
Furthermore, let all the states z ¢ Z +through which the circuit is

/

passing while in steady state, becalled steady states. All other states

are then transient.

Definition 3.9 1

.

©

A k-transition circuit is such that it passes through at

most k transient states when changing steady states due to a change in
. ]

the input stimulus x.

~7



Lemma 3.1 1
N .
If |z = n then k < 2 -2,
Proof 1 A steady state at, zle X consists of at least ﬁone (stable)

state z,. Assume that a change of x; to x, # X, would bring the circuit

to a stee{dy stai;e Zoe Then there remains at most |B;1 - {31, 52}1

different transient states through which the eircuit may pass before

3

reaching the total steady state x,, z,.

-

If |2] < 2" is known then k < |Z]| - 2.

Definition 3,10 1 O-transition circuits.

<

Clearly, O-transition circuits have the fastest transitions

I3

between steady states. The most common type is the normal circuit defined

ast

(1) 1t has at least one stable state for each input

stimulus x €X.~
(2) Each unstable state passes directly into a stable state.

If oscillations are permitted, then a class of quasi-normal circuits

3




L9

‘ (equivalent to the class of O-transition circuits) is defined asi

} 3 N (1) The circuits can reach steady state in finite time

for each x € X (Lemma 3.1). -

(2) If a state becomes unstable auq to a change in the
input stimuli the transition leads directly to a

steady state, That is,

(i) either to a stable state
or ) L}

v * (i1) to a state which is a member of’the set

of states defining the oscillations for
that x. Hence, if x does not Ssange

then the circuit would keep entering

perlodically that state. #

N Sy ) -
Remark 1 The class of normal circuits is a sub-class to the class
of the quasi-normal circuits.
Definition 3.11 : . Operation of a circuit.

L 4

» '
It will be assumed that the circuit is operated in the

following way:

=
.
i
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[}

. ] (1) The stimulus x cannot change unless the circuit is in a

steady -state."

(2)  The siate’ 2z and hence the response y too are of-

interest to the external environment only when the

\ .

circuit is in a steady state,

The following are some propertizas related to the characteristic functions
[

defined bvefore:

¢

) Lemma, 3.2 1 \

&=

The equation <I>g(3(_, 2z, 2') =1 (Definition 3.2) has a
unique solution for z', defined over x € X, z € Z. That solution is

equivalent to- the functiom: g(x, z).

<*
Proof: The way in which O is formed, and then Theorem 2.4,

Lemma, 3.3 a

» s

Given a stimulus Xx = o € X then all the possible states
- :

the circuit may reach from any initial state __sz € Z are obtpined as the

¢
solutions 2' to the truth equation
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e

Proof By Definition 3.4,  Lemma 3.2 and summation over all °

z e Bg. -
Lemma 3.4 1
\

The solution set {2'} of the equation Qz(g, g') =1,

' P

‘a eX (Definition 3.3) is equivalent to the set of all stable states

the circuit can possible reach for x = o and any initial state.

. AN

bad ]

ll

Proof 1 The eqﬁation d)é'(z, z') 1 1is solution equivalent to the

system of equations z' = g(x, z') (Definition 3.3, 2.2, Lemma 2.1).

That is, if 2z* 1is a solution then 2z* = g(x, z*) identically. Assune -

that x = ¢ does not change, and that ' z* was reached after k transi-

t t+k

tions from an initial state at time t{, zp=2. Tus 2z = z* and
{
&
- g, 27 = gles 2¢) = 2% fand also
t+k+2 t+ke1
z = gloy 27 7)) = gla, z2%) = z*
, | .
_Z_t+k+'] - 11
\

However, by Lemma 3.1, k is finite, and from the above,

aad G(Iko ER) = G(Ik"’j' ER) ¥

therefore, by Definition 3.6 the circuit is in a stable state 2z*.

Similarly, it can be shown that any stable state 2z* at x =«




l
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‘ satisfies the equality z* = g(a, z*), hence Q’z(g_, z*) = 1
’ identically.
N Q‘lE.D.
J ®
, Lemma 3.5 1

The circuit g has simple oscillations at x.= o € X iff

L4

-~

(o, z') =1 is inconsiste,nt.’

&'~ ) < '
Proof i Simple oscillations (Definition 3.%) <> no stable state

4
¢
at o. By Lemma 3.4, the solution set to (b;(g. z') =1 1is the set of

N ?l - - ' — ——— S____ e —_ po— -
stable states at a. No stable states +* no solution to @g(g_. _z_') =1,

Q.E.D.

b

Definition 3.12 1

.

Steady state characteristic function QEQ, z') 1is defined

so that the equation ¢§(g. _z_') =1, o €X, has as its solutions all

the steady states the circuit g may possibly assume at «.

4

Theorem 3.1 1 .
(1) If g- is quasi-normal then ' .

¢;(5, z') = QZ(_{. 2') (3.1)

]




(2) 1If g is stable (no osclllations at any x e X) then

v

c 1 = s .
. o (xy 2') o (0 2°) (3.2)
(3) In general (any circuit gs ‘ :
S [o] Z A
[ o (xs 2) < o(x2') < ol(x,2) . 33)
| | , E
N
Proof : . )
(1) By Definition 3.10 and Lemma 3.3. -

{(2) By Lemma 3.4 and the fact that there are no oscillatoryfggates.

(3) QZ(_JE. z') = 1 describes the stable states only, hence

e x, 2Y) < dJé(z,*_z_')s.f In -turn, - &2{5,“*5'91 1+ -gives all the

g-—

2

transient and steady states, hence q;; £ cbg.

Q.E.Da

Corollary‘ 1 :  Generation of cb; .

The steady state characteristic function @2(5, 2') can be

f

obtained as-a result of the following sequence:

0 (xy 2z 21) = 0 (x 2, 2') ;
3 i i-1 i-1 , i- i
q’g(x’v Zy 2 )\ = z (I)g (2_(.1 Zy El ) - ¢°g(£‘a_z_ 1' z )
gl—l € Bg
for i =,2. ey Zn ﬁ n = IZI



Then

on
c i
o (x) &) = 2 o (x z'y2).
i=1 o ]
~ 4 N P
/ ' o i :
Proof 1 The function Qg(iv z, z ) relates the initial state ¥

Vel

»

with the next state after 1 transition periods. Thus-

N i =1 gives all stable states
Qg(z. z', 2') = @Z(X. z')
i > 1 gives pll states involved in

) -

oscillations passing at most. through

i ;tates.

Note, that the form b qgl-i ' 8 results from the application of .
i 1--1e Bl
. z 2
Lemma 2.7%,
J . \
™~
343 Combinational Behaviofir (

~

~

-

It will be shown here, under which conditions a general
circuit (Definition 3,1, Figure 3.1) would behave as a combinaticnal
{

circuit,

-



4

Remarks @

Definition 3.13 Combinational behaviour.

A circuit has a combinational behaviour wi‘h fespect to

the output, for the stimulus x = o € X, if ,a unique response Yy is

-’

assoclated with a.

That is, the circuit response is in&ependent of the internal

* v B
states z € Za' Otherwise, the circuit has a sequential behaviour at o

de

ol

(1) If a circuit has a combinational behaviour for all @ € X then

it has combinational behaéiour - it represents a combinational

—_— A

switching function,

o

(2), If a particular o is not specified then combinational behaviour
4

is assumed for all o ¢ X.

(3) Similarly as in Definition 3.6, combinational Pehavioér of &

single variable Yy € Y can be defined.

(4)  The following nomenclature will be used:
combinational ~ means combinational behaviour with

respect to the outputs,

™, _
IX]

e

'purely combinational - same as above except that the circuit

k contains no feedback loops.

-
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s
t '

The first theorem to be presented here discusses the trivial
case of a circult exhibiting combinational behaviour. It is the case where
- the next state transition function g(x, z) is independent of z (no

closed loop).

Theorem 3.2 1,

qQ

A circuit has a cbmbinational behaviour if the equation

z') =1 has a unique solution z'(x).

Q;(?ﬁv

Proof 1 Trivial, apply Definition 3.4, Lemma 3,3, and Definition 3.13.
, 1
Since £ is a combinational function then the output y has a unique

state associated with each xe X.

- ~ €4
3

LI Q.E.D.

The situation becomes more complicated when there exists a
\

[N

closed feedback loop, that is, when ¢;(5, g') = 1 does not have a unique

solution, Howevsy, even in such a case the civcuit may still have com-

binational behaviour with respect-to_y. (The function f has to be

independent of some of the states of 5). The following theorem will

? 4

investigate such a case., It will be assumed that the circuit is operated

v

as specified in Definition 3,11, First, another definition is needed.

X

®




Definition 3.14

57

is defined as

* &

(Df(_)_(_' _9:"_' ’

Theorem 3.3 3

1

Output generator characteristic function ¢f(§, z', x)
[/

- q
X)_.= H (}i * fi(x! Z') + yi * fi(xl Z'))
s i=1
n ' n
for X eB2 y z'E€ B2 .

Combinational behaviour.

Let

- f-zhmmi)\@fu_u

BGBZ*

The general circuit of Definition 3.1 has a combinational

behaviour if and only if the equation ¢ (x, y) =1 has a unique

solution y(x),

w

x € X, That solution is then the combinational function

{

generated hy the circuit.

= 1 describes all the steady states 2z' the

circuit g may assume for a particular x € X, Considering then each

such state z'y

L3

the output is thus{ﬂﬁmined as a solution y. of _¢f(§, z', y) = 1.

the response y 1is generated through the circuit f -

”




. s8]

1

2

The;efore, by Lemma 2,3, the possible states of ¥ are obtained as the

19 Iy

solutions to the equation °

<I>‘c(§. x) = 1 | . ? . ("3.5) '

where @2 and ¢f replacé Ql' and ¢2. respectively;rin the Lemma, ’ )
- If @c = 1 has a unique solutiom then a unique response

is associated with each x € X; consequ%ntly, the circuit has combinational

‘behaviour (Définition 3.13).‘ Becau§g of Lemma 2,3, that solution is then

_-the combinational function denerated by the entire circuit.® The converse -

a unique response at x meaﬂs that all steady states g'u (at that 5)

generate the same output state y. But by Definition 3.12 the function

@2 contains -only steady states, hence (3.5) must have a unique solution, |

Ve W o T .Y
Qe lle 'y

Remarks I the function <1>; as defined in Definition 3.12 is not

¥

* > .
available, but another function Qg(g, z') whicl ‘cnrtains not only the
-steady states, but also some or all of the transient ones

. .
( ¢g(§’ z') » ¢;(5, 2z')), then the condition of combinational behaviour

!

becomes sufficient only. That is, if the equation

5 [ or(x, 8) q>'f(z<_, g8, y) ] =1 (3.6) /

n
ge B,
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d k}

Y
N

has a unigue solution then the ﬁhrﬁﬁit has combinational behaviour. -

Again, the solution is the function generated by the circuit,

The material so far presented was intended to give more

insight into the relationship between a circuit and its characteristic

N I3

functions. Also, the tase when a sequential circuit has combinational
P

behaviour with respect to its qutputs has been studied. (See Chapter 5

for illustrative examples),

It is seldom the case, however, that one is presentéé

with a circuit and then requested to determine whether it has combinational

(
\

behaviour. More often the design of such circuits is performed in

1

engineering practice. The problem is then the interconnection of some

7

available building modules (ciycuits) so as to realize a given combina-

]
tional switching function. Thus the following chapter will deal with

the realization of switching functions.

¢
N
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i CHAPTER L4
. REALIZATION OF COMBINATIQNAL SWITCHING FUNCTIONS T
It has been shown so far how Boolean equations can be used f

_ for analyzing combinational circuits, even those containing feedback
loops. It will be demonstrated here that B.E. yield very compact expres-
' sions statlng functional realization, and at the same time unifying the

various approaches to functional decoﬁBosition.

? . 4,1 Introduction

| ) « A decomposition of a switching function ¢ (5) is considered

| .

i . to be a sequence of functions

n (X 2000 B(xor 25)0 eeve (30 2) (4.1)

where

-

(1) z. = x .

(2)4 Y, = {ngr eeov nj_lt}gz_ﬂ |

(3) For every x € %2) for which o(x) is.defined,
n_~ is defined and equal to ¢(x) [21]. Thus

the network realizes ¢ (x).

L4

It would be a rather difficult task to obtain the conplete decomposition

all at once; however, it was shown that the complete decomposition can
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be generated by a repeated application of simple decompositions [ 5, 7,

11, 13, 15, 16, 19, 20, 21, 28 ], having the’form:

o(x) = ny(ny (W, z) y =% z=x (k2
el oz = x .
or Pade ¥}
! 1,1 2, 2 t, t
. ¢(X) = n (nl(z )! ni(.x )l seesy ni(x )’ _E): (14'.3)
B i
Yy = X zZ = X ’
Uyt v oz X
i

ngven more restrictions can be placed on the decomposition by requiring the

sets xi and z to be disjoint, i.e.,

1 j . .
rnxy = £ i F 3
‘:ii ﬂiz = g? i = 1’ s ety k'

o,
The concepts above may easily be extended over a vector of functions

e

pe—" . 3

$(x) = (6,(x)y «ens 9g (X))

Determination of the functions n, and n, in (4.2) was first

]
r

approached by Ashenhurst [1 Jand Curtis [40 ] through modified Karnaugh maps -

so called decomposition charts. The method was then expanded aﬁa brought
into the form of computer aided synthesis procedures by a numbexr of

authors. The decomposition was obtained either through the charts [11, 13,

I
|
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v

15, 29 ], or by:translating the theory into algebraic topological
methods operating on cubical complexes [7,\21, 24, é5, 28, 36] .
Furthermore, either any decomposition was sought, that is, Ny and dz
were allowed to be any fyﬁétions that form a feasible decomposition, or

3
restrictions were placed so that the functions had to be chosen from a

set of available functions realized by some circuit modules, Theorems

were stated which determined Ny for a given ¢ and ﬁz, similarly

n, could be determined for that ¢ and a known Ny (7, 11, 15, 21, 23,

25 ], This type of ‘approach is rather suitable when the actual circuits

are ,to be implemented using in%egrated circuits, where a fixed number of

different conbinational functions is available to the designer. - These
! . . i

functions then form the set of modules (a library) from which the functions

Nyr Ny mist be selected, and by a proper interconnection the function

$(x) realized.
)

The decomposition procedure usually started by selecting the
function n, ;nd an asdignnent (mapping) of x to y, and after that
the function n, was sought by applying the decomposition theory. If
an n, 'existed, it was tested against the set of available modules, and

/

if the search was successful - a module realizing n, was found - then

the synthesis of ¢(§) was completed. Otherwise, the functiocon N, was

further decomposed by the same procedure, and so on, until a complete

&
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. -

decomposition (4.1) of ¢ was obtained. If no decomposition existed for
the ny chosen, thgﬂ another function ny was selected from the set of
modules, and another test for decomposition was performed. Provided,

that the set 6f modules répresented a complete set of Boolean functions,

- the synthesis was completed in a finite number of iterations, described

. above. \"F\\\\\

-

A more recent method of functional decomposition is based’

on Boolean equations [ 5, 16, 19, 29, 26], It was shown that a simple

decomposition can be obtained as a solution to a system of B.E, derived

¢

from ¢(5) and the module function Noe Marin [ 19, 20 ] used the

methdd of Svoboda [ 31 ] to solve the equations, in order to generate a

simple decomposition. The procedure was then expanded into a more ’
]

complete computer program for the synthesis of combinational circuits[ 57];

however, the general solution to B.E. procedure was used [ 3] . In both
cases, though, the decomposition proceeded in a direction opposite to that
used in the methods based on Ashenhurst's work. That is, for a given ¢, the

funetion N, in (4.3) was selected from a set of modules, and then the

2

function ny = {ni} y 1 =1,.¢.y ky, and the set 2z was determined by

sélvipg the equation

$(x) = ny (ny, 2)

for the unknowns n.,, z. The solutions were then tested against the

1




64

(%3

library of available modules, 1f a match was found, @he decoﬂé:sition
was complete, otherwise the procedure was applied iteratively until a
successful realization was obtained. The method has a straight forward
extension for incorporating multiple output incompletely specified

functions y(x) = <¢(x), ¢(x) + d(x) >.

When the resulting circuit was to be optimal under certain

—— —

predetermined criteria, both of the forementioned methods had to use

more-or-less exhasutive searches aided by some heuristic rules, Therefore,

the actual optimal circuit could be ottained in a reasonable time only in
f /
the case of a relatively simple function 1(5). The method of B,E. has

i1
an advantage, however, since circuit constraints can easily be implemented

by adding constraint equations to the original system, The number of

possible decompositions can thus be reduced, which in turn lowers the

— —— e e § — - - e - -

search time for an optimal solution. The selection of constraints can be
guided by the actual circuit layout, fan-out, availability of signal lines,

etc. [5].

<
Another possible way to synthesize switching circults is
/
obtained by formulating the decomposition as 3‘11T@@i{‘0 - 1 integer
programming problem [ 22], The interconnections between gates are

specified as the 0 - 1 variables, gate functions and input-output

cornections then as linear inequalities. A solution to the variables is

L
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-

. ) sought within the system of inequalities, so that a certain cost function
‘.- - represen£ing the designer's criterion of optimality would be minimized.
Even though the optimal solution can be found in a finite number of steps,
the approach requires a very large number of variables, growing at least
exponentially with |§i and IQ}. Therefore, its usefulness is limited

to small problems. \

q\\\\\ A rather compact form of the decomposition theorems can be
obtained by applying the theory of Boolean differential calculus [ 26, 34 7.
-Although the description is formally very concise, the computations in-

volved in solving even a simple circuit are quite complex, not suited to !
|
|

practical problems. (Generation of prime implicants, etc.)

It will be demonstrated here, that an extended application of

the theory of B.E. to the problem of functional realization and decomposition

yields both formally and computationally feasible formulae. The theory
is,rather general, incorporating the various directions taken in the

synthesis procedure gﬁrem»—iﬁputs to outputs and vice ybrsay, as
well as allowing for the function modules to be sequential circuits. It

~also covers the synthesis of mgltiple output incompletely specified

functions; any circuit constraints cafi be implemented in terms of

LY

additional equations as in [ 5], since the procedure is unified under

. ’
3

L
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B.E. Moreover, the concept of degenerate and direct transition circ-uits

is i‘ntroduced, and an important conclusion about the necessity of feed-

back loops 4in such circuits is derived. '

L,2 Realization of Switching Functlons

J

Let an incompletely specified function

e -

y(x) = <g(x), #x) "+ dlx)>
be given, and let a realization of that function by a circuit C be

considered, as shown in Figure 3.1, Definition 3.1, That realization

i

would™ occur if the responses.of the ecircuit map into the states y of
the function (the permissible states) for each x € }312”. Thus the first

assumption to be made is that the set X of possible input stimuli is
— } _ L

the whole space B;, unless the states in X are covered by di(_g),
w
£ =1, +eey q. To simplify the discussion, X = BJZ: will be assumed

since the modifications required for the other case mentioned above are

rather minor. (In case that X ‘:Bg, the set X would also 1imit the

¢

function - y(x).)




