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t «:. 
A methodology basad on the t~eory of Boolean equations has 

. 
been developed which permits a unified aprroach ta the analysis and 

synthesis of combina~ional logic circuits. rhe typ~of circuits covered~~ .p 

the a~~roach include b~th the classical looples6 combinational networks as 
1 _ .. 

~well as thos~ which contain closed feedèack loops and thus have internally 

a sequentiRl characte~. Ta that end a general multiple output circuit 

represented by a ~iealy-type ma,chine 1s. ~tudied using charactcristic equa.t.W.ns.: ... 
• 

(funct1ons) that dcscribe its inten1al structure. It is shawn ho~ behavioral 

properties of the circuit are rertected through the solutions of these equa-

tians. Horcover, it is demo;;;trated that a multiple output incompletely 

specified swi tchine function is realized if a ~ relation i; satisfied 

bet"een the correspandint; charîct~_r\stic functions. This loads ta a new 

unified ounoo!: on functi'tl'nal decomJosi tion fiS usnd in modular synthesis 

. 
procedures. .Al thoueh the bullding modules are allawed ta be sequential cir-

cuits, it i€ shown undjj,r which conditions the fcedback loops are redundant 

with respect to the real:LzatiDn of a eivçm output characteristlc function, v. ) 
.. 

and t:hus the existence ç~di tions of non-dcGcnerilte combinationa~ circuits 

with loops are stated. 

T~e pm.rer of the met~odology of characte~istic functions is then 

illustrated by showing that computatlonal procedures ba~ed Qn that approach 

can easily be transcribed into operations on eithcr maps or cubical complexes. 

) 

. ., 
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. f.1oreover, the methodology ls àpplie~ to derive procedures for modular 

> 

• synthesis of combinational circuits and for fault detection • 
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iii 

Une méthodologie basée sur la théorie des 0quations Booléennes est 
• 

\ 

developpée. Cette méthodologie pennet une approche unifiée d'analyse et de 
" 

synthèse de circu~ts logiques combinatoires. rlis types d.e' circuits traités 

p 

par cette approche inCluen~ le :réseau clq~sique de circuits cQm'binatoires 

sans boucle ainsi q~~ ceux qui pos:Jèdent des boucle,s de r~troaction (feedback 

lOops) et qui ont un caractère interne séquentiel'­
""\. 

~ 

A cet~e fin, et ,un utiHsant des (~quations caractéristiques < fonc-

) ( 

tions) ~ous é)tml.ions la structure interne d'une circuit général à sorties 

mul tipI es représentée par'une machine du type tlealy. Bn particulier, nous ' 

prouvons d~ quelle façon les p~opriétés de comportement du circuit se 
,,' 

reflètent, à travers les solutions de ces équations. De plus, nous prouvons 

qu'une Ifonction de commutation non-complètement spsciflée est r8alisable si 
( 

un~ relation .:::; existe afrtre les fonctions caract(~ristiques con-espondantes. 

'. of 
Cette relat}on nous permet de considérer d'une façon nouvelle et unifiée la . , l 

décomposition fonctionnelle telle qu'utilisée dans 

modl:laire. Quoique lLdUles de construction du 

les procédures de synthèse 

circuit peuvent être de 

nature séquentieile, nous dptermi~ons dans quelles conditions les boucles de 

rétr2~ction sont redondante:::; par rapport à la réallGatlon d'une fonction 

caractériptique de sortie. Conséquemmen,t, les conditions d'existence de 

circuits combinatoires avec boucles sont établies • 

.. 

"\ ... 1 
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ta puissance de la méthodologie des fonctions c~ractéristiques 

. est illustrée par les procédures de calculs basés sur cette approche qui 

peuvent être aussi facilement effectués sur des diagrammes standards ou 

sur des complexes cubiques. De plus, la 'méthodologie est appliquée à la 

dérivation àes procédures ~e synthèse modulaire de 
\ ' 

circuits combinatoires 

'" . .. 
et a la découverte d'erreurs. 
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INTRODUCTIon 

, 1.1 \ 
Historical Background 

7" . ~ 
The application of Boolean a1gebra 'to the ~esign' and analysis 

of switchinp, networks is considered to be aa indivisible ~art of"the theory 
: 1 

of switching circuits since the founding work by Sh~nnon. [41J. The 

structure ànd properties of Boolean functions have,been studiqd in order 

to design more reliable, economical and faster digital circuits and a~ the' 

. 
same time technologi~l advancements and mere curiosity were posing still 

, new problems to the switchin~ theorists. The solution~ to sorne of the 

problems gave rifle to' new theoretica1 toolflAd ~mputational procedures 

whose only mutual link ~as that they were based on the laws of 3001ean 

algebra. Thus the point of view obtained with each such theory was 

t, 

usually limitBd to a particular area, and 'it did provide li ttle under-

standing of characteristics in common wi'th other problems. At that point, 

the Boolean differential calculus [26,'~ dev~loped, ano i t w;:tS 

shown that it could be aD:li~ a number of clifferent ar~as.and thus 

) ~ 
to form a common philosophy underlying the solutions. The~solution steps 

could be dcscri bad using formally ,$imple formulae, bu~ unfortunately the 

J 
computations invol ved ~n sol ving actual prob] ems are rather cOPlplex. 

Nevertheless, sorne practical results were obtàined mRinly in ,the area of 

fault detection [6, '26, 34J. Consequently, there is a need for some --

" , 

- -~ ... 
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.• other appro8.ch which would ,be no19 only 'formally simple, but would g.lso 
.... 

'-

yield relat~vely easy computational algori thms. 

V' ' 
"... ~ --

The potential for the development of such a unifying methodology 

was seen by a number. of author~ /n the tl~êq.ry_ of Boolean equattons (B.E.). 

~-

whose ~ower W8S even compared '.li th, that of differential equations in el.ec-

tric circuit theory [17J. Enough ~athematic8.1 background has been ac~ 

" 
cumulated Hith resrect to tlle propertLes and methods of· solution of 

·Boolean equations" as nicely summarized in the monograph by Rudeanu [26 J, 

but relatively few swltching the~rists know abOut these techniqJ~s and 

) CI 

, realize their power •. Consequently , not too many, practic8.1 applications 
') 

of B.B. to sHi tching circuit design have been d"Lscovered so far. Even 

then, however, the results obtained were of a rather topical character, 

~ ining any global insight into the relàtionshlP~between the 

of sHitchinlT circuits and the pro.pert.i.es of Boolean equations • 

. 
survey of the applications can be found in [26J and to a A 

limited extent in [10J. ·~o~da [J1J devlsed a simple tabular method 

for solving B.B., :.lnd he proposed ~ ~rrlwarc pl"ocossor [J9] which 

can he uson to nroduce aIl elementary solutions of a given equation. 

The machine WélS simulated by r1arin [19, 2()] who at the same time \ 

\ 
\ 

developed sorne -of i ts first practical applications to the sy!)therüs of 

switching circuits. A summary and extensiohs of thesé tech-
, J 

" 

1 

, 
'f 

/ 
. , .. 
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niques can be found in Klir t 16, 18J. Brown t3 J o.btained a method for-
.,. 

generating a rerluced g~neral ~olution to B.E. which,combined with sone o~ 

the ideas from [19,. 20J, ~was u'sed to produce an algori thmic procedure 'f?r 

modular synthesis of combinational switchinv, circuits by decomposition [5J. 

A ,specialized case of synthesis using B.E. was also treated by Brown [4J. 
(-

The properties and applications of sequential Boolean equations were studied 

in [8,35J • 

• ~J " .MJ .... 
The work to be presented here represents an effort to develop 

.. 
. ) 

an unde~standing of, the relationshlp between the theory of B.E. and the 

structure of comhinational circuits. The result is intended to be 

a methodol'ogy which would· permit a unified anproach ta the solution of 

o 

problems related to the analysis and sJ:nthesis of comhinational circuits •.. , ........... ,,;,· 

The thesis should not be considered as a closed system of 

rules which woulc1 'provide solutions to a fixed number of problems even 

though two direct appJ,.ic3.tions will be shawn. Ra ther, i t is ta provide a 

phil~sophical base, Trom which 'various types of swltching theory prob-

lems could be tackled in a unified manner. :ç,ts devel"opment wa:::. im.tially 

stimulated by the fact that current methods us ccl' in the design and 'analysis 

of combinational ~rcuits were unable to give 1 

. t 

(1) A unique point of view on modular synthesis by 

d-ecomp'si HO,n, 

, . 

/ 
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." 
,1 

.. 

. . . 4 

tional iir.;:ui ts containing clos~d feedback loops, 

.. 
An approach te faul t detection tha t would be con-

..J ~ 

1 

----~-------------~------~s~ihs~-Lhe~I~I~L-with ci~-ÙB~i~t1 procedures and sirnul-

~ taneously cover various types of faults.under one 

methodoloG'Y. 

?, 

Therefore, in order to place the ~ork into pro?er perspective, 

i t is fel t that before outlinlng the content of tne subsequent chapters 

{ • f 

it is necess~ry to present an overview of past advances in the above 

JlIentioned areas. .. , 

, 
The foundation for the synthe~is of combinational switching 

lunctions b~ depQmposition was laid down in the work by Ashenhurst [lJ, 
~ / -~ - ~ • r ~ 

• .. ... ,."1:... ~ 1-~'" ,.....: ..# 

and later ex-pandeu by Curt.Ls [4b1; - Thi.s l!l~thoà of~ synthesis proved to 
". .r , j 

1, 
be sui table \1hen logic networks were to be designed in tems of circuit 

modules which imnlement Boolean funcUons different from the basic AND, 

OR and NOT connectives. Therefore, an effort was made to' state precise 

algorithmic procedures based on the theory of decomposition which could be 

applied ta synthesize a (";i ven swi tchi-n~ nehrork 1rsin~ a fixed complete set 

of circuit module functions. Sorne of these ~rocedures em~loyed modified 

decom~9sition charts [13, 15, 29] as defined in [1, 40], others were 

• 



• 
\ 
~\ 

, 

f 

S 

based on algebraic techniques derived fro.rt- the original decC!mposition 

theory as applied to a part~cular form of representing Boolelln functions -

the cubical complexes (arrays) [7, 21, 24, 2S, 28,36]. In general, the 

direction taken in thé se synthesis procedures was ta start building the 
• 

network frorn the proble~~input side, and th en to progress t@wards the 
.r 

,l' 
qutputs by adding ~ules as guided by the decomposition theory an~ 

various circuit constraints. The process ter~inated when a netwo~k was 

obtained·which realized the particular functjon, (J,nd which satisfled all 

the circuit constraints imposed by the designer. This diTectjon should 

be contrasted wi th that used in the synthesis procedures based on . 

Boolean equatio~ [S, 16, 19, 20]. There, the dûcomposition· proceeds 

r 

from the problem output side 'by selecting a builduJg module, and then by 

solving the corresponding B.E. a second level function is obtained, etc., 

until aU free module inputs are saU sfied direct1y by the problem input 

variables. The synthesis is terminated by the srune conditions as before. 

Using t~e new methodolo~y of this thesis, however, these two oPposin8 , . 
\ 

approaches to modular synthesis can be unified to \producc é1 rather flexible 

decomposition technique (Charters 4 and 6). 

• 
Until recently, combinational circuits were constructed in 

. 
such a way that they 8on~ined no closed feedback loops, characterlstic 

4 

to sequential machines. Also, the actual building modules ùsed in 
! 

.. 
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~ 

synthesis procedures were purely combinattonal cirocuits. Howevex. it has 

been pointed out [12, .14, JO] that some circui ts h~...tng such closed loops 

could still have an overall combinational character, if only their stable 

output states wer~ observed. Kautz [14J considered a particular qellular 

, ~. 

array structure, and 'he demonstrated that not only by ri.,)sing the feedback 

l , 

loop would a combinational switching function be realized, but also that , . 
1 

the number of gates ~equired to synthesize sorne multiple output functlons 
"~ . . , ... 

would be'smaller than if done in the 109pless èonventional way. Even 

though sorne necessary conditions for the existence of loops in combinational 
• 

circuits were stated, their scope was limited to that cellular array structure. 

, 
In other words, the tools used for designing clausical combinational networks~ 

are ,not direc,tly usrtbl e in the synthesis of circuits with loops. As will be 
• 
seen. however, the methodology developed here is general enough to be 

applicable to bath types of co~binational circuits. 

Due to technological advances the circuits synthesized grew in 

complexity, and eventually they were placed on a single intesrated circuit 

" chip. Then, however, the problem of fault detection "l<OlS el)countered, for it , 

was no lonGer possible to directly 0 bS8rve the insj de acti vi ty of sueh complex 

monolithic modules. Nevertheless, in the case of combinationa~circuits.: it 

would still be theoretically possible ta perform exhaustiv.e tests by applying 
p 

all the possiblc·combinations of input stimuli and simu;l'taneously verifying 



\ 

. . 
7' 

\-. 
• o 

that correct responses were recei veù at the outputs. ~li th an increasing 

number of inputs, though, the time neede? to test aIl thé c9mbinations 

becomes rather prohibitlve, 

These took into account tl)e 

and hence new techniques had to be developed. 

in'ternaJ.tructure Of' the circuit undel' test, 

and a necessary subset of the possible stimUIr wa~ a~termifièârso~o allow 

/ 
for detection of certain types of faults on the internaI circuit lines [6, 

9, ]4, 37, 38, a~d many others]. Although the problem of determinin~ these 
1 

sets has been satisfactorily solved for combinational ciroui~~, the methods 

tlsed differ in· afJp:t:.oach from the ~ecbniques used in designing the n~works, 

and thus they cannot be effictently merged into synthesis al I?\o ri thms. 
1 

\ 

Horcover, there se8ms to be no simple t3cneral procedure which would caver 

var10us types of faults such as single stuck-at-(O, 1) and bridging, as 

weIl as mul tiplici ty of those faul ts. Again, by, applying the new methodology 

- . ta this problem', a faul t detection procedure has been obtained .which i6 not 

• 1 

only consistent wi th the synthesis method which will b~ p1'esented in Chapter 6, 
" ..-

but~t also permits a unified treatment of the foremcntioned types of faults. 

1.2 A Concise Outline of the Thesis 

The presentation begins in Chapter 2 with a revlew and in some 

\ 
cases a deeper development of certain topi~s in the theory of Boolean 

, 

, . 
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\ 
\ 

equations, which are pertinept. to the subject matter. An algebraic . .. 
• 

approach is 5tressed throughout, at the same time recognizing, however, 

the important vlsual information content of map ~echnique§. iri c~ses where 

the number of variables involve,d is relatively small (See also Chapter 5). 

fîn--that sense, there is a certaIn disagreement wi th Rudeanu [26J who 

seems to be pressing-fUr an a~ebraic approach only, vis a vis switching ., ..... 

-
circuit applications). The corlcept of a chaTacteristic equation is re-

introduced in the sense that i t is defined as a single equation of the 

form ~ ~ 1, which is solution-equivalent ta a glven system of equations 

) 
tied tOf,ethet' by sorne prespecified mutual relation. Subsequently, the 

! l 
technique of characteristic equations (functions . <Il ). is fully employed 

in Chaptet' J to descri.b~ a General swi tching circui t wi th feedback, as 

represented by a Mealy-type machine. It is shawn, that information about 

(' the steariy and transj ent states of tl1e circuit dm be extracteà from the 

correspontling characteristic equations, simply by studying their solution 

pro-Perties. The circui t f s overall steady state ou tPllt behaviour 15 then 

descri bed tht'oup;h a circuit characteristic functlon ~ C (equa tion 

~ C =' 1). F'urthermore, the analysis of functional realization as i t is 

performed in Chapter 4 leaùs to an important definition of an output 

characteristic function ~ • It is shown then,that a circuit realizes -
, 

a particular ~ultiple o~tput lncompletely~cifïe~'sKLtching func~ion 

, 
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\ 
provided that the ffilbsumming is between the cor-

responding circuit and output characteristic funct ( III C ~ cl> ). Thi s 

simple concep~ is the corner stone upon wh~ch the unification property 

1 
1 

of the methodology is based. A generalized decnmnosition theory for 

. modular synthesis is th en deri,ved, whLch fu~ther clarifies the relation-
, -Î 

ship between the internaI structure of circuits and the propertifs of 

\' 

Boolea~ equations. 
-', 

Chapter 4 oends by presenting an inquiry into 
, 

the necessi ty of closed {oops in circni ts realizin~. sorne olltput characteris-

~, 
tic function. 

Since any theory would have little meani~g in engineering 

design unless it can be used to solve sorne oractical nroblems, Chapter 5 

is devoted to the development of computational tools, while two applica-. 
tiôns of the methodology are described in Chapter 6. It is demonstrated 

that the computél.,ti'onal steps which underline the methodology of 

charac te,isti c funcU ong can easny be ,nverto~ to Bither lap ~~ni pu] .- ~ 

tion procedures or t~ o"perations on cu~~ complpxes- (arTItV, - This- -ease--

\ 

. of coflversion is. mainly duc ta the ini ti.al indeocndcncc of the theory wi th 
;, 

respect to a pél.rticular data structure. An important point to note is 

that multiple output functions need not be treated in any special way, 

because the methodology permits a unified repYesentati.on of any function 
1 

, .. ~~ 
by deGcribine the functional mappines between Booleél.n spaces in terms of 

, 
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the corresponding "single output" characteristj,c ions • ... 
( 

Chapter 6 describes two applications. One deals with li 
J 

"\ 
unified a:pproach to algori thmic synthe sis of combina tiona'l s14i tching 

~ 

functions by modular decomposi tion, and the other wi th-the development 

of· a technique for tbe detection oIvarious types of faul ts in combina-

tional ne~worJ.çs (without feedback at the present time). The solution 

steps in bath cases are unified by the .::: relation between characteris-

tic functions which signifies functional realization. Consequently, the 

procedure for generating faul t detection test sets Cofd be merged wi th 

the synthe sis aleorithm, thus sharing the SaI'le routines and da ta. 

As a conciusion, a summary of the resul ts obtained and plans 
1 

for future research ar& presented in Cha~ter 7. It also brings to light 

~ ,interesting relation between characteristic functions and funbtion 

, " 

l arrays • 

.. 

( 

.. 
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CHAPTER 2 .. 

BOOLEAN ~QUATIQNS (B. ID.) 

To facili ta te the analysis of swi tching circui tS' wi th the 
." . flI1-

aid of Boolean Equ,~rions, sorne important defini tians and theorems 
1 

deaUilg with B.E. are presentea. The scope of the -presentation is limited 

f 

only ta those aspects of B.E.-,~ch are pertinent ta the material in the 
.. 

subsequent chapters. 

\ 

2.1 Notation 

For deaÙng with two state swi tching elements\ the simplast 
,. 

Boolean Algebra B2 = < (0, 1) 1 +, • > will be considered. The elements 

1) , 

of B
2 

then satisfy the standard axioms of Boo'lean Algebras [7 t. 11, 16, 

21 , 26 Jo' Here are sorne important relations derived from those axiomsl 

.' 
Let X, Y, z e B2 be ~lements of B.A. 1 then 

x + y :: 0 +-+ x = y o ( 2.1) 

-- ----~-- ----- - -

x • y :: 1 +-+ x y = 1 '(2.2) 

x ~ x order relation (2.3) 

) î -
x~y and y ~ x -+ x ." y (2.4) 

X ~ Y and y ~ z + x ,~ z 

'" x~x + y y ~ x + y (2.6) 
--- --- ---- --

.. 
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-li. 

x ~ z and y ~ z x + y ~ z 

x ~ y and x -(: z x ~ y z • 

x ~ y 

x ~ y 
'1 

x ~ y 

x = y 

x ~ y 

x + y = 1 

x • y ::!:' 0 

The notation 1 

Z :::: 

O'i' ~,y 

0' == 

<P , f' 

'x + z ~ y + Z and x z ~ y z 

x + y = y x y ". X 

xy+xy .,. 1 ++ xy1"xy = 0 

- -y .:$ x 

x = 1 or y = 1 

= 0 or y := 0 

... , 

... , 

z )' 
n 

(Y ) 
r } 

Boolean variables 

, Vectors of' variables (sets) 

Constants in B
2 

Vectors of constants' (sets) 

Scalar Boolean functions 

Véctors of' functions B
m 

-+ an 

12 

(2.10)-

(2.11) , 

(2.~) 

(2.15 ) 

(2.16 r 

x, y~. Z 

2 \2 
'1Ç Sets of st~te::l ~, ',i, ~ respect! vely 

• --< .. 

~"I" -

"1~",I.-.r:':---

" 
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EmptY'set J 

.. 
u, n Set union, intersection 

., -. .-
E' Boolean (+) swnmation 

<) 

rr Boolean ( • ) -product 

.. 
En Sum of product form ," 

Ir 
.:> 

.... 
x QI y Symmetric differenc~ (exclusive "or" ). 

m (~» a )Iinterm function of x such that . 