‘ Definition 4.1 -
, L

’Thé circui characteristic function @.(x, y) of C 1is
defined so that the solutions to the equation @C(g, y) =1, o€ X are
the possible steady state responses the circuit may generate for x = o € X,

provided that the conditions of Definition 3.11 are satisfied.

«
As shown in Theorem 3.3 and its proof,

b -

g = r ke 8) cegx Bay) s O ()
NN 2 e%; |

however, a sequential behaviour is assumed in general, hence q)C(E’ l) = 1

need not have a unique solution y(x).

*
L o 1f the function, @g(zc_, 2z') (Remark to Theorem 3.3) 1is used

instead of (b:(gg, z') in (4.,4) then all statements which will be made

about functional realization/decomposit'ion becone -sufficient only.

-

(The same reason as the one stated in the above referenced remark).

’,

Note, that <I>C(>_c_. y) = 1 1is always consistent with respect
to solutions y = I(i)' since it represents an actual circuit which has

[ at least one steady state associated with each x ¢ X.

et * !

-l



. Definition 4,2 :

The output characteristic function ®(x, y) is formally
defined so that the equation (D(g, y_) =1, o € X, has gs ilts solutions
such states of y which a circuit C 1is pemittéd t_g)ssume at most
f as its steady state res;onses at that x = o € X, If a particular

: ) ‘
circuit C satisfies this condition then it is said that C realizes

.
P{x, . )

e e e e

) !Lemma 4,1 e

A circuit C realizes &(x, y) 1iff

#o(xy ) < o(x, y). (4.5)

t

Proof Let y bea reéponse generated by C at x =o. Then

~

%(=x, y) = 1. But C realizes ¢ , hence by Definition 4.1, ¢ (a, y) = 1.

i

If vy cannot be generated ‘by C then (I)C(g, X) =0 and y may or may

~

not be in ¢ , Therefore, @C(zc_',' 1) £ <b(§, 1). The converse is proven

similarlys <I>C < ‘d> implies that the responsesof C are’ solutions to
A

9 =1, hence ¢ is an output characteristic function, in other words,

C realizes ¢ ,

AN _ QoE-Do



' Theorem 4.1 1 Realization of y(x).

The function y(x) = <¢(x), _Q(gc_) + d(x)> 1is realized by a

circuit C if and only if the output characteristic function

R — — — — ] J— S —
: —- - - - - - —

= QO

o(x, y) = Cyg = 0@+ h 0 50 + 4,(x) ] (%a6)
1=1 :

is realized by C, that is iff

oolxs ¥) < o(xy y)

Proof The specification of y(x) as an incompletely specified

function can be written as a system of Boolean relations®

Y.

i 2 ¢i(5) and vy,

i € (bi(_)E) + di(_)ﬁ)v i=1, ooy g,

which have to be satisfied simultaneously. By Lemma 2.1, the characteristic

L_ i __ fungtion of the system is the function (4.6)., That is, the solutions

r ©to (e, y) =1, @ eBg are the permissible states y of the function

;
y(x) at o. Therefore, the realization of ¢ 1is equivalent to the

realization of y(x) (Definition 4,2), since (bC(_)g, y) = 1 is consistent,
Consequently, the function4 l(gc_) is realized if and only if
4>C(_;5,—x) <€ ®(x, y), by Lemma 4.1, (Note, that o(x, y) =1 ‘is always/_

consistent), \

" Q,E.D.
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—— °

. Let now a cascade realization of y(x) be considered as
shown in Figure 4,1. By a repeated application of Lemma 2.3, the overall

circuit characteristic function ¢C(5, xk) can be obtained as

ky - k-1 _k§ ' - -
¢C(_)Sv N ) = L ( ¢Ck(2c-’ B ' Y ) ‘ % ( (I)Ck-l(')s' ﬁk '2' _B_k 1)
Ek—1 g B%k-l . Ek--2 e B%k-—Z
1 .2 1
\ - " e I (<b2(3<_,g,g) . @1(5,g)) vee))  (B.7)
q
,gl e le

B o o ot i )
And hence if ¢.(x, y sT(;_,‘f"r*W—mmm&%eem@:h R
at the network from the cutput side and taking each Ci separately, then

/ .0 (x, lk)‘ is realized if &, (x, Ik-l. xk)g ¢ (x, xk), provided that ’

the output characteristic function ¢ k_-l(_)g, Xk-l) defining the permissible

input states of Ck is realized by Ck—l' l.e4y

v

s ,
k-2 k-1 k-1
- T d)c k_l(i' ¥ —L ) ‘< q)}\__i(x’ NA ) ’
. . k-2y . .
which holds provided that ¢ k-z(l(-’ N ) is realized, etc., until
| o ,(x Il) is realized by GC,.
-5 1 = 1
The particular output characteristic functions ®i(5' Xl) can
be derived as stated in the foll‘owi:ng Lemna, N
e = _ }N -
) — N
Lemma 4,2 + Determination of (Di(i. ). (Figure 4,1),
’ Let QEi(I' Xi, y) be the overall circuit characteristic

function of the combined circuits C'1+;1' cery Ck' Then the output
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1
z ‘r
- LA Gny) = ex,y) N
) eyl .
- | | e3Coyiy)
5N ; .
— } 3
e Characterization by |d] * 'o(x k=2,
w ’ YI%i ’ k=103 T5y
, RMED o
} r \
1
f
x |
{ ! ’ k_
1 2. 3| k-2 k-1 Y- é
C v Ck

C < C — ~. X. ‘
L ey 2 = 3 - e S e [ S—
M *co c3 4 ®ck-1 ?ck
RN Y, " v
N ‘Dl(i,xl) ,
& ¢>2(§,zz)\h
. 23(x,7°) : '
. aracterization by ¢4 .
[ ] ’ o,
. e q)k_l(xa k—l) :L
N A2
! o1 (.79 = o(x,y) .

-

2

y)

14

“»
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. . characteristic function ¢i is equivalent to the characteristic function
+ s -
of the relation q)Ci(-)S’ v, y) € o(x, y), assumed valid for all

y € B, That is,

[

L3 _+ i ’
q)i(}_' ll) LT I [ QCi(?ﬁ' Y ﬁ) + q)(ﬁv E) ] (4'8)
B €52
and
. N (1)5 There exists a circuit C which cdmpletes the realization
of y(x) iff d)i(ﬁ, y') =1 is consistent for solutions
o i .
\ - .
J |
(2) A circuit € represented by its circuit characteristic
function ¢4(x, y') will.complete the realization
, P’
iff (X, ¥ o< oy (x, ¥
- - o ) s o
Proof : The second part can be proven as follows:

(2) Assume that ¢C(3c_, Xl) < <p..l(§, Xl). It will be shown
. that such C completes the realization of x(_}g) By
Lemma 2,3, the combined circuits C and Ci+1' coey Ck

Have the overall characteristic function

(I>é(z(_, X)‘.= L ay L (DC(-).E' 5_) ! ‘D’Ei(?‘fo 3, X) 1.
» ) B € 52



<

Thds by Theorem 4.1, y(x) is realized if ) o

-t
®ulxy y) + ®(x, y) = 1 identically.

After substitution

o

-

T (0(xs B) * 05 (x, B, ¥) *+ o (x, y)
a

g et
— ’—+ i
=‘«, n ( ®C(_)_(__i _B_) + ' d)Ci(Zl E' I) + (b (5’ 1)) = 1
€ qu «
E 2 © . (4.97)

The equality must be satisfied for all x € X and Y e B2, . e
Therefore, from (4.9) - }
“w — -+ ) .
i ¢b(§3.§) + @Ci(z, Bry) + o(x,y) =1 identlcally‘ .
i

. a; q
for all B e B2 and y € B5« In other words,

— - ._+ i 0
I [ q)c(_)sv E) + 0 Ci(?—(-' B X) + (I)J (_)Sv X)] '
€ B; "
- , ! . : \ f
—— '-+ -
= o) v+ N[ (x,Bhy) + 0(x,¥)] = 1, V8.
° ’x e BqL —— ° y4
' d 1(‘1“2! P_)

It is equivalent t6

¢ C(E' E) d;¥¢ i(_)ﬂv E_)-

v

. q. .
" which must be §§tisfied for all B ‘e 821; however, that is

- []

Rl o

&r /



b

4
7

guaranteed by the initial assumption. Therefore, C completes

L)

‘the realization of & . N

To prove the converse, let it be assumed that C completes .
. the realization, Then the equality (4.9) is satisfied identically
) \
by Lemma 4.1, which leads to @C(ZT B) < ®i(5’ B) Tbeing

-~

q.
.satisfied for all B € le. Hence

Do B ) < T 0k p) -+ ag(yh).

B&B, , Be B,

2o(xy ¥) < 0 (x, 1)

(1)  The proof of the existence of a ciIcFat is derived from the

;o i ° v
- proof of 2, as follows:

.+ Given any circgit C then its characteristic equation
QC(g, Xi) = 1 1is always cOng%ste%} for x € X (Definition 4,1)..
Thus 1f 9, (x, ) =1 s inco;sistent, ‘i.e.,
éi(g, 1}) = 0 identically for some « € X, then

<I>C(g, _Xl) < @i(g, Xi) = 0, however, it implies

° @C(g, Xl) = (0 identically, meaning that @C(K, xl) =1 is

o

. inconsistent at «, a contradiction.

*

v ’ Q.E.Do '
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-+
Remark : If 0 (x Ii, ¥) =1 has a unique solution y(x, Xi),

-

that is, 1t represents a combinational circuit, then

o (x,y") = T[0T (x, ¥y, 3) ¢ o(x,8) ]
L :
L= m [ Lyt ¢ e(xp) 1.

q
E'L-EBZ v

A rather interesting consequence is obtained by abplying

. 8
Lemma 4.2 for 1 =1, «.., k, namely, it can be shown that if the ,
- ‘ .

ordering - “

&
[

-

1 .2 i
q)Cl(Ei Xl) RS { ®C2(_)_(_’ I 1] I ) <, [ @CB(_}S_’ \X ’ 13) LA

k-1

e s (ol YL YN < 0 1) D) (00)

9

is satisfied for all_x€ X, y € B, , i =1, ..., k, then the cascade

network of Figure l.1 realizes the output characteristic function @(5, x).

2]

By looking at the network of Figure 4.1 from the C1 end,
and by assuming that the circuits Cl’ C2, eeny Ci-l are.known, then.
the output eharacteristic function @ !(x, Xi—i;'x)‘ which defines the
permissible states of the remaining portion of the network (Ci’ ""/;k)

‘

can be derived as follows: e




,‘Q'

4

.9

Lemma 4,3 1+ Determination of @i(z. xi-l. y). (Figure 4.,1) _
- * 1-1 * -
_ Let (bCi—l(-’S’ ¥ ) Dbe the overall circuit characteristic

function of Cl" CZ’ ooy Ci—l combined. Then the output characteristic

function q>£(5, Xi, x)  of the rest of the cascade is glven as

-

q’{(?_(,v M

§ - *
* 11 X) = q)Ci—l(')E' X

N s s y) (€% 55 —

That is, a circuit C characterized by @C(E, 11-1

, y) will complete

— —

the realization of ¢(x, y) iff

i1

(bc(_)fv Y ’ I) ‘ < q’j'_(z(_o Y

Note, that &' =1 is always consistent - any circuit which realizes

'
i

¢ will realize cbi too.

i—l, }[) < @i(iy }[i-i. I). By Lemma 2.3

Proof 1 Assume @C(z. ¥

and 4,1 the oirtput characteristic function ¢(x, y) is realized if
] / :

i * '_1 ._1 h
g [0 106 BT« oo 870 )] ¢ olxy p) (4.12)
. n.-1 .
i-1 i
B e B, | _ & ~
rs
That is, if = -

il
—

)

—¥% —_T — =4
2oy 4(xs 8} Do+ ez sty 4 (% y)
) N

identically for all _8_1'-1 € Bgl-l, which 1s equivalent té
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B — - o _ -
. at Ei 1) 1-1 .

-1 Lt ]
. (DC(")S, — ’ I) € Q)Ci-i(z' + (1)(2(__!,; i) = ¢;.(»§t E_ ’ 1)0
— * / - —;"‘)’ )
HoRever, that relation is satisfied by thgfinitial‘hssumptlon, thus ¢ .
is realized. .:é-

-~

s

The converse follows from (4.12) by a similar procedure as

z

o . in the proof to Lemma 4,2, f

i A

) . ' Q.E.D.

K 5

¢
In order to conéiaer a geggyal type of a network where the
<& ¥

-

function ®(x, y) is realized by a combination of a cascade and parallel

. K - ‘
- interconnection of circuit modules (possitly with feed Yorward lines),

" ] .,f‘

* let the purely parallel case as shown in Figure 4.2 be analyzed first, -

The primary inputs x are assumed to represent all input lineg, some

—- _ - -

-~

possibly coming from the preceeding logic levels of a cascade, —%he

|
outputs Yqis ¥Yp of the circuits Ci’ CZ' respectively, form a disjoint

partition on the set y, i.e., P

—_————— = e -

(%

Y = ¥ Uy W ox = 8.

Furthermore, let <bc1(§, X1) and ‘902(5' Xz) b? the corresponding

® )

circuit charabteristic functions of 01 and CZ' Since the circuits

operate in parallel, the overall circuit characteristic function is the R

PR S
e o 4 w_ -y

characteristic function of the system of simultaneous equations

/ € >




4)01(5! 11)
that is,

Oaq(Xs ¥4)
Thus ¢. 1s realized if

and -

%ea(%r Xp) ¢

78

VOx xp) < 1

Q)Cl(Z(_v ll) . _QSEEQC_' 12)_ < ¢ (E_' Ly Xz) .

Assuming now that only 02 is known, then the output characteristic

Y

function ¢1(§, 11). describing the limits on the states C, may° at

4

most assume is obtained as 1

-1

r

%

2

' L\
\~ ——————characterized by ¢ 1(5. 11)
Yi ’
/7*’777 T Ty T T T
_ Y=y, U x

e R L ey
}[1 n l2'=¢ ’

Y .

IX1|+1X2[ q1+q2=q=|X|



That is,

(1)

B 79
/ R .
Lemma 4,4 1+  Determination of ¢1 in parallel realization (Figure 4.2).
Assumning 02 being known then o
% -
o (x, y4) = I [ ok, p) + o(x, ¥y, 8) ] 0 (B13)
q2
8 € Ez e

The realization of ¢ may be completed by some C1 iff

@1(_)5, 11) =1 1is consistent with réspect to solutions
¥q(x).

A circuit C, represented by @Ci(}_, Ml) will complete

-

the realization of ¢ iff .

Similar to proof cf (1) -in Lemma 4.2,

Assume ‘PCl(gg_, 11) < <I>1(3<_. 11). ® would be realized if

[ ¢C1(§: 1)t ep(x ¥,) 1w olxy ¥ ¥p) (4.14)

that is if for all states of y, and Xza

4)01(25_1 Xl) + (I;CZ(?_(.' 12) + q)()_(l 111 :&fz) = ‘1

identically. Or equivalently, if 0
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m L 501(25’ 3) * P(x, B) + 9(x, Yy 8) ]
ge B%Z ‘
= 0z, )+ T Do 8) + ox,y,p) 1= 1
2 ‘
Be B y
1 | »

whixch is satisfied by the initial assumption,

To prove the converse -~ assume that 01 completes the
realization of ¢ , Then (4.14) holds, by Lemma 4.1, and

- *{4,14) is equivalent to oy € ), as shown above,

Q.E.D, ,

Remark 1 If QCZ(E’ xz) =1 has a unique solution 12(50; l.e., it

-

represents a combinational circuit, then (4.13) can be replaced by a

simpler expression :

a q)l(l(" Xl) = ) [ @CZ(?SV E_) * (D(Z’ Xl’ .R.) ]' !

Finally, a general theoren of functional decomposition can be

1S

stated as.a combined application of the preceeding three Lemmas 4,2, 4,3

and 4,4, For that purpose, let it be assumed that an output characteristic

function ¢(§, l) is to be realized by a network as shown in Figure 4.3,

e o -
Furthermore, it 1s assumed ﬁ%at a partial realization of ¢ 1is attemnteq

/

7
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. ’ ] s

using some particular circults Cl, C2 and C3' and thus ié is required
to determine the permissible steady'output states for Cg, so as to
complete the realization. That is the output characteristic function

ca 2 1 2y .
¢ 2(&, 1', IZ) is sought.

x|
| N 2 ]
AT
ci L ) »
= o
. ! Yy L9 (x,y)
1 c, /——>
Y | ®c2 3
L= C, — .
1 2
y - 2 2
ey y =y Uy, :
\ c1 -
. 2
L ~—————characterized by 9,(x, ¥+ ¥p)
FIGURE 4,3, ILLUSTRATION FOR THeOREM 4,2,
Theorem 4.2 : Decomposition. (Figure 4.3), ’ !

-

Let ¢(§, 1) be an output characteristic function to be -

«

partially realized using some clrcuits Cl' C;, C3 represented by their

o

circuit characteristic functions ¢,(x, x}), @éz(z. xl, 12).\

-

¢03(5' 12, I)' respectively. Then the output characteristic function -

P

¢§(5' 11, lg) describing the permissible stapes of the still unknown
¢ .-

! [

e o

.
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CS is given as

*

2 2 —
! 25(xs xi, ;) = O [ 2q(x, 11) + ¢é2(5. 11. B) -

q21

8 € B _ .

oo (503(5. 8, xg. y) +  o(x, y))] (4.15)

o y € B%B
~
That \.S, * *
(1) There exists a circuit Cz which would complete the realizatipn
o : 2 12y .y . . |
_/of ¢ iff ¢>2(_>5, Y }[2) =1 1is consistent with respectb ,
t Tuti 2 1
o solutions y,(x, y ).
(2) A particular C2 ted by 0°.(x, yr, v2) will
particular o represente Y o2 Xy Yo Y, wil
complete the realization iff
02 YD) < oy D L mae)
(X Y Xp) < e ¥ Y, .16)
Proof 1 A'p;'ﬂy Lemma -44,2 t}:)‘ get tne characteristic function of the
combined circults Cl' C;, Cg. then Lemma 4,3 to characterize .
‘12 - 2 s ’
(Cz, Cz), and [inally Lemna 4.4 to generate ‘D? as specified. The
. X , N
. existence of solution condition (1) is carried ovér from .
<3
» .
.Lemma 4,2 and 4,4,

<

Q.E.D.

R o . -



For further illustration of the methodology the following

corollary is included here.

Corollary 1 1 s
- \

Assuming that the circuit CZ is known as a partial realiza-
i
4

tion of ¢, the output characteristic function ¢*(5, Xl, lgv l)

describing the rest of the network is obtained as

* 2 —_—
,(I) ()_(,v liv sz ,‘[) = d)gz(?s' Xlo Ig) + @(2(" X) (’4‘-17)

1 C, is represented by the overall characteristic

02, 3

That is, if C

19
* 1 2 . . . * *
function ¢C(5, I XYoo y) then ¢ is realiged iff &,< ¢ .-

Proof + The proof is similar to those for Lemma 4.2, 4.3 and 4.4,

4

v ? . "‘
./ . ] . é

© “

2

Remarks :

4

. \n -
(1) Depending on the presence of either of the circults Cl’ Cg

4l "

C in Figure 4,3, the theorem degeherates into one of the

3 .

preceeding Lefwias. ’

-

!
(2) A1l the circuits involved may in general be of a seque?tial

. - N 1
character, possibly with oscillations, provided that the

corresponding eircuit characteristic functions properly

i



L g

describe their steady states. (Definition 4,1). In some cases,

howevgr, the theorem pléces a stronger condition on the

realization than necessary. It is due to the fact that some
~N

inmput states may never occur (they are not generated by the
preceeding circuit as its dutputs), and thus some input

sequences may not ever occur either, even if the problenm
o

L'}

T T " "inputs X are varied at randonm. Consequently, some of the

]

steady output states of the partieular sequential circuit nay

. < 7
not be reachable, and hence the cirguit could then be

represented by its effective characteristic function ¢ C eff

It means, that the Theorem i.4

o] <
such that é off ¢ o

i

as well as the Lemmas 4,2 and 4.4 become sufficient only, ' |

El

since there certainly may exist cases such that

¢, However, ¢ cannot

® <9 55‘
r ut C eff

<
C C eff

be obtained a priori, especially in Lemma 4,2, since the
preceeding circuits are not yet known at the time of

generatiﬁg their output characteristic function., In C%Fe of

A

Lemma 4.3, théugh. ¢ C off could npossibly be obtained using

) o (Definition 3.3).

.

3

(3) ‘ A complex multilevel realization of x(g) can be obtained

by a repeated application of the decomposition theorem or

S—

P
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its degenerate forms, the lemmas.

(4)  Any feed-forward line from a Jower stage to a higher one

z. A
4
- , &

(e.g. from C, to Gé)& can be incorporated as a circuit

'

described by the characteristic function of the equation

of a pure interconnection (e.g. y? = y{).
1 ’ J

N

(5) Ang combinational circuit (without feedback) which is to -

——

realize an output characteristic function b(x, y) can
be obtained as an elementary solution of the equation
®(x, y) =1 by any method mentioned in Chapter 2. In

' /

such a case then, the Lemmas 4,2 and 4.4 represent

implicitly +the decomposition procedure-as used in N
. K3 )
[5, 16, 19, 20 1. Hore precisely, the particular decom- .
e} ’ ¢

positions are obtained via the expreésions as stated in

'
i

the Remarks foliowing the above referenced lemmas.

¥ The last Theorem (14.2) has completed the discussion covering

“~
y

the realization and décomposition of combinational switching functions,

The next section will investigate thg inside structurc of a sequential

I

circuit which is to realize a given output characteristic- function,
. )

-

Namely, a more detailed study of the presence and necessity of feedback
4

3
Y

loops in such circuits will be performed.
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L.3 Necessity of Loops, Degenerate Circuits
N

In the previous sections, qll‘circuits were assumed to be
gen&%gily of the tyne shown in Figure 3.1 (possibly with feedbaékiloops.
stable or osci]latary), and éepresented by an oyerall clreuit
characteristic fuﬁction relating the steady s%ate outputs with the

input stimuli. Further investigation will now be made into the necessity

—_—_— e

of closed feedback loops inside such circuits, It ﬁif] be shown, what
the ch?racter of a circuit with loops sfould be, in order to bring any
saving on gates as Fonpdred tolpufely combinatignal circuits realizing
the same function. That such circuits exist was shown %n examples by

Kautz [ 14 ] and others [ 12,-30]

3

Let it be assumed. that an output characteristic function
»

® (x, y¥ 1is to be realized by a circuit C represented by o C(;’ ¥)e
(Definition 4.%, L,?, Lemma 4.1). The discussion can be limited to ;he
case where the circuit f(x, 5‘) of Figure 3.1 1is just a pure interconn?c-
tion, i.e., y = 2', Dbecause any other case may be transformed into this
one by applying Lemma 4.2 with 1k =2 and 02 jeing £. us the new’
oytput characteristic fugction is'to be realized by the circuit ‘éh
Therefore, in general, the circuit C “may g; Tep{esented by ;I' = 5(5, 1),
| xl = q (a Moore machine), where y is the present and y' the next [
N -~ . ¢ ‘ .
output/internal statte of C. Algg,, b 0(5,\;{) = cbg(lc:, y) (Definition 3.12,
k.1). ‘ - -

,
»
13




5
" < ]

.

Theorem 1&.3 : /* Degenerate circuits with feedback.

>

" Let y' ='g(x, y) represent a sequential circuit C realizing

-

an output characteristic function ¢ (x, y). If there exists a state ,
: -
- 1

Y € Bq such that

2
" ~ - N
¢ (x, g(xyy)) = 1, S (4.18) -

. / : '
identically, then the circuit g is redundant in the sense that it can be ”
made to deg¥merate into a purely combinational circui® (without feedback)

“ g -
represent®8 by g*(x) = g(x, y), also realizing ¢ and having lower
complexity than g. | , ] \
Note that the state g*(x) = g(x, y) for some x eX nmay
be a transient state of the pnginal clrcuit. \l_
" . o ’S
: © ’
Proof 1 It has to be shown that (1) g*(x) realizes ¢, and cr P
* A :
(2) ° that the circuit g’*(z) obtained by freezing the “feedback inputs
of g(x, y) ab y =y has a lower comdlexdty (gate-lead cost).
(1). Since g* represents a purely\\m[n%inational circuit then
* - -
oy y) = 01 (v cax)+ oy E(x)
C 1=1
- | ) \
{Definition 4,1, Theorem 3.1.)
6 . [
b L



: &) = glxy) = I s (x) r b (y)

>

. 83

Assuming &

¢ (x, g(x, x))l = o(x, g*(x)) = 1

. »*
-¢  identically, thend)c(_{,, y) € ¢(x, y), because

. :
¢ (%, y) =1 has a unigue solution. Therefore, g*(x). \

.
- .

] realizes ¢ (Lemma .§,1).: *

< -
4 >
”
-

(2) Let it be initialiy assumed that the internal structure of
s Y
' the circuit @X) corresponds to a simple sum of

product form of the function g 1

}’i - _81(3‘-’ y) = pX sij(\_)g) . tij(x)f . 121, veny q°

.y €T
J i

-

¢

where s.l_j(zc_). ti'j(z) are the jth (in the sequence of

wtit{ng) products in x and y, respectively, T,

being the index s

of terms for each g.. Thus for every

That is, ' -

g{(?_‘) (x) » . ) ) "1 =1, Jeey q

[
m ™
o0

wv . —

Ad

<

o



™

A

" Clearly T} e T;» for all i, Therefore, the implemehtation

where °* \

} T? = {j|je Ti and tij(x) = 1},
4

&

of the circuit g* will require at most as many AND gates
1] ‘

L ] o
as g, but each gate requiring lower fan-in because of the « |
4 . - r
missing Qerms tfj(z)' Also{ the OR gate would possibly

have a lower fan-in, Consequently,’the resulting circuit

g% will te less complex than the circuit g. Moreover,
hd v
the circuit wopld probably have a faster response than that

< .

with feedback loops, s@ncé\\g(zm x) may have a number of

’

S

transient states to go throﬁgh befone reaching a steady

= 4 : ..
state. '
<,

/

If now the internél-structure of the circuit g is
” 8 . .

represeﬁted by some form o%her than LIl y a procedure

similar to that above can again be applied to produce g*, «

b .
whose implementdtion will always require lower®fan-in of

the gates evén if the total number .of gates should stay

the same as in g.

Q.E.D,

-~ 6’ !
The theorem yields some rather interesting results which are

> e
-

sumnaTrized in the followijng corollaries

¢ . .U
o ¥ kY
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Corollag' 1 _— Y ' 1‘
< ) ¢ "
) Any circuit y' = g(x, y) with feedback having
~ : . . ) [}
.z ‘ \ -
N ‘I’g(lc_v y') o< o (x, ¥') _ '\_\q. i & .
zZ ' ' g 3 ' “\
where @ g is the next state characteristic function (Definition 3.4),

O . kY

is degenerate with respect to that $ . Thus all 0—-.transition‘ circuits

¥ - ) hd @

(Definition 3.10) realizing ¢ are degenerate, since

“

L]
@C - q)z
g g

is such a case. (Any choice of y €Y will satisfy (4.18)).

4

Remark 1 Circuits with ¢ ° < ¢ will be referred to as direct

° & .

transition circuits, because any transition from an unstable state leads

directly to a state covered by ¢ .

~ -
-
. -

Corollary 2 : . R

\ »
. . v

, Any _sequentw y* = g(x, y) which realizes some [

¢ (x, y') ,and is not degenerate must satisfy !
. N ﬂ Lo

(1) @C(z. y') < o(x, y') so as to realize ¢.

LS

(11) For each X‘Jr‘G"Bg there exists a state o €X such

that

il

-

el
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‘\

®(a, gla, y)) = 0 _— o (4.19)

*c

(If not then that y satisfies,(4.18) + degeneration).

'

(111)  The (next) state glo, y) satisfying (4.19) i a

transient state. (Otherwise ¢ would ¥t be realized

» ' S

- condition(i)).

v

-

(iv) Ix\ 2 2 + there exists no non-degenerate sequential -~

circuit if {y| = 1.

Eg;ollagx 3 s .

2
»

As a consequence of Corollary P above, ahy circuit g with
feedback which is to bring about any savings on gafes as compared to a
purely combinational realizatioﬁ‘of ® (without feedback) must have
transient states not covered by ¢ ., That is, such a circuit is
¢

inhereﬁtly hazardous during its transition periods. If this would be
consldered as an undgsirable property for some applipétions.then the
circuit having a minimal number of gates ﬁust be sodgh£ only aﬁgng the ; %
purely combinational realizations of @ . As such, jts functional

Q ' i

representation y' = g(z), is one of the elementary solutions to the

equation ¢ (x, y') = 1. (This 9pproach was used so far in all existing

synthesis procedures, giﬁher explicitly or implicitly).

1

&
\\\ G
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-

\ ~ -
. . The design ‘of non-degenerate séquential clrcuits satisfying

<

N 5
certain criteria.of optimality is considered by the author as a tpple

of its own, and as such it is beyond the scope of this pre;entation.
‘Nevertheless, an ezcample of such a circuit was shown. by Kautz [ 14 ], and it

will be analyzed in BExample 5.3 of Chapter 5 using the author's methodology.
. [ '
As will be seen therein, the transient states are in fact induced by the spa-

Q iterative structure of the circuit. Mos‘;t of these states are not covered

by the corresponding function ¢. It is a non-degenerate sequential circuit

-with hazardous transition periods.

i

Although it was shown that direct transition circuits with

feedback are always degenera';z?, and as such they seem to have very .,
{ -

. ~
1ittle practical value when minimal realizatlons are sought, their

»

generation is at least of theoretical ipterest, especlally since they

-
relate directly to the general solutién of the output characteristic

&

equation ¢ (x, y') = 1. Thérefore, a discusslon covering the topic

will conclude this chapter.

‘ . /
Theorem b4 3 Direct transition circuits. (’.‘7}
w

™ : -

Let. ® (x, y') = 1 be a consistent output characteristic

equation, and y' 2 n(x, p) \its general soTution (Definition 2.5).

® !




. . . 93

. N
\z’ . ,\~ l¢‘
Furthermore, let “p = ﬁf)_(, x) be any Boolean function of x and y.

, r
"Theti the functlon’ S,

2

7

¢ 4

y' o= g(z‘. ¥y) = nlx, plx, y)) .

b

34

represents a diregt ‘transition circuit reaiizing (D(g. X)' Conversely,

for any direct tr?fnsiti'on circuit y' = g(x,'y) realizing ¢ there

i

exisbs a function p*(x, y) such that

ﬁ(}fy I) = n_(zc_. E*(l(_v I))'

Proof : |,  Assume the Lowenhein's form of n (x, p) (Section 2.3.3)1

A

¥ g o(xn) = o(xyp) s 0+ o(x,p) " £ (x)

it

where £ (x) is any elementary solution to o (x, y'¥ = 1. Then

i()_:x) = ¢ (x, p(x, y)) « p(x,y)+ 3(35. olx, y)) « & (x).

.kT/o prove the firSy part, it has to be shown that for any present state
Y '

. T
-+ Y* the next state y' is such that ¢ (o, y') =1, oe B, o s

1

~

“(a) oL* 1is such that

(D(g' R(O_h f)) = 1,

then ‘(k

' = play, y) > o(e, y') = 1. o
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L) 1

(b) y* is such that -

i
T L

¢ (gv' 2(2. I*)) = O '

'tﬁen

) ' = e(x). , \\\

<

But £(x) is an elementary solutién to -

/s

(x,y) = 1+ o(e, y') = 1.

.

Thus all- the states g'en.erated by g {steady and transient) are contained

’ in ¢; therefore, that g 1is a direct transition éircuit with respect

IS

to  o(x, y).

-

The converse of the theorem : Let y' = g(x, y) be a direct

transition circuit. The choice of p*(x, y)} = g(x, 1{3 will make

. 3
glx, ) s

! E(Ev P_*(?Ev X))

]

n(x, glx, y)) o(x, glxy y)) * &(x, y)

B g ¥)) o (X)

But g 1s a direet transition circuit, hence

£
‘I?_t

o(x, glxy y)) = 1,

‘

¥x and Vi' thus

n(x, glx, y)) = glx, y). \ -
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;
¢

The class of direct transition circuits could be enlarged by
1 . t
permitting the transitions from the states contained in-

Yy = 83 (v Yy )

- A

to be don't care (unspecified). However, if the circuit would accidentally

enter a state contained in Y (say, at power-up time) then the response

-

of the circuit is unpredictable (a reset mechanism required), The
inclusion of Y states does not alter the result of Theorem L.L,

provided that y €Y, hence there seems to be no.reason to elaborate on
- \ ' s
direct transition circuits any more. It should be noticed,  though, that

5

if p(x, y) 1is chosen to depend on x only, 1i.e. p(x, y) = p(x),

then the resulting circuit is purely combinational - all elementary .

i

solutions to ¢ (x, y) =1 can thu’*s be obtained as in [5].

-
<

s _

v -
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CHAPTER 5.

\
( COMPUTATION TECHNIQUES AND EXAMPLES

=

r

The purpose of this chapter is to show some examples
illustrating the use and power of the methodology developed in the

previous sections. First, however, it is necessary to specify certain
T

techniques and tools, through which all the computations involved in

solving actual problems cowld efficiently be formulated. Two approaches

v

will be considered here - for problems withifew variables (< 6) Marquand

-
maps will be used to represent Boolean functlons L 5, 16, 17, 27, 31, 32] ’

\

with all the necessary operations defined on them. Problems which invplve

a larger number of variables (>6) will then be solved using algebraic

techniques. » That is, cubical complexes with the associated operations

2

will be employed [ 7, 21, 24, 25,' 28, 36]., The reason for selecting the
algebraic approach for larger problens is rather obvious - map me}hods
require‘the construction of large maps (6 variables - 64 bit map),
even when the particular B&élean function is‘expressable algebraically
as a single product térm [26]. Also, the algebraic method provides a
simple form for describing computational algorithms in a way similar to

a progrémming language. In turn, an advantage of maps for smaller

prqblems isgtheir visual information content - properties of functions

!




' | : : o9

2

L]

. '

and mutual relations Gtheen them (e.g: < relation) can easily be

recpgnized by visual examination of the maps.

'

- |

5.1 Map Techniques . '

: ) . L4 .
From the large number of possible map representations of

Boolean functions, the so called Marquand map will be Used here because

n

of ‘its simplicity of consgruction;‘ its format remains the same for
different number of variables. Also, such a nap is suitable for solving

Boolean equations (S%ction 2.3.2) [s5, 15, 18, 19, 26, 311
¢ .

The rows and cofumn§ of a Marquand map are labelled in an

increasing order of minterm identifiers. E.g., considering L variabvles,

the minterm X, X, x3 X, has the identifier OOOO2 = 010 H
Xy %, x3 Xy, 11112 = 1510. If the general circuit of Figure 3.1 is
. {
cgnsidered again as the model of the circuit structure desired, then ,

> - 'S
four types of variables can be recognized: o
(1) Input variables X, 11-1.
(2) State variables - present state z.
— L'y
/ (3) State variables - next state z'.
z ‘ ’ .
. (4) Output viriables Xi .

’

S K o | ,
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L

. The maps of a given problem will always be orgaﬁized so that the current

. .
independent Vigaables will label the columns, the dependent variables

/¢
then the rows of the maps.

#

Operations on Maps

' Negation of a function ¢
Intersection of ¢, « ¢2

Union b, + 0

1 2

\

¢, 9 relation

2

T

f  o(x, y) =1 isa B.E.%?ilh X

dependent variables; +the map of

“the states of x, the rows by the

[16, 26, 21 ] _

(1) The equation is consistent

is no all zero column in t

o

M

bit by bit complement of the map .

dy

- blt by bit AND of the maps @1, >

<~

bit by bt OR of the o&,, o

“

10 %, maps.

either ¢1 * @2

v

results in a map

with all zeros or by inspectlon that

(XY

any time 9, containsa 1 ina

pérticular bit then ¢, also has a

Al

1 there.

being the independent and y the.

' 3 ' N
® having the columns labelled by

o - :
states of y, then 1- (Chapter 2), =,
~

-

&

for y = y(x) solutions if there

he map.

o
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(2) The equation has an identityrsolution y =y € Bg «if there

is a row containing all 1's.

s

(3) The equation has a-unique solution if each column contains

o r o~
.

exactly a sing}é 1.