----
mœ(~) = 1 ~if ~ = ~ and 0 otherwise 

, 1 

Maxterm function of'- x such that 

, Ma (.ê,..) ::: 0 if Q: = .ê., 1 otherwise 

n 
0' e 

r f(~) = f(O'l) + f(0'2) + •• 
~ 

r f(~) = f(O' 1) '~(0'2) ••• 
B

2 

r log" (y) 
~ 

, " 

R., R 
1 

Ixj 

1 () 

lIo' 

Summatlon of f(~) over aIl states of x 

pr~duc~ of f(~) over aIl states of ! 

Ap integer such tha t ( r log2 (y) ~ - 1 < 

Binary relation 

The norm of y Rond X 

.' 

2.2 Defini tions and Theorems .. 
• 
Let ,f (~, y), g(~, 1) be Boolean functions 

~ 



~ 

• 

: ( -,-, 

• 

• 

:J-. . 
14 , 

x = (xl' ... , x ), Y..='(Y1' ... , Y
q
), that is, 

r .i, ~ 1 
Br+q 

2 -+- Bn 
~ 2 

.... 
be a binary relation which represents either 

" 
.. 

or 

1 '",- 1. • •• , n 

---- ---
or 

J) 'l 

~ g. 
, ~ 

Application of (2.11) and (2.12) to the above relations yields 

. 
fi 

-f. c: gi -+ fi gi + gi 
,;; 1 

~--
(2.17) 

fi .<;: gi fi + gi -= 1 (2.1S) 

fi b gi fi 
-+ gi := 1 

ThQ original system of relations can thus be transformed into 

an equ1valent ,system of aoo)ean e{unlities of t~e form '~i '(!. zl ~ 1. 

l==l, ••• ,n, 
a 

Definitlon 2.11 

wheré <p. 
l 

stands for CITe ct' (2.-tfr, t2;;18')-or-(2.1tj).- ---

SolutiQ.n to B.g. 

Let' i(~, y) R g (~, y) be a sy stem of n Bool8rtn relations 

w1th·its.equivalent system~of Boolean eqùations ~(~, y) :: 1, as 

1 

derived above. Then a function y = r (~) 1s a solution to thi5'syste~ 

• 
" 

.' 

.-

r --. 
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if\;>i(~tl(~)) R !i(~, X(~)) ,"r#equivalently ~(!, iL<.~)) = 1 holcls 

identically. 

c 
\ 

Defini tion 2.2 

Characteristic function tl> (~, y) [10, 26) of the system of 
• • 

---------Iln simul-t.aneous oquatlons ljli (.!5, 1) = 1, 1 - 1, --u-..,-n,(.Def. 2.1) 15 

def::\:ned as 
n 

TI 4>.(x'lJ. 
i = 1 1-

Lemma 2.1 1 [10~ 16, 26, 31J 

~ 

) ",' 

The characteristic 'equation tl>(~, 1) == 1 is equivalent to the 

system f(~, 1) R g(~, y). That 18, a function '1 = Z(~) is a solution to 

f R g iff it is a solution to ~ ~ 1. 

:- l ' 

, , 

Remark 1 The characteristtc equation I!' (,2S., 1) = q;' (~, y) o could 

have 'been chosen instead; however, the forro cI> == 1 fiecm.)3 to be more 

1 

------- -- -- - -- ---- -- -.------------_.. -------

convenient for dcscribinG switching circuits,,,as will be seen later. 

. . 
Definition 2.) 1 Consistency. 

The, equation cI> (~, y) = 1 is SFl.ià to bc consistent if 1 t has 

a solut1.on l == y(~) over aU r ---}-x € B2• 
\ 

J 

~ 

26] 1'heorem 2.1 [ 10, 
!' r 

1. 

The ~uation , 

<p(~, il) :: l- is consi r;tent 11'f 

1 
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1 

ldentlcallx, or equivalently 

Remark If c(x) = 1 
- r 

does not 'hQld for aIl 
l' 

the equa tion 

cp = 1 i8 constrained by c(~) = 1, am ft, has a solution, only for such ~ 

\ < " 

xe Br which satisfy c(~) = 1. 2 ' I~" 

.. 
1 

~ 
• t 

Defini tion 2.h Don't car'è stat~s.' 

Let X' c:. Br 
- 2 define the states of x such that the solutio'ns 

• \.., 

1. = 1.(~)', to "r (~, 1.) 1 can have a "dQn't care"" value for x ex' • 
, .' 

1 

That is, x e X' -+ ;:[ 
) 

can assume AllY value in .. ~ Let th en a function 

be defi'-ned 8S 

,Q, 

, , , 
Theorem 2.2 [ 5 ] 

Il 

The characteristic function of the ~uation 'li (~, ;:[) = 1 wi th 
~--------~--~- -

r) 

d.c. states defined by d(~)' "" 1 is given (lS 4> (~, 1) 
, 

~ (.;' ;[J + d(~). 
- t '* ) 

\ Remark 1 If the consistency condition c(~) . . is not satisfied 

identic:111y, ;Jn(t the 'input Rtates aTe restrktrcd ('constrained, to ~ € X 

where X =- ~ l' c(~) == 1}, then in effect the states in X, e Br X 2 ,.. 

become don't care in the sènse of Definition 2.4. H0nce the charaèteristic 

• function of the constrni ned equati~n 4> (~, X) + ë (~) (Theorcm 2.2). 

\ 



.. 
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Thus the resulting characteristic equation bçcomes consistent. Moreover, 
( 

if a sy:stem of, B.E. ls not· consistent, and don't care states are 

introduced so that d(~) ~ ë(~), then through Theorem 2.2 the system 

1s again consistant'. 
---~-

,t1 , 

6 

The following section will 4escribe sorne of the meihods for 

obtain1ng the solutions Y... = y...(~) of <P (~, y...) = 1. 

~ 

2.. J f1ethods of Solution 

'< 

Once a proble~ has been formulated ~n,the form of an eq~i-
c ~ • 

'\- ~ 

valent Boolean equatidn;o- then i t is usually desired _to 6btain the 

t \ 

functions r(2S) which satisfy the equation. A number o~ methods will be 

presenied here with a concise evaluaii0n regarding their applicability. , 

Definition 2.5 T.ypes Df' solutions. 
, 

/: An elementary solution to vector function 

y...(~) such that" <P(~, Y...(~») E 1 identicully. " 

A general solution !J.(~,,E) i5 a vector ftinctlon such 

that for every value, E* of the parameter vector Ethe fun ct ion 
"l 

is ah elementl1ry ·~olution to .CI> "\' 1. AIso" "iven any 

'- Il 

\ c 

, , , 

, , 
, . 
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, 

• 

elementary solution thére exists a valuation '~* of ~ such that 

1 , r 

---.-----------

The Method of Successive Elimination LiO, -26T ------- -- L __ _ 2.).1 

Con5ider the equatlon y a + y b" = 1 of one dnknown y. 
f 

The eq~~on ls c0nsistent if th;' relation a + b = 1 holds identlcally. 

- -

The general solution 15 then given qy , 
" 

y = b+ap, a, b E B, 

where 

P 15 an arbitrary paraneter, p e B 

An' ele:.entary G:n.\l",ion may be obtaine-j by suqsti tuilen of a value p* e: B 

for p. 

The 8qùa~ion ~(~,~) = 1 i5 the~ solved by a repeated 
!' 
i 

application of the"3.ùJvc procedure. Hal'lely, by expanding c1l(~,:l) 

about y , 
q 

. 
the C~\lp.tion, Céln be ,wri tten as 

OC:::., Y1' y'L' ••• , yq-1' 1) yq + q,(~, Y1' Y2' .... , )'q-l' 0) Yq = 

" 

1 

wi th B being the algebra of aIl functions B r + B q 2,. 2 
(2.20) r 

anJ. it is consistent for, y if p , q 

1 

'(2.21) 

, 

" 

,; 
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" , 
The same procedure 1s now applied to the Equation (2.21) of q - 1 unknowns, 

• 
and anothe'r consistency condition obtained, etc., until only the variable 

y 1 remains. The consisteney condition thus 

E <I>(~,.ê.) == 1 (2.22) 

! €Bi 
which is- idenÜ.cal to -t11e-- resurt of-'Pheorem 2.1. If (2.22) holds, the 

general solution for y 1 1s y 1 c b + a Pt' where a and b are 

.... detemined through the elimination pro cess just descri bed. It can be 

,mown that 

'. a == 

at)d 

b == 

... , 

.. 

ct ), 
q 

••• ,et) • 
q 

The function Yl(~' ~l) i8 back 8ubstituted into the equation fo~ r2 

and a general solution Y2 = YZ<~, Pl' P2) obtained. Then Yl' Y 2(1 . 
substi tuted into the equation for y 3' etc., until y q ~ y c/2S' Pl' • ., Pq) 

is generated. TInt i5, the general solution 

';i == !l(~' Q) v 
-' 
1 

where 

.E == (Pl' ... , Pq) 

.. 
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is a vector of arbitrary parameters ranging over aIl functions 

.E 1 B~ -+ B~. 

If an elementary solution is desired the procedure remai~s 

the same, except an ~lemen~ary,solution Yi = Yl(~) is chosen by 
'. 

substituting a value ~or Pi' th en for P2 at the second step of back 

substitution (for Y2)' etc. ~ally, the solution Y.. = .Y(~) is obtained. 

F'urthermore, since Bi is finite, all elementar;y solutions can be 

generated by a tree-like structure. (For large number of variables this 

1. 

Also, i t should be noted that the parameter may be quite time consum1ng). 
) 

vector E may be redundant in the sense that different values' of E may, 

" produce the same element~ solution. For a brief discussion of 
, J 

irredundaht encodings of the parameters see the end of Section 2.3.2. 

Hethods Based on Canonical Foms of <P [:3, 10, 16~ 18, 26, 31 ] 

The first method to be described produces elementary solutions ., 

oflP(~,y)""1. 

~ 

The solutions can very easily Be cxtraGted when the 
'f-Itl 

function <P (~, y..)" is represented as a map (Marquand or other) [ 16, 26, 31J • 

Let the equation <P = i be gi ven in i ts dis,juncti v.e 

canonicà.l fOIm 

,. 
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(m (x) 
Of-

• = a (2.23 ) 

where 

, for each Of e B~ • 

'A solution Y.. = .l(~) is obtained by a correspondence relating each 
j 

Q: e B~ wi th a vector ;[(9') such tr..at ~ (~, y(~) == 1 identically. The 

Equation (2.23) then reduces to L: m ~(~) "" 1 This equali ty 
t e S(Q:) l(~) · 

to holà, 1..«(}J I).as t.o be chosen as one of the vectors' from S(9')' for 

each The total number of distinct solutions is thus given as 

n = s 11 r 1 S(Q:) 1 

~6 B2 

-
( n stands for arithmetic multiplication here). 

Clearly, the Equation (2.23) is consistent wh en 1Jt;!, which 

corresplnds to Theorera 2.1. 

The above method as t.ranslated into the form ofJmap manipula-

t ion [16, 26, J 1 ] 

Let ~ (~, 1..) be cxpressed in the form of "a Narquand ma~ the 'states of 

l/IfIIÎ 

~ labelillh' the columns (2 r of them) and the states of y labeling the 

rows (2
q

) 
. 

of the map. A 1 is placed in the square.~ith coordinates 

- -
(~*, ;y*) if 4J C~*. Y..*) 1, < the square i5 marI'-ed 0 otherwise. The 

resul ting map i5 the discriminant D of the equat_ion [ 31 J. Let ~(9::) 

be a column _vector of the map D associated wi th the state x. Then the 

• 

J 

l' s in . .Q(S~) define the set Set;!) through the associa ted st.ates of y... Let the 

number of l' s be n , 
Of 

then n = 
s 

• 
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The elementary solutions are obtained by decomposiije the discriminant D 

into its sub-maps D., j = 1, ••. , n ,. such that each column of the 
'" . J S 

sub-map s has exactly'one 1 , and D . .( D, 
J 

Di 1= D. for i f ,j. 
.J 

Now 

the states of y associated with each 1 in D. determine the elementary 
.] .r 

j = 1, ..• , n , 
s of the orieinal equation. 

Given a complete set of elementary solutions to cp (~, y) = 1, 
". 

a g~neral solutiort ~(~, E) may be obtained by introducing a set of 
1 ) 

orthonormal functions of s~me parameters J2. wi th rocb set S(Q:) • If 

a particular value J2.*(~) for J2. is assigned then a single state 

! e S(9:), x = 0' is identified, and hence an elenentary solution 

1 = r(~) = ~(~, J2.*(~)) generated. The general solution ~ is similar 

to that obtained by the elimination method. Also the rlumber of parameters 

112.1 = q may be the same. 
L 

However, by proper (economic) encoding of the ,. 

orthonornal functions the number of parameters rilay in some cases be reduced • 

. 
(E..g.- if max (n ) = 2q/2 thon only q - 1 parameters may be needed.) [ J, 26J 

0' 

As an example of sucb an economic encodiI}g the method of 

, 
Brown [J] Hill be 13ho',Il; here. As a matter Qf fact., tbat method Vias 

programmed 

program [5]. 

computer and used in a combinational circuit synthesis 

consistent. Let Q 

-
be a vectJ of t 

parameters (t defined later). The (reduced) general solution in terms 
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o'F' x and P. is given using Boolean matrix operations [ 3, -

X. = n (~,' EJ = K A (,E.) • ·m (~ q 

where 

111 = q, 

i5 the minterm vector, 1 !(~) 1 = 

The number of parameters t is determined as followsl 

Let d. be the .i t~ coluJ:m of the discriminant D (map 
-J 

'considered as a matrix), and let 
J" ~ 

s. be the l'\umlr of 

Then 

S .. max 
j 

(s.) , 
J 

. -1 
j=O,l,' ••• , • 

t-l 2 < t 
s ~ 2 • 

... ls a matrix of 2q , 

rows and 2r 
columns obtained 

from D as followsl 

Let a. be '~he jth column v~ctor of A. If 
-J 

_f 

s. = 1 of ° then a. = dj' else if s. > 1 th en fdrm 
.J -J -. J 

a set 0 j of s j orthonormal functions of the t para-

meters P.' 

° . == {l; J'1 (p.), ••• , 
.J 

with 

~ l; ji l; jk 
... 0 if i f k 

sj 

23 

26 ] aSI 

1 

L l; j1 0:: 1 
.. 

being the orthonormality condition. 
i-1 



(' 

Form now 

k = 1 

1 

a. by the fol] owing al go ri thnll 
-J 

for m "'" 1 to 

if d. = 0 
mJ 

'k- k+l; 

\ end m 

" 

then a. = 0 
mJ 

- -- 24 

,. 

The decomposition matrix is defined recursively aSI 

, 

\ . [le 1 Kz ='_L_\ 
• 0 0 ; 
• 

k~ ] 
1 1 

~+1 
: __ k

i 
1 

1 

: 1 •• , 

For more detail and examples see Reference D, 5]. 

lit 

2.3.3 Application of Lowenheim' S Theorem [26, 27 J 

Consider a consistent equation 1> (~, 1.) = 1 (If not con-.. , 
Lciwenheim's theorem [ ] t sistent then apply Theorem 2.2 or as in 26, 27 .) 

states. 

(' 

Gi ven a consistent B.E. 1{' (r) ::: 1 in an arbi trary Boolean algeb.ra 

B, then a general solution has the form 
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.. 
... 

where 

h ls an elernentary solut:i.on, 'Y (l:!) = 1, and 

E ls an arbitrary parameter over Bq. 
1--------------- _ 

, 

• 

- - ------ ----
/ 

According. to [27], if B is considered to be the algebra of aU func-

, 

tions of.x then the general solution to ~ (~, :lJ = 1 is gi ven aSI 

(2.24) 

1 

, where 

.~. 

isa any elemgntary solution of ~ "" 1, 

is an ar~itrary vector over aIl functlons 
\ 

If this approach (L) to the generation of ~(~, E) is 

oornpared with the method of successive eliminations (s:!::), and wlth the 
J 

methods similar to Brown's (B), thenl 

(L) Req~1res knokledge of an elementary solution, 
" 

thet'eafter the procedure for obtaintng 

~(~, E) is very simple, however.~ lE 1 = q • 

. ' 

\ 
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, " 

(SE) No J<:nowledge of art. elem;.ntary sol:ution is required; 

-however, algebraic m'anipulation is mo~--e~a;téa 

than in .( L) • 1 E. 1 = q. 

(B) 
JI'" 

No explicit knowledge of an element~ry solution , ~ 

required, 1 E 1 can -a1so be smalJ"er than q in sorne 

cases. It requires the formation of D and the 

assoclated sets of orthonormal functions. (Actua1ly 

all eleméntary solution~ are known implici tly through 

D, their enumeration must be made to de termine t.) A ~ 

higher number of variables requires large maps (matrices) 
,1 

D and A - the dimensions bei~g 2r x 2Q• 

1 

Comparison of the methods generating elementary solutions, namely, 

Svoboda's method (S)[ 17,26, 31'J and that of successive elimination 
\ 

(SE), yieldsl 

(s) Construction of D as in • (B), very simple fbr small 

number of variables, hyperplanes of solutions can 

be obtained [ 17, 18 J. A hll.rdware processor l1as 

been designed and simula~d [16, 19, 20 J. (The 

method could be transcribed into algebraic notation 

.. 
rather than tbat of 1naps.) 

\~ 
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(SE) The method is alge~raic iD, nature, no large maps 

requlred. The nùmber of steps in the procedure l' 

15 smaller than in (S); however, hyperplanes of 

solutions are m~re dlfficult to.identifyo 
,/ .. 

:" 

\ 

Sorne Other Methods , [26J 

If the system of relations, fi R. g~, i ='1, "01 n, can - ')) ~ ... 

be transformed into a set of linear equations 

q, 

L 
j=1 

= b. 
l 

1==-1,00" n, 

where ai" bi may be f~tions of ~, then the proQlem can be 
.) 

expressed in the form of a linear Boolean matrix equation AX . . 
. 

solution(s) May thus be obtained by app1~ing the theory of matri 
" . 
• f:, ----

equat~ons.# However, for'~pplications ~n s~itching circuit 

approach dcres not have much value, siRce the pro blem can 

stated in the fom 'of 

The 

this 

simply 

a system of linear equations. 1 

The equation $ (~. X) = 1 m~r also be sdl V~d i the method 

of undetermin\d coefficients. Hcrwever, q .2r unknown coefficients 
~ 

r i e 1, ••• , q 0 2 1 must be introduced through which the original 

equation is transfo~ned into a system of 2r truth equations 
+. 

e
i 

(09) = 1. Solutions to thi's system then yield the elementary solutions 

• .., 

( 

, , 
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~(~),.by a back substitution of the coefficient values. Although simpl&, 

t 

the method seems to complicate the problem by introducing r q. 2 

unknowns instead of the q original ones. Therefore, except for 

problems wi th small rand q, the metnod has a-, very li ttle pra'ctical 

, -. 

erties'of, Solutions of B.E. 

1 

mostly original and Th material to be presented ~e'is 

will be used quite extensively in the SUbs~~nt chapters. Assume 

~(~, ~1 = 1 consistent. 

Lemma 2.21 Iden~lty solution. 

such that sorne y. E ~ 15 an identi ty 
l 

has an elementary sOlution(s) 

(Yi = 1 or Yi =,~ if:f the 

equation 

<Il (~, Yi' ... , Y i-1' 1, Yi+l' ... , yq') = 1 (2.25) . 

or 

~ (~, Y l' .J> 
0, yq) ... , Yi-l' Yi+l' ... , = 1 

" ,/ ~ 
... 

'_ 1 

1 • 

/ 



Proofl Trivial. 

" r 

-
J ..... -

".. 
1 

,1 
--~~------,- -

!. 

.! 

." 

" 

•• 

J 

has an 

1dentity' solu~lon for some subset of the variables Z. the above ... 

29 

Lemma 2.2 can be applied repeatedly with respect~ th~ variables in the 

subset. If, however, an identlty solution for aJJ yI-E .l----is-.sought 

(simultaneously) th en a more compact procedure is stated in the following 

theorem. ,-

, 

Thearem 2.)1 Idery.ti ty in Z. 

The equation cp (~~ Z) = 1 has an identi ty solution r € Bi 
if "the equa tian 

oonsistent with respect ta the inverse solutions ~ = ~(Z). The 

z* is (are) then obtained as a solution of the 

(2.26) 

(2.27) 



/' . . 
.JO 

r' ,0 

Pmofl 
Cl • 

Let X*' = ! e Bi be an identi ty solution, then 

1 .-
~.(~~ ~) = 1 holds independently of x. ! 1s aIso the~· unique sôlutioll 

, r ' 
bO' 

to , 
\ 

~ k 
mœ(!> '1 mS (X) ... '1 - (2.28) 

~- ----------Al9:~e-l"B~~---~'-. --~-~---o(.-.~ --.. --, 
hsnce 

: 

r m (x) m~ (l) ~ ~ (~, .zJ • 
r a-

a 6 B2 

(.: .. _~.) 
" 

Consiste~cy condition of (2.28) w.r.t. ! = dl) is 

.e L L mo (y) ms (~? r "Qr ~ 

.Y e B2 ~ €'-'~ 

== r;f!(~) + L L m Cy) " , 
0' 

"H r 'Or 
.Y € ~2 ~ e~2 

,. 
" 

- 1 ) 
i 

) _ \ v , .. 
~ "- .. 