- L

A ) ‘ ! - .’1'
., (4) To obtain elementary solutions,the method of Svoboda [ 26, 31] -

¢ may be used, For a general solution, the method of Brown [ 3]

©

seems to be easily applicable, since the discrimina%t of the

equation is the map of ¢, | ‘
¢

f

Y

All other operations needed for épplying the }heory presented in Chépters
’ >

3 and 4, such as formation of the characteristic functions, summation over
all states of a vector variable, augmentation of the maps by redundant

variables, etc., are rather trivial, and they wiil be shown implicitly in
: ~

i

the examples presented in Section 5.4,

n” -

. .
5.2 Cubical Complexes and O%erations [7, 21, 25,.36]¢,._
A

) &'
Boolean functions can algebraically be represented usipg
- ¢
encoded product terms of a sum-of-product formiof the particular function.
. . . : \
BEach such product can be topologically viewed as a multidimensional cuﬂe,

a -

its dimensions being determined by the number of missing variables in the

\
(] '
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2 . ’
‘ term as compared to the total number of variables of the function.. The
' , 3
encoding of variables in a term will be as followst
ii.th position " the ith
) in a term L variable
r
. 0 . * complemented N
_ 1 : -, uncomplementedy
» ‘g,." .
X missing :‘
_ .jgv‘"

It will be assumed here, that the sequence o_f' variables appearing in a

o

v

term will always be X, z, 2', ¥'y 12. oy zk. ‘ How'ever, if some of
the vector variables are not required by a particular problem then the
corresponding columns will be left out in the cubical array. For

instance, in :Jproblem with

¢

_)_(__ = (x1) X2., XB); _Z_i' __z_' = (zll Z‘Q); X° = (}’1' y2) .
- - ' - v \ Q
. ttf ’cex?:n_x1 X, 2y 2, %3 ¥y will be represented by a cube
- s e

b ‘ 1 g o o o '

C = 10x 01 X X = C c c c o
R s SR e P L .2(._ E _.Z_' 1

I % s

In any case, the 9urrent order of variables will be indicated with each
[}

c

example shown., A Boolean function in its IM  form is thus represented

by an array of the above mentioned cubes. An efficient encoding (binary)




n.
'

, v

e
&y i

~

" computer aided processing, can be found in [36].

[3
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. ) . o _
of the cubes, as well as a data structure for the arrays designed for
¢ . [2] . >

! ~

Operations on Cubical Arrays -

o T
)
L) . ‘u

Having determined thie representation of Boolean functions, it

, f - N

remains to define the Boolean algebra eqﬁivalent opefations on the data

structure. A concise review of such vperations will be presented here.

M [
T

More detail can be found in the forementioned references. Since the
t

- examples in Section 5,5 will be done by hand, all the operations will be

performed as in ~f7] ; however, for automated processing, the more

o

efficient encoding as in Reference [36] should be used instead,

hl

Let a, b, ¢ represent cubes of n coordinates (dimension
. . th . }
n), Ay b, , c; the 1 coordinate of a, b, c,y respectively, #nd
let A, B, C be cubical arrays. Then~the«fol}owing operations can .

be defined [7] :

P e e U U UG U,

(1)  Absorption :

a& v if (a

in
o’
e
~—
H

¢ for all i,

a*b if (a, € b,) = . . for any i .
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The coordinate subsumming .table i

- b,
. 4 ‘
ay = bi * 0 1 x
0 \ e # e
ay 1 . ‘4 e ¢
y R : _
" X g g ¢

Absorb operation on an array

»

vV B = A(r), B is the absorbed array A
(cover equivalent)
(2) Cube Union : (Boolean OR)

If

o

/ Y
A ={a.1| 52' coo}g B = {bl' b2. -ol'}

then E ////////////

1 ;2

C = A W0 B = A( al, 2%, ..., bl ¥4, ... —

o

(3) Cube Intersection s  (Boolean AND).

4 e
g (empty if any a;, ~ M b, = #
a M v = “ .
c otherwise, c. =a, M v
i i i

+

.
&
E

. “_/Ehe coordinate cube intersection table 1
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. r ’ 2
© - ° ;:3
° ' | .
bi
¢ I} .
n M 0 1 x
k) .
| 0 o g o0 ‘ .
) 1]
¥ ‘ ¢
a; 1 . g 1 1
~ b'd Q i X
Intersection of two arrays i !
& ¥ ) : el
C=Aﬂ-B={{Aﬁb1}L§;'{Anb2}u ver }
. -
; ¢
where
1 2 :
A n b = { (a n b) U (a (n b) U e }
(4)  Sharp Product : (BooTedn A » B)

‘a if a Ml b = g i.e., a, # b = ¢

for some i

a'# b =1¢ if aS€ b, i.e,a; #b = €, V1

U (a8, veer B e a_) otherwise,
A r >3

—— e a L

NI N~

L

-

vhere I = {i | a, #0, =o€ { 2, 1} }

s

:;’»‘ -
The coordinate sharp product table i .
. \'?h'
AR
%



identified by A fron the cubes of array A. D (a)

" will delete the columns associated with 7. )

Note that DZ(A) is equivalent to ' (A) - the
. . z €8,

summation'over all states of the variables z.

bi
*
ay # b1 / 0 1 X .
/ “ 0 \\e [, >
o ay 1 # € € ¢
X 1 0 £ o
-
Then .
A#v = (fal#or U 2avb U ...
S ’
v T a#B o= (.. Ha#0D #V1# ...}
1 2
A#B='{too{{A#b}#b}oc' }
' _ 1 2
= {{a #B} u {a #B} see }
(5) Bookkeeping Operations 1 :
(a) The replacement operation <«
0 (3
) A « » A(A) absorbed array A replaces A
- —et—g———<——4- [1- B -interssction of A, B placed in C,
(b), The delete operation [&(A) removes the columns
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(c) The Ensert operation IE(A) inserts j new colums
\ é Do th\ ' . .
of x's to the right of the i™ 'column of A, If
¥
not specified, only one column i$ inseriled,
‘\
(d) The permute operation pij(A) interchanges the i
% Ai ) « :.
-2
and the 3P &olumns of A. - e
: b1b2b3‘ : , :
(e) The change operation CA (A) replaces all O's
. : », .
with bl’ 1's with bz, and x's with b3 in the

(f)

columns of A identified by A .

4
The split operation S identifies and transfers to

another array all cubes which subsume a given mask cube.

A+« B S a will transfer to A all cubes

of b which subsume a.

(g) Special cubes 1 ,, i
‘ % v.o- n-dimensional space cube (n x's)
B X, - _a cubeof x'swith be {0, T “in the
columns identified by ) .
! &

. v .
‘”x~ - a eube of 0fs with” 1's in the

columns identified by A

4 - an empty cube (0 function)




* —
f

(h) The Cartesian product X 1is used to append a fixed

cube to each element of an ayray, i.e., A X Un will -

]

append n columns of x's to eacht cube of A.

Ax {0 1} would append {0 1} to each cube of A, _ S .

B

b

5.3 Related Algorithms

5:3+1 Algorithms for Chapter 3

1

Let the function £, g, ¢, etc., be represented by their ON -
arrays for each component of the function vector, and in addition, by the

DC arrays in case of incompletely specifiec functions [7, 243 . B.g.,

/

the function X(E) will be representgd by the arrays O 5. DCi,
' i

$.= 1, +esy q» The so<called function arrays of [7] will fot be con- ,

sidered at the moment; howewér, the relationship between characteristic

functions and function arrays will be Hiscussed in Chapter 7. The sets

v

X, 2 of input stimuli and internal states will be described by a function

(array) D = D o D, being equal to 1 for x € X, 2 € 2, apd O
]

otherwiBe. The characteristic functions of Chapter 3 are in fact

comp(letely specified functions, representing a mappiné frons a multi-

dimensional soac‘év'into BZ' Thus, only the ON arrays are needed to

describe them completely. ¥




N

‘ ’ Algorithm 5.1 1+ Formation of the Array (Dg of ¢g(§,*g, z')1

/

(1)
(2)
(3)

(5)
~ b

| (6)

Alforithm 5.2 + Formation of ¢Z: (Definition 3.3)

13
™

(Definition 3.2)

- ¥ /

-_"1‘ “
ﬂ(_)_t_, ?_) s ONgi = G, = (Gx ° Gz)i’ i=1, «sey n

X; of n coordinates

q)g Uri-n-’-n

for 1 =1 to n / .
o« b N (G x ) U (U #6)x X))
g & i i ™n i i

®
g

end

(1)

(2)

. (3)

‘.

for

(I)S
g

(4)  pext i -

« (I)g#(DxUn)'

[ % ’

glx, 2z) + G 1 =19 seey 1

D = D ©D
. X Tz

”

X; of r+ n coordinates

-
Urf-n

1 =1 tovn

G, MNX

0
i i

——

‘ s 1y 1
© 0g MUy, # UG # X3 U (xg # G)))

i

I

-
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() next i e
e
(5) #5 « @2 #D ' ‘
-
(6) end ~

Algorithm 5.3 :. Formation of <I>Z(3c_, 2') + (Definition 3.4)

Use Algorithm 5.1 to generate ¢, ‘then

2 .
(1) 42« A(DSe,)

(2) end

Algorithm 5.4 : Determination of Simple Oscillations i (Lemma 3.5)

1

Use Algorithm 5.2 to form (I)Z.

The states of x at which simple oscillations occur are .

covered by the array T obtained as follows: . , .

(1)- T <+ DZ,( <I>Z) : delete columns r+ 1 to r+mn

*

(4) if T empty then no simple oseillations, otherwise

T contains the cover

(5) end

"
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A - [ ]
‘ ' Algorithm 5.5 t  Determiration of d);a
. i . 5
If Theorem 3.1 is applicable then <I>; is generated by
_ .
Algorithm 5,2 or Algorithm 5.3. If an otherwise stable circuit has

simple oscillations at the states of x covered by T (Algorithm 5.4)

" then an approxima;“,ion to ¢; can be obtained by 1

‘ c S zZ o>
4 LR S u (d>g,n (Tx U))

°

In other-cases {not very often) <D; must be obtained from

a state transition table. or using Corollary 1 to Theorem 3.1,

~

Algorithm 5.6 :  Algorithm for Theorem 3.2 :+ (Theorem 2.4, Corollary)

A\
\

Use Algorithm 5.5 to form @2. \
=, - * \

X; of T+ n coordinates,

T « @ initialize.

S
~~
—
'

‘K‘W / “
(2 for 1 =1 to n

1
: (3 T « Tu( Dyleg N x5 N Doy N xy))

»

- ()  "next i

(5) T «—T#D—.

(6) « if T enmpty then 4’; = 1 has a unique solution =+ g
. T is combinational : j

2{7) end :



» - \
. L Algorithm 5.7 + Formation of ¢ P (Definition<3.14)
~ f:(z_' 2'9 x) ] Fi ] i = 1, s00y q .
* b.
Xy of q coordinates .
- >
Li) ? f .(_ Ur*'n-f-q
(2) _for 1=1to q
l -
" ’ - 1 - 0
. (3) 0. <« o M (R x xy) U (U, #F;) *xxy)) :
(4) next 1 . )
(5) end -
. ‘ . ' e B
* Algorithm: 5.8 :  Algorithm for Theorem 3.3, . ‘
b N ’
b )
Xy of r+q cpordinates, '
(1) ¢ « $%xuy - ‘
c g q .
¢ <« o N o B
ot (2) c c f
- , (3) ¢ e ¥ Dz'( q>c) ; @ now contains the circuit char. function
(4)y T <« g ; initialize . - }
(5) for i=1 to q ; check for unique,solution -
0 1
\(6) T << WDl(oc N Xpq) N Dy_(cbc N Xpes))
—e— »
. (7) next 1 5 N
(8) T + T#D 3 limit x to X,




® (9) 1 1

if T empty then the circuit has combinational behaviour,

-~

| the characteristic function is in ¢ . 1, I
i . (11) end ~
s ’ - C.
‘)tm
' N -~ S
~ e G
o 5¢3.2 Algorithms for Chapter 4
‘ 1
Algorithm 5.9 1 Formation of the Circuit Characteristic Function
o (x, y) + (Definition k.1) (
Use step 1 to Ut of Algorithm 5.8, then
o, « o # (Dx X Uq) . x
| )
' . ] ) IR
Algorithn'5.10 1 Formation of & (x, y) of y(x) N (Theorem 4.1)
Q . "\
n /( S - B -
DCi - 1 =1, .00y Q
. N - -
- . OFF,
.. where ,
) Q
“ . OFF, = U_ # (0N¢ , u DC.l) , : \

Xib of q coordinates

>

@ (1) ¢ Vg - !



(2) for 1-=1 1o gq

s

, 1, on N
3) ¢ « o N ((ON¢ [ % x) U (OFF} x xg) U (DC; x Uq))‘

"r

(4)  next . i o

(5)  end

.
v

112

'S

’

Line #3 could be replaced by

T

3) @& <« ¢ N ((ON¢ ;X x;) u ((U;_#O'N .l) X xci)) u (DCiqu))

¢

-

‘which pfoduces a cover equivalent array, in case that OFFi arrays are not
Q .

known. The calculationsmafe then shorter than if OFFi were to be

o
"
calculated separately.

!

Algorithm 5,11 : Realization of an Qutput Characteristic Function ¢ by

\ 4

¢, + (Theorem k4.1) ;

(8) (1) 1 <« o_# ¢

5

%

(2) if T empﬁyﬂthgn c realiagé:@ .

(3) end o

(b) The computations involved in Lemmas 4.2, 4.3, 4.4 and Theorem 4,2

afé quite simple, but it shoulg be noted that the expression of
p .

¢

the form

7

¥(x, y) = 0 [ o(x ¥ 2) + ¢ x(xs 2) ]

.

s

\
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o

‘ (appearing in Lemma 4.2 and 4.4, as well as in Theorem 4,2) is best

evaluated by double complementing it first, that is,

| ¥x, y) = 2 ] [¢& 32« o (x,2) ] . 2
\ z€B, "
\ b
The reason—ts—that-such a—formhas & simplesquivatent in terms of
, . fooo
, array operations, ramely, . ‘
r 1. *
(1) 0« 100y x[ = 7 Jyl = @ |z .= n

°©

(2) D « Ux+q # [ DZ( oy # <I>2) 1

The resulting axray ¢ has an interesting property - it consists

of all the prime implicants of the function ¢ (z, ﬂ. It is‘

due to the last # operation penfo‘rmésk['?]. Thus the size of the
@ . £ 0'

array 9 can be reduced by applying standard reduction algorithnms,

[7

v

Algorithm _%.12 : Existence of Solution Test.

. ~ .
Let @ (x, y) be an output-characteristic Ffunction (array) j

obtained either through Lemma 4.2, 4,4 or Theorem 4,2, The following
simple algorithn will determine whether & = 1 ls consistent - the

existence of decomposition test :

-

(1) T = Dl(<1>)

“ - - . ’ L
‘ . (2) T <« U #T - ;
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J .
o e
. (3) if T is empty then ¢ =1 1is conpsistent, '
] ’ : i

W) ema™ . 7 (
. " .! > .
‘ v _ . . .

Algorithm 5,13 ¢+ Test for Degeneration of a Circuit : (Theoxem 4.3),
: ’ ¢

¢ »

Assume that a circuit g realizes a.given output characteristic 4

A

©

function ¢ (x, y').  Let g be represented by the array (bg
B s N A\ T e~

~ . T

. N
(Algorithm 5.1), and*the array ¢ is.either obtatned through Alior\ithm 5.10

‘ ‘ ‘
or as a resul% of the decomposition theorem/lemmas application, The \

o ’ '
following algorithm will now perform a test to determine whether the L }
0 { an

1

feedback in g is redundant, i.e., whether the sequential circuit is

. degenerate with respect to 0 .
Y .

(1) T 0« I;( o) « + Insert x's to equalize dimension
e ' ‘ »of ¢ to that of CDg.
(2) 1T <+ DI'( <I>g M T) ; Calculate @&(x, 5(x, ¥))
. .= L [@g(;, e y') 0 o(x, y') ]
. . ' q
& ; J X E B
T I} \
/ " ' If  ®(x, g(x, y)) =1 has an .
e o - identity solution for y then that

solution is the state y sought in

e o :I‘heorem 4.3,



(3)

(W)

(5)

(6)

tions . g

T <«

U

T+q

#T.

T <« Uq# DZ_(T)

If T is empty then g-

a cover for the possible

end

1

. »r-c
0 N

A

is non-degene

states y € B%.

Use Theorem 2.3,

e else T.
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contains

As mentioned in Theorem 4.4, direct transition circult func-

can be generated through the general solution to the output

¢

characteristic equation ¢ (x, 1) = 1, Therefore, the next two

+
e

algorithms will generate n (x, p), the first one by Lowenheim's

theorem (Section 2.3.3)

’

if an elementary solution is known, the second

one then”by the successive elimination method (Section 2.3.1) for cases

where a trivial solution is not known in advance. In either algorithm,

the solution 3(5, E) will be returned in the arrays

the cubes in 2, having r+q coordinates (x,.p).

Algorithm 5,14

Lét the elementary solution g (x) be centained

N
)

i

-

Lowenheim's Theorem .

Y.

1

1,

oo'q

-

in the arrays

having r coordinates (x). Also, let it be assumed that ¢ (x, I)J= 1




i1s conslstent,

-

X: of r + q coordinates corresponding to x' and p,
~—/
(1) for 1 =1 to g
-(2) Do (Y xU)#O
R f_m_.;; ‘ 7(73‘)7 2, « z; U (o N X ) J
(4) next i T -
(5) end

Algorithm 5.15

H Successive BEliminations.

¢ x U

D)

‘ (1) T < 2

(2) for i=1 to q *
(3) if 1=1 go to 6
(8) T« TNOGLL (2 ) U CRY U, # 5 )
(5) T < CZi (1)

: (6) 2, « G g™ X)) M X ugn
(7) 2y < 2 U (U, # COT | ng{T 0 X,
(8) nexti 3 T+ ... rtq 1is an implied DO loop

{9) for 1=1 to g




} Xray
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(10) 7 2, "« Diyy ., 1ql%)

-

(11) next 1%

(12) end ' -

Clearly, Algorithm 5.14 is preferable to Algorithm 5.15, the
latter algorithm being incomparably more complicated., However, an
~) . '
élementary solution must be known ‘“beforehand if Algorithm ’5.116- is to be

used.,

- t

Algorithm 5,16 : Direct Transition Circuits (.Theorem b4y,

-

Assuming nomat n (x, p) is known, the followi;lg'z‘?c

algorithm will produce the direct transition circuit function

o

corresponding to a given function p(x, y). Let ,

P., i=1, ey qy be the q arrays of p

(r+ q coordinates),
G,y i=1, ...,q, the g arrays.of g, and

4 Z, , i=1, «vey 9, the q arrays of D(E' B)-

»

N\

- ‘ x}\) of q ooordinates,



s
5
N
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(1) T =« Ur+2q

(2) for 1 =1 to q‘

(3) T o« TR <xDU Uy #P) xx)
(4). next i

(5 for i=1 to q

. q
®) G Dprgrt ., wr2qlT O 1:(%))

(7) next i
(8) end

Steps #1 to 4 form the characteristic function T(xy ¥» D)

4

}
ofN:E‘equation D= E(Z' 1). The fun—ctionﬁ T i;;hen used to filter

out the states of y 1in Z.l which do not produce the correct values

of y'. ’

Any constraints on the circuit can be induced by adding

constraint equations on p or directly on o-(x, y) =1, as in [ 5]

If the function 'E(?Eo x) is independent of y {columns
Yy in P, areall x's) fhen the resulting circult g is purely

combinational, with no feedback loops. However, even certain choices of
& -
p dependent on y could produce circuits without closed loops, e.g.{

iterative arrays of cells.
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. , '] . i ) 4
. S.h4 Examples ¢ L

:

A number of examples will be presented here, illustrating

% the theoretical results obtained in Chapters 3 and 4, They will be .