\'l)::'ch is not • ,1 c '-.tically 81ua1 to 1, !Jpnce (2.28) 1s i ':consi stc'1ct. 
/'1' '> / , 

> .,.. 
" :; jation of (2.29 ) ~: ' .. J. il summation over c Î l . .Y è :,::, yields 

'-

That 1s, 
il . . 

'd 

- cer) = • L Ir (Q:, X) ~ m:3 Cr), .-

~€~ v 

~ 
) 

~ 
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" 

~~==~~===mJII~e~a~ill~j~~~t~l~arlL~~~,:~~i+_~~7,=,!~>)=~~1~'1~s~1~iI~CO~r~15~lns~tne~nftt~.==~A~I~s~o~,~C~(H!~)~~~:~~~e'fJ[) = 0 

l :f~ / 1'1 

. , 

therefo~e, ~ l~ a solution to (2.Z6). 
\ 
\ 

.Consider now '!' G~, ,y) = 1 to be inconsistent 'wi th respect' 

to X = ~(~), 
> 

Let ~1' "'~~t be the solutions'to cCl) = O. Then 

-~ --

= 0 for al1 i = 1, ••• , k. 

That is" 

cI> (9::, .ê.i ) = 0, 
, 

and thus 

identica~~y for aIl 

and i == 1, ..., k • 

Or 

by negating the above equality. 

t Q.E.D • 

• 
( 

Remarkl 

The existence of.an identity solution 'means tpat the variables x 
~-----------------------------~~-----------

are redundant in sorne solutions.' 

,cI> (~, z) = 1 

ç. , , 
Another important propetty of a consistent equat10n 

", 

•• .1 f~ _ 

is that of having a'·unique elementary solution. .. 
r'.. ,..... - ~ 

! 
__ ~~ __ f ______ _ 

" 

, 
1 

J > 

- -, 

This 
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, 

solution exists if each c61umn of D con tains a single 1. However~ for ~ 

.. 
algebraic processing a different approach 1s needed, which 15 stated 

'. 

in the following ~eorem and its ~orollarY. 

, ' 

Theorèm 2.4 s Unique solution. 

The equation ~(~, I) =' 1 has a unique solution for a 

.. Yi e il.. iff 

E ~ (~., 0'1' ••• , 0' i-l' i, ~ +1 ' 

(0'1'"'' O'i_l"'" O'qJeBi':'l 

1dentically • 

. Proofl 

... , 0' ) 
q 

.r 

Apply the m ethod of successi ve eliminations (Section 2. 3 ~ 1) to 

solve the equation, ,with . Yi being eliminated at the last step be?re 

subsumming. This step can be-written as . ' 
+ .y. a(~) 

l 
1 

where 

= 

/ 



------

, 

33 

and \ 
aC.~) ::: ••• , cr ) , q 

The general solution 15 then YY1 = ~(!) + a(!~ Pi' There 15 a unique 

elementary solution y.(x) if the general solution i5 independent of Pl." 
1 -

that 1s, when b(~) ~ a(~), Or equ1valently (2.11) as b(_x) • a(x) = O. 
-\ 

Q.E. D. 

Corollaryl 

. 
There is a unique solution 

, identically, 

1=1 

where ai and bi are the' same as in Theo~em 2.4,. 

/ 

/ 

Proofl Trivial. 
" 

The followlng d~scussion will now cover a property of B.E. 

which 1s of importance for the defin1 tion of circuit charac,teristic 
~ 

. function as introduced in Chapters 3 and 4. 

\ , 

.. 



• 

)4 

. , 
, Consider the following probleml Let 4>1 (~, ~) = 1 and 

~2(~' ~, l) = 1 be two consistent equations with respect to the 

solutions! = ~(~) and l = Z(~,~) respectively, where / ~/ = r, 

/ ! / = n, / iL/ = q. It is- desired to determine all the functions 

through the second equation 
-, 

An approach to this problem would b~ -rsolve 4>1 = 1 for' 

all z(x). substi tu_te all these elementary solutions for ~.. in <P
2 

= 1, 
.1 

and then sôl ve the' resul ting equa tio~ for iL (~) • H01-leVer, a more compact 

~ethod is obtained by first finding the e,~~racteristie funetion (equation) 

system of two· equations <Pl = 1, <P2 = 1 related'as stated above. 

" ., 
o flnd an equation <p(~, l) = 1 such that its solutions are 

preeisely_ the solutions ta the original problem • 

.. 
The ehar2.ctetistic equation <p(2S,,;t) = 1 (function <P) of 

a system of two consistent equations <l>1(~'~) = 1 ~nd <l>2(!'!' Z) = 1 

sueh that the ::mlutions Z(2S,) ~ of 4> =- 1 nrc cquiv:tl ent to t.he solutions 

4>(~, ')1) = \ 

y e Bn 
,2 

• 

<P2(!, y, Z)) .y 1 (2.31) 
~ 

" 

• 1 
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The consistency condi tion! ~ 1 (~r ~) = 1 has at least one 

soluti6n ~<'~J; ~ 2(~' ~, :l..) = 1 has at least a single solution ~{~,~). 

Hence the carionical forms of <Ill and ilJ 2 can be expressed as 

, 01.-

~ 1(~' ~) = l: (m (x) 2: m (z)) 
a- V-

rY e Br y e S 
2 a 

Il 

'" 

) , 
s {y 1 ,(~, y) ::: 1 } -/:. o , 

.. , a 

(m (x) • a-
(m (z) 

'1-
• " L m~ (~) ) ) 

where ' 

By (2.31) 

, 

.-
s av = -{!'J ~2(~' y,!) = 

\ 

. \. 
~ (~, y) , ::: 

(m (x) 
0'-

! e s('(y 

1} f. 0. 

2: (m (z) 
'1-

m~ Cr»)} 
y eS a .ê. e S (ï'l 

(2.32) 

.. 

.... ! 



.... ,'b) 

: -..:;::;: r -~ 

1 
/ 

" 

• 
.. .'" 

)6 1 

"'. 

the so]uti 

-
<I>2(~' !<.~). y) = 1 are also solutions of 

<I>2(~' !(~), y). = 

{ 

E (m (x) rx­
r 

~e B2 

E (m (x) • rx­
~ r 

~ e B2 

p 

, ! 
E (m (z(rx)) y--

n ye B2 

Therefore, any 1(~) solution of <I>2(~' ~(~), .r~ = 1 . 1s 

~ solution of il> (!., J) = 1 a~ weIl. 

The converse - for any solution 1.(~) of 11 (~, 1) == 1 there 

Let Y(~) be a solution of (2.31). Then 

L: (m (x)· L: (m (z) • 
r 0'- n Y,-

~e B2 ye B2 

. 
= E m (1,)) , y-

y e S' 
Ct 

-------.--
&> 

where 

SI = rx 

_u .. r 

/ 
{ .Y 1 Y(9:) e 

'\ 

( ~ 
S. } O'y 

• 

J: 

L 
- . 
/ 

• 

Î 
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.......... ~e_~~~~~= ... ====='==?:"='~:".:e==ar~lY.' .. ~t .. ~~.:~.~._~,_-_.s_~:c:. _~~~]~,~a:~_:ution of (~.32) , 

1 

~ 

1 

that is, ~2(~'~' y(~» = 1 is consistent w.r.t. a 

solution ~(~) . Also, if .Y(~J e S then y e S for rYY- ,--- ct 

the s·ame reason. Hence S' = S 
(X - (x' 

and 

<I>2(.!' E.' .Y(~)) . ~ 41 1 (!' ~). Thus any solution z(x) of 

<I>2(~! E., .Y(~») = 1 is a solution of ·4l1(~' ~) = 1 too. 

Q.E.D. 

2.5 Evaluating Remarks 

l~ has becn sho .. m how a charac"!"-erlstic function (equation) of 

a system'of Boolean relations can be form~. Also, sorne theorems stating 

~ 
basic -properties of characteristic equations, s11ch as consistency, inclusion 

of don't care states, etc., have been presented. Once a problem is stated 
•• 

in the fom of a system of B.E., and i ts characteristic function obtained, 

i t 15 usua11y dc:::.ired to obtain aH or on1y sorne 'Of the solutions. For 

this reason, CI. concise description of the maj n melhods of solution .. as 

= 

" 

-1 ---~----4:ncl'd~.- - -'l'he---F1et-hed-s---ean --Be -Gubdivided intG--~e-~Gi-r1ff----;iu&-~.@JlI..f',.ntaxy.. -- -------

solutions, and thoSj! which genorate a ~encral solution. The latter can 

further be suèdivided into 3 groups, namelYI 

\, 



... 
J8 

• (1) No knowledge of an elemen"Lary solution needed - successive 
~~--~-~~~~~~-~==~~~~ 

eliminatio.ns. 

(2) A single elementary solution needed - Lowenheim's Theorem. 

, . 
Knowledge of aIl eleme~tary solutions needed (even if only 

/ 
-_..::.._""--_-L_~_J .. n -aD imp] ici t fom of a canonical expression of, cI» - ~ 

~- .. p7w _____ "--_.~, ______ _ 

Brown's method or others with economic encoding. 

Depending on the tools used, all the methods may be classified 

as 1 

(1) Using maps (Harquand or other) - canonical forms of <I>, 

e.g., Svobodafs method. 

(2) Algebralc - cp can be in any form - successive eliminations, 

Lowenheim. 

(3) Combination of 1 and 2 - economic enC<?dine, e.g., Brown' s method. 

A method which is most appro-pri~te to a e;i ven application will 

be used in the subsequent chapters. Algebraic JTlethocls Hill be used ex-

clu~i vely in the thcoretical parts and in the 0X:=1mp] cs which require more .. 
th an 6 variables. ( .. 

Certain important types of solutions were discussC'd ip Section 2.4 • 

• 
The ,identity and the unique-solution theorems, and the Lemma 2.3 will play a 

~ 

key rôle in the cha-pter!> to folloH. 
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3.1 Introduction 

'\ 
It à.s usually aS5umed tl1at combinational swi tching circuits 

contain no feedback loops, thef'r-?esponse being dependent only on the 
.... 

, 

~--------~--presenT: sta"té of the iIlput variables. In turn, seql1ent; al circuits 

contain feedback loops, hence their re5ponse depend5 n01 only on the 

present input state, but also on i ts past values. However, as a numter 

of authors have pointed out [12, 1L!., JO], the presence 'of c10sed 1001's in 

swi tching circuits will not affect their overall combina tional character 

in sorne cases. Moreover, the circuit i;wlèmentation may require less 

gates than the 1001'les5 equi valent which realizes the same combina1ional 
1 

function. 

Kautz [lL1-J has considered a one dirnensional unilateral 

cellular array of identical ~ells conn~cted in a clo~e~"loop.: He stated 
,. ~jl, ... s ."",, 

condi tions under which such a circui t wi th a closed loop 

Also, i t waf, shOlm that the same functions implemented 

would not( d~generate. 

in th~ nJe 

classical way wou] d require a higher tota] number of NOR gates. 

FUrthermore, the possitility of loops in cor.lbinational circuits 

may arise as a natura] phe~omenon when pro1'er genera] synthe,sis procedures 

1 

using fixed libraries of bq11ding modules (combinational and sequential) 

.. 

! 
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. 
are used. However, before such a general synthesis procedure can be 

such generalized combinational circuits is required. An ,attempt of such 

an analysis"'is presented in Othis and the foll,owing chapter. 

The analys1s methodology 19 oentered around the theory 

of Boolean equations and their characteristic functions as presente in 

Chapter 2. It will be applied ta a general sequential circuit 

(asynchronous) with the aim'of determining the circuit's properties per-

tinent to combinational behaviour • 
\ 

~J 

. ,-

3.2 Basic Concepts " If' 

" 
Without 1055 of generality, let a gen~ral switch~ng circuit 

be represented by an asynchronous Mealy-type mâchine. 

Resolution L€vél: , 

Let aJl variables desc~ibing the behaviour of the circuit be 

considered at the level given . the two distinct values 0, lof, B
2

• 

F'urthermore, let the acti vi ty the circuit bé observed at discrete 

time instances 0, 1, ••• , t, t+l, ••• ; the time interval between two ~on-

secutive being defined by:the transition time 
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needed) by the circuit ta go frotn one state of" the internaI state variables 

te the next one, regardless of "'heth~-tha.t next state is sta~le or 'is , 

going ta change in the ti+l' t i +2 transition period. If the state i5 

stable then let the intervals ~e fixed and equal ta the tirne inte~aÏ 
-f.. .. 

needed for the last transition ta take place, until the next change of 1 

the input stimulus - nexrtransI tlon periou.-

Definition 3.11 

General Switcbing Circuit (GSC) ls represented by a first 
/ 

arder fini te sta te asynchronous Mealy machine (Figure 3.1) 

-"_.-~-

M = (X, Y, Z, i, ~) 

where \ 

• 
x - finite set of input states (stimuli) 

y finite set of ~utput~st~te~ (resp~nsEis)"' 
, , . . 

Z finite set of internaI states 

f output vector function 

.~ - "'state traJ!tftion vectar function. 

Furthermore, let 

t+1 z 

(, 

) 

\ 

., 

» 1 

" 
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de scribe the the circuit at ,Ume t, where 

t t t x t) x =: (x
1

, x2 , · .. , e X 
r 

t t t t 
1. c: (Yl' Y2' · .. , Yq) e y 

":t 

t t t zt) 
-.. 

z c: (zl' z2 ' · .. , e Z , 0 n 

are the stimuli, the response, and the internaI state of GSC at Ume t, 

respectively, and 

t+l z 

( 

t+l 
• • ., zn ) e z 

the next intenlal state generated by Z. 

AIso,~let the functions !, g be represented by ideal 

combinational circuits (without feedback IOops) with no internaI delays, 

the transition times then being determined and fixed ta ~ t by external , 
delayelements ,(a fundamental model of M). 

Moreover, let 

z represent the present state of the Ilrcuit at 

any timr~~ 

z' the next state generated by .s., z' =- .8.(~' ~), 

x € X; ~, ~'€.Z, 

Z be the set of aIl internaI states which can possibly' 
ct 

be ,feached from any state ~ € Z for the input 

x == ct e X, 
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" 

GENERAL SWITCHING CIRCUIT • 

') . , . • 
State transition characteristic function ~g(~' ~, !~) [8, 26, 35] 

is defined as the characteristic function (Definition 2.2) o~ the system 

of B.E • 

1 

• 1 
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21' = ~(!, ~). 
\ 

~ 

t> ~ 

~J_hat i~ 

n 

~g(~' ~, !') . = .IT , (zi " g~(~, ~) + -' z' i • gi (!' ",~) 
1=1 .,.-.. 

" '" . 
for xiX and z e Z" and <t. (x, g- !. ~,) .. 0 for ~ei, z~ Z, .. 

• \ 0 

Definition :3.31 , 
t • 

Stable state characteristïc function 4J.s(x, z') 15 defined a.s 
g - -

the character:l.stic funct'ion of the system of B,E. , 

/ 

That i8, 

"' n 

<t> s (x, ~' ) " = TI ( z! gl (~, ~,) + i' • g. (x, 
g - 1 i l ~ 

1=1 

Go . s 
for ! eX, z' e Z, and ~ (x, ~,) = 0 ' for x eX, 

. g-

Definition 3. 41 

~.) ), 

!:..' Je Z. 

" , 

Next state characteristic function' 4Jz(x, _z,) ls defined g-
~ 

in term8 of . Wg(~' !' !,)' as 

<t>Z(x, z')' c 
g - -

'" (x B _n'). 'l' , , .... 
g - -

... 
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1 

/ 

~ 
Definition J.51 TerminAl state function. 

state 

... 
G(Ik, ~R1 15 def1ned as a function giving the terminal 

t+k+l 
~T == Z 

t+l x- , ••• , 

- . 
reached ,by an input sequence : 

from an initial state t 
== z e Z .. 

Z 1::: 

-T 
( t+k (t+k-l ' ( t = g,! ,g ! ,. · ., .f! ! , ~ ~R) ) ... ) . 

Definition 3.6 Stability • ... 

Given an initial state ~R and a stimulus x c (Y ex, the ,,' - ~ 

. GSC is said to be stàble for (Y and ~R' if for an input sequence 

.. 

c' 
t t+l t+k 

~ c: (~ , ~ , ••• " ~ ) 

, t+i 
such. that x = ~, f "" 0, 1,' •• l, ~ k·, 

there exists a finite k such that 

~J .~ 

G(Ik, ~R) ::= 
G(Ik+j' ~R) 

\ 

for j;= 1, 2, J, ... That is, with a constant stimulus (Y a stable 

state is reached after a finite number of transitio~s (k). 

If the circuit is sta~e for aIl possible ~R E Z then' 

it i5 stable at "X = Œ • . 
" cl. 

If tlÎ~re i~ no such finite k then the circuit ls 

oscillatory (t-l'i th respect to ~) for that x = (Y and ~R" --
.... --

'Even though a cir:cuit may be oscillatory for sorne (Y and 

~R' not aIl in~~rnal variable~ zi E ~ have ta oscillate. Therefore, 

'. 



~. 
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a , 
stability of a variable can be defined similarly as in 

, 
Definition 3.6. 

/ 

Defini tion 3.7 f '. Simple 0 scilla tions. 

x = ex and ~R' 

If the circuit ls osoillatory (Definition 3.6) for sorne 

then it has simple oscillations at ex If there i5 no 

•• 

c 

o~her initial state !R2 f !Rl such that the circuit would be stable for 

ex and ~R2' . 

fi' 
For instance, the state diagram as shown ln Figure 3;2 

---

z = {l, 2, J, 4, 5} 

10 . 

01 

! 

• FrtuRE ).2. ILLUSTRATION fI"'OR"DEFINITION J.7 • 



... 

47 

~ describes a circuits which is oscillatory for ~ c (0, 1) and ~Rl = 5. 

'and stable for the sd'lne ~, but ~R2 c: 4. Therefore, by Definition 3.7 

it does not have simple oscillations at 3 = (0, 1). By changing the 

circui t so that the stimulus causing ,the 4 -+:3 and 3 -)- 3 transitions 
'v~-------------------

is (1, 1), the new circuit would have simple oscil~atlons at x a (0, 1), 

since "t:here is no other transi tian caused by that 3 whlch would bring 

r' the circuit to a stable ptate. 

II 

Definition ).8 , Steady state. 

A circuit has reached steady state (conditions) for a 

stimulus x = ex e X if it ls in a sta~~ate or ls oscillatory. - -

Furthermore, let aIl the states z € Z through which the circuit is 

1 

passing while ln steady state, be called steady states. AH other states 

are then transient. 

Definition 3.9 1 " 

A k-transi tion circuit ls such thnt i t passes through at 

most k transient states wh en ~hanging steady states due to a change in 

the input stimulus x. 
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Lemma J.1 1 

If == n then n 
2 - 2. ( 

/ 

Proof 1 - A steady state at, x e X c~msists of at least one (stable) 
-1 ~ 

state !1" Assume that a change of ~l to !2 ~ ~l . would bring the circuit 

u 

different transient states through which the circuit May pass before 

reach~ng the total steady state ~2',!2' 

Q.E..D. 

If Iz 1 < 2n is known then k ~ 1 ZI 2. 

_Definition 3.10 1 o;transition circuits. 

Clearly, O-tranêiti9n circuits have the fastest transitions 

between steady states. The Most cornmon type ls the normal circuit defined 

aSI 

(1) It has at least one stable state for eacp input 

stimulus x € X. # 

: 

(2) Each unstable state passes diT~ctly into a stable state. 

If oscillations are pe~ltted, then a class of quasi-normal circuits 
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(equivalent to the class of O-transitlon circuits) is defined aSI 

(1) The circuits can reach steady state in finite time 

for each x e X (Lemma 3.1). 

-
(2) If astate becomes unstable dU1 to a change in the 

input stimuli the transition leads directly to a 
,; 

steady state. That is, 

(i) either to a sta~le state 

or 

. (ii) te astate which is a member of(the set 

of states defining the-oscillations for 

that l. Hence, if x does not c~nge 

then the circuit would keep entering 

periodically that state. T 

Remark 1 The class of normal circuits is a sub-class to the class 

of the quasi-normal circuits. 

Definition 3.11 . Operation of a circuit. 

"' • 
It will be assumed that the circuit is operated in the 

following wayl 
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The stimulus x cannot change unless the ci~cuit 15 in a 

\, 
steady·state. 

" The state- z and hence the response 1 too are of-

interest to the external environment only when the .,. 

circuit 15 in a steady state. 

The follo~ing are sorne prop8rti~5 related to the characteristic functions 
, 

defined before 1 

Lemma 3.2 1 

unique solution for ~'. fiefined over x ex, z e Z. That solution 15 

equivâlent ta- the functio~. ~(!, ~) . 

• 
Proofs The way in which $g is formed, and th en ~heorem 2.4. 

) 

Lemma, 3.) 1 
1 

Given a stimulus x = a e X then aIl the possible states 
~ 

the circuit may reach from any initial state ~R e Z are ob~ined as the 

f' 

solutions z· to the truth equation 

<l!z (~_, ~,) c: 1. 
g 

.. 



5.1 

./ 
Proof 1 By Definition J.4,'Lemma 3.2 and summation over all 

Lemma 3.4 1 

The solution set (~'} of the equation ct>:CQ:. !') = 1, \ 

a E X (Definition J.J) is equivalent to the set of all stable states 

the circuit can possible reach for x = œ and any initial state. 

"'" 
Proof 1 The equation ~:(~, ~,) ~ 1 1s solution equivalent to the 

system of equations ~' = g(~, ~.) (Definition J.J, 2.2, Lemma 2.1). 

That is, if z* is a solution then ~* = ~(~, ~*) identically. Assume 

that x = œ does not change, and that i z* was reached after J} transi-

/ , t t+k 
tions from an initial state at time tI, ~R = z. Thus z = z* and 

zt+k+l = ~(9:'., ~t+k) = ~(Q:, ~*) e ~*j~nd also 

zt+k+2 = g(~, ~t+k/l) = Z(9:'.' ~*) = z* 

t+~j z* ( 

Howev~ Lem:a }.1, k is fin1té, and fram th •• bave, 

= 

therefore, ~ Definition 3.6 the circuit i5 in a stable state z*. 

Similarly, it can be shown that any stable state z* at x = a 
-. -< 

o 

.. 



satisfies the equality z* = ~(~, ~*), 

identically. 

/ - \ 

Lemma 3.5 1 

h~nce rI>s(a, z*) - 1 
g - -

52 

Q..E.D. 

The 'circuit ~ has simple oscillations at x. = a e X iff 

rI>S(a, Zl) ::: 1 ls inconsist~nt. g - - . 

Proof 1 

at a. 

Simple 
i\ 
J 

,If 

By Lemma J.4, 

oscillations (Definition 3.1) ~ 

the solution set to tps(a, z') = 1 
g - -

~ 
no stable state 

is the set of 

'-~1, -- -
stable states at a. No stable states ~ no solution to 

~--)_.- . 

rI> (a, z' == 1. 
g - -

QoE.D. 

Definjtion 3.12 1 

Steady state characteristic function ~cÇx, z,) is defined 
g - -

so that the equation ~C(a, z.) = 1, Q' 
6 - - -

eX, has as its solutions aIl 

the steady stat~s the clrcuit & may possibly aS~lme at a. 

1 

Theorem ).1 1 
-
\ 

( 1) If B' i s qua st,":' normal then \, 

"'( 

(3.1) 



• 

( 2) If ~ i5 stable (no osclllations at 

~ 

~c(x, z') = ~s(x, ~' ) g - - g-
"t' 

.J 

• 
(3) In general (any circuit g) 

Proof 

(1) By Definition 3.10 and Lemma J.3. 

any x e X) 

~z(x, z') 
g-

53 

then 

(3.3) 

(2) By Lemma ).4 and the fact that there are no oSCillato~ates. 

(J) ~S(x, .z.) c 1 describes the stable states 'only, he.nce 
g - -

<lJs(x,- -z') -..ç <lJc(x, -z').- In -turn,--- ~g~-<_x-,---'G_t0 -. 1-gives all the 
g-- g--, 

transient and steady states, hence 

Corollary' 1 : Genèra tion of 
c 

~g • 

f 

The steady state characteristic funct10n 

obtained as"a resuJ,t of the following sequence: 

.i ~i\ ~1-1( ~i-l) 4J gC~~, ~, == 1: g 2S, ~, 

i-l B
n z e 2 

for i = 2, . . . , 

( 

Q.E.D. l~lJ 

~g(~fl. ~ 
1-1 i 

, ! ) 

2n 
I~I . n :: , 
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Then 

2n 

~c(x, ~.) 1 
~', ~'). "" 1: ~ (x. g - - g- ,. 

1=1 1 
.:J 

'\ 

Proof 1 The functl.·on ~i(x, z, !i) l t th 1· ti l t t .. '!' re a es e ru a. s a e 'ZifJ1 g- -

with the rrext state after i transition periods. Thus· 

i = 1 gives aIl stable states 

i > 1 l states involved in 

passing at most,through 
--~~--------------

Note, that the form 

Lemma 2.,.. 

j 

, 

E 
i-1 z e 

3;3 Combinational Behavlour 

1 

i states. 

resul ts from the applicati~n of ~ 

. 
It will be shoHn he:re, unde! which conditions a general 

circuit (Definition 3.1, Figure 3.1) would behave as a combinational 
j 

cit'cuit. 

." 

, . 



: 
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Definition ).1) 1 Combinational behaviour. -

.. 
A circuit has a combinational behayiou~ wi'h respect to 

the output, for the stimulus x = a e X, if ,a unique response l is 

associated wlth a. 

That is, the circuit response i5 independent of the internal 

• states z e Za. Otherwise, the circuit has a sequential behaviour at g. 

Retnarks 1 

(1) If a circuit has a_ combinational behaviour for all 9: e X then 

(2) . 

" ' 

it has combinational beha~iour - it represents a combinational 

switching function. 

If a particular g is not specified then combinational behaviour 

is assumed for all a € X. 

Similarly as in Definition ).6, comblnational behavioJr of ~ 
1 

single variable Yi E l can be defined. 

(4) The followin~ nomenclature will be usedl 

combinational means combinatlonal behaviour with 

respect to the out~uts. 
- , 

purely combinational - same as above except that the circuit 

1 
contains no feedback loops. 

J 



• 

• 

The first theorem to be presented here discusses the trivial 

case of a circui"Lexhibiting combinatlonal behaviour. It i8 the case where 

- the next state transition function E<.~'~) is independent of ~ (no 

closed loop). 

, . 

Theorem J. 2 " 

A circuit has a combinational behaviour if the equation . 

~C{x, z') = 1 has a unique solution _z'{_x). g - -

Proof 1 Trivial, apply Definition 3.4, Lemma J.3, and Definition J.1J. 

Since 
f': 

~ is a combinational function then the output 1 has a unique 

state associated with each .. ~ e X. 

Q.E.D. 

The situation becomes more complicated when there exists a , 

closed feedback loop, that is, when ~c(x, zt) = 1 
g - - does not have a unique 

solution. Howev~, aven in such a case the ~iYcUit May still have com-

binational behaviour wi th respeet.--iQ-----.I. (The f'uncH.on f has to be 

independent of sorne of the states of ,g) • The folloHing theorcm will 

.. 
investigate such a case. It will be assumed that the circuit is operated 

as specified in Definition J.ll. First, another definition is needed • 

, 

• 

-----~--_._-.... 
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Definition 3.14 , 

Output generator characteristic function ~f(3, ~', ~) 
o 

i6 defined as 

<> ~ , q 

~f(!' • ~) . = II (Yi • fi (!. ~') + Yi f. (x, ~.) ) ~ , 
~ -

1 . i=l 

for x eBn 
2 z' e En 

2 

(It is the chàracteri sti c function of the syste:n 1. = !(~, ~' ) of B.E.) 

Theorem 3.3 1 Combinational behaviour. 

1 Let 

-", 

= --E [~~(x. tl) (3.4 ) 
B Bn 
- e 2' 

The general circuit of Definition 3.1 has a comblnational 

behaviour if and only if the equation ,,<1> c(!' yJ = 1 has a unique 

solution 1.(~)' x e X. That solution is then the combinational function 

generated hy the circuit. 

Proof 1 describes aIl the steady states z' the 

circuit ~ may assume for a particùlar ! e X. Considering then each 

such state ~',' the response 1. iS'generated through the circuit f­

the "Output ;s thus lobtained as a solution Y..- of .~f(!' ~', 1.) c 1. 



\ 

_.' 

The~efore, by Lemma 2.), the possible states of.~ are obtained as the 

solutions ta the equation 

where 

= 1 

cl> ~ and cl> f replacé cl> 1 ' respectively, in the Lemma. 

,If 1> = 1 has a unique solution- then a unique response c 

is associated wi th each ~ EX; consequently, the circuit has combinational , 

behaviour (D~finition ).13).~ Becau~e of Lemma 2.), that sQlution is then 

. the combinational function ~enerated by the en tire circuit.' The converse _ 

a unique response at x means that aIl steady states z' (at that ~) 

generate the same output state X. But by Definition ).12 the function 

1>c contains·only steady states, hence ().5) must have a unique solution. g 

Remarkl 

- -----------------~~.-~-­• • • 

If the function cl>c as defined in Definition ).12 is not 
g 

* . .... 
available, but .. another function 1> (x, z') 

g - - whiclI 'o::>r~ tains not only tne 

() 

·steady states, but also sorne or aIl of the translent ones 

(cl>*(x, z') ~ cl>c(x, z,)), then the condition of combinational behaviour g- - g- -

becomes sufficient on~. That is, if the equation 

[ . <I>;(~'~) •. :' <l>f(~' ~, 'J) ] . . 
1 ().6) 



',. , 

• 

( 

" ", 
5.9 

, has a unique solution then the ~ir~it has combinatlonal beh~lour • 

Again, the solution 1s the function gen~rated by the circuit. 

The material so far presented was intended to g~ve more 

insight in~o the relationsh1p between a circuit and its characteristic 

functions. Also, the èase when a sequential circuit has combinational 

behaviour with respect to its Qutputs has been studied. (See Chapter 5 

for illustrative examples). 

It is seldom the case, however, that one is present~ 
with a circuit and then requested to determine whether it has combinational 

• 

behaviour. More often the design of such circuits is performed in 

engineering practice. The problem-is then the interconnection of sorne 

( 
\ 

avai lable building modules (ci~cui ts)_ so as to real:i..ze a given combina-

, 
tional switching function. Thus the following chapter will deal with 

the realization of switching functions. 

o r 

------------' ~-~-----
<' 

,~ 

" 
,J' 
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C\{APTER 4 

REALIZATION OF COMBINAT~NAL SWITCHING FUNCTIONS , 

It has been shown so far how Boolean equat10ns can be used 

for analyzing cOMbinat10nal circuits, even those containing feedback 

loopso It will be demonstrated here that BoE. yield very compact exp res-

sions statlng functional realization, and at the same time unifying the 

'" various approaches to functio~al decomposltion. 

4.f Introduction 

" A decomposi tion of a swi,tching function ct> (~) 1s considered 

to be a sequence of functions 

TL Cr2' ~2)' "''1 n (~ , z ) L m m -m ( 4.1) 

where 

(1 ) z. c:: x 
-.} 

(2) 1... s { n 1 ' • •• t n .1-1 } s= .:l .1 

(3) For every n x E B' - (0 for which <p(~) is.defined, 

n i5 defined and equal to 'Îl(!) [ 21 Jo Thus 
m 

,...-

It would be a rather difficult task to obtain the couplete decompositipn 

all at once; however, lt was shown that the complete decomposltion can 

.. 

j 

,1 

/ 

l 
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be generated by a repeated a~plication of simple decompositions [ 5, 7, 

,/ 

11, 1), 15, 16, 19, 20, 21, 28 J, having the'forml 

z ~ x (4.2) 

Y.. f~ U Z = x -

r' 
or 

~ 

~ (x) 
2 2 t t ~); (4.3) = n (y ), ••• , n (l ), 

i 
Y.. s ~, z s: X 

U Y.. 
i 

U z x - -
i 

r~ven more restrictions can be placed on the decomposition by re~uiring the 

i sets land z to be !lis~int, Le., 

i .L • r .J 

i 
Ji. n z i 1, ••• , k. 

-

The concepts above May eas~ly be extended ovar a vector of funccions 
\----

1 .. 

Determination of the functions. n '1 and n2 in (4.2) was first 
\ 

approached by Ashenhurst [ 1 ] and Curtis [40 ] through modi.fled Karnaugh maps 

" 

so called decomposition charts. The method was then expanded and brought 

into the form of computer aided synthesis procedures by a number of 

authors. The decomposi tion was obtained ei ther through the charts [11, 13, • 

.. 

r 

\ 
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15,29], o~ by'translating the theory into algebraic topological 

methods operating on cubical complexes [7, 21, 24, 25, 28, 36J • 

Furthermore, either any decomposition was sought,that is, 111 and 112 

were alloHed ta be any _f)ITïétions that form a feasi ble decomposi tion, or 

~ 

restrictions were placed so that the functions had to be chosen from a 

set of available functions reaIi~ed by sorne ,circuit modules. Theorems 

---------------------~~------------------~ 
were stated which determined III for a given <1> and n2' sim1larly 

could be determined for tnat <1> and a known [7, 11, 15, 21, 2J, 

25 J. This type of . approach i s ra ther sui ta bl e when the actual circui ts 

"" are ,to be implemented using integrated circuits, where a fixed nUJ'T1ber of 

differcn+, C'onbinaticmal func'tions is available to the designer. 0 These 

functions then form the set of modules (a Jibrary) from~hich the functions 

Il 1" Il 2 must be selected, and by a prorer interconnection the function 

~ (~) realized. 

The decomposi tion procedure usually started "by selecting the 

t;unction n1 and an asSignment (mapping) of x to 1.., and after that 

the function was sou~ht by applying the decomposition theory. If 

an 11 2 existed, it was tested against the set of availâble modules, and 

1 
if the search was successful - a r.lodule rea] izing Il 2 was found - th en 

the synthesis of <1> (~) was comp1eted. OthenTise, t.he function Il 2 was 

further decomposed by the same procedure, and so on, until a complete 



, 
6) 

decomposition (4.1) of ~ was obtained. If no decomposition existed for 

the chosen, th~ another funetton was selected from the set of 

modules, and another test for decol'lposition was performed. Provided, 

that the set of modules represented a complete set of Boolean functions, 

the synthesis was com~]eted in a finite number of iterations, described 

~ above. ,.~ 

A more recent method of functional decomposition is based' 

on Boolean equations [ 5, 16, 19, 29, 26J. It was shown that a simple 

qecomposition can be obtained as a solution te a system of B.E. derived 

from . ~(~) and the module function n2,. Marin [ 19, 20 J used the 

meth6d of Svobo_da [J1 lto solve the equations, in order to generate a 

simple decomposition. The procedure was then expande~ into a more 

.. ~omplete computer program for the synthesis of combinational circuits [ 5 J; 

however, the general solution to B.E. procedure was used [ 3J. In both 

cases, though, the decQmposition proceeded in a direction opposite to that 

used in the methods based on Ashenhurst's H:::>rk. That i5, for a given cP, the 

funMion n
2 

in (L~.3) was' selected from a set of modules, and then the 

function 
r 

and the set z was determincd by 

sol v:h.ng the equation 

for the unknowns Dl' z. The solutions were then tested against the 
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iibrary of available modules. If a match was found, the deco~sition 

was complete, otherwise the procedure was applied iteratively until a 

successful realization was obtained. The method has a straight forward 

extension for incorporating multiple output incompletely specified 

When the resulting circuit was to be optimal under certain 

predetermined criteria, both of the forementioned methods had to use 

more-or-less exhasutive searches aided by sorne heuristic rules. Therefore, 

the actual optwal circuit coulct be oètained in a reasonable Ume only in 
1 ) 

the case of a relatively simple function I(~). The method of B.E. has' 

an advantage, however, sir.ce circuit constraints can easily be implemented 

by adding constraint equations to the original system. The number of 

possi ble decom-posi tions can thus be reduced, which ln turn lowers the 
-~~- -~- ---,-

search time for an optimal solution. The selection of constraints can be 

guided by the actuA1 circuit layout, Tan~out, avaiJabi1ity of sienal 11nes, 

etc. [5J. 

"-Another possihle way ta synthcc.ize swit,ching circuits is 
/ 

1 

obtained by f0111\ulating the decomposi tion as li. 1 tn.eBl .a - 1 integer 

programm1ng problem [22J. The interconnections between gates are 

specified a~ the 0 - 1 variables, gate functions and input-output 

,~ounections then as linear inequalities. A solution to the variables is 

o • 
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• 

sought within the system of inequali ties, 50 that a certain cost function 

representing the designer's criterion of optimality would be minimized. 

Even though the optimal solution can be found in a finite number of steps, 

the approach requires a very large number of variables, growing at least 

exponentially with I~i and Ill. Therefore, its usefulness is limited 

to small problems. 

~ A rather compact form of the decomposi tion 

obtained by applying the theory of Boolean differentiaJ 

theorem scan be 

\ 
calculus L26, 34 ]. 

.Although the description is formally very concise, the computations in-

volved in solving even a simple circuit are quite complex, not suited to 1 

practical problems. (Generation of prime implicants, etc.) 

It wil] be demonstrated here, that an extended application of 

the theory Of B.E. to the problem of functional realization and decomposition 

yields bath formally and computationalJy feasible formulae. The theory 

is~rather general, incorporating the various directions taken in the 

synthesis procedure ~--ifl.puts to outputs and vice )l'13rsa)', as 

weIl as allowing for the function modules to be sequential circuits. It 

aiso covers th!" synthesis of m~ll tiple output incomplete] y s-pecified 

functionsj any circuit constraints can bè implemonted in terms of 

additional equations as in [5], sinee the procodure is unified under 

• 
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'. 

B.E. Moreover, the concept of degenerate and direct transition circuits 

l, 
is introduced, and an important conclusion about the necessity of feed-

back loops -in such circuits i s de ri ved. 

4.2 Realization of Swi tchine; Functions 

Let an incomplei;.ely specified function 
b. 

! 

~(~) c:: < .2(~) , .2(~) ~+ ~(~J> 

be gi ven, and let a realization of that function by a circuit C be 

coniiidered, as sho)m in Figure 3.1 , Definition 3.1. That realization 

woula- cccur if the respollses -of the aircu'i t mal' into the states _ y. ,of 

the function (the perrnissi ble states) for each ~ E B~. Thus the first 

. 
assumption to be made is that the set X of possible input stimuli is 

~ 
r the \-Ihole space B
2

, unless the states iJ,l 
1-. 

X are covered by d. (x), 
~ -

i = 1, ••• , q. To simplify the discussion, X == B~ will be assumed 

since the modifications required for the other case mentioned above are 

rather minor. (In caf;e thnt X = B~t the set X would al~o limit the 

, 
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Defini tion 4.1 1 

The circui t\ c.haracteristic function cp c(!'~) of C 15 

defined sa that the solutions to the equation CPC(g:" il.,) = 1, ex e X are 

the possible steady state responses the circuit may generate for x == ex E X, 

~ , 

provided that the conditions of Definition 3.11 are satisfied. 

t 
As shown in Theorem 3.3 and i ts proof, 

, (4.4 ) 

hOYlever, a sequential behaviour 15 assumed in general, hence cp C(~, y) = 1 

need not have a unique solution y(!). 

* If the function! 1J (x, z') (Remark to Theorem 3.3) i s used 
g - -

1nstead of cpC(x, z') in (4.4) then all statements which will be made 
g - -

about functional realization!decomposi t~on ?e:co_n~ ___ .s~ff~~~ent only. 

(The same reason as the one stated in the above referenced remark). 

Note, that CPC(~" :tJ c 1 i5 always consistent with respect 

to solutions- y = y(~~), sinee i t represents an actual circuit which has 

at least one steady state associated Hi th each X € X. 
f; 
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Definition 4.2 1 

The output characteristic function ~(!.~) is formally 

defined 50 that the equation <P(~,]I) solutions 

-

such states of :L which a circuit C 

= 1, œ e X, has 's its 

is p.rmitt~d t3--2ssume at moq,t 

as its steady state responses at that ~ = Q: e X. If a particular 

circuit C satisfies this condition then it is said that C realizes 

~cx, y)~ 

~-- .. _-~ '-' -- ---

~ Lemma 4.1 

A circuit C reaJjzes <p(x. 1) iff 

(4.5) 

Proof 1 Let y be a re onse genera ted by C a t x::= ~. Then 

<PC(~' y) = 1. But C realizes ~ , hence by Definition 4.1, <P (~, y) ::= 1. 

If Y cannot be generated by .C t'hen and y may or may 
-" 

not be in <P Therefore, <PC(!','~) ~ <p(~,]I). The converse 1s proven 

simil~lYI <PC ~ <P implies that the responses of C are· solutions to 

____ <L = _l, hence <P is an output characteristic function, in other words, 

C realizes <P • 

Q.E.D. 

( 

) 
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Theorem 4-.1 1 Rea11zation of 1(~)' 

, 
The function ~(~) = <~(~), ~(~) + ~(~» is reallzed by a 

circuit C if and only if the output characteristic function 
~--------- --- -- ----, 

<l 

~(~,~) = II [Yi· <Pi(~) + Yi • ~1(~) + di(~)] (4~6) 
i=l 

is realized by C, that is iff 

Proof 1 The specification of ~(~) as an incompletely specified 

function can be written as a system of Boolean relation~ 

y~ ~ <p. (x) ... ~ - and d.(x), 
~-

i=l, ••• ,q, 

which have to be satisfied simul talleously. By Lemma 2.1, the characteristic 

~--- ____ ----..o.f-""u~nClti_Qn_ QJ th~ system is the function (4.6). That is, the solutions 

f r 'to <P(~, 1) = 1, ~ eB2 are the pernissi ble states l of the function 

/ 

~(~) at ~. Therefore, the realization of ~ is equivalent to the 

realization of 1(~) (Definîtion 4.2), since <PC(~' l) = 1 is consistent. 