4
’ solved with the aid of the techniques developed in the previous sections

of this chapter, No attentxgn will be paid to hazards in the circuits,

- . N L
these can be-treated in the usual way when actually implementing a
particular circult - the theory of decomposition is independent of the

internal structure of the circuits, as long as the characteristic functions

properly reflect the behaviour of the circuit with respect to the steady

L3

s
output states.

Let an asynchronous sequential circuit be given by the

following encoded state transition table,

' 1,8, z!a!

21
+P,S. Xy Xy - i
‘ 2
zZ, %, 0 0 0 1 1 0 11 Ix| =2, X B,
o o | 0 0 0 1 1 0 0 0 i7]=2,Z=B§
0o 1 0 0 0 1 0 1 0 0
1 o | o0 10 1 0 151
N
1 1 0 0 o1 11 1 1




The excitation equations 1’

| R— byt P 3
2y = g (% 2) X, Xy (2 + 29) + X5 Xy 2y ¥ Xy Xy 2
1 = = X 7 X z
sy = (%, 2) = Xy xg 3y By v x, Xy(np ¥ 2y) * %y %y 7y
The next state characteristic function © g(g, z, 2') in the form of a
map ¢+ (Definition 3.2) ~
- N
Zo 24 X2 X1
01 2 3 4 56 7 8 9 10 12 13 14 15
‘ i o1 11 11 1
ot gt 1 1 11 1
2t 5 1 11
o - 3 1 1 1
Map #1 ¢+ ®
ap #1 g
X2 %4 X %y
01 2 3 01 2 3
. ol1 1 ol1 1 <
o ogr 1 11 ot gt L 11
21 5 11 271 51 101
3 11 3 11
- = ’ /
. ’ 4 S
. M M ] Map # o
ap <g i an #J e
(Definition SW) (Definffion 3.3)

./&,,l

"y

is a normal (stable, O-transition) circuit, since

N

since

0% =
g

(I)S
g

o) Z =1 1is consistent =+ no simple oscillations, actga}f;, the «circuit

Also,

¢Z = 1 does not have a unique solution, the circuit does not

have com¥inational behaviour (Theoren 3.2).

L

~
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.
o .\ . /

However, if, for instance, the outpui generating function

-~
~—~

. y = f(x, z') = x, + x, (28 + z3)

_gr—

is connected to the circuit g (as in Figure 3.1) then :

i

The circuit characteristic function Qf(zc_, 2", y) is

,

(Definition 3.14) 7

i

7
zé zi X5 Xy ’
0 12 3 4 56 7 809 10 11 12 13 14 15
T,o0fr o e : Sl
1 11 111 11 1 111 .

Map #4 s

The overall circuit characteristic function is thus

= ' , S
q)c(?_(' I) = z ” ( q)f(ﬁr X X) q)g(ﬁv X))
. LY € B2 /f
X X1 .
0 3 !
y o1 Map #5 :+ ¢ _(x, ¥)
1 1 1

Since <I>c = 1 has a unique solution, then by Theorem 3.3 the entire

circuit has combinational behaviour. The function generated is thus
—
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It is obvious thaﬁ%from a practical point of view it is rather difficult

2
»

to imagine that such a compiicated circuit would ever be used'to generat

it
el

\ ;
téis function., However, it was meap$ to serve only as an ilMustration
‘*

.

of the method. .

To illustrate the decomposition theorem, let the same
%

function y = Xy + X, as in Example 5.1 be considered,

The output characteristic function of y(z) is

2

o(xs ¥) = y(x+ %) + ¥k X,

the map is identical to the Map #5 before. Clearly, the realization

theorem (Theorem 4.1) holds if y is realized by the circuit of

>

Example 5.1, there

®x, y) = o (x) ¥

so that @C < ¢ holds, Now, given the circuit f of Example 5.1, let

the Lemma 4.2 be applied to generate the output ¢haracteristic function
C\\\i\
for the circuit C1 if 02 is f in the 2 stage realization of y(g).

(Map #4)

-~
Hence,

e

>
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&
’ o,(x0 2) = T (oulxy zo 8) + o(xs.8)),
[ e v
_ B € B
-~ A\
as shown in Map #6., Clearly ¢, =1 is consistent. \\

-

i 2 3
of1 11 )
B o o R T Map #6 T o fx, Y- - o —
2 % 1= = |
1111
1101 1

If the circuit g from Example 5.1 is taken as C1 then

(Map #2 and-gi, but @Cl < @1, so that 01 completes the realization
of y, just confirming the known fact. Since C1 is a normal circuit

then it falls into the class of direct transition circuits realizing

¢ Therefore, by Theorem 4,3, .any choice of z = vy € BS will

1'

degenerate the sequential circuit into a purely combinational one,

maintaining the realization of ¢1, however,

——

il

For instance the choice 7y = 1, 2, 0, will generate

Agt(x) = glxy 65(5) = Xy Xyt Xy %

y)
~. ,
g;(ﬁ) = 0,

which can be obtainegfgﬁ\?n elenentary solution of ¢, =1 - the

particular solution is enc¢ircled on the map of ¢1 (Map #6)., As a
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-

. matter of fact, any elementary solution of ¢ 1= 1 represents a purely

combinational circuit completing the realization of y(x). (There are

1}

. \ ' )
I 192 different solutions). For instance, there are.3 identity solutions _. .
(rows with all 1's) : . \
. y z.2 = 0, z, = 1 or
Py R °
Zy = 1, zy = 0 or .

= 1, zl=1.

. In order to obtain all direct transition cireuits 01 in

"one package", Theorem 4.4 will be applied now :

a

Let E(x) 1 zy = 0, Z, = 1- be an elementary solution,
° AY

then Lowenhein's ge:neral solution to @1 =1 1is

-

n(x,p) = .e,(x,p)p + ¢,(x, ) * £(x)
- icedy
,nl(Z' R) = p'l
— — no{xs B) = Py *+ Py Xy %, ‘
L J
Any choice of p(x, z) 1 B, * Bg will produce a ddrect transitidhy .
P
circuit, : &
For example, R
. Py = Xy Xy * X3 X4 Py =0 generates g*(x) derived

' before,

I



whose characteristic function 5¢‘g(‘_)5, Zy E') is shown in Map #7.

Z'

2

And

p1 = gl(-{" 2

z)

c Py = By

'n {x, p(x, 2)) =

[

8y = X2y * XX

g(x, z)

of Example 5.1 will make

2 %2 S

:

125 ‘ .

2z 21 X? xi ’(>
01 2 34 5 6 7 8 9 10 11 12.13 14 15 )
o |1 1 1. 1 11
, 1 1 1 -1
Z -
t o5 1 1711 -1
3 1 Y
Py, 7 %y %0 Py T Xy 7y .
M ' o) '
ap #7 .
X2 X4 i *2 %4
1 2 3 © 0 1 2 3
RE! 11 o {1
1 1 1 e 1 1 1 ‘
1 25 24 \
2 1 1 2 11 1
3 1 3
'\\ . B
Map #8 o2 Map #9 :@(bz



total state X, X, B, 2, =0 1 0 0 is transient, also, the circuit has
e 1 72 71 2 .

oscillations for x1 X, = 11

172

oscillations are not simple.
< ’a

The resulting direct transition circuit is

A

with the steady states being

f . .
z 2 =00 and 1 1. All other states are stable. Note,~that the

not normal, the

~

The combined steady state characféftﬁfrC“fUnctiUﬂ*“ﬂﬁé“iS““"“‘*A‘—-

shown in Map #10. ..
s X, Xy
01 3 Py T Xy % .
- O 1 -—
Lo, 1 1 1 Py T X %y
(AN /
2 1 1 1
3 1 Map #10 - @;
Again, ¢; < @1 + the oscillatory circuit realizes y(z).
=

.{\\ms“

which is a quasi-normal. circuit with

everywhere else the circuit is ‘stable.

function <b§

, leads tq

\\\\ - The choice of Py =Xy X, Zoy Py = xi X, 24
~ 8(xs 2) = x; % %
— .
gx(x 2) = Xy Xp 7y * Xy X,

simple oscillations at Xy X, =11,

The steady state characteristic

(see Algorithm 5.5) is shown in Map #31,
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s ’ - X Xy 7
n 1 2 3. Pyo" 1 %5 %
0 |1 11 5
ot gt 1 1 P2 T *1 %2 L /
271 21 14 1 " : .
.- , . N
3 1 Map #11, : 4’g
» » \ v

Consider noUhe case where the circuit C1 is given with

The

ASFOR. N —— - a

is .sought.

-— °

; PAN
its characteristic function ¢C§; and the circuit( G

output characteristic function <I>2(_>_(_, z, y) of C, 1is’then (Lemma 4.3):

i (Dz(‘_}_cl_!) X) (DCJ.(‘)‘(" E), + d)o(fv x>

n

For instance, let o
¢ : Map #5, S
<I>Cl u, Map #16. .

.

The function ©2 is shown in Map #12.

zzzlxzxi’ '
01 23 4 56 7 8 9 10 11 12 13 14 15
o1 1 1 " 1. 111'
y 111111111 1 1 1 1 1

~Map 3#12 r <I>2

Xy

4

Clearly, the fopmer function f satisfies the realization

theorem - ‘va < ¢2. Note also, that <I>2 =1 is .always consistent,

<
’ AN o °
«

no matter what C1 is,  ° - 4 \ .

I

»?
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¢

Any direct transition circuit C, can be obtained through
2 &

the same procedure as uheﬁ'yci' was sought befqr& (Theorem 4,4), Or

for any circuit 02 selected from a library of modules, the realization

of ¢2
satisfied.

) “s
Example 5.3 1

.

LN

¥

can be tested by seeing ‘that €h% re%ation .

¢

c2

<

)

2

* Having shown an 'applicatior of the theory on simple

is

éxampleé, a more complicated case will be investigated using cudbical

arrays = the unilateral cellular array with a closed loop as described-

in [14]. The particular circuit tuilt from NOR gates is shown

in Figure 5.1.

P

v

"x9 X0 =
z1 C 5 . '
; “1 ) q— 2 z
' v
Y2 ’ 73
Y, = X,.2 Yo = X, 2 Z, = z, 4
1 < 17 2 2 %2 1%
= X, .2 e
Y3 33 . )

FIGURE 5.1 1

* CIRCUIT FOR EXAMPLE 5.73.

4
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2

The interconnection of the cells is such that

/s

3 .<'
Zi = 21_1 )
. thus the next state'equations of its g’ circuit are
4
' = g _ ,
ER 24 23 Xy 4 r
" = <
2, = % X - :
L3 — e 3
T ‘2_':; = -2-2 3_23 - )
And the output generating circuit function £
i <
-
1.7 3%
Yo T B % .
y3 = 2z x3 a
/
Formation of the charagteristic functions 1 B o
¢ (Algorithm 5.1) iy
x z z! .
: (1) ®g = XXX XXX XXX - v
] (2) 1=1 o '
3} t -
(3) ¢g = 1xx xx0 X X
/ X XX X 0 xx . ;
0xx xxX X X
(2) i1=2 ‘

L




i~

@

O ¥ = O X O KT X M O X O KX O X PO X O X o

O X = O MK o O M -

1x
1 x
1 x
X x
X X
X X
0x
0 x
0'x

X X
X X
X X
0 x
0 x
10
10
10
x 0
x 0
x 0

00

00

0xO0
0xd
0 xx
1x
1 x
1 x
X X

X X

X = O B = O

X X

00
00
00
10
10
10
x 0
x 0
x 0
01
01
01
141
11
11
x 1
x 1
0 x
0 x
0 x
1 x
1 x
X X

XX

Kol O X = X P, O PO X PO X PO X O X PO X = O

X X

O O OO O O kD DO OO0 0O kO 0 Rk O O

O O = O O O O
O O O O O O = 2 =
. . T - S - S S

CO O O O O B B P O O O O © = Pk B0 O O 0O O O - = iN

-

OO O O O O O O O O O O O O O O O P = M= = = = e

E
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(6) end; ‘Pg as above,

q;Z (Algorithm 5.3)

’ . Z '
(1) o, -« A(Dz( %))
l o x z'
= 111 112
x 1'% 011
1x1 101
xx1 001
1.1 x 110
. x1x 010
1xx 100
X X X 000
(2) end
= 4 .
?, (Algorithm 5,2) :
b4 z'
: (1) <1>2=xxx X X X
" 2) 1=1
(2) \
) (3) ¢Z=Oxx 0x x
1xx'1x0
' 1xx 0x1
- xxx O0x1

) (2) 1=2

I

.....



&

L

132

¢

[

(3) <I>Z 00x 00x .
- "x0x 001 v
1xx 100
01x O01x °
R x1x 011
(2) i-=
(3) 7o =000 000
N 1x0 100
- 01x. 010
xQ1' 001
(5) D
(6) " end
Simple oscillations test on g (AlgorithR 5.4) 1
oy
(1) ot D?.'( c1>g) = 000
1x0
01x
x 01 ~
2 -
(2) T u #T = {x xx} # (000
1 x0
01x
’ . x 01 ’
\
= ‘1 11
(3 o, = ¢
() T # 4 = simple oscillations at Xy =Xy = Xy = 1,
which just confirms a known fact about the circult.
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(5) end.

I

Except for the state x =11 1, the circuit g is stable
as can be checked through @g. Therefore, an approximation to <1>; -
the steady state characteristic functlon - can be generated by

Algorithm 5 . 5 .

¢; (Algorithm 5.5) 1

LN

[o} 3 Z
oo - ®gU(¢>gﬂ(TxU3))
=(000 000) 111 111
1x 0 100J U 111 011
01x 010 111 101
x01 001 Jru 001 {
111 110
111 010
111 100
L1111 000
) = 000 000
p 1x0 100
Y« po1x 010
y x01 001 '
111 x®x
" 4

£ ’ /.\\ .
(Note, that the array was reduced by an application of a standard

P K B .
minimization procedure for mtemtpn{rf&neﬂeﬂs}ﬁ -
!

‘Simply by inspection of <I>§, it can be seen that

Theorem 3.1 fails - multiple steady stgtes at x = 11 1. Therefore,
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before a testv.\gfor combinationa;l. behaviour (Theoferﬁ 3.3) can be made, the

characterfstic function o}

\F3

>

3 F2 =

Fy =

_(1) (I)f =

(2) 1=1

. (?) q)f =

p - (2) 1=2

I ) P

~. (2) 1=3
/

X O = X O = X O

T I - e B e e}
><'><><l><><><><><><

(Algorithm 5.7) 1

f

xx0}

0xx}

le

I

L

¥ K X = = = O O O
X X X X XX A8 A
X O OiX s g X = O

S O +» O O = O QO =
O O O O O O - - -

X X
X X

X X

L S - - A . .

o

s

has to be-formed, -



-
"
g
"
i
[ 30 H]

4 £ o o
x00, O

100 O

0x0 1

xx0 1

1x0 1

010 «x

x10 x

- 110 x
o 00 x 0

%x0x .0

' 10x 0

. Vxx 1
X X X 1

g 1J§x 1

P4 01x x
x1x x

11x x

001 0

x01 0

101 0

0x1 .1

xx 1 1

) 1x1 1
011 x

x11 «x

111 x

15
-

o O O o
O ¥ » O

1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0

b T T - A T T T T I e e e > I - e B e N
X = O X PO X B O X P O X = O % P2 O X =0 %

O O O O O O » + = O O O O O O ¥ 1 H»H O O O © O O I 1+ =k
O 0O O 0 0O 00 0O Q0 00 O 0D O O O O I koo R b e e s

Combinational behaviour of

o

135

/..

the entire circuit (Thegrem 3.3) (Algorithm 5.8):

h:]



c 3
X, z' Y
= 000 000 xxx
1x0 100 xxx )
01x 010, 'xxx .
x01 001 xxx 5
111 xxx xXX N )
Y 5
® « ¢ I ¢
c ¢ f
= 000 000 111 ' )
1x0 100 001
;, 01x 010 100
,'" xo01 001 010
' 111 xxx 000 .
@c**'DE,(@c)
[
X X
=- 000 -111
1x0 001 )
01x 100 - ‘
x 01 010
111 00O
&
{
= 8
=1 (6) 1=2 (6) 1i=3 i
= ¢ (7) T'= ¢ (7) T = # -
T = §
empty -+ the circuit has combinational behaviour, the

—

0
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characteristic function is in <I>c at step #4.

(11) end.

Namely,

+ 23) )
* x) .
+ ;'cz) ’

which is precisely the function as given in [ 14].

To show that the feedback in the circuit g is not redundant,

14

o

i.e., g 1is not degenerate with respect to\the corresponding output
characteristic function ¢ 1(3(_, E')' let Theorem 4.3 be applied through
the Algorithm 5.13. First, however, ¢ 1(_)_; g') has to be formed as

(Lemma 4,2) :

0z 2t) = T (olx 2z B) + 0 (x B)),
3
B €3

s

where ¢ (x, y) is the overall output characteristic function of £(x)
(Theorem 4.1), i.e., in-this case it is the array <I>c as generated

before. Hence, (Algorithm 5.11b),

- . 3 ‘
(1) ‘q’l ‘I’f# |3(¢); <bf , ¢ :
.' &
(2) ¢ 1 “ Ug fDx((b 1) i B ‘E [q’f(}.’ z' ES ' ;(2_(_' g)]
B €3

- @



[
(3) ends ’

After substituting the actual arrays 1

t
)

3 X z

j<b1= 111 xxx
11 x x0x
1x1 O0xx
x11 xx0 .
x01 0x1 ’
1x0 10x
101 01x .
01x 'x10 -
000 00O t

Now Algoritﬁm 5.13 1
(1) 1T « |g( )

(2) T « D;’.’( @g nTt ; q>g as generated‘previously
T =111 000 -
111 100 v

11x 11x

110 1 x1

111. o®1 ‘. ) :

1xr1 101 i
R 101 x01

111 011 .