Consequently, the function~ l(~) is realized if and only if 

(Note, that ~~iJs. XL~~l_ 'is alwa:ysf 

consistent) • 

Q,E.D. 
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___________ ~_~__ 0 

----------------------_._---"-~--------

Let now a cascade'realization of 1(~) be considered as 

ShO\iO in Figure 4.1. By a repeated application of Lenuna 2.), the overall 

k 
circui t characteristic function ~ C(~' 1) can be obtained as 

41 (x, v
k) - "" ' E C - M.. 

( 'c k-2 k-l) 
E ~ Ck-l 2!'.ê. , ' .ê. 

~k-l e ~k-2 e Bik- 2 

•••• (4.7) 

9 -

And hence if je rml1zed. By looUng ___ ::=-=--= 

at the network from the output side and taking each Ci sèparately, then 

the output characteristic functian ~ k-i(~' .r
k

-
1

) defining the pernissible 
J 

input states of C
k 

is realized by Ck_1 , i.e., 

( k-2) 
which holds provided that ~ k-2 2!' Y is realized, etc., until 

~ 1 (2!' Y 
1

) i s reali z ed by Cl' 

,; The particular output characteristic func tians ~ i (2!.' .ri) can 

, 

be derived as statcd in the following Lemma. • 
~ 

Lemma 4.2 1 Determination of cp i (~, .ri). (Figure 4,1)! 

Let cp ~i (2!.' .ri, y) be ;~e overall circuit chàracteristic 

function of the combined'circuits Ci~' .,., Ck, Then the output 

1 
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. A< li (x,y) = ~_~x'l~)' , 

• <t>' x vIx:) 
A 2 -'",-' 

\ - 2 
',- ~ 3 (~, y, y) 

-~ - f . ,~ · , .,...... 
, -. ,1, 

• 1 • , ( k-2) "',z, ~ .... ~ 
Characterization hy ~i . '" 1 ,,!Pk-l ~,1. ,1. .. ' 

1 

, 1 

A~k (~,yk-l 1 

1 \ 
4-) 

1 

1 
1 

1 1 

1 

1 
1 k 

1 ~ 2 ~, ~ 3 1 k-2~ k-I ~ Y=l: 
Cl v C2 

y C
3 

'L 1., Y ~ (';k-l lY. Ck ""- - ~ ~ '" , ~ 
. . . 

;' '" / 

<P C2i 
, 

f ~Cl <;JC3 <P Ck- 1 1 .. . 
1 

V 

1> 1 (~,yl) , 
V 2 
Q2(~,y ) 

ill3 (~<:[3) • 
• q iharacterization b 1 y 

1 

.. 
___________________________ ~_k_-_l_(-~X,1.k-l) 1 1 

v !Pk (~,'Lk) = ~ (~,y) 
• 

, 

FIr,URE 4.1. CASCADE REALIZATL()N ~ (~,1.) 
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characteristic function ~. ls equivalent to the characteristic function 
l 

of the relation <1>~i (~, Y..~, yJ ~ <1>(~, y), _ assumed valid for/all 

q 1 € B2 , That is, 
& 

JI + 

~ €B~ 

and 

• 

(4.8) 

(1) 0 There exists a circuit C which cômplet~s the realization 

Proof 

of l(~) iff 

yi(~) • 

( 1.
i) <1>. x, 1 is consistent for solutions 

J.. -

(2) A circuit C represented by its circuit characteristic 

iff 

..--- •• 
The second part can be p~vén as followsl 

that 5uch C completes the realization of " y(~). By 

Lemma 2.3, the combined circuits C and Ci +1 , ••• , Ck 

have the o'rerall characterisÙc functlon 

, 
<1>C(~' ~) 

+ 1) ] . <l>C(~' y)'. = L: [ <PCi(~' ~, 
qi 

.ê. c B
2 . 

c 

.. 



.. 

• 

'. 

Th~s by Theorem 4.1, ~(~) is realized if 

identically. 

After substitution .. 
Il 

1 

! € 

The equality must be sa tisfied for aIl x € X and 

, 
There~ore, from (4.9) } 

.. . ~; - -+ 
4>c(.f,. !) + <1>Cit~,.ê., y) + <1> (~':JJ = 1 

El· 
for all ! € B21. and In other words, 

-+ 
4> C' (x, .ê., y) + 

1 -

.. 

73 

identically 

-.;: , 
TI [ '<1> Ci (~, .!' y) + <1> (~, y) ] = 1, 

:y € Bi ,'---- ~---...,., _______ -.J 

<P.(~,.~) 
1. .-' 

It is equivalent ta 

. \ 

., 
" 

~-------------'-----. ", 

. . qi 
wh5.cn must be s",atisfied fat' aIl ! e B2 ; 

--.-_ .... 

é(,:r 1 . , 

, 
f .. 

/ 

however, that is 

(1 

( 
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guaranteed by the initial assumption. Therefore, C completes 

the realization of ~, • .,. 

Ta prove the converse, let it be assumed that C completes • 

the realization. Then the equality (4.9) is satisfied identically 

by Lemma 4.1, which leads to 

qi 
satisfied fo·r aIl .ê. e B2 • Hence 

, , 

L .vct~, ~) · meC/) <Ili(~' f) • m~(;;l) •. 
q. 

.ê. è' B2 
l 

q. 
.ê. € B

2 
l 

( 

(1) The proaf of t11e existence of' a CiICfi t is deri ved from the 

1 c ~ 

proof of 2, as follows: 

Given any circuit C t~en its characteristic equation . 

Thus if <Ili(~' ~i) = 1 is inconsistent, i.e., 

.' i 
<Il. (a, v ) = 0 identically for sorne a e X, th en 

1. - ...... 

<Il. (a, vi) = O.- However, lt-implies 
l - Mo. • 

inco~sistent at ~, a contradiction. . , 

J 
i 

Q.E.D. ' 



) 
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Remark s If + i i 
cp Ci (~, l , .l) = 1 has a unique solution I(~' Y.. ), 

that is, it represents a co~binational circuit, then 

i '[,fI [ + i 
~) <I>i(!' Y.. ) :: cp Ci (~, :L' 

~ eBi 
[ 

-+ i 
.ê.) :: JI <P C' (x. :L' + 

1 -

~e Bq 
2 j 

A rath~r interesting consequence is obtained by a~plying 

~ 
Lemma 4.2 for i=l, ••• ,k, namely, it can be shown that if the~; 

ordering 

. 
<I>C/~I .l1) ~ { <PC2(~' .l1, y2) ~--: [ <I>C3(~' .I

2
, "i?) .... 

1 • 

( ( k-l k) 
• • ... ~ <I> Ck ~,.l '.l ~ 

Ok 
<p(~, 'i )) .•• J} (4.10) 

is satisfied for an ~ eX, i 1,- ••• , k, then the cascade 

netliork of Figure l~.l reaHzes the output characteristic functlon cp (~, 1). 

By looking at the network of Figure,4.1 from th~ C1 end, b 

-
ard by assuming that the circuits Cl' C2 , ••• , Ci _1 are lmown, then . 

the output characteristic function <I> i (~, yi-1, ''i) wlüch clefines the 

~ermissible statos of the remaining po~ion of the network (Ci' ••• ,(Ck) 

can be deri ved as follows: , ; 

• • 

CI 

" 

Il 

f 
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Lemma 4.) 1 (- 1-1 ) 
Determination of Q i ~.:t... ':t.... (Figure 4.1) 

Let if> ~1-1 c.~.' li-l) be the ~verall circuit characteristic 

.. funct10n of Cf' c2 ' ••• , c
1

_
1 

comb1ned. Then the output characterist1c 

function i ' if>!(x, ~ ,~). of the rest of the cascade i5 given as 
1 -

( i-1 ) 
<1>1 ~, 1 1 = (4.lTj 

That is, a circu l t C characterized by ( i-1 ) 
<Pc~, 1. '1. will complete 

the realization of if> (~, JJ iff 

<1> ( i-1 ) 
C ~'1. , 1. ( 1-1 ) Q:i. ~,-1 , Y.. • 

Note, that <Pi = 1 1s always consistent - any circuit which realizes 

if> will realize CP! too. 
1 

Proof 1 ASf.mme ( i-1 ) 
<PC~'l ,1. <= ( i-1 ) 

<pi~'1. ,1· By Lemma 2.3 

... 
and 4.1 the Olftput characteristic function is realized if 

1 

* 
[ tl>Ci-1(~' 

i-1) ( i-1 ) 1: • <PC ~~ ~ '1.] (4.12 ) 

i-1 
Po e 

q.-1 
B 1 

2 

That 1s, if 

* ( Ai-f) 
if>Ci_1~'L:. + ( 1-1 ) 

<1> C !. ~ , y + <P (~, y) 1 

J 

i-1 qi-l 
identically for all ~ e B2 ' 

fi 
which is equivalent t6 

v 

" - --
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+ 
," 

<P (~.!, ï)"~': ( i-1 ) <P! I,.X. fl.. • v • l.- M.. --
/ -

-:: ..... ~-

Ho~ëver, that relation is satisfied by t.nej1.ni tial";'assumptlon, thus ~ 

is realized. 

'-

in the proof 

,j 

" 
,. 
~ 

The converse follows from (4.12) by a similar procedure as 

ta' Lemma 4.2. t \ 

In arder to conside~a 
. 
~ 
# , .--

Q.E.D • 

gar~ral type of a network where the 

function 4> (~, y) is realized by a co~bination of a éascade and parallel 

(' 

inte:rconnection of circuit modules (possi'bly with feed forward lines), .. -~ . 

let the purely parallel case as shown in Figure 4.2 be analyzed first. • 

The PFimary inputs x are assumed to represent all input line~f sorne 

possibly coming from the preceeding logic levels of a cascade. -4)he 

outputs Yl' Y2 of the circuits Ci' C2 t respecti vely, fom a, disjoint 

partition on the set y, i.e., ~ 

u () 

Furthermore, ] et <P Cl (~, 11) and cp C2 (!' Y2) be the corresponding 

. " 
circui t characteristic functions of Cl and C2 • Since the circuits 

operate i-; parall el, the-a-veralI clrcui t characteristic function i5 the 

characteristic function of the system of simultaneous equ&tions 
'J • 
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that is, 

Thus $, is realized if 

Assuming now that onl~ C2 is known, then the output characteristic 

function $1(~' 11)' describing the limits on the states Cl may'at 

most assume is obtatned as 1 r 

r 
$CI ~h 

YI 
, 

, "-

/ ~l 
._--~--- --- -- --- - -1--- - - - -

~ 
, 
1 

X l' V~ -
1"'> 

----------

r -------_. 

'1\ 

'i.. "" 1:1 U :i2 
<'P (~, :i) . 

" $C2 
:i2 ,=' 95 :il n . 

-" C
2 .-

~2 

~ ,FlGURE 4,.2. PARALLEL REALIZATION • 

. . ( 
J 

" ; 
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/ • Lemma 4.4 1 Determination of ~1 in parallel reallzation (Figure 4.2). 

AssUlaing C2 being knoW'n then 

(4.13 ) 

That i6, 

(1) The realization of ~ may be completed by sorne Cl iff 

~1(~' Yl) = 1 is consistent with respect ta solutions 

( 

(2) A circuit Cl represented by ~Cl(~' ~l) will complete 
r 

the realization of ~ iff 

-: 

-- ---------------------------~-

Proof ., 

(1) Sirnilar ta praof of -(1) -in Lem~a 4.2. 

~ would be realized if 

(4.14) 

that i5 if for an state,s of 11 and ~2 
.. 

• identically. Or equivalentlYJ if 

r 
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II [ <P C1 (2S., .Yl) + ~C2(~~~) + 4>(~, Yl' ~) ] 

~ e B~2 

:: <t>Cl(~' .Yl) + II [ 4>ca(~' .ê.) + <p(~, .Yl' ~) ] = 1 r 
B

q2 
~E 

t 
2 

<P Cl (~, .Yl ) ~ <t> 1 (~, .Yl)· , " 
whi~h is satisfied by the initial assumption. 

To prave the converse - assume that Cl completes the 

realtzation o~ <t>. Then (4.14) holds, by Lemma 4.1, and 

• {4.14) is equivalent to <P Cl ~ <t> 1 ' as shown above. 

Q.E .D ... 

Remark 1 1 has a unique solution Y2(~'); Le., i t 

represents a combinational circuit, then (4.13) can be replaced by a 

simpler expression 

<P 1 (~, Il) :: L [ <t> C2(~' ~) . <P (~, .Yl' ~) ]. 

r:.€ Bq2 
2 

J.t'inally, a general theorem of functionlll • decomposi tion can bè 

stated aS,a ~ombinea application of the preceedin~ three Lemmas 4.2, 4.3 

and 4.4. }t'or that purpose, let i t be assumed that an output characteristic1 

• J 

function <t>(~,'y) is to be realized by a network as shown in Figure 4.3. 

1'" 

Furthermore, it ls assumed 1bat a partial realization of 4> is attemnted 

r 
1 

; 



Bt 

• 

\ 

• 

\ 

\ 

~ fi 

using sorne ~rticular circuits Cl' 
Cl 

2 
and C) , and thus .~ . l lS required. 

to 'determine the permissible steady output states for 2 to C2 ' so as 

complete the realization. That. ls the output characteristic function 

c 

X - ~ " 2 

Cl 
y, -. 

2 

1. cl> (~, 1) 
1 l C

3 Y <P CZ 
Cl " 

2 2 2 
<PC3 1. = Il U 1.2 

<PCI 

2 l 2 characterlzed by .. 
cl> 2(?!' 1. , 1.2) 

- --"'>- --

J 

F'IGURE 4.3. ILLUSTRATION FOR Tlfu:OngN 4.2. 

:rheorem 4.2 1 Decomposition. (Figure 4.)). 
,. 

Let ~(~, 1) be an output characte~istic function to be 

partially reallzed using sorne circuits represented by their 

1 1 1 2) 
circuit characteristic functions <PC1(~' 1.-)' , <PC-2(~' 1 l';l " 

2 
<P CJ (~, 1. 1 y), 

212 
cp 2 (~, :L , 12) 

. 
respectively. Then the output characteristic function ~ 

describing 
( 

/ 
1 

the'permissible states of the still unknown 
1 

,-

, 
! 
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circuit C2 
~ 

is given as 

== 

., 
( ~ C)(~, 

2 
1) cI> (~, 1))] (4. 15) + 11 ,e., 1.2 ' + 

<'-' yS Bq) 
2 

That \s, 1f 

(1 ) There exists a circuit C2 
2 which would complete the realizati~n 

----/ 

2 1 2 
... / of cI> iff cI> 2 (~, 1. , 1.2) ='1 ls consistent with respect 

~ 

to solutions 2 1 
1.2(~' 1. ). 

( 2) A particular c~ represented by 

complete the realization iff 

Proof 1 --
, ~ 

Àpply Lemma·4.2 t~ get tne characteristic function of the 

1 2 combined circuits Cl' C2 ' C2 ' then Lemma 4.3 to cn~racterize 

- 1 2 Lemna 4.4 <jJ? specified. The (C2 ' c2), ~nrl finalJy to gcnerate 
2 

RS 

F 'II: 

-existence of solution comU tion (1) is carried ovèr fItom. 
'" 

.Lemma 4.2 and 4.4. 

Q.E.D. 



• 

, , 

8) 

For further illustration of the methodology the following 

corollary is included here. 

Corollary 1 1 
\ 

Assuming that the circuit 
\<1 

C~ is known as a partial realiza-

~, 

tion of ~, the output characteristic function 

descrjbing the rest of the network is obtained as 

(4.17) 

That 18, if Ci' C) is represe9-ted by the overÇll,J characteristic 

* * function <t> is realized iff <t> C ~ <t> •• 

Proof 1 The proof is similar to those for Lemma 4.2, 4.) and 4.4. 

Remarks 
'..1 

(1) Depending on the presence of either of'the circuits Ci' C~ 

(2) 

C) }n Figun) L~,), the theorem degeneratcs into one of the 

preceeding Lefumas. 

AlI the circuits involved may in eeneral be of a sequential 
f 

'- .1 

character, possibly with oscill~tions, rrovided that the 

corresponding oircuit characteristic function~ properly 

i 

~, 
" " .. 1 t 
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describe their steady states. (Definition 4.1). In sorne cases, 

howev~r, the theorem places a stronger condition on the 

realization than necessary. It is due to the fact that sorne 

" 
input states may never occur (they a.re not generated by the 

preceeding cir'cui t as i ts d'utputs), and thus sorne input 

\ 
sequences may ~ot ever occur either, even if the problern 

• - --inputs x are varied at ranDom. Gonsequently, sorne of the 

steady output states of the partieular sequential circuit may 

; 

not be reachable, a.nd hence the circuit could then be 

represented by its effective characteristic function ~ G eff 

such that 4>~ eff < cp C. It means, that the Theorem 4.4 

as weIl as the Lemmas 4.2 and 4.4 become sufficient only, 1 

since there certqinly may 
( - exist cases such that 

IÎlC<::4>. but 4)}' < Cerf" cp. However, lÎl C eff cannot 

be obtained a priorj, especialJy in Lemme, 4.2, since the 

preceeding cireuits are not yet known at the time of 

generatine th~ir output characteristic function. In case of 
Il 

Lemm'l l.j .3, though, <P C eff cm.lld possibly be obtained using 

4> (Definition 3 .3) ~ g 

A' cOl'lplex mul tilevel realiz.ation of .l(~) can be obtained 

by a repeated application of the decomposition theorem or 

f 
1 



,. 

: 

its degenerate forms, the lemmas. 

(4) Art Y feed-forward line f~m a Jower stage ta a nigher one 

( e.g. from C1 to 
:.~ , 

G2) can be incorporatêd as a circuit 

described by the characteristic function of the equation 

, 
of a pure interconnection (e.g. 2 y. 

,l 

1 yJ. 
,) 

(S) Any combinational circuit (wi thout feedback) which -is to 

realioze an output characteristic function /fl (~, 1.) can 

be obtained as an elementary solution 9f the equation 

qJ (~, 1.) = 1 by any method mentioned in Chapter 2. III 

/ 

sucn a case then, the Lemmas 4.2 and 4.4 re~resent 

implicitly the decomposition pIocedu~~cas used in 

[ 5, 16, 19, 20]. Hore precisely, the particular decbm-
~ 1 

positions aFe obtained via the expressions as stated in 
/ 

" 
the Remarks following the above referenced lemmas. 

The last Theorem (L~.?) has completed the discussion coverirÎlg 

the realizàtion and décomposition of comhinational swi tching functions. 

The next section Hill investig§Lte thfir inside structure of a Hequential 

1 • 

circuit which 1s to realize a given output characteristlc· function. 
~ 

Namely, a more detailed study of the presence and neoessity of feedback 
o 1 

loops in such circuits will be performed. 
, 

1 , ' , , 

J 

------

,. 
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4.) Necessity of Loops, Degenerat~ Ci~cuits 
\. 
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In the previous sections, all circuits were assumed to be 

gen~:tly of the tyne shown in Figure 3.1 (possibly with feedback loops, 

stable or OBeU latory), and represented by an o,verall cir€:ui t 

• 
characteristic function relating the steady stat9 outP,uts wi th the 

input stimuli. 
------- ~-~-

Further investig~tion will now be made into the necessi ty 

of closed feedback loops inside such circuits. It ~itl be shawn, what 

the character of rl: circuit wi th loops srf~d be, in order 'ta b'ring any 

saving on gates as cOMpB~ed ta purely combinatiQnal circuits realizing 
J 

the same function. That such circuits exist was shown in examples by 

Kautz [14] and others [12"')0]. 

Let it be assumeQ that an output châracteristic function . , 
<P (~, 1.'! i8 to be realized by a cir~ui t C represented by 1> c(~, 1..). 

(Definition 4.1.1 4.2, Lemma 4.1). The dlScussion can he Jimited to the 
", 

, 

case where the circuit i(~, ~.) of Figurp ).1 is iust a pure interconnec-

tian, i.e., yc:~', because 

one by Boplying Lemma 1+.2 with 

any other case may be transformeft into this 

k ~ 2 and C2 ieing f. Jlus the new 

\ , -
016tput characteristic function i5' to be reB~ ized by the c,~rcui t. ~'. 

Therefore, in general, the circuit C may be represented by ,y' = g(~, y...), 
~ 

q (a Moo~e machine), where y is the presen~ and y' the next • 

output/inter~al state of 
t 

4;.1) • 

c. 
" 

A~,. cp c(~, ,t) . ' \ 

o 

J 

= cp CCx, v), €Definition ).12, 
g -: JI.. 

. 
t 
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Theorern 4.3 : lA Degenerate circuits with feedback. 

represent a sequ~ntial circuit C rea11zing 
_ 0_ 

an output characteristic function ~ (!' 1)' If there exists astate 

y e Bi such 'bhat 

(4.18) 

" 
/ 

identically, th en the circuit ~ is redundant in the sense that it can be 

maqe to deg'è'nerate into a purely combinational circui:t>- (without feedback) 

~: -
representfct by g*(!) "" ~(~, y), also realizing ~ and having lower 

complexity than g. f \ 
Note that the state ~C~sJ <= ~(!, y) for sorne x e X may 

. 
be a transient state of the priginal circuit. 