1x1 111

101 x11

111 010 ’

- x11 011.
011 01tx




! 3

x11 111
. 011 11x
001 10x
: x01 x01 -
001 x0x -
i 1x0 xx0 o
4 ) 01x 011
010 0x¥x
. - OC;O X X X
(?) T € Uga #T )
T = 001 x10
010 1xx §
—_— 011 xo01 '
e A, ® 01x ~101” _
loﬂ11 000 e L .
’ 100 xx1 .
101 x x 0 )
x01 x10 P
. 1x0 O0x1
100 001 -

) T « U, # DX(T)

L A NIy

.

(5) Since T 1is empty then g 1is non-degenerate with respect

) to 471 .

Therefore, the feedback loop is not redundant, and it cannot

be directly replaced by a combinational gircuit f{*(zs) = 5(25: X)-
. Actually, there is no purely comblnational circuit which would

. -
A
o
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(-}

realize @ (x, y) with-Zess NOR gates than g(x, z) [ 14]. Furthermore,

- L ]
-

since g 1s non-degenerate the circult may have.hazardous %ran’s}tiqns

between steady states.
» y

Any direct transition circuit g realizing 2, “(with or
without feedback) can be generated b//a,pplying Algorithm 5.13 (or 5.14),

and then Algorithm 5,15 for a selgcted function p(x, 2z .

}
13

[, o
- . X
a4 .




‘the internal structure of combinational switching circuits. The 1inkfi§A
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l CHAPTER 6

" APPLICATIONS Y

The theoretical’ results and computational techniques of the

2
¢

preceeding chaptérs established a firm link between Boolean equations and

“
-~

L)

expressed by the < relation between the characieristic’functions of the

2

corresponding Boolean eqliations.D This then provides the methodological

base for @lving bractical probvlens related to tive @esign of switching

circuits. Two such applications will be discussed here, namely, an
approécb‘to the algorithmic synthesis of combinational switching functions

by decomposition, and a method for genéfz;ing test sets of input stimuli

-~

for detecting faults in combinationalhéircuits.

-

'

)

&
Aol Application #1 Modular Synthesis of Combinational Circuits:
7

J

5.1.1 Problem Statement

i o

Given an incompletely specified multipfe oufput combinational .
function y(x) =<¢(x), o (x) + d(x)>, |y =a» |xX| =r, and a set S
of combinational and sequential circuit modules Miy 1= 1, veey .ISI '

it is required to synthesiie a circhit C “using only the modules in S,

such that C would realizé p(x). Furthermore, it may be required that’

-

'



~ : L ~ j h
" : . 1k2

‘ the resulting network should satisfy a number of prespecified constraints

a

such as total cost, signal propagation delay, loading of input ldines,

number of external interconnections, ete. N

«
[

.As mentioned in a number of previous studies [ 255, 7, 13,
~ » ° '

. . [N
,15, 16, 20, 21, 24,26, 284 29 ] determination of an aBsolutely optimal

circuit (under any criteria) implies more or }ess exhdustive searching

over all possible realizations of y, using modules in S. Therefore,
to reduce the number of trials, and yet td obtain a reasonably good
(satisfies constraints) realization, some heufistic searching techniques
» I

L
must be applied-[ 5, 15, 28 ]. It is not the’ intention, however, to

develop these search algorithms here. The reason is that these

- — heuristic algorithms provide a strategy for judging the goodness of a

[
particulai partial decomposition and for choosing the next step <to take

towards obtaining a final satisfactory circuit. Thus up to certain

extent, they can ¥e considered separately [rom the method used in generating

.
’ ' =

a partial decomppsitiof. Rather, it will be shown how the methodology of ‘.

characteristic functions as developed herec could-be applied to unify |

' \
the steps common ‘to most algorithms based on functional decomposition

L4

(Section b.o1), ' .

, The decomposition related proﬁlems may be summarized as

. follows: .



(1)
. (2)

(3)

(5)
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-

Formation of a library of available circuit modules.

Representation of the function -y(x). '
.

Selection of a subset of>the input (output) variables of

®©,

§(x), and the mapping between these and the module variables.

<
»

Application of the module under the selected mapping to the

~

function 1(5) in order to test whether a decomposition

exists. W

‘.

a

Testing of "goodness" of the decomposition, that is,

realization of dgome of the outputs y or the module

inputs, determination of redundant variabples, satisfac-

tion of ciréuit,constraints. etc., The results of these

4

tests are then uséd to guide the heuristic-seaxrch-for -

*

an optimal realization. ~

S/

6.,1.2 . © Development of Solution Steps

(1)

The library: Let the available module and submodule functions

be represented by their circuit characteristic functions

o (Definition 4.1). A submodule is obtained from a module in

A

~

S by tying some of its inputs together or bringing them to




constant levels 0, 1. If a particular module is combinational

then the\various submodulé characteristic functions can be
obtained by imposing constraint equatioqs of the before
'pentione; type’on the module characteristic function (equation).
In case of sequentfal modules, the constraint equations should
be applied to the state ‘transitisén characteristic function
(Definition 3.2), and then the corresponding circuit
characteristic function obtained. Oﬁherwise the submodule
characteristic function might describe steady states never

1

reachable by any input sequence.

In gither case, however, the library L can be viewed as a
list of circuit characteristic functions @Ci, i=1, ....ILI.
T Teach entry contaiging additional information describing the.
number of inputs and nutputs, loading factors, delay,

LY

symmetyry information, etc.

If the Library were to contain only the characteristic
functions of the original modules, then the submodules would
have to be geﬁerated during the synthesis procedure. However,
it was shown [5, 28 ]that»the time requireg to do so is

’ !

rather long, and that the procedure must be neﬁéated with each




(2)

(3)
(4)
(5)
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new function synthesjzed. Therefore, it will be assumed that

the preprocessing is done while forming the library, thus only
%

one to one mappings need to be considered between the function

y(x) and the module variables [ 7, 28].

Form of y(x) : Whatever the initial description of y(x) 1is,
it should be converted into the form of an output characteristic
ﬁwnction ¢ (as ﬁhown in Theorem 4,1), Additional information
¥ith regards to the;maximum loading, delay, cost, ete, should
also be supplied to define the properties of the target circuit
c. - -
As mentioned in Section 4,1, two main paths were considered in
the past when performing synthesis by decompesition. BEither a
mapping Mo from a subset of the x variables to the module
inputs wasg chosen, the resulting function generated by the
circuit yas apflied to y(x) to form a decoﬁposition,'anq then
a test for realization of some of the outputs. y was made [ 2,
7, 15, 21, 24, 28 1 The other way was to choose a mapping My
from module out;uts to a subset of problem outputs y, and

then seek a decomposition via systeﬁs of B.E.,wlth the highest

number of inputs to the module Beiﬂg realized directly by some

of the variables x [5, 16, 20].

b »
¥
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Both of the methods had a disad;antage that with each new
mapping the decomposition procedure had to be repeated. More-
over, the‘position of a module inside of the final circuit was
a priori determined to have either all the inputs fed by Xx
directly or the ouéputs tied directl; to y. The Lemmas 4.2 -
4,4 and Theorem 4.2 unify the two opposing approaches under-one
methodology, and allow for the module to be placed anywhere
inside of the future circuit. Let it be assumed that a
(sub)module characteristic function  &4(v, w)y | v]=m,
| ﬂl = n was selected ffom the library to4?brm a partial
realization of an output charactéristic function ¢ (x, y),
| 5[ =T, l Il =g, Withou£ performing any mapping between the
module and problem variables, the module may be left "floating"

in the future circuit, and the output qharacteristic function

(Corollary to Theorem 4.2) e

O 1(_)5, My Vv, 1) = ;C(!i _‘i) + 9 (E' X)

may be formed, where X, W are new domain and v, y new
range variables. UNow, a mapping U from some x to some
v and a mapping Ny from some w to some y may be
gelected, (The selection can be guided by similar criteria as

in [ 5, 20]). The mappings may be expressed by the equations

A

~




for all the interconnections to be made. Let then

!
[

Ux(g. v) = 1 ‘ and “y(E’ y)

»

be the corresponding characteristic equatipns of the

two systems of mapping equatlons. (Note that w  and
H v represe?t a cémbinational circuit). The application of
the mappings can then be expressed by a new output charac-

teristic function
d 2(?5_! Wy V, 1) = U X(-}S' X) oy y(ﬂr _X) * 9 1(5' Wy V, I)

with gﬁe variables from v and y used in the mappings being

deleted. If

(1)2(2(_: ¥y VY, X) = 1
)

i consistent with respect to solutions v(x) and y(x, ¥)

then the particular mappings U Ljy with the module ¢ C

form a partial realization of @ (x, y). Thus by applying
various mappings Moy and ny and then sclecting the best
ones (under some heuristic criteria) which form a consistent

¢ > = 1, the process may be repeated to realize ¢ 2 etc,

Note, that Lf maps are used to represent Boolean functions

r+g+mtn

then the largest map required would have 2 bits., If
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v 7
cubical complex representafion 1s used then the largest array
will ‘be that of ¢1. It would require r+ g+ m+n columns.
and a maximum of 2T + 2™ rows - a very conservative estimate

- 3

considering the fact that if ¢1 is evaluated as
Ur+m+n+q # ( oo # ¢ ) then the resulting array is formed from,
all the prime implicants of ¢1 (Section 5.3.2) {7]. 1t
also means, that standard reduction (extraction) techniques
could be applied to reduce the size of the array even more.
If a quaternal encoding of the variables in arrays is used [36]3

then the upper limit on the bit requirement for storing the

array @1 is

2+ (r+q+m+n) (2F + 2™ .
Hence for a reasonably sized problem of

r = 9, q=10, m = 5 n=1¢,

¢ can be represented as a 228

1 bit map oxr as an array with

at most 2 « 28 + 2% < 220 vits. Considering the additional

advantages of the artay representation such as easy manipulation
(Section_S.i, 5.2), then it seems that the more suitable form
of representing Boolean functions for computer processing is

that of cubical complexes.,




uy to a given @1

g sequence of applicd*iggf\ii\jfimmed by using the inconsistency informa-

tion of

149

The sequential application of the varicus mappings Moo

may be a rather time consuming task, even if the

¢1 under past mappings. It will be shown here, however,

that by increasing the memory requirements and by incorporating special

(hypothetical) mapping modules, parallel processing of all the possible -

mappings can te performed. The result of the operations being an
encoded list of all mappings which form a consistent equation o
¢, = 1.

The proposed structure is

shown in Figurj 6.1. The modules

Z and 0 are hypothetical, their funcfIom—ts to perform the
mappings Mo and uy. respectively. Their operation is controlled
- —
E—— - - — ——C S e
. . T \ v w P
e’ . ) e M
x 5 : Q ry < °(x y)

/ il
——t N N

15}

FIGURE 6.1,

N

MAPPING MODULE APPLICATION,
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by the parameters s and 1 in such a way that a constant valug of
s and t selects a particular mapping from the modulé variables to the

problem variables, The internal structure of the modules- = and, {

&

will be derived by first considering a general-mapping module from a
u'}

set a = {al, By1 over B } to a set b= {bi' ceey th } in terms ofy

some parameters g_=={v1, ...,VY}. N

The simplest arrangement would be to select vy =o + 8,

assign

and then let

i i i .
= L I ] + = LN
b ai‘vl + a2 v2 + ad'vd, i 1, _ﬂl_f

> (6.1.1)
with an orthonozmalitx“ponstraint imposed over all 1 =1, ..., B

subsets of v, _so as to force only a single variable to be connected

v

to bi for a given value of v. That is, the parameters must satisfy

(3, 4,5, 271 ) ,
& i i i
Eovio- 1, vievie 0, GAk 1=, B
N
5=1

The eqﬁations can be combined and represented by_a characteristic equation
s

£

. h |
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1 " (6.1.2)

An additional constraint can be obtained by considering one to one

mapping only. That is, ¥
‘\)J = O for all i=1' se ey B, j%.i| k=1' veey O

Or in one equation as '

o B s . : \
m- n [ 1 (v; + vg) 1= 1 (6.1.3)
k=1 i=1 A . '

For (6.1.3) to be applicable « » B must be satisfied. The module

¢

characteristic function ¢, obtained from (6.1.1) is thus

——

e s e Rlea L a )+ Bt e W]
| " i At B | o o AN : o o
o -oi=1 i=1
; " (601-“‘)
1 J
| and constrained by (6.1.2), (6.1.3). .
— —_ +_The total number of parameters o ° B is very high even for

relatively small problems; howe¥er, due to (6.1.2) an eca&omic encoding

-

i
of the orthonormal sets [26] may redudé’ the number of necessary parameters

by a considerable factor., Two such encodings will be mentloned hereafter.
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Cohq}der each, bi separately, then the corresponding subsets

of V 'may be encoded by B sets of distinct parameters E}' The

number of parameters needed in each set is
¥

rlogz(a), bringing the’

total number of parameters to B * r—logz(a). The variables V thus

—

become functions of p with the orthonorhality constraint (6.1.2)

embedded in them, A simple algorithm for the generation of the ortho-

normal functions can be found in [5] . «n actual assignment will be '

¢

shown in the following example.

Example Let ¢ =3, B =2,

then B 52(3) = L4, thus F
///;>lo ‘

2 2
P = p%’ P;’ Pi) pZ , and

t _ 11 2 _ 2 2

Vi T PP Vi T, P1 P2 = ,
NS S O S 2 - 32 .2

2 Py P2 ; 2 ~ Py P

1 11 _ ol 2 _ =2

V3 = ﬂpr—‘?z—J&JPT = P M TP

The module characteristic function is (6.1.4)

2 . . .

1 1 -1 1 -1
M by(ay pypy * 53, Py oy * 25 9p)
1=1 :

1 - . .
. - - - - =1 - - i - - i
+ bi(a1 ay a4 t a5 a3 D) +oay 33 Py + 2, a5 Py

- i - - -
, + 830, + 3,0 Py * 35 P 0]
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’

The constraint (6.1.3) will take the form -

s

Sy -1, =2, =2 121 2 =2y o1, 2
(p%”+pz+p1+p1)-(p1+p2+p1+p2) (p; +05) = 1

Any additional constraints could be expressed in terms of the parameters

in a similar way.

‘Bncoding 2

\\\jf;—a > B is assumed then even higher reduction of the
] Es

number of parameters required may be échieved by incorporating the

/
constraint (6.1.3) into (6.1.2). The two constraints describe the

?
tdtal of G‘g——ﬂ" distinct states of v; therefore, there are

AT
a=

ol = r—logz(—(o,—?g'fﬂ'? )

parameters p needed to encode the variables vy as functions !(E)'

i

The particular functions can be obtained in a similar way as for
Encoding 1 - by solving (6.1.2) and (6.1.3) in the space of the para-
meters, and at the same time—preserving the mutual exclusiveness of the

\

v minterms. The procedure is illustrated in the following example.

Example : As before, let o =3, B = 2, then
Lxample
1 ]
IP.I = ’_lng 3 < 2)! =3 - P = {pl' p2v PB} ‘

et




® ‘ ’
(compared with 4 parameters in Encoding 1). To obtain the functions

v(p) the following correspondence between the minterms of V. (satisfying

(6.1.2) and (6.1.3)) and the minterms of p may be selected:

1-1-1 -2 2-2 _
, \)1\)2\)3 \)1\)2\)3 = p1 p2 'pj,
1 -1-1 =22 ° _ -
v1v2v3 v1v2v3 = p1p2p3 ’
-1 1-1 2 =2 =2 _ - X
v1v2v3 ViV v3 - plpzpB
-1 . 1-1 =2-2 2 _ - =
\)1\)2\)3 vy \)2\)3 = Py Py Py
-1 -1_1 2 =2 =2 _ - - - _ -
\)1 \)2 \)3 \)1 \)2 \)3 = p1 p2 p3 + p1 p2 p3 = p1 P3
-1 -1.1 =2 2-2 _ - - - - = _ - =
ViVaVy VyVaVy T Py PPyt Oy PRy T Py Py
'0 \
The individual function v? obtained by solvin .the’abdve system are
o S L
1 Pp P2 - 2 Py P2 . V3 Py
2 _ - _ 2 Lo 2 o =
= = + -
Vi = PpP3FTPyPy Vp T Py P3 TPy Py V3 T Py Py

The module characteristic function being’

° = [oy(ayoypp + 3Py Py * a3 0y)

s §@1+@+5g@2+g+pg63+ﬁﬂ
° FLoya; Byoy * ay PyPy * R P PPy F o200y T AR By)
+ Dy(a, * py Py * P3)(3, * Py Py T Py Py T Py Py PPy

. (B + By 7))

’ o



. For instance, a choice of Py = 0, p, = 0, p3u = 0~ will

gonerate the mapping b1 = a.3, b2 = a. Any additional constraints

could ag‘ain be added by formulating them as equat"iqn_s in p.

’

u A
To compare the encodings, Table 6.1 shows the number of

. parame{r,ers required for various o and B, and the two types of

-

—~

_encoding.
2 |
B Enc. 1 Bnc., 2 )
1 1 1+ , _
. 2 2 2 1 .
) 301 2 2 C
3 2 4 3
’ 3 3 6 3, >
b1 o2 Y
T T y
“ L 3 - 6 5
7w, |8 5 S |
. 5 5 15 7 ‘
i 7 5 15 12
- . 10 5 20 5~ -
‘ | ‘510 : 30 o < BY '

‘ Application to modules EZ and .0

s




.
-

Y

Module o - .

w

In order to allow for free-inputs to the module M, the

domain a is composed of the vaiiables x and the variable vy to

which the mapping 15 to be madey ice. a = {1, Vi} for bi = Vi. 4

»

Thus m¥ (r + 1) functions Vi are needed, (6.2.1) yields

[

]: * ] '1' te o0y Me
If Encoding 1 i@ used then m o r—logz(r + 1) parameters p are

required. Encoding 2 would reduce the number of parameters s to

?

(x* 1)
1og2 G+i-n) +  however, only one free module input wqyld be

allowed in‘ény mapping thus ottained. The Encoding 1 does not have this

disadvantage, provided that (6.2.3) is modified before applying. Such a

modification is rather difficult to make in case of Encoding 2 where

-,
iy

even the number of parameters may have to be changed.

Considering again a problem with r =9 and m =5 then 20

v

.

paramcters are required for Encoding 1, and only-15 for Encoding 2. That
wbuld bring the total number of variables in the module characteristic

function to 34 and 29, réspectively.

4

Let E (x, v, 5) Dbe the characteristic function of the

module with any encoding in terms of the %arameters s. It should be
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noted that due to the presence of the Vi Variable in a, the function g
— o “g, <
= has multiple output states v associated with the states of x Sy -
and s =~ it resembles a sequential module. "
Module Q
v Similarly as in module’ I, the domain a consists of the

variabled - w and y; so that .

a = {wy! vfor by =y, .
Hence )

n 1 i o
yi = Z Wj \)j-+ yi \)n+1 ’ i= 1, sesvy Qo
b j=1

The Encoding 1 can be uded if the constraint (6.1.3) is-modified to permit )
multiple free outpuis, As far as Erncoding 2 is concerned, it could te  ___
used only if q € n+ 1, and even then it is .restricted to the maximum
of 1 free ouiput Y3 only, Therefore, it seems that the Bncoding 1
is more suitable here, since usually q > n + 1, and the modifications
required to permit multiple free outputs in Encoding 2 are not simple to .

perform, ' i L

-

Let @ (w, y, t) Dbe the module characteristic function,

the mappings being determined by the parameters 1 vig)Encoding 1,
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\ ' _ \

‘ Again, due to the presence of a freed Y5 in a the function  .has a
sequential character.

For a problem with q = 10 and n =4 as before, some 30 !
parameters would be needed, bringing the total number of variables in £
to 44, The only practically possible representation might be using

cubical complexes, since a map would require over 1013 bits}

Determination of Feasible Mappings - Module Applicatiodn

The overall circuit characteristic function of ( £ , M) in

Figure 6.1 1is given by

™

'
q)C(?_(_v Sy W) =

( 2(x, v, 8) QC(X, w)): (Lemma 2.3)
) re B
— R 2 .

This circuit has to realize the output characteristic function‘

() = I (2 (myt) + olxy)
Yy € Bg
= L (Q « 9) © (Lemma 4,2)
Yy € B% )
Hence @é v ¢1 must hold for all states of w and x with s and %
takdng constant values. Therefore, feasible mappings My and “y
;
, exist if the equation o (o ot @1) = 1 nas an identity solution
W E Bé :
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(constant) for the parameters s and t. (The particular mappings are
obtained by substituting the identity solution(s) to the inapping

$
functions). By Theorem 2.3, the identity solutlons are equivalent to the

solutions of the truth equation

[ 2 (8 »¢) = (a « @¢)l="0 (6.1.5)
L€ By

Hence by scanning the identity solutions, the most suitable mappings (under
some criteria as in [5, 28] ) can be selected. The chBice may also be
guided by the number of redundant domain variables which each such
mapping would introduce [15, 28]. To determine whether an output
characteristic function ¢ (x, y) .has some solutions with x, € x

redundant the following test can be berformed.
If

¢ (x, y) v (%, y) = 1

/

is consistent then

q)(Zv }’_’) = 1

contains solutions wi@hﬁredundant xi.

T/ - .
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T 6.1.3 Evaluation

The method of module application without parametric encoding
of the mappings oo g;;Q\Li\iither simple and it should be possible to
incorporate the procedure into any of the existing synthesis programs,

such as [5, 15, 281].

The size of the arrays to be stored in [23 ] would be
increased by m columns and at most by 2" TOWS , where m is the
nunber of module inputs. The module application is done once only, and
then various mappings in the form of constraint equations can be applied
in a search for a feasible decomposition. The optimizing principles

)

L could remain without any major change.

In order to estimate the complexity of parametric encoding

of My and 11y, the size of the arrays/maps required to evaluate

equation (6.1.5) will be examined. Estimation of the size of functions

involved: §
¢ (x, y) - r+q variables, maximgmmgpproximately'Zr rows in
an array.
¢>C(!, W) - m+n variables, maximum approximately 2™ rows.
_ (r + 1)!
E(xy vy 8) - T+m+ | s | variables, approximately
' (r +1 - m)!
. ~ ‘ rows (Encoding 2). '

-
} y ‘_..._'_.(—-—-——--m
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. Q(wy yst) - n+ g+ ILI variables, maximum (n+1)% TOwWs

@ncoding 1). -

Intermediate results in (6.1.5) 1

r( £ % ¢c)~ - since v can be deleted while forming the
A
intersection, the total number of variables
{to be stored) is r+ n +|s |
-
1( Q « ®) - since Y can be deleted while forming the
* ! o -
relative complement (# operation), only
r+ n+|t| variables need to be stored.
iy '
. s [ « 7 - +the variables x and w may be deletéd in
X W

the process of intersecting. Thus it is

necessary to store |s |+ |t| variable

-~ §

maps or arxrays.

Since |s|+[t| is larger than any of the other variable

requirements (see discussion about the Encoding 1 and 2) then the largest

map to be stored '1\5 2l = ]+ '—t j bits.

”

By examining the row requircments of the various arrays of

functions, it seems that the largest array would be tnat formed at the

8

last operation in (6.1.5). That would have |s |+ !t | columns, and a

+1)°
‘ . very conservative estimate of maximum (n + 1)q ’ ZI‘<§ 1 ?‘m), YOWS,
l ’

j which-is based on the total number of possible module variable to problem
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variable mappings. If a 2 bit per variable encoding [35] is used then

there are at most 2 * (n + 1)q . (r + 1)

(I‘ + 1 - m)! ‘ (T‘s |+, | t D bits

¢#

needed to store the result of (6.1.5). The actual bit requirement

would very likely be much smaller than that, however.
Considering again the problem with

i r =9, g = 10, m =5 n =4
then
N

'f’_l 15, lil = 30,

it

| )

Ly
and a 2 5= 3.52 * 1O13 bit map is needed (independently whether any

mappings are feasibleir'compared to the maximum of

-

2+ 510,108 (45 430) = 2.7 % 107

bits for Ehe array. ) -

t

- No computational examples are presented, since even for

P
<
1

trivial problems the number of variables involved is rather high for hand

manipulation. As far as computer aided synthesis is goncerncd then for

3

simple prpbiemslthe forementioned modificalion 1o [28 ] could be made;

PRCIEN o

4
<Ly
however, problems of practical intecrest having large number of variables

r 210, q 210, would require long computatioﬁél times and have high
memory requirements. If parametric encoding of the mappings is performed

to allow for simultaneous processing of the various possibilities, the
—— .

f

b
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$torage requirements are close to current technologiéal limits, Hence,
a@hpresent, the use of suth synthesis programs seems to be limited to
rather small problems where a particular type of a solution is sought,
and where the task could not be performed “ihtuitively" because of the

large number of possibilities involved. Therefore, the development of

such a computer program did not seem to be justified for economic reasons.

A rather interesting possibility arises, however, if the
computational capability of a digital computer ié combined with human
intuition via a computer graphics.system.  There, the computer would
perform the computational tasks (array operations) and minor decisions

4
based on consistency conditions of Boolean equation. The human designer

- could then guide the choice of mpdules. their placement, and also set

\

the 1limits on possible mappings of problem to module variables. All
the decisions could be guided by the future layout of the circuit
board ~ aprocess rather similar to designing integrated circuit masks with

4

the aid of a computer graphics system,

Y

6.2 Application #2 : Fault Detection in Combinational Circuits

A current problem in switching circuit manufacturing and

maintenance is fault detection [ 6, 9, 37, 38]. Il the number of
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-5
-

inputs to a given ciicuit is high then its testing by application of all
possible input states to a combinational circuit or all input sequences
to a sequential circuit becomes impractical. Consideririg only combina-
tional circuits, it has been shown that it is sufficient to apply a

c é ’
sub§et of the possible input states to detect all single and multiple

o
A

faults [ 6, 9, 37, 381,

A method will be shown, that will generate first all the
input states which could detect a particular fault, and second, it will
be extended to generate a minimum length test set TS of input stimuli
which would detect all single stuck at{ 0 and 1 faults in a
combinational circuit built from combinational modules. The pro;edure
is based on the relation‘s:hip between circuit and output characte;’istic
functions as developed in Chapter 4. It is especially easy to use if the
circuit characteristic functions of the modules comprising the network
are divectly available, for instance, from the library of modules as in

Application #1., iloresver, it will also be shown how the same methodology

can be applied to generate tests for detecting multiple "stuck at" faults
1
e
and bridging faults.
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6.2.1 Detection of a Single Stuck at 0 or 1 Fault.

Let a combinational circuit be giqégrzhr?gﬁwn in Figure 6.2. -

It is required to find all states of the input variables X (stimuli)

which would detect a "stuck at" fault on a line 2z feeding into a
module G of the circuit. That is, if any of those states x 1is
applied to the circuit then a fault on the line 2z would produce an

s
incorrect output y. v

3
t

disconnect, characterized by ¢1(5, z) =1

- - C

@

FIGURE 6.7, SINGLE FAULT DETECTION.

Let ®(x, y) Dbe the overall circuit characteristio function

a

without any Taults present, (The circuit normally recalizes that ¢ ).

-—— _— - IR e

Furthermore, let the circuit characteristic functions of‘ all the comblna-

tional modules which compose C be known, Since the internal structure

4
;A

14 & N
of C i§ known, then by applying Theorem 4.2 and the Lemmas 4,2 - 4,3,
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the output chargacteristic function ¢ 1(1. z), describing the line z

whan disconnegted from the rest of the circult, can be obtained.

If @G(z, z) 1is the circuit characteristic function

normally realizing =z then

~ee f

CDC(EI Z) \< @1(_)_(_! Z) \

identically. A stuck at 1 1line 2z actually produces 2z = 1, whose
’

characteristic function is ¢C(5, z) = z, Therefore, the realization

condition is

o

z < @1(3, z).

Two cases can now occur, either the relation is satisfied identically,

-

then 2z 1is redundant in C and the fault cannot be detected, or the
relation ?olds only for some states of x. For all the other states of
x the function ®1(§, z) is not realized, thus ¢ (x, y) is not
realized, and consequently, an inéorrect output y is produced.

Therefore,ﬂthese input states would detect the fault. The relation,
|

Z \< (Dl(_)_(,r Z) /

is not realized at the inconcistency points of the equation‘

I (3 + ofx2) = 1 ' (6.2.1)

Z € B2

l

After simplification - all input states x which would detect =z =1

»



form the solutions to the truth equation \

¢,(x, 1) =1

4
4
4

%
t

(6.2.2)

Simi]arly,aa stuck at 0 fault is represented by =z = 0,

and the test states are the solutions to

31(3" O) = 1

¥

™

t
Example i Consider a circuit shown in Figure 6.3

y(a, b, ¢, d) generated by the circuit is. -

y = abe + abd + acd + becd
Hence -
¢(a, b, c,d,y) = y*(abc + ab d + a

9
[6, 7]. The function
\

4

cd + becad)

+ y+(ac + bec + ad 4+ bd + abdbe d)

FIGURE 6.3, EXAMPLE FOR SECTION 6.2.1.
8
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%, . A ) 4
“d - -
- ‘ -
. The circuit characteristic functions for gates 1, 2, 3, 4 and 5 are
< ‘ )
L@Cl(a, b, 21) = z,ab zl(a f )

@Cz(c. d, ZZ) =-z,cd + EZ(E + d) )

- 213(2y0 250 25) 1 %2 23 1% 2 ?q
QCu(Zi' Z,s zu) = z,2,7 * Z, %, * 22 Eu

(DCS(Z}’- Zy, y) =y z3~ :"‘Y‘YAZU" +y EB -Z.ll'
Note that all gates are combiééﬁional so that the simfler form of the
expression in Lemma 4,2 6&nhbe used (see Remark following Lemma h.2j.
Let a fault be assumed on line 23. Thend?he following steps will

generate the test input siates[bf (a:y b, cy d). Circuits 1 and 2

combined:
q’Cl,Z(a' b, ¢, d, 24, z,) = @Cl(a, b, z1) . Q‘CZ(C" <.i, 2,)
= =z, z,abcd + é& zz(é cd + becad) ,
+ 2z, Ez(a bc 4+ abd)
+ o7y z(ac + ad + bec + b a)'
Circu;ts 1, 2 and 4 combined 1 (Lemma 2.3)
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r
*r

= Zu(a ‘C d + B d‘C)
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+ glabc+aivd+ac+ad+bo+bd+anvcd)

A}

The output characteristic function }D; 2,34 generated through gate 5 1
e

(Lemma 4,2)

®1'2’3'u(a| b, ¢, d, ZB' Za)
- T (o

2

) y € B ’

ot —ZB

i
J

(za+zu) (abc-+ abd + acd + bed)

i

1% -

3

. \\
Z,3¢ + 5% + 3@ + B + abecd)

Hence the-output characteristic f‘qnction for 23 (Lemma 4,4)

q):}("(b: c, .d, 23)

i

' z), € 82 -
4

25(a b C +41bd) + 5,3 @

n

ol o " a2,

y )

+bd+abecd)

» + acd + becd

)



a
2

Z

3

stuck ﬁt 0 :

Ej(a. b, c,d,0) = a&bec + abd

Therefére, any of the following stimull would-detect -that s=a~0 fault ¢

"
”
8- b c d
3 5 ,
1 1 O ¥ "\ ¢
1 1 1 P . 7
1 1 0
— \ —— .
0 - I P -
‘s N
C e . 0
z. stuck at 1 :
3 &, /
1 ' § \
Eg(a. b, c,d, 1) = aec + bec + ad + bd + abecd

-

2

Hence any of the following stimuli would detectjéhe s-a-1 fault

o

o

a b c d < :
1 | 11 % )
0 0 0 0 /
o o o 1 | '
0 1 0 0
-0 1 n, 1
1 0 01
o "0 1 0 ' i
o 1 1 0 . ‘
1" 7.0 1 0 ;
v v > |
The states 00 11,

0111 and 10,11 would detect nelther fault.

"
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6.2.2 Minimal Length Single Fault Test Sets

-~

It has been shown [ 9] that all single faults 1n a combina-

tiénal circuit are detected if all single faults on the circuit's checkpoints

-t
-

are detected. The checkpoints being defined as all prirary inputs which

do not fanout ard all fanodt‘branches.

Let (2 i =1, ..+, k be some variableg marking all the

lines associated with the checkpoints of a circuit ‘C. Before proceding

to generate a minimal length test set covering all single faults on the
i

k checkpoints, the sets of test stimuli for each line zy must be

generated first by the method shown 'in Section 6.2.1, Therefore, let

B3

')' i=1,clc'k

0 i(z’ 81

be.the output characteristic functions associated with these lines.

3

Furthermore, let

‘Pg(?ﬁ) = gi(fg 0) . /
i v M) = T (x, 1) ° o
. 11X 102

Hence a stimulus x* will detect a stuck at 0 or 1 fault on Jdine Z5 if-

s

I ‘ 7
v Ox¢) = 1 {
1= b

g
’ -

or - - J
& \‘

=y ¥ 11-(5*) - 1 , 1

respectively.
/ -
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A minimal length test set TS is defined as the smallest

' )

set of input stimuli which would detect all single "stuck at" faults on

the checkpoints., Therefore, in terms of the Wi functions, it is the

L ¢

smallest set such that

, .
ooy 3 xle T 3 ‘}’O(xi) = 1
, - 5 i= -
2 . 1, .2
and i x € TS 3 Wi(z Yy = 1.

Hence the determination of TS can be formulated as a covering problen,

As such it could be solved using a covering table with its rows labelled

by all states of x (Bg), and the columns labelted by the furj=fions
Wg; Wi, i =1, .., k. A check mark is then vlaced in an whtry

(x7, Wg(l)) if Wg<1)(§J) = 1. A minimal cover of the fuﬁoﬁions vy

/ ||

must then be obtained by any extraction procedure. ' k had

A maijor disadvantage of the tabular method above i-’
W
jo

table is exlended over all states of x. A smaller covering tabl
- T i

)/

be obtained by first forming pairwise intersectionsb[ 9 ] of t

14
4
Wi so as to find the minterms common to the largest possible sutsets of

S
these functions.

A purely algebraic method based on mutual intersections of
i

A}
the functions L could be developed as follows:
-

functions




Let p be a set of 2k parameters

’ o {0 1 0 1 0 1,
P = p1.p1'P2- Pos sesr Ppr P o -

and form a function

— =

GO+ ¥x) G+ Y.

f
[y

i
Delete all terms in the LIl form of JP. whose p part of the product
subsums another term's p part. After all 'such terms were deleted the
modified function P~ contains only the largest non-zero products of the

) function Wi. The variables from p contained in a term mark those

i

Wi which did not take part in that product term.

™

At this point, let P* be the smallest subfunction {implicant)

0

of P, such that the set formed as a union of all the missing parameters

.
IS
-l -

pg or p; from all the product terms of P* 1is equal.to the éomplete
set p. A set TS is then formed as follows: For each term in P* select

|

a single state Z] for which the term becomes dependent only on the

1

pgrameters p (the x part is equal to 1), then x’ is a member of Ty

The method was presented without a formal proof, but it closeiy

follows the method of pairwise intersections and figding the smallest cover.
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6.2.3 Detection-of Other Types of Faults.

Multiple "stuck at" Faults

A
£

From all/sthe possible multiplicity of faults, only double
faults will be considefed heres for reasons of simplicity. However, the

method is easily extendable to cover any fault multiplicity.

Let 24 and z, be two checkpoints in a circuit C for

-

which a double Tault test is to be generated. Similarly as in Section 6.2.1,

1g¢ the lines 2z and g2

1 be disconnected and their output characteristic

2

44
‘k\ function ®12(5, 24 ZZ) btained.

) = Tl 1 1)
e e - fiyl,o(_)_(.) _= §12(§! 1\17 O) v -
’ 01 -
¥ (_)E> = @12(5, O' 1)
, ¢
- g
WP?(E) = ¢12(£o 0, O) .
;ﬁ -
A double fault 4 =0 2, % B, o, BeE 82, can thus be detected by all
"states of x/ for which "~
v Py = 1.

Minimal length test sets can then be obtained by a similar method as

- "

discussed in Section 6,2.2.

-y
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Bridging Faults :

A bridge bvetween lines 2z, and 2z, will force 1z, = z,,
S 1 2 1 2

7y . .
Such fault would be tHer detected by all the states of x which are the

?l
inconsistency points of the equation

w-, k ' )
o 7. 5.) =
(%0 290 2 My 5y ¥z 2) =

|
with respect to the solutions zi(z), 22(5). In other words, let

W) = L 9 ~ G, 7
(x) ) o(xNa, 22, 2, + 7 B
% z1,22 € B2
then a stimulus x* will detect the particular bridging fault if :
o
\PF(Z*) = 1,
. |

6.2.4 Concluding Remarks J :

Using the methodology described in the preceeding sections,
test sets of input stimuli for detecting various types of faults can be
generated. Minimum length test set can then be obtained by a covering
proc?dure mentioned in Section 6.2.2. . The eqtire testlgenerating )

i -
procedure could easily be programmed f01?<i);2é;ta1 computer[ especilally

1f cubical complexes are used to represent the various functions. The

J
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R program mentioned in Section 6.1, since both precedures would use the same

algorithm could also be incorporated into the computer aided synthesis

library of module characteristic functions.

e Rt

vomarda
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CHAPTER 7 ~

-

CONCLUSION

Ia?lhis final chapter, an overall summary of the orig;nal con-

3

tributions described in the preceeding, sections is presented, andlnatural
extensions of these contributions are put forward as topics for further

o

research. b

7.1 Summary

7.1.1 Theoretical Aspects

-

The roots of the;ﬁork 1ie in the theory of systems of Boolean

equations. Therefore, some major topics related to the formation of a

characteristic equation ¢(x, y) =1 (function ¢(x, y)) of a system of
B.E., to its consisténcy, and to the methods of solution were reviewed in the

first three sections of Chapter 2. The following properties of B,E.Eﬁertinent

to the research were then elaborated upon in Section 2.4:

- Detection of a unique solution and of identity solutions by a

'simple algebraic method.

n

- Determination of a characteristic equa%ion equivalent to a
1

system of two equatfons related by the fact that the solu-.