Proof 1 

. , 
It has to be shown that (1) g*(~) realizes ~, and .. 

(2) 'that the circuit g*(x) freezing the feedback inputs - -
-, 

of g(!, y) at ~ = y has a lower com 

(1)0 Since g* represents a purely~inational circuit then 

= TI (y. • g}(x) , + Y1' • '~i(_x) ) 1, 1.-

i=l 
..... 1 

( Definition 4.1, Theorem 3.1.) 

• 

J 

l 



• 

~ ) .~. 

• 

Assuming If' 

* identically, then cI> C(~., :l..) ~ cI> (~, yJ, because 

realizes cI> . 
has a U(:i ue solution. 

(Lell11la. • 1) • 1 ... 

1 < 
, 

There.fore, 

\ 
~ 

.. 
88 

(2) Let it be initially assumed that th~ internaI structu~e of 

the circui t '(c;::l..) .corresponds to a simpl e s~m of 

product form of the function ~ 1 

::: l: s .. (x) 
~J ,-

t i . (:l..) , i z: 1, "" q 
J . \ 

j € T~ 

f 

wQere si,l~)' tl.j~1) are the j th (in the sequence of • 

wh t1"ng) product~ in ~ ana :l.., respectively', Ti 

being the index~ sf terms for each Iii' 

j € T., Si .(x) ." t. (r) is an implicant of 
~ . J - ~. 

Thus for every 

Assuming (4.18), 
/ 

jeT. .l 
~ 

That i5, 

, 
::: '1=1, ••• ,q .. 

f 

\ 

~. 

, li 

• A 

. , 
.. ' 

J 

. , , 

- ",' "-
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( ~ 

\ 
where . 

/ \ 

~ == { .i 1 j E \ and t .. (y) - 1 } 
~ ~.J 

'~ , 
Clearly 11 • c= T. , for aIl i. Therefore, the impleme"'tation 

1 

of the circuit ~ will require a t most as many AND gates~ 
~ 

" ,. 

as ~, but each gate requiring lower'~an-in because of the 
J 

r 
missing l~rms ~lso{ the OR gate would possibly 

" 

have a J.ower fan-in', 
, 

Consequently, ,the resulting circuit 

... 
g* will èe les~ .comple~ than the circui~ g. Moreover, 

the circuit wopld probably ~ave a faster response than that 

wi th feedbad~ loops, s~nce\ g(~., l) may have a number of 

transient states to go through befone reaching a steady 

state, 

If nolo' the internaI structure of the circuit g is 
" 

represented by sorne form other than LIT a procedure 

similar to that above can apain be applled to produce ~* 1 C 

. 
whose implementâ.tion will always require ~lowert.fan-in of 

'J 

" the ~ates even if the total number.of gates ~hould stay 

the sarne as in g, 

.. 

1 \ 

Q.E.D, 

The theorem yields sorne rather interesting results which are 

sumillarized in the follo~':iV1g corollaries 1 

, , l 
Q J, 

. '-

.~ 
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"1 

. . 

.. 
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Coro 11 a:ry 1 

Any circuit Z· = ~(~, z) 

0' . , 

" 

with feedback having . '" 

90 

where 
..J 

<Il Z is t'he next state chaiacteristic function' (Definition 3.4), 
g 

" . . 
ls ~egenerate with respect to that <Il. . / 

Thus aIl o-transi tion' eircui ts 

(Definition 3.10) realizing ~ are degenerate, sinee 

is sueh a case. (Any choice of ':i. e y wUl satisfy (4.18)). 

Remark 1 Circuits witn ~ z ~ ~ will be referred ~o as direct 
g 

\ . . 

.. 

. 
transi tion circuits, because any transition from an unstable state leads 

directly to astate covered by <Il • 

.. 
1 

Corollary 2 1 

" 

Any .sequent~ X· = ,g(,?i, IY,) 

and 15 nct degenerate must satisfy 

~hich realizes sorne 

<pc(~ , 1..') ~'4>(~,1..') 
) - ta realize <I> • so as 

Cu) For each y"~e·Bq there exists a sta1;.e, ex eX such 
2 

that 

" 
1 ., 

., 

.j 

•• 

( 

t, 
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\, 

(4.19) 

(If not then that y satisfies.(4.18) ~r degeneration). 

(Ui) 

(iv) 

The (next) sta~e ~(~, y) satisfying (4.19) 
CI 

is a 

transient state. (Otherwise ~ would ~ot be realized 

- condition(i)). 

l.ll ? 2 ~ there exists no non-degenerate sequential 

circuit if jyl 1 • 

Corollary )' 1 
~ 

.. 
As a consequence of corollary! above, aoy circuit g with 

feedback which is to bring about any savines on gates as compared to a 

.IL 
purely combinational reallzat10n of ~ (without feedback) must have 

transi~nt states not cover~d by ~. That i~, such a circuit is 
{ 

inherently hazardous during its transition periods. If this would be 

considered as an und,~sirable property for sorne applications. then the 

circui t having a minimal ~umber of gates must be sought only along the' 

purely combinational realizations of tj>. As sucb, lts funct.ional 

~ 

representation y' :::: ~(~). is one of the elementary solutions to the 

equation ~ (~, yi) = 1. (This approach was used so far in all ex~sting 
l ' 

synthesis proc~ures, either explicitly or implicitly). 

" -

\ 

, 

Pc 

t 

. 
.~ 
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. 
The design 'of non-degenerate sequential circuits satisfying 

\ 
; 

certaih criteria,of optimalitY,is considered 9Y the author &s a ~pio 

of its pwn, B.nd as such it ls beyond the scope of this presentation • 

. Nevertheless, an e~ample of such a circuit was shown. by Kautz [ 14 J, and i t 

will be analyzed in Example 5.3 of Chapter 5 using the author's methodology. 

. • 1 

the transient states are in tact induced by the spa-As will be seen therein, 

~ iterative structu~e of the circuit. Most of thèse states are not covered 

by the corresponding function ~. It i8 a non-degenerate sequential circuit 

rwith ha~ardous transition périods. 

l' 

Although it was shown that direct transition circuits with 

feedback are always de&enera1~' and as 511ch they seem to have ver;!, 
If 

". 
li ttle practical value when minimal realiza tions are sought, their 

ger:eration lS at least of theoretical iJ1te::-est, especlally since they 
- 1 

relate directly to the general solllti~n ~'f the ,outpu t characteristic 

equation ~ (~, y') = 1. Thèrefore, a discussion covering the topic 

will conclude this chapter. 

Theorem L~ .4 1 

equation, and 

Let. 

Direct transition circuits. 
'Olt 

<P (~, ;i') 

1..' !!!: .!l(~, p) 

= 1 be a consisteaf output characteristic ' 

~ general sof~tl':n (Definition 2.5). 

) 

'A 
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'( .:.. .~ If 

"" ~ .;-

Furthernore, let 'È == ~~ z) be any Boolean function of x and Z. 

Theil the functlon 
( 

'<~ 
~ ~' 

1..' , == g(~, 1..) == !l(~, 2(~, 1) ) 

• 
represents a dir~t'transition circuit realizing ~(~, 1)' Conversely, 

for any direct trq/hsitton circuit l' =.B:(~"\l) realizing ~ there 
, 1 

.. 
exis~ a functio~ E*(~I Z) such that 

/, 
Il 

Proof 1 ASGume the Lëwenheim' s fom of !.L (~, E) (Section 2.3.3), 
" 

where ~ (~) is any elementary soiution te ~ (~I 1'~ ~ 1. Then 

~:i) = 

. .to prove the fir~ part, i t has tO be shawn that for any present state 

-< r ;' r the next state y' 1s such that <il (3:' y') "" 1, ~ E B
2 

' __ ~ 

"1 (a) ~* is such that 

1> (~, E(~' r» 1 , 

then ~ 

:i' == E(!!, r) -+- ~ (~, l' ) 1 • 



/ 
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(b) r is such that ---
then 

'-

1.' = 

But ~ (x) is an elementary soluti~ to . -

1 1. 

. 
Thus all- the states generated by .B: (steady and transient) are conta:i!ned 

therefore, that B 1s a direct transition circuit wlth respect 

-1 
in 

to .. 
The converse of the theorem 1 Let 1.' 

transition circuit. The choice of E*(~, 1.} = B(~, 

= .B:(~, 1.) be a di'rect 

1.~. will make 

21 (~, B(~, 1.» = <P (~, g(~, 1.» • g(~, y) 

+ ~ (~, .s:(~, 1.) • ~ (~) 

But B' is a dire€t transition circuitJ hence -.... o;;t .. 

11 x and 11 1., thus 

Q.E.D. 
l , 

1 
\ 
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" 
The class of direct transition circuits could be enlarged by 

f 
permitting the transitions from the states oontained in-

y = u y 
Ct 

" 

to be don't càre (unspecified). However, if the circuit would àccidentally 

enter astate contained in Y (say, at power-up time) then the response 
o li, 

of the circuit is unpredictable (a reset mechanism required).- The 

inclusion of Y states does not al ter the resul t of Theorem 4.4, 

provided lhat Y.. e Y, her'lce there seems to be no. reason to elaborate on 

~ . 
direct transition ci~cuits any more. It should be n~ti~ed,. though, that 

then the resultin~ circuit is purely combinational - all elementary 

solutions to 

----

... -> .... , 

can th~ be obtained as in [5]. 

.. .. 

, 

) 

r 

.. 
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CHAPTER 5c 

COMPUTATION' TECHNIQUES AND EXAMPLES 

The purpose of this chapter. 1.S ta show sorne examples 

illustrating the use and power of the,methodology developed in the 

.. 
previous sections. First, however, i t 18 nec~ssary te specHy ceJ:'taln 

techniques and tools, through which aIl the computations involved in 

solving actual problems co~ld'efficiently be formulated. !WO approaches 

will be considered here - for nroblems with few variables (~.6) Marquand 
t 
./ 

maps will be used to represent Boolean func_tions [5, 16, 17, 27, 31, 32] , 

with aIl the necessary operations defined on them. Problems which invQlve 

a larger number of variables (> 6) will then be sol ved using algebraic 

~ 
techniques •• That is, cubical complexes with the associated operation::; 

will be employed [7,21,24,25,28, 36J. The reason for selecting the .. 
algebraic apPl'oach for larger "[lroblens is rather obvious - map methods 

i 

require the construction of large ma-ps (6 variables + 64 bitmap), 

. 
even when the ~articular Boolean functron is expressable algebraically 

as a single product tèrm [26 J. Also, the algebraic method provides a 

simple forro for describlng computational algori thms in a way similar to 

a programming language. In turn, an advantage of maps for smaller 

prqblems i~their visual information content - properties of ~unctions 
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and mutual relati~ns b\tween them (e.g. ~ relation) can easily be 

rec~gnized by visual examination of the maps. 

r 
Map Techniques 

.. 
From the large number of possible map represen"t(ations of 

Boolean functions, the 50 called Marqtland map will be used here because 

or'its simplicity of construction; , its format remains the same for 
~ 

different number of variables. AIso, such a nap is suitable for solving 

Boolean equations (S,ction 2.).2) [5, 16, 18, 19, 26, Jl J. 
i 

The rows and columns of a JvIarquand map are labellp.d in an 
" 

increasing order of minterm identifiers. E.g., considering 4 v~riables, 

- - - -the mintern'b, xl x2 x
J 

x4 has the identifier 00002 = 010 

If the general circuit of FigUre J.1 ls 

1 
considered again as the model of the'circuit structure desired, then 

1 

4t.. 
four types of variables can be recognizeds 

\, 

( 1) Input vari~les ~, 
i-l 

Y 

J 

(2) State variables - present state z. 

(4) 

State variables - next state z'. , 
Output ~riables ~i. 

<> 

o 

\ 

. ...... 

\ 
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,The ~aps of a given problem will always be organized 50 that the current 

J.." independent variables will label the columns, the dependent variables 
~ 

th en the rows of the maps. 

. . 

QEerations on ~aps 

Negation of a function ~ - bit by bit complement of tne map 

Intersection of ~1' ~2 - bit by bit AND 01 the maps <Pl' <P2 • 
<ô 

Union - bit by bi\uR of the 
<P 1 ' <P 2 maps. ' •. 

..,., 

- either <1>1 • <P 2 results in a map 

witq aIl zeros or by inspection that 

" 
any' time <i>1 contains a 1 'ln a 

particular bit then <P2 also has a 

1 there. 

'If • C,,, , y). ~ 1 i8 a B.E.rh x being the independent ànd y the. 

, , . 
dependent variables; th~ map of <P having the columns labelled by 

'·the states of ~, the rows by the states of 1.' 

[ 16, 26, 21 ] _. 

~ 

then l' (Chapter 2), -
.:... 

( 1) The equation is consistent for 1. = 1.(~) solutions if there 

. -
--is no aH zero column in the map. 

j 
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(2) 
0/ j..... " 

The equati~n has an i~nti~lution ~-= y e B~ ~ii there 

is a row containing aIl l's. .. 

(3) The equation has ~unique solution if each column contain~ 

. .. 
exactly a,~in~e 1. 

(4) 
, ' -

To obtain elementary solutions, the method of Svoboda [ 26, 31J 
, l ' • 

\l may be used. For a geQeral solution, the method of Brown [3 J 

seems to be easily applicable, since the discrimina~t of the 

equation is the map of <p. 

-' 
, 

AlI other operations needed for applying the theory presented in Chapters ... . , ., 
3 and 4, such as formation of the characteristic functions. summation over 

aIl states of a vector variable, augmentation of the maps by redundant 
, , 

L • 

variables, etc., are rather trivial, and they will be sho~n implicitly in 
.... ~ 

the examples presented in Section 5.4. 

5.2 

• J ~ 

1J 
CubiGal Complexes and Operations [7, 21, 25,,)6 J", 1 • 

" '. ;*'''', 
Boolean functions can algebraically be represen~ed usr~g 

-<-

t 
encoded product terms of a sum-of-product forro.ci' the particular funct~on. 

\ 
\ 

Each sucQ product can be t~pologically viewed as a multidimens~onal cu~e, ... 
:1. ts dimensions being determin~d. lb:! the number of missing variabl'es in the 

, , 
lM 

j 
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term as compared te the total number of variables of the function. The 

encoding of variables in a terrn,will be as followsl 

th' 
i position .the i

th 

in a term varia.ble 
• 

0 complemented 
ù 

Ci 

1 , . uncomplemented~ 
• i{'f" J 

x missing ~ ... 
.. ~ •. .,t 

··r 

It will be assumed here, that the sequence o,i variable~ appearing in a 

term will always be !,~,~', il', iL2
, ••• t iL

k
• ' Ho';;ever, if sorne of 

the vector variables are not required by a p~rticular problem then the 

corresponding 'columns will be left out in the cubical array. 

instance, in al problem with 

x 

\ 

. ~ 
C = 1 0 x o 1 

~ 

1 x x 0 = c oc oc,oc 
x z z x.. 

For , 

. 

... 

--- ---- 1. 

.. 
In any case, the current order of variables will be indicated with each 

'" 
example shown. A Boolean functio~ in its EIT forTil is thus represented 

by an array of the abOvé mêntioned cubes. "An efficient encoding (binary) , . 
'J 

o 
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_J 

of the cubes,as weIl as a data structure for the arrays designed for , 

computer aided processins, can be found in [36-J. 

Operations on Cubical Arrays .' 

.., , 
.' • 1 .-,. ..... 

Having determined the representation of Boolean functions,it 

.... ----* . ~ 

... :~ remains to define thè Boolean algebra ,eqpivalent operations on the data 

structure. A concise review of such trperations will be presented here. 

" 

More detail can be found in the forementioned references. Since the 

. 
• examples in Section 5-- 5 will be dane by hand, aH the operations will be 

performed as in -171; however, for autompted processing, the more 

efficient encoding as in Reference [36J shauld be used instead. 

, 
Let a, b, c represent cubes of n coordinates (dimension 

n) " b. , the . th coordinate of b, c, respecti valy, ai~ c. 1. a, l l 

let A, B, C be cubical array's. Then -the.fol~awing operations 

be defined [7J 

(1) Absorption 

if = E ,for aJl i, 

a 'if b if (a. 5 b.) =,$6, foranyi 
1. .~ l 

, 
- s--

f:ind 

can 

t • 

1 
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The coordi na te subsumming,table, 
~ 

b. 
~ , 

ai ç; bi .. 0 1 x 

0 e: $6 e: 

a. 1: .~ e: E: 
1 t. 

;t .. 
$6 ~ x e: 

'\ 

Absorb operation on an array 

0 

V B A(A)o B is the absorbed array A = 

! ( cover equivalent) 

r---;---~ -

(2) Cube Union : (Boolean OR) 

~ " 

If 
,.. -of· 

.",..- 1 2 { bl, b2 , A := { a , a , ... } , B = .. ~ } 

,.) 
then ~ 

1 ,., 
b1, ·2 

C A U B A( &.. ) ____ J-= = a, a , ... , b , ••• .. 
dt 

(3) Cube Intersection 1 (Boolean AND) . 
• 

4 ..... 

~{: 
(empty if any a .• n b = $6 

) i ! 
a n b .. 

.: n otherwise, c. 'l: a.. bi 1 1 • 

• ~he coordinate cube intersection table : 

• 



... . 
10) 

" 

, . 
" 

b
i 

f ' PI 
° 1 x ..... 

0 0 ~ 0 , . 
~ 

(' 

8 1 1 1 1 

;.. 
• < 

Intersection of two arrays 
, 0 

C = A • t Il } 

where 

A n b = { (a 1 n b) U (a2 , n b) U ••• } 

(4 ) ShaIl' Product 1 (Bool'ea~ A • Ë) 

for sorne i 
: 

a '# b = ~ if a5 b, LE'o, a. #b. = E, IJ i 
;> ,1 1 

( 

1 \-lhere l = {i ai # b
i 

= Q'.e' { 0, 1} } 
l. 

i : .,;- \ . 
The coordinate sharp product tub]€' 1 

, . 
, , 

'. 
0' 



• 

)< . • , 

iJ 
bi 

ai # b. 0 -t .. 1 x 
~ ~ 

t 

~ .. ' 
" 0 E E , 

ai 1 ~ E E 

X 1 0 E 

Then 
~ 

b 

A # b ::: { {a l # b} U {a2 !!. b} U ••• } 
,; 

";'Jt\ 

f a # B ' ::: { ••• {{a # b l} # b2} # • •• }" 

A # B ::: { ••• {{ A # b l} # b2} • •• } 
,--

- { {a1 # B} U {a2 # B} ••• } 

(5) Bookkeeping Operations 1 

(a), The replac.ement operation +-

~ 

A 1 A (A) absorhed array A replaces A 

--~----_ ... --------- -

(b)" The delete operat.ion ~(A) removes the columns 

inentified by 
\ 

fran,the cubes of array A. D (A) z 

. will deI ete the columns aS80ciated wi th 7.. .. 

Note that DCA) 1s equivalent to [, (A) - the 
z n 

z e B
2 ". 

;~ 
summa tion'é)'ver aIl states of the variables z. ,) 
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The ~nsert operation 1 ~(A) inserts .i new colurrms 
J 

) th\' 
of x' s fç, the right of the i ,column of A. ~ "If .i 

not specified, only one column i$ inserted. 
\ 
\ 

The permute operatibn P .. (A) 
1.) 

in'terchane;es the i th 

and the j th 1:o1umns ~ A. ~ • - :~7 

, ~lb2b3 ' 
The change operation ~" (A)~. replaces'call OlS 

with b
1

, 1's with b
2

, and. x's with b
3 

in the 
-" 

colur.ms of A ideJ'l.tified by À • 

1 

The split operation S ider!tifies and transfers ta 

another array aIl cubes which subsume a given mask cube. 

A .... B S a will transfer to A aIl cubes 

of b whi ch subsume a. 

(g) Special cubes 1 

U 
n 

n-dimensional space cube (n x's) 

a cu he of x' s wi th b e--r(J;-IT -rn the 

columns identified hy " 

ù 

1);". - a eube of O's with- l'R in the 

columns identifip-d by " 

an empty cube (0 function) 

, 

J 

/ 



""\ 

(h) 'l'he Cartesian prod~ct x is used to append a fixed 

cube to each element of an a~ray, i.p., 
" 

A x U will 
n 

append n columns of x' s to eacl1 cube of A. 

A x {O 1} would append {O 1} to each cube of A. 

) 

5.) Related AlgorHhms 

5.JTl Algorithms for Chapter 3 

106 

Let the function f, g, ~, etc., bé represented by their ON Q 

arrays for each cOQPonent of the functio~ vector, and in addition, by the 

DC arrays in case ?f incompletely specifieè functiGns [7, 24J • E.g., 
1 

the function r(~) 

i ,:: 1, ... , q. Th e 

will be represent~· by the arrays 

so talled function '\rrays of [7] 

O~CPi'. DC i 1 

WL\:Jot be con-

Gidered at the moment; --how--ev,lr, the~ relationship between characteristic 

• 
functions and function arl'"ays wii~ be 'tliscussed in Chapter 7. The sets 

/ 

x, Z of input stimuli and internaI stat.es will be described by a function . 
-----

.~ 

(array) D = D a D bein~ equal ta 1 for x e X, z e Z, aod 0 
x z -

1 

otherwj'lm. The characteristic functions of Ohapter 3 are in fact 

completely spccified functions, representing a mappi~ from a multi-t ., 

dimensional snac~into B2 • Thus, only the ON arrays are needed to 

describe them completely. 
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Algori thm 5.1 1 Pormation of the Array Il> of <I>(x,'~,Z')1 g g - - -

! (Definition 3.2) • 

::: G. 
l. 

= (G 0 G) • x z i i=l, ... ,n 

D ::: LI 0 D ,.;. 
x z '" 

X>..b of n coordina tes 

(1) il> + U g r+n+n 

• / (2) for i = 1 to n 

(3) <I> n «Ci x 
l «Ur+ # C.) x X 0)) il> + Xi) U g g n l. i 

(4) pext i 
~' ... .( 

(5) Il> + <I> # (D x U ) • 
--....., g g n 

~ 

(6 ) end l " 

)0-
Algori thm 5.2 1 Formation of 

1 

<I>SI (Definition 3.3) 
g 

(1) Il>s 
g 

, (2) for 

()') il>s 
g 

-,·l, / 

, ' 

Ei(~'~): Gi , 

D ::: 
~ 

~ 

i = 1 •... , n 

D 0 D 
x z 

X~ of r + n coordinates ' 

+ Ur+n 

i = 1 to. n 
n' XO G. 

l. i 
,.-----"---.. 

~s 1 : ( Xi # Ci))) + n, (Urtn H, «Ci #- xi)·U 
'g 

o 



• 

• 

(4) next i 
: .. ~ 

t;t .. 

(5) ifl5 + 4>5 # D 
g g 

1 

(6 ) end -
, , ,. 

" 

Algori thm 5.2 s· Formation of 4>Z(X, ~,) 1 (Definition ).4) 
g - ~ 

Use -Al"gorî thm 5.1 to generate 4> g' then 

4>Z 
g 

(2) end 

Algori thm 5.4 Determina tion of Simple Oscillations 1 

Use Algori thm 5. ~ to form 4>s 
g' 

108 

The states of ~ at which simple oscillations occur are 

covered by the array T obtained as follol-ls: 

delete columns r + 1 to r"'-n 

f 

()) T + T# D x 
" 

(4) if T elilpty then no simple osaillations, otherwise 

T con tains the cover 

(5) .end 
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.. 
Algori thm 5.5 c Determirtation of 

\ 

If Theorem 3.1 is applicablé then ~ ~ is generated by 

~­
Algorithm 5.2 or Algorithm 5.3. If an othe~se stable circuit has 

simple oscillations at the states of ~ covered by T (Algorithm 5.4) 

th en an approximation to 4> ~ can be obtained by , 

~ c +- cP s U (cP z n~ (T x U ») 
g g g' n 

1> C must be obtained from 
g 

a state transition table, or using Corollary 1 to Theorem 3.1. .... 

Algorithm 5.6 Algori thm for Theorem J. 2 1 (Theorem 2.4" Corollary) 

Use Algori thm 5.5 to form 

b Xli' of r + n coordinates-. 

(1) T +- ~; ini tialize. 

,~ 

(2) for i ::: 1 to n 

T +- T U ( Oz, ( <I> ~ n 

(4) "next i 

T +--- 'l'- # -D--' -. 
x 

cP c. 
g 

" -

(6)' if T empty then has a unique splution 

v'1 
ls comblnational 

.. (7) end 

\ 



• Algori thm 5.7 1 Formation of ~ f 1 (Defin~ tion. 3.14 ) 

i ... 1, ••• , q 

b' 
XÀ of _ q coordinates " 

-<-1) ~f +- U 
:r+n+q 

(2) for i F 1 to q 

(4) next i 

(5) end 

"'* 
Algori thm' 5.8 Algorithm for Theorem ).). 

b XÀ of r + q c-pordinates. 

(1) 

(2) 

110 

-, 

.~ .. ;" 
" ~ 

r 

~ c now contains the circuit char. function 

(4) T +- ~ ini tialize 

(5) for i = 1 to q; check for un~ue.solution .' 
(6) T~ >I! +- -'J." U (D~( ~ c n X ~1) n D~( ~ c n X ~i)) 

" -
(7) next i 

(8) T limit x ta X. 
f,;;,q 

-.. 

" 
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'1 

(9) i~ T empty then the circuit has combinat1onal behaviour, 

(11) 

the character1stic function 1s in 4>. c 

end 
~ 

Algorithms for Chapter 4 

.. 

\. 

. ·1 

Algori thm 5.9 1 Formation of the Circuit Characterist1c Function 

(Definition 4.1) ( 
Use step 1 to L~ of Algori thrn 5.8, then 

cp -+- 4>"#(DxU) 
ccx q 

) 
• 

Algori thm' 5.10 Formation of 4> (!' y) of l(!) j\ (Theorem 4.1) 

Il 

.. - ---~._----

. _. where 
'J 

OFF. = 
1 

Xb 
À 

of 

(1) 4> -+- Ur+q 

ONI . 
~ 1 - -------------

i = 1, ••• , q 

... 

Ur # (ON cp i U DC. ) 
1. 

q coordinat.es 

\ 

,-

-------

• 



. " 

• for i-= 1 to q 

- ~ + ~ n ( ( ON cp i 
) 

(4) next . i 

end 

112 

"-
x Xie) U (De. x U »). 

1. q .. , ,-

---.,.-'~----- ---~---- ------- ----~--- ---

"-

1 -
"#j: .. 

. c' 

........ 
L~ne #3 could be replaced by 

1 

'which produces a coyer equivalerit array, in case that OFF. arrays ate not 
~ 1. 

~ .. -
known. The calculations are then shorter than if OFFi vere ta be 

" ~: 

calculated separately. 

Algorithm 5. 11 1 Realization of an OUtput Characteristic Function ~ by 

~ C 1 (Theo rem 4. 1 ) 

T + ~ # cp (a) (1) 
_~ _________ c=--__ 

if T empty" then 

r , " 

(3) end 

, 
C realizes "11 

<, 
-< -

(b) The computations involved in 1emmas 4.2, 4.), 4.4 and Theorem 4.2 

are qui te simple, but 1 t shoul? be noted that the expre::;sion of, 
1 

_. \ 

the form 

.. 

, . 

, 

l ' 



\ 

\~ 

11) 

r ,1" 
, 

(appearing in Lemma 4.2 and 4.4, as weIl as ln lheorem 4.2) ls best 

evaluated by double complem~ntlng lt first, that ls, 

l;lIat sucb a farlll lIas a: simple equ1valent-tn-tërms of 

array operations, ~amely, 

\ "1. 

(1) 4>2 +- I~( cIl 2) ; I~I = r, Iyl c::: q, I~i· .= n 

(2) ~ [ Dz< cIl 1 # <P
2

) ] 
Q 

.4J +- UI+q . , , 

The resulting a~ay cIl has an interesting property - it consists 

of aIl the prime lmplicants of the function cIl (~, y~. It i5 

due to the last # opera tion peItfo'rm~ [ ,7] . Thus the size of the 

array cIl can be reduced by applyine stanrtard reduction algorithms~ 
U 

o 

~~~~~-~~~-Q 

Algorithm 5.12 Existenoe of Solut~on Test. , 
Let <P (~, yJ be an output'charactcristic .function (array) J 

obtained either through Lemma 1+.2,4.4 or Theorem 1·~.2. The follorring 

simple algori tl1m wi·Ù detennine whether cIl = 1 18 consistent - the 

existence of decomposition test 1 

( 1) T 

(2) T 
... 

+- U # T 
r 

\ 

... ' <' 
1 r 

~ 



.' 

\ 

t 

-----

" 

, '. 

(3) 

(4) 
. 

• ! 

~ 

function 

if T i5 emp~ then 

end fI. 

! 
. l 

7~st.nt. 

) 
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, 
Test for Degeneration of a Cirduit 1 (TheoJOl'lm 4.3), 

oJ , 

Assume that a circuit Z. realizes a.,gi ven output 5::haracteristic 

<ll (~,' :l' ). 'Let ~ be r~present~y the array lÏl 
'\ '- .- - g 

'- - ---, " 
(Algori thm 5.1), and~the array lÏl is.. ei t~er obtaï.n"ed th:r:ough Al~ thm 

or as a resut~_of the dec9mposition theorem/Lemmas application. The 

a , 

following algoTithm will now perform a test to determ1ne wh ether the , , 
fee'dback in ,g 18 redundant, 1. e., whether the sequential circuit 1s 

degenerate wl th respect to lÏl , 

> ( 1) T Insere equalize dimension 

of <P to that (Jf <P • g 

, , 

( 2) T + o .( lÏl n T) 
il g, 

Calculate ~ (~, ~{~, 1)) 
0 __ 

., 

t'T 
= E [ ~ g(~' :l,il') • <ll(~, y') ] 

il' e Bq 
,2 

, 

If ), (~, z.(~, il)) &:: 1 1ms an 
.' " 

\ ~ 

'\ :1 (' 
inentity solution for y then that 

solution is the state y sought in 

: 
o . Theorem 4.3 • 

, .. 
\ 
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-
(3) T + Ur+q # T- Use Theorem 2".3. 

(4 ) T + Uq # D~(T) non.dege~lse (5) If T is empty th en E' is To contains 

a cover for the possible sta.tes y El B~. 
( 

"'" l',,f'j r 

(6 ) end ;:." ~- .... -" -, , " . 
As rnentioned in Theorem 4.4, direct transition circuit func-

tions - g can be generated through the general solution to the output 

characteristic equation <l> (~, 1) = 1. Therefore, the next two 
~ . 

, -'" 
• algorithms will generate ~ (~, p), the firs~ one by Lowenheim's 

theorem (Section 2.3.3) if an elementary solution is known, the second 

one then by the successive elimination method (Section 2.3.1) for cases' 

where a trivial solution is not known in advance. In e~ther algorithm, 

the solutlon ~(~,~) will be re~urned in the arrays 

--------- - .-

Z. i==1, ••• ,q 
~ • 

the cubes in Zi having r + q coordinates (~,-E)· 

Algori thm 5.1/j.· LOHenheim' s Theorem • 

Lèt the elementary solution ~(~) be cQntained in the arrays 

Y. 
~ 

i==1, ••• ,q 

having r coordinates (~). Also, let it be assumed that 4> (x • v) = 1 
- IL..j 



• 

• 

• 
E 7 

16 consist~nt. 

b X
À 

of r + q coordinates corresponding to x' and E. 
',' 

~ 
(1) for i = 1 to q 

(2~ Z. (Yl x Uq) # cil +-
1. 

(3) ( 4> 
1 / 

• Z. +- Z . u n Xrt-i) 1. l 
.; 

----
----

(4-) next i 

(5) end 

Algorithm 5.15 1 Successive Eliminations. 

, (1) T +- 4> x U 
q 

(2) for i ~ 1 to q 

() if i = l, go to 6 

T ' 111) 000 ( ) ) 
( 4 ) +- T n (Crti- 1 (Zi_l U Crti- 1 U r+ 2q # ~i-l 

T +- CXXX (T) 
r+i-l 

(6) Zi +. (e~ 011 r+q(T,_n X ~i» n X ~q+i 

(7) Zi +- Zi U (U:t+2q # ç~~ .... ri-q(T n X ~i») . 

(8) next i r+1 ". r+q 15 an implied DO loop 

<9) for i = 1 ta q . . 

: 

t. 
J 
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(10) , Z . + .Dr+i i+q(Zl) 
..... 

i ••• 

(11) next i 

(12) end 

Clearly, Algorithm 5.14 is preferable ta Algorithm 5.15, the 

latter. al go ri ~hlJl being incomparably more complicated. However, an 

) 
elementary solution must be known beforehand if Algori thm ~.14 i5 to be 

used. 
f 

Algori thm 5. 16 1 Direct Transition Circuits (Theorem 4.4). 

Assuming nofilia t 2 (~, E) 
• ~' "'-:J: 

is known, the following~ 

algorithm will produce the direct transition circuit function 

corresponding to a g1~en functlon .E(~; Z). Let 

Pi i = 1, · .. , <l, be the q arrays of E. 

• (~,q _ coordinates) " 
v 

Gi i = 1, · .. , q, the q arrays,of g, and 
.. . . 

>' Zi , i r:= 1, · .. , 1., the q arrays of !1 (~, :2) • 

\. 

X
b 
À 

of q ooordinàtes. 

'1 . 

~ 

( 



• 
1 

1 • 

1 

" 

."" 

li) 

(2) 

(3) 

(4), 

(s) 

(6 ) 

l 
(7) 

(8 )' 

T +- U r+2q 

for i "" 1 to q 

T +- T h.;.«P i x xi) u «Ur+q # Pi) 

next i 

for i 0= 1 to q 

Gi 
+- o (T n 

r+q+l ••• r+2q 1~(Zi)) 

next i 

end 

x X~)) 

~. , 
,118 

.. 

'\ 
Ste~s #1 to 4 form the characteristic function T(~, y, E) 

o~:'eqUation E = E(!, y). 
c _ 

The functi.on T ~en used to fil ter 

out the states of y in Zi lihich do not ~roduce the correct values 

of y'. 

Any constraints on the circult can be induced by adding 

constraint equations on .E or directly on IP'(~, y) = 1, as in [5J. 

1 If the function 'E(~' y) is independent of y (columns 

'i. in P. ",re:111 x' s) ~hcn thE) rODulti l1G circul t .G is purely 
1. 

combinational, wi th no feedback loops. However, even certain choices of 

l' 
.B. dependent on 'i. could produce circuits without c10sed 1001's, e.g. ~ 

.' . 
iterative arrays of cel1s. 
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Examples 

A number of examp~es will be presented here, illustrating 

the theoretical reslllts obtained in Chapters J and 4. They will be 

\ 

solved with th~ aid of the techniques developed in the ~revious sections 

of this chapter. No attent~n will be paid to hazards in the circuits, 
'"\. 

these can be-treated in the usual way when actually implementing a 

• 
~articular circuit - th~ theory of decom~osition ls independent of the 

internaI structure of the circul ts, as long as the characteristic fnnctions 

prope~ly reflect the behaviour of the circuit wlth resp~ct to the ste~dy 

~ 

output states. " 

1.. A 

, ' 

-Example 5.1 

Let an asynchronous sequential circuit be given by the 

following encoded state transition table. 

lI.S. ZIZI .' 
,2 1 

"" P. S. x2 xl ,r 

z2 zl 0 0 0 1 1 0 1 1 I!I = 2, X ::: B2 
2 

0 0 0 0 0 1 1 0 0 0 
17.1 = 2, Z = B2 

2 

0 1 0 0 0 1 0 1 0 0 

1 0 0 0 1 0 1 0 L 1 
~ 

'" ,1 1 0 0 0 1 1 1 1 1 

" 

.., 
t-/ 
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• The excitation equations 1 

. 
TIte next state characteristic function <P gC~., ~, ~,) in the form of a 

map 1 (Definition 3.2) 

z2 Zt x2 xl " 

0 1 2 :3 4 '5 6 7 8 9 10 ~ 12 13 14 15 

0 1 1 1 1 1 1 

z' z' 1 1 1 1 1 
2 1 2 1 1 1 
~ :3 1 1 ' 1 

<J 

Map #1 1 <P 
-13 

x
2 xi x2 xi 

0 1 2 3 0 1 2 3 

0 1 1 0 1 1 

z t z' 1 1 1 z' z' 
1 1 1 

2 1 2 1 1 
2 1 2 1 1 

:3 1 1 :3 1 
-
1 :' 

~-
- f';:- " 

... r 
Map Mall #3 1 

<P s 
g 

~ 

(Definition (Definî'Ùçm 3.3) 

<l> s = 1 is consistent -+ no simple oscillations, act··;'~, the~ircuit _/ g ~LJ 
.'. 

is a normal (stable, o-transition) circuit, since ~ z __ '" s. Al 
'1' '1' so, 

g g 

• since 
s 

<l> = 1 does not have a unique solution, the circuit does not 
g 

have com~inatiùnal behaviour (Theorem 3.2). 

- .; 



" 

" /, 

However, if,for instanc~, the output generating function 

1s connected to the circuit g (as in Figure 3.1) th en f 

The circuit characteristic functior'l ip f(~' ~', J) is 

(Defini-tion 3.14) 

o 3 

y 1-1ar> #5 
1 1 

Since ip = 1 has a unique solution, then by Theorem 3.3 the entire c 

circuit has combinational behaviour. The function generated 1s thus 
1 ----



/ 
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It 1a obvious tha~:from a practical point of view it is rather-d1fficult 
• '1> .. 

" 
to ima~inè"tYiàt 5uch a complicated circuit would ever be used' to generate 

tà~ function. 
:. "l 

However, it was me~~ to serve only as an il~stration 
'or 

of the method. 

J 

-:EXa.rnple 5.2 

To illustrate the decomposition theorem, let the sarne 
~ 

function y = xl + x2 as in gxample 5.1 be considered. 

The output characteristic function of y(~) is 

the map is iden tical to the Nap #5 before. Clearly, the realization 

theorem (Theorem 4.1) holds if y is realized qy the circuit of 

Example 5.1, therè 

<I>(~, y) = <I> (x, y), c-

\ --

sa ~.bat <I> ~ <I> holds. Now, given the circuit f of Example 5.1, let c 

the Lemma 4.2 be applied ta generate the output'characteristic function 
.' ,\ 

s..j 

for the circuit C1 if C2 is f in the 2 st~e realization of y(~). 

= (Map #4) 

Hence, 
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~1(~' ~) = JI (~f(~t ~, ~) + ~(~" ê.)) , 
2 

~ e B
2 

. 

... 
as shown in Map #6. Clearly ~l == 1 is consistent. 

1 . , 
\ 0 

012 3 

1 1 1 
/ 

---- 1-
z2 zl 

2 

1 1 l- i-

1 1 1 1 

3 1 1 1 1 

If the circuit g from Example 5.1 is taken as Ci th en 

~Cl 

(Map #2 ann4' but <PCl ~ <Pl' 50 that Cl completes the realization 

of y, just confinning the k~own facto Since Cl i5 a normal circuit 

then it falls into the class of direct transition circuits realizing 

2 
Therefore, by Theorem 4.3, .any choiee of ~ == y. e B2 will 

degenerate the sequential circuit into a purel y combinational one ~ 

maintaining the realization of <P l' however. 

For instance the choiee zl = 1, z == 2 
0, will generate 

----- ( ) ~(~-,- y) ei(~) 
- --, fI* ~ :;: 1 == x2 Xl -1" x

2 Xl 

" g2<'~) "" 0 , 

which can be obtaine~an elementary solution of ~ 1 = 1 - the 

-particular solution is encircled on the map of ~ 1 (Map #6). As a 

\ 

\ 
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) 

• matter of fact, any elementary polution of ~ 1 = 1 represents a purely 

combinational circuit completing the realization of y(~). (There are 

\ 
,/- - 192 different solutions). For instance, there are-J identity solutions __ _ 

(rows wi th a 11 l' s ) 1 • \ 

Zz = 0, zl == 1 or 

~ ----~---- ~- .---'---

/ 

z2 
\ == 1, zl == ° or 

z2 c: 1, zl = 1 • 

In order to obtain all direct transition cireuit~ Ct in 

"one package", Theorem 4.4 will, be ap-plicd now : 

Let ~ (~) 1 zl; 0, z = 1· be an e1ementary solution, r- 2 - "\ 

then Lowenheim's g~neral solution to ~1 = 1 is 

i. e. , 

-0 

Any choice of l:(~'~) 1 

~ 

circui t. 

For example, 

j 
-1 

( 1> 

) 

B~ wi]J ~roducc ~ d{r~ct transiti 

generates ~(~) derived 

before. ( 

() 

.. 
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• of Example 5.1 will make 

- ,-
Another circuit may be generated by Pl = xl z2' P2 ~ x2 zl" Thên 

whose characteristic function ':4l' (x, z, z~) 
g - - ? 15 shown in Map #7. 

'-

0 1 2 J 4 5 6 7 i3 9 10 11 12 . 1) 14 15 

(\ 1 1 1 1 1 1 ,1 

z' z' 1 1 . 1 -1 
2 1 2 1 1 1 1 . 1 

3 1 ,,:; 
.J 

."\ 

- -
p "" xl z2 1 P2 = x

2 zl 1. 

Map If? : 4l 
g 

cr • 

And 

x2 xl x2 xi 
.j> , 

() 1 2 3 <'l () 1 2 3 

,0 ;; 1 1 1 0 1 

;f 1 1 1 z' z' 1 1 1 \ 2 1 
2 1 1 2 1 1 1 • • 
3 ,1' el 3 

'''", ~, 

Map #8 q,z 
g 

f-lap #9 s 
, $' <I> 

g 
1 
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.J ' 

The resulting direct transition circuit i8 not norm~l, the 
" 

~totàl state xl x2 zl z2 - 0 1 0 0 i8 transient, also, the circUit has 

oscillations for xl x2 = 1 1 "7ith the steady states being 

r; 
zl' z2 .., 0 0 and 1 1. AIl other states are stable. Note':"-that the 

oscillations are not simple. 

-
> 

The (combined steady state charac~t~e~r~lcs~t'~~~~~~~~~~~----------~ g 

shown jn Map #10. 

-
() 1 J Pl = x1 z.., 

'-

1 
P2 = x2 ~1 1 

0 1 

,:,;' z' 1 i 

2 1 1 1 
, 

<pc 1 l':ap #10 1 
-iL J 

Again, <pc 
~ ~1 -+ the oscillatory circuit realj zes y(x). 

g A_ -, 

The choice of 
- - leads tQ, Pi = x x2 z2' P2 x' x2 zl' 1 i 

-

gl (~, ~) 
-

= x1 x2 z') 
t.. 

g2(~' ~) 
- -= xi x2 zl + xl x? .-

which is a quasi-normal, circui t wi th simple oscillations at xi x2 "". 1 1, 

evervwhere else the circuit is ·stable. The steady state characteristic 

function 
" 

<p c (see Algori ttun 5.5) is shown in Map #11. 
g 
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x2 xl ./ 

0 1 '2 '3 Pl - x1 x2 z2 
0 1 1 1 .J ., - 1 P2 c: xl x2 z1 1 1 z' z' ., 2 1 2 1 1~ 1 ,-. , 

<pc b< 

3- 1 M~p #lt 
~ 0 . 

• RI 

Consider no~he case where the circuit Cl 1s given with 

i t5 ~.;~;~~~~~~-c - ~nc~~;;;;;~ c~ and ~he ~1rct;/;. 15 .~OU~h:t: -;h:-~ 
~ ~, 

output characterisHc function <p 2(~' ~'1.) of C2 1s' then (Lemma 4.3) 1 

<p 2~'·.!' 1.) ::: cp Cl (~,~) + <lJ,(~, 1.) 
~) 

" " For instance, let "'-

cp Hap #5, -~ 

cp Cl Map #10, 
" 1 

_ r ---

The functio'n ' CP2 is shown in Ma-p #12. 

z2 zl x2 xl 
, 

" 

0 1 2 3 4 5 6 7 .'3 9 10 11 12 13 14 15 

. ~ 1 ; 
1 1 1 ~ 1 ~ 1 1 1 <J il , 

y 
1 1 l' 1 1 1 1 1 1 1 1 1 1 

'Map #12 1 CP2 ... .. 

Clearly,o the fOrmer function 

theQrem -, cp f' ~ cp 2' l'{pte "also, that .-

no matter what Cl 1s • 
, 0 

. . 

f satisfies the realization 

cp = 1 15 .always consistent, 2 "_ , 

" 

& 



" 
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1 

Any direct transition circuit C2 can be obtained through 

the sarne p:r<'cedure as wh en Cl was sought befqrê (Theorern 4,4)" Or 

for any circuit C2 selected from a library of modules, the realization 

of ~2 can be'tested by seeing ~hat {h~ retation, ~C2 ~ cI>2 is 

satisfied. 

''''1 
Example 5.) 1 ~ 

• Having shown an'applicatior. of the theory on simple 

examples, a ~ore complicated case will be investigated,ustng cubical 

arrays ~ the unilateral cellul~r array with a closed loop a~ described' 

o 

in [14 J. The particular circuit blil t from NOR gates is shown 

in Figure 5.1. 

r;{ 
-1 ~2 X

3 

Y2 

- - -
= x) ,z) 

\ 

FIGURE 5.1 1 • CIRCUIT FOR EXAHPlli 5.)'. 



129 

• The interconnection of the cells 1s ~ucb that 
/ 

<. ,. 
zi = zl_1 

thus the next state'equation~ of its ,g circuit are 
'4 

Zl -= z., Xi r 1 • .J 
" 

z' = 1!e1 *2 2 r ~ 

~ 

z' -= z x -} 2 -3--

'" 

__ -~- R 
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e (3) $ ::: 1 1 x o x 0 1 1 x 
g 

x 1 x o x J- O 1 x 

o 1 x o x x o 1 x 
. 

1 x x 1 x 0 1 0 x 
r X X X 1 x 1 o 0 x 

o x X l' x' x o 0 x 

1 o x x x 0 1 0 x 

x 0 x x x 1 o 0 x 

0 O'x x x x o 0 ~ 

(2) i :: 3 

x z z" -
(3) $ "" 1 1 1 o 0 0 1 1 1 

g 
x 1 x o b 1 011 

0 1 1 o 0 x o 1 1 

1 x 1 1 0 0 1 0 1 

x x 1 1 0 1 o 0 1 
---~- '" 

o x 1 1 0 x o 0 1 

101 x 0 0 1 0 1 

x 0 1 x 0 1 o 0 1 ' . 

o 01...1 x 0 x o 0 1 

1 1 x 0 1 0 1 1 0 J 
x. 1 x 0 1 1 0 1 0 

o 1 x 0 1 x 0 1 0 " ----;---~ 

1 x x 1,1 0 100 

"" 
l' 

X X x 1 1 1 000 

\ 0 x x 1 1 x e 0 0 

1 o x x 1 0 100 1 

X 0 X x 1 1 o 0 0 

11 , 110 o x 0 110 
.." 

X 1 0 o x 1 010 

0 1 0 o x x 010 
~ 

~ 
x x 0 1 x 1 000 

• 0 x 0 1 x x 000 

1 x 0 x x 0 100 

" 
x 0 0 x x 1 '0 0 0 \> 

000 x x x 0.0 0 

( 



. , 

(5) D = ~ 

(6) efld; cp as above. 
g 

CP: (Algor! thm .5.3) : 

(1) cp z +- ' A( OzC CPg) ) g 

.;1-- 1 
X z' 

= 1 1 1 1 1 <1: 

x 1'x o 1 1 
. 

1 x 1 101 

x x 1 001 1t , 

1.1 x 110 

x 1 x 010 

1 x x 1 0 0, 

x x x 000 

r 

1 .4 

~ 131 
'f 

. ---
'. 

" 
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'" 

• -" 
.() ~s = o 0 'x o 0 x g 

x 0 x 001 f , 

1 x x 100 

0 1 x 0 1 x \) 

(J 

x 1 x 011 

(2) i = 2 

() ) 
.~. 

~s = 000 a a a 
... ~ g 

1 x 0 1 a a 
a 1 x. a 1 0 

x 0 l' a a 1 .. 

.. (5) D = ~ 

", (6 ) end , 
" 

Simple oscillations test on ~ (Algoritnm 5.4) , 
.' 

(1) T = 0 (~s) ;= 000 

(~. g \ 1 x,O 

o 1 x 

x 0 1 "\. 
,) 

.,) 

(2) T = U # T = {x xx} # ° ° 0) r 
1 x 0 

o 1 x 

. x 0 1 , 
= 1 1 1 

(3) D = ~ x 

simple oscillations at Xl = x2 = x) = 1, 

which just, confirms a known fact about the circuit. 



• 

\: 

) 

.. 
1)) 

(5) end. 

Except for the state ! ~ 1 1 1, the circuit ! 18 stable 

as can be checked through ~ • Therefore, an approximation to 
g 

the steady state characteristic function - can be generated by 

Algori thm 5.5. 

~c (Algorithm 5.5) 1 
g 

4l c = cps U ( ~ z n (T x u))) 
g g g 

= 000 0 0 

~l 1 x 0 1 0 U 
o 1 x 0 1 

.x o '1 o 0 

1 1 1 1 1 1 . 
1 1 1 o 1 1 

1 1 1 1 0 1 

1 1 1 o 0 1 

111 1 1 0 
-

1 1 1 o 1. 0 

1 1 1 1 0 0 

111 o 0 0 

= o 0 0 0 0 0 

-; 1 x 0 100 
~ 1 ' .. o 1 x 0 0 

x 0 1 0 0 1 
/ 

1 1 1 x ~ x 

,J 

(Note, that the array'was r~~~cea by an application of a standard 

~ c _ 
g 

-------------~~~~~~~~~.~~~~-~- \ minimization procedure for single output functionSji -

<,' 'Simply by inspection of cp ~ , it can be seen th~t 

• Theorem J.l fail s - muUiple steady st(s a t x = 1 1 1. Therefore, 
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• before a testJ"for combinational behaviour (Theore~ 303) 
.-Q' 1 

can be made, the 

c 

charactertstic function ~f has to be -4'0 nned.. 
\ 

4>f (Algoritfim 5.7) 
,/,,-' 

-

Ft = { 0 x x x x O} 
} 

F
2 = ( x o x o x x} 

FT = { x x 0 x 0 x} 

x -z' 1. 
\--~ 

- (1) ~f = x x x x x x xxx i 

(2) i = 1 ~ 
) 

() ~r = o x x x x 0 1 :le X 

xxx- X x 1.< 0 X x 

1 x x x x x 0 x-x ' . 
~ .-' 

.. -" 
.' (2) i = 2 

, 
-../). ... . .. 

-f," 

() 4>r = 0 o x 0 x 0 1 1 x 

x 0 x 0 x 1 0 1 x 
, 

1 0 x 0 X x 0 1 x 

0 x x 1 x () 1 o x 

x x x 1 x 1 0 o x 

1 XL 1 x x 0 o X i!:."* 
'" ~ 

0 1 x x x 0 1 o x .' -- x 1 x x x 1 0 o x 
., 

1 1 x x x x 0 o x , 
.' 
.;;.-

.;-

-e (2) i = 3 
/, 

~ 
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e x z, 1.. 
(J) èP f 

= ~·O 0 0.0 0 111 

x 0 O. o 0 1 0 1 1 

100 OOx 0 1 1 
<, 

o x 0 1 0 0 1 a 1 

x x 0 1 0 1 o 0 1 

1 x,O 1 0 x o 0 1 

010 x a 0 1 0 1 

x 1 a x 0 1 a a 1 

1 1 a x 0 x o a 1 \ 
IJ a 0 x o 1 0 1 1 a 

x 0 x o 1 1 0 1 0 
" 

1 0 x o 1 x 010 

~o x x 1 1 0 1 0 0 

x x ~x 1 1 1 o 0 ,0 

1 x x 1 1 x o 0 0 

J! 
;ç' o 1 x x 1 0 1 0 0 <." 

X 1 x x 1 1 o 0 0 

1 1 x x 1 x o 0 0 

o O· 1 o x 0 1 1 a 
x 0 1 o x 1 0 1 a 
1 a 1 o x x 0 1 0 

o x 1 1 x 0 1 0 0 

x x 1 1 x 1 o 0 0 

1 x 1 1 x x 000 

011 x x 0 1 0 0 
• 

x 1 1 ,'x x 1 000 

1 1 1 x x x 000 
( l' 

Combinational behaviour of the "en tire circuit (Thei.rem 3. J ) (Algori thm 5.8) 1 

. . 
'-

< 

• .-
- ft / 
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• (1) ~ ~c 0+- xu 
C g J 

,\ 

X 
- 1 

z' :l. 

= 000 o 0 0 x x x 

1 x 0 1 0 0 x x x 

o 1 x o 1 0., 'x x X 

,', "1 " x 0 1 o 0 x x x '. 
) 

1 1 1 x x x x x x 
0 

(2) 4> 0+- 4> n 4>f c c 

- o 0 0 o 0 0 111 

~ 1 x 0 1 0 0 00'1 
------ ~--

.' o 1 x o 1 0 100 
-,-, . x 0 1 

,il 
o 0 1 010 

- .~ 

r'; 
1 1 1 x x x o 0 0' .. 

;' 

~ !ft .. " 
t~l 4> +- . Dz '( <1> c) c 

" a 

X :t. 

- o 0 ,0 ,1 1 1 

1 X 0 o 0 1 
~ 

o 1 X 1 0 0 

X 0 1 o 1 0 

1 1 1 o 0 0 
c 

(5) T = ~ 
, 

(6) \ i = 1 (6) i = 2 (6) i = J 
) 

(7) T = 11 (7) T 1= 15 (7) T = ~ 
... 

(9) T = ~ 

(la) T ernpty -.. the circuit has combinational behaviour, the 
" 

\) 

.... 

' ;, 
, . 
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characteristic function is in ~ at step #4. c 

(11) end. 

Namely, -
Yl = x

1
(x2 + X

3
) 

l 

Y2 = x2(x) + Xl) 

Y3 = x)(x1 + x2) 

J 

which i6 precisely the function as given in [ 14]. 

To show that the feedback in the circuit g is not redundant, 

i.e., ,g is not degenerate wi th respect to the corresponding output 
" 

characteristic function ~ 1(~' ~.), let Theorem 4.) be applied through 

the Algorithm 5(1). First, however, ~ l(~' ~,) ms to be formed as 

(Lemma 4.2) 

.. 

where qi (~, yJ is the overall output characteristic function of l(~) 

(Theorem 4.1), i.e., in·this case it is the array ~ as generated ~ c 

before. Hence, (Algorithm 5.11b), 

(2) 
1 

-. 

" 
" ., 

L [~f(15'~"~)' ~ (~, .ê.) ] 

! e B~ 



•• 

~ 

, c 

.' 

(3) end.' 

After subst1 tuting the actual arrays 1 , 

'\-
X z' 

Î 
cll

i = 1 1 1 x x x 

1 1 x x 0 x 

1 x 1 o x x 

x 1 1 x'x 0 

x 0 1 o x 1 
-r 

1 x 0 1 0 x 

1 0 1 o l'x 

o 1 x 'x 1 0 
• t 

o 0 0 o 0 0 

r 

Now Al go ri tl1m 5. 11 1 

(1) T J' + 1
3
( cP 1) .. 

(2) T + r.f"{ z' «Pg n T) • cP
g 

as generated previously 

x z 

T = 1 1 1 000 

1 1 1 100 

1 1 x 1 1 x 

1 1 0 1 x 1 

1 l,l- o ~1 '. 
... 

1 x 1 101 

101 x 0 1 

111 o 1 1 

1 x 1 111 

101 x 1 1 

111 010 

x 1 1 011 ~ 

0 1 1 o 1 x 

138 

f 

. -
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x 1 1 1 1 1 

0 1 1 1 1 x 

o 0 1 1 o x 
x 0 1 x 0 1 , 

001 x 0 x 

1 x 0 x x a . 
0 

-+ 
~ o 1 x a 1 1 

0 1 0 0 x~ 
" o 0 0 x x x 

(3') T + U3+3 # T 

T = 001 x 1 0 

0 1 0 1, x x , 0 1 1 x 0 1 
, , 

" ~ 0 1 x 1 0 1 
------ '\ 

0, 1 1 '0 0 0---

100 x x 1 

101 x x 0 

x 0 1 x 1 0 

1 x 0 o x 1 

1 0 0 o 0 1 

(4) 

(5) Since T is empty then g is non-degenerate with respect 

ta 

Therefare, the feedback loop is not,redundant, and it cannot 

be directly replaced by a comb1national ~ircuit ~(~) = g(~, y). 

Actu~lly, there is no purely comb1natianal circuit which would 



'\ 
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o 

'. realize ~ (~, ~)Q with-iess NOR gates than K(~'~) [ 14]. ~;rthermore , 
~" ~ 

sinee 4 ls non-degenerate the clrcui t may have ,hazardou l,r.e.riS1tlona . . . ' 
~ between ~teady states • 

• 
Any ,direct transition circuit ~ realizing ~1 "(with or 

without feedback) cru: be generated ~PP1Ying Algorithm 5.1] (or 5.14), '. . 
< 

and then Algorithm 5.15 for a selected function E(~, ~,. 

(-

• 

J 

---- ---- --~~,---- -- - --

",' 

J 
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C!HAPTER 6 

Q 

, APPLICATIONS \ 

, 

The theoreti cal " results and cOMputa'j"-ional techniques of the 

pr~ceeding chapters established a firm link between Boolean equati~ns and 

.J. " 
The lirtk ~.is· . ' 

- . " ,the internaI structure of combinational switching circuits. 

eXpressed by the ~ relation between the characteristic functions of the 

, 0 

corresponding Boolean equations. This then provides the m'ethodological 

base for 1>1 ving practical problel'1;s l'i:ùated to the ticsign of swi tching 
, ' 

circui ts. Two such applications will be discllssed here, namely, an 

approac~1 to the algori thmic synthesls of combinational swi tching functions 

by decomposition, and a method for gen~~in~ °tes~ sets of input stimu~i 
~. 

for detecting faults in combinational circuits. 

4 

lS.l Application #1 Nodular Synthesis of Combinational Circuits, 
~~~~~~~~--~~~ / 

6.1.1 Problem Statement 

Given ~n incompletely specified multIple output co~àinational. 

of combinational and sequential c:t reui t modules Mi -. i '= 1, ••• , .1 SI 

" . 
it ls required to synthesize ~ circuit C 'using only the modules in S, 

r 

such that C would realizé z:(~). Fu:rthermore, 'i t may be requi'red that' 

l ' 
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the resulting netwo~k should'satisfy a number of prespecified constraints 

such as total cost, signal propagation delay, loading of inp~t l~nes, 

number of external interconnections, ete. 

,As mentioned in a number of previous studles [ 2", 5, 7, 13, 
, 

,,15, 16,20, 2.1, 24, '26, 28; 29 ] determination of an absolutely optimal 

circuit (under any cyiteria) 1mplies more or less exh~üstive searching 
, " 

over aIl possible r~alizations of ~,~sing modules in S. Thsyefore, 

to reduce the number of trials, and yet td obtain a reasonably good 

~satisfies constraints) realization, s~m~ he~istic searCh~ng techniques 

must be applied-[ 5, 15, 2R]. It is not th) intention, h?wever, to 

develop these search algorithms here. The l!'eaSO:1 is that these 

h~urj stj c al gorithms provide a strategy f00~dg~?~~ the ,?oodness of a 
-----------------~ . .-/ 

particular partial decomposition and fo~ ch?osing the next step ~o take 

towards obtaining a final satisfactorj circuit. Thus up to ceytain . 

extent, they ca,n ~e consid-ered separa~ely from the .rnethod used in generating 

a partial decomp..os:irtion. Rather, i twill be shown ho'"T .... the methodology of 

characteristic functions as developed hcrc could·be applicd to unify 

the steps common 'ta most algori thms bas'ed on functional decomposi tian 

1 

(Section 4.1). 

The decomposition relat~d problems may be summarized as 

followsl 

" 



" 

( 1) Formation of a library of available circuit modules • 

. (2) Representation of the function '1(~) • 

• 
(3) Selection of a subset of, the input (output) variables of 

i(~). and the mapping between these and the module variables~ 

(4) Application of the module under the selected mapping to the 

fultction 1(~) in order to ~est whether a ~ecomposition 

exists. 
1 

(5) Testing of "goodness" of the decomposi tion; that is, 

realization of sorne of the outputs X or the module 

inputs, determination of redundant variaoles, satisfac-

tion of cir~uit ,constraints, etc. The results of these 

tests are-then-Uséâ ta gutde t~ heurisiie-scaxeh for 

an optimal realization. 

6:1.2 '-' Dev0llopment of Solution Steps 

(1) The library: Let the available module and submodule functious 

be represented by their circuit characteristic functions 

o (Definition 4.1). A subrnodule is obtained from a module in 

S by tying sorne of its inputs together or'bringing them to 

o 
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constant levels 0, 1. If a particular module i5 combinational 

then the various submodulé characteristic functior.s can be 

obtained by imposing constraint equatio~s of the before 

~entioned type"on the module ?haracteristic function (equation). 

In case of sequentfal modules, thé constraint equations should 

be applled to the state ·transiti~n characteristic function 

(Definition 3.2), and then the corresponding circuit 

characteristic function obtained. Otherwise the submodule 

characteristlc function might describe steady states never 

reachable by any input sequence. 

In either case, however, the library L can be viewed as a 

11st of circuit characteristic functions ~ Ci' i = 1, ••• , /1/ , 

each entry containing additi-onal- information des cri bing the 

number of inputs and outputs, loading factors, delay, 

symmetrY information, etc. 

If the Library were ta contain only the characteristic 

functions of the original modules, then the submodules would 

have to be generated during the synthesis procedure. However, 

it was shown [S, 23 ]that·the time require~ to do sa ls , 
rather long, and that the procedure must be ~epèated with each 

'!' 



• 

(2) 

new function sy~thes~zed. Therefore, i t assumed tha t 

the preprocessing is done while forming t~e library, thU6 only 
'\1 

one to one mappings need to be considered between the function 

;y(~) and the module' variables [7" 28]. 

" 
Form of .r(~) : Whatever the initial description o'f r(~) is, 

it should be converted into the form of an output characteristic 

function <P (as shown in Theoi'em 4.1). Additional information 
j; 

~ith regards to the 'maximum loading, delay, cost, etc, should 

also be supplied to define the properties of the target circuit 

, J 

c. 

(3) As mentioned in Séction 4.1, two main paths were considered in 

(4 ) 

(5) the past when performing synthesis by decomp~ition. Bither a 

mapping U x from a subset of the x variables to the module 

inputs vTaq chosen, the resul ting function generated by the 

c1rcuit ~as applied to y(~) to form a decomposition,~an~ then 

a test for realization of sorne of the outputs,;y was made [2, 

7, 15, 21, 24, 28 J. The other way was to choose a mapping U y 

from module outputs to a subset of problem outputs y, and