. .
tions of the first equation are required to form the domain

of the second equation (Lemma 2.3).
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3
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-

The second case played an important role when an analysis of switching

- cilrcuits was performed in Chapters 3 and 4, First, however, the concept

of a gharacteristic function (equation) of a system of B.E. was applied

to chargc@eri;e a general oircuit (Fisure 3.1) represented by a Mealy

tybe machine (Definition 3,2), It resulted in the definitions of a number
of special characteristic functions which related the input stlmuaiu:ith
théginternal states and the output responses of the c{rcnit. (Definitions
3.2, 3.3, 3.5, 3.12, 3.14), Hutual relationship between these functions
was analyzed in Lemma 3,2, Theorem 3.1, while Lem%a's 3.1, 3.3 3.4 and

3.5 showed howqa deécription of the stable, oscillato}y and transient
states of the circuit can be obtained from the corregponding characteriétic
equations, by analyzineg thelr solutions and consistency. The above steps

’

eventually lead to the formulation of a circuit characteristic function
2

4

¢C(5, y) (Theoren 3.3, Definition 4,1) which related, through o, = 1,

the input states x with thé steady output states ¥y that may possibly
- »”
be assumed by the circuit if a proper input sequence is applied.

] [

A trivial case when a circuit has combinational behaviour
was studied in Theorem 3.2. FPFurthermore, i1l was shown in Theorem 3.3

that combinational behaviour (Definitien 3,13) of an internally
»

sequential circuit is characterized by the existence of a unique solution
to o (x, z) = 1, Assuming the internal Ftructure of the circuit to

Cct—
»r
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consist of a next state generator’ g and an output generator f

(Figure 3.1), the function ¢C(§, y) was formed as

Z (9 ¢ ¢
2! g £)
(Definitions 5.12, 3.1l; Theoren 3.3) by application of Lemma 2.3. The

expression gives an insightgxﬂm the mechanism by which a sequential —

circuit may produce a combinational output, Namely, that the output

v _.gBenerator f. filters out'the possible multiple internal steady states

e

P

relation

kY

z of g for each input state x, and thus a unique output state NS

is generated. ¢

3
2

Realization of multiple output incohpletely specified 'Q
switching functions l(é) Jby combinational and sequential networks was
then treated in Chapter 4. An output characteristic function @(5, I)
(Definition 4.2) was formally defined in such a way that the maximum per-

nissible steady outbut states which a circuit may assume so as to satisfy

some requirements are described by the solutions of

/¢(5, l) = 1,

@ - .
]
If a particular circuit (represented by ¢c) operates within these

states, then that fact was definéd as a realization of the output .

characteristic functipn, and it was shown that in such a case the




»

.

o (xy y) € (% y)

1

18 satisfied (Lemma 4.1). The original requirement placed on a circuit
wis to realize \y(x); however, it was demonstrated in Theorem 4.1 that
the realization of 1(§)n corresponds to the realization of an output

~

characteristic function derived from the system of relations .

2
.-

: y(x) = <o(x), p(x) + dlx)> .

Consequently, the function y(x) is realized by a circuit C if the <
relation between the respective characteristic functions is satisfied.
This notion was further extended to cover realizations by ‘circuits which
congist of cascade and parallel interconnections of functional modules.,

By assuming that some of the modules in the circuit are still unknown, the

2

problem of.functional decomposition was shown to be equivalent to the
problem of solving a system of 2 Boolean eJLatlons re}ated by the order .

4

SN— e
( €) relation, Thus the various approaches to decomposition as mentioned

v

in Section 4,1 werc unified and expressed under one methodology in

Lemma's 4.2, 4.3 and 4.4, Their combined effect was then stated in the,

main decomposition gheorem (Theorem L,2) and its Corollary. #

The unifying impact of the methodology of characteristic

functions on functional decomposition can be summarized as follows :

& .




' Independently of the position of the still unxnown module

inside the negzork two conditions must be satisfied for a decomposition/

realization to exist, namely,

\ . n
;*u (1) a decomposition exists if the corresponding output .

o charadteristic equation Q’(Z- 1) = 1 derived for e

the unknown module is consistent; .

é

-

(2) a circuit module C will complete the realization

/ -~
s

provided that ¢ C < ¢ is satisfied.

The partiéulag\output characteristic function ¢ can be obtained as

specified in the forementioned Lemma's or Theorem b2, \

The condition (2) above is valid even 1Lf the module is of a

%
¢ 5

sequential character, provided that the circuit characteristic function

.

properly describes its steady output-states under the possible input

stimuli. Furtnermore, if a combinational circuit is desired as‘the

P
v

missing module then its output function (df X only) ca% be obtained as

A

an elementary solution of the corresponding output characteristic

T

equation ¢ =1, . . }
. - + /? w

Having shown that circuits with feedback loops (and thus with
multiple output states) could ‘be used to realize combinational switching »

' functions, a more detailed inquiry into the necessity of such loops in - .
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minimal circuits realizing a given output characteristic function was

-4
performed in Section 4,3. There, Theorem 4.3 stated a necessary
‘
condition under which the feedback in a sequential circuit g realizing .

some ¢ is redundant. If the condition is satisfied then g could be

made to degenerate info a purcly combinational equivalent g* obtained

)

by freezing the feedback inputs of g at some constant value. Moreover, -

v

it was demonstrated that the resulting fecdbackless circuit would not be

as complex as the scquential original. A subclass of the degenerate cases

<

(for, some ® ) was named "direct transition circuits's They are characterized
/

- ¢

by the property that any transition from an unstable state leads directly to

¥
a state permitted by the output characteristic function. Sirce any quasi-

&

normal (O-transitionj circult realizing & Dbelongs to this subclass, any

non-degenerate circuit must be passing througn transient states

o

(k »1 transition). Furthermore, some of those states must not be vermit-

ted by ¢ (Corollary 2 to Theorem 4,3), that is, the output characteristic
[ ¢ 2 . - = ¢ *

i

function must not be realized dJring the transitions. The immediate implica-

tion is that although fecdback in combinational networks might possibly

reduce the overall cost, the behaviour of such circuits would be inherently
v

hazardous during their transition periods (Corollary 3 to Theorcm 4.3). As

a matter of fact,’the existence of such transient states descyibes ‘the main

differencé between parallel and serial information processing systems.,

»
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"tic function realized, it was shown in Theorem 4.4 that any such circuit can
{

183

That is, parallel processing (iQ space) generates the steady state

responses faster (no transient states)fﬂﬁut more hardgware may be required

P

as compared to a serial case where' the processing is done by iterations

- Y

in time. There, however, some internal memoryo(feedback) is required to

[

store the intermediate results (transient states) which do not yet form
4

the correct final output. A simple example is a fast parallel adder as

compared with its serial equivalent. a , -

PO .
- :\i ‘. ;\-f Y .
Bven though £hé direct transition cirduits are of no practical

+

value, for Qhey are élﬁaysi@ggenerate with respect tol the output characteris-

el

be obtained via a’general solution .y = n(x, p) of the output chargéteiistic

«

equation . . o

¢ (x, y) = 1. * ‘ )

'
L

Unf%rtunately, a similar procedure has not yet been, discovered for the non-

Ed
»

degenerate cases; however, as already merntioned, the Corolléry 2 to

r

Theorem 4.3 stated some of the neogssary conditions’ that such circuits must

> -

satisfy. - . -

o
IS
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7
‘/ 7.1.2 Computational Aspects 2
7
< ‘ 3

The theoretical work of Chaptéfs 2, 3 and 4 was done indepen-
/ dently of any particular form of Boolean function représentation. However,

in order to illustrate the results on examples, some computational form
, . N

with assoclated operations had to be selected, Two typical forms were
- / . T *

reviewed in.Chap%er 5, Section 5.1, namely, the Marquand maps and the

g cubicsi‘compﬂexes (arrays). 1t was shown then th Section 5.2‘(A1gorithms)
4

-

»
and Scctiqn 5.3 (Bxamples) that the formal descriptions of the previous

- - b b

chapters could easily be transcribed into either of the computational forms.

\

This ease of conversion is due to the fact that the methodology is inde-

pendent of any data stgucture. Nevertheleséﬁ cubical complexes and
! . N s

operations bee@ to yield “the most pransﬁarent representation of the )

» 1

algorithms, since sone of the operations defined on arrays have an immediate

» meaning in the context of characteristic functions (e.g.,
4 t

) L]

DX’ , > I ; L P T @2,-eto>.

: , 51| .
- . . ;?e : \</\ '

Also, the array operators allow for easy &escriptiqn of computational pro-

-

* cedures in a way similar to programming languages. ;-
o

e !
The above mentioned close relationshio between characteristic (

f

e functioﬁ§ and- cubical complexeé becomes especially appareni when the so

0 called "funcition arfay" [7] of y(x) is compared with the array of the



-

L .
output characteristic functidn of y(x) as used in Theorem 4.1.

.
.

It can %be shown that the two arrays are cover equivaleni (compare, \

»
N

N

-

[

Algorithm 5,10 here with Algorithm 3.5 of [7]). Similarly, the circuit

charadteristic function of a purely combinational circuit coeresponds to

the: function array describin tQat circuit. However,-the characteristic

“ ~
> [

function as a concept is mMore general, since it allows for representing

’

both cgmbinati7ﬁgIhan@ sequential circuits in a unified manner. #“ven more
i
impertant is the fact, though, that chardcteristic functions can be

analyzed using the theory of B,E,, indeperdently of the form in which they

% Y e V4

would eventually be represented. Thus consistency of an array, functional

realization, decomposition, redtindancy of inpui and state variables,. and o

-

combinational behaviour can be precisely defined using the methodblbgy of
- " -
. : %
characteristic functions as corresponding to the consistency of aBoolean equation, 3

A
satisfaction of the < relation between two equations, the existence of

a solution in a system of two equations related By < , the existence of o

a solution to a B.E. under related coﬁstralnts; and the presence of.a

+ ”

0 .
unique solution in a circuit characteristic equation, respectively. . . ;
¢ A
Similar definitions can be developed to describe a number of other
- L]

properties of switching functions and circuits (e.g. symmetry, existence

i * ,
of disjoint decompositions, etc.)., In other words, if "function arrays" i 4

e . -~

are consistentily Eeplaced by arrays of characteristic ‘unctions then thé

14
' L 4-



~

<v~

[
. \
properties of "the cubical colplex representation of multipgle output
functions can be studied using a powerful tool - the thgory of B,LE, . T
J} " 3
/f : o ;‘r A o 2

s

v

4 ) . .
P

in prder to demonstrate that the methodology .can be used to

7:1.3 Applications ) .

ey

solwe problems of practicai interest, the material in Chabter 6 concentrated -

L} l 3

Id
14

on developing two particular abpiications. + It was shown'that:

»
L]

(1)  The methodology of gharacteristic functions permits a'rathe;

_flexidble approach te moéﬁlar.§ynthesis of combinational &'

s : .
. cilrcuits by decomposition, ana that ) .
“.. ‘r ’ N h
-(2)  the output characteristithnctions(quations) describing 4

s

the dnternal strugture of a combinational circuit carry'

enough information' to allow for a unified approach to
LY

the generation of test sets of input stimuli for detecting,

. -

various types of faults irside such circuits, :
v

-

In both cases above, the development of solution steps wasHone without

@

r
any dependence on a data struct H chowever, due to the properties of

.

-

.
I

the methodology as stressed'in‘Section 7.1.2, the conversion to ‘either

1)

map or array algerithms is rather trivial.



computer aided SYUﬁifiij—jifijithms. However, the storage/time requirg-

<. \ (' ) A N (/

.
. - » .
-~
o

The first application showed that by unifying the various

~

- R ° ’ ' , , -
ddrections taken in functional detomposition’'(Section 4,1) under one -

LN N «

' ' &

- N\ .
theory, the position of a building module (c0mb13?tipna1.or~pequentia1) -

N . N w o
inside the future circuit need not be determine@/in\gdvancé. THus an -

-

. Y
output characteristic function describing-a "floating" module is obtained u

. - . , . .

first, and then ihe module inputs and outputs can be fixed by applying

-

. . ' /
mapping constraint equations,.,so as to yiela the best conditions for ..
S o

4 ] X o
satisfying the particular circuit optimization goals currently in use.

Moreover, the mapping constraints could be combined into two~hypdthetical

>

mapping modules ( Z and § ) which are controlled by constant para-

-, A}

a
[
-

g,
meters. It was dembnstrated that if these modules are.used in conjunction
\ .

o - -

with the bdilding module;then a truth equatioh for the parameters can be

2

constructed so that any solution to the equation describes a feasible

v
mappings and thus a valid decompositiOﬁf”§;ther procedure is-relatively

«
-

simple to incorporate into the optimizing routines gf some of the existing

" 3
'

] N\

-

menls of these programs would still remain high (by present day standards) o
to be feagible for solving problems of practical interest. Therefore, no
aétual computer program was developed, since its design was not justified

on economic grounds. -

P - -

It /J' ,



More practical results were obtained in the second appli-

- 4 b}
cation dealing with fault detection. It was shown that a set of ° v . e

4 L

stimuli which would detect a paxﬂicular'faukbcbrresponds to the set of

inconsistency points (singulaFities) of an’ output characteristic func-

tion (equation) derived for the line Zt—Which the fault }s assumed.

«

Furthermore, it was demonstrated that single and multiple "stack at"
as well as bridging faults could be detected using the same™method. A
covering procedure was then?proposed for selecting minimal length test

sets suitable for detecting all single '"stuck at" faults. The pro-~"

-

cedure could be extehded to include other types of faults mentioned

before, and its conversion to a compg{er algorithm should be relatively

- o

easy, since the methodology* of characteristic functions is used
3

L

throughout. .

7.2 Future Research

?

The follov?ing 3\1?5 seem to be immediately suitable for

further exploratioﬁ based on the methodological tools developed here.

/
l

- ST
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A} . \ '
Q 7.2.1 Circuit Synthesis N -~

.
s
I ¥

(a) The design of non-degenerate aequenti%l circu1t§~whie§ would
\(

<

i
realize a given output characteristic function.

, x

f

. /
(b) Improvements in general synthesis programs as outlined in

- . €hapter 6, with the possibility of including external feed-

back loops, depending on the results obtained in (a) above..

(c)* Application of the methodology of characteristic functions

to the decomposition of sequential circuits with associated

-

hazard analysis, .

(a) = Due to the similarity between array representation of N
'- ) N \J . 5
. "_ characteristic, functions and "function érraysﬂ as discussed

in Section 7.1.2, %,possibility for research arises in the

-
1 - . i

development of efficient algorithms for generati nimal

* solutions to Boolean equations, It seems likely that some

“a N
.

of the procedures used for minimizing or reducing multiple

Q

output functions in. an array form could be altered so as to

- . a

f the task, ‘
perq?rm e task O

-



3 ~ . ~

Fault Detection ' . *

/’ -
7 1
Development of efficient computer algorigpms which would

/

4

generate minimal length test sets for detecting varioqus.
14

typesyof faults in combinational circuits, as discussed in

Section @.2.

p

f
'
Expansion of the fault detection method of Chapter 6 to

N

cover sequential circuits.! 1t scems that'the siate transi- '

tiaﬁ characterist;c‘function (Definition 3.2) would .be a

suitable tool for such an analysis. .

i . ) . )

/
A corollary to fault detection - the design ol easily
* ’ - - )

testable circuits by monitoring faults of their submodules

»
using_circuits which implement the output characteristic

functions associated with the submodules, as shown in n
Figure 7.1. The method night be especially attractive
in the case of LSI circuits whose internal structure is

very complex, and where there is‘'no access to\t?e‘yarious

’
sub-circuits contained on the chips. However, there is a
-

number of major problems which have to be resolved first, &

. k .

(i) What form the circuits implementing an output

namely : .

chgracteristic function should have.

.
- ’ ~
.
) M
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'/ N Tii). qu complex such a monitoring technique would

N

be as compared to curtent methods, which

[N

usually implement a given circuit twice (or

-
v

\o more) and then use comparators\b\decide

. o

¥ . whether a correct output response is obtained.

a

. o
r

(1i1) What output characteristic function should be oo,

used if the module monitored is redundant in

Ak, the overall network. - o

0 i

Possible advantages of the characteristic function approach

2 ~
§ °

could be summarized as follows : .

- -~

(a)  The checking circuit would have a structure different from that of

. . -

b ,

the module monitored, thus the chance of inducing the same

K

v

manmufacturing faults in both circuits would e decreased,

I\ 1
by
N *> ‘ resulting in more reliable perlormance.
\ ' 4
(v) If CIJC is the circuit &ha‘racteristic function and ¢
thre output charrécteristic function-of the module, then all
- the states in ¢ * © can be considered as don't care ‘
N N B « ¢ L '
( ¢, € ¢ s aSsun.led) when designing the checking
( circuit, - . ) -
174 - ‘ . . . &,“_
- ) _:(\
v - i A —
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1 : steady state :
o ’ ’ z = ¢(v,w) test
point z =0 - fault
N z=1 - no fault
C
§
R L ——————tb- !
\ r
x . y
B — | S .
/ o, < @ ‘
, f 7 N . ::'*:, - N
FIGURE 7.1. FAULT NONITORING,
P e
7.3 Final Remarks 4

In order to uhderline the title of the thesis, the following

are the main unifying aspects of the methodology of characteristic

] \ . . 3
functions

(a) " The representation of combinational and sequential circuits .
, can be unlfied with respect to the synthesis of combinational

) 1]
- networks,
(b) The various directions taken in the synthesis of combinational
circuits (Sectlon 4.1) may be approached using one methodology. N

’

-
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4

O(e)

©
4
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n

@

Since "function arré&s" were,shown'to be just special cases

of characteristic functions represented as arrays, the

- -

methodological tools of Boolean equations can be used

for developing and analyzing computational procedures which

4

are based on that data structure.

a

The formuldtion -of detection procedures for various,typés of

faults in combinational circuits may be done using a unified

A

approach.,

«

‘“‘Tﬁough the methodology might seem to be computationa

1

{(1

more complex, especially in the case of simple circaits, its advantag:l<\\*\n-

lies in the underlying philosophy which allows for describing‘soiutions,

/

to various logic design problems in terms of simple concepts related to

the proverties of Boolean equations.

K

\;)’ -

e

?
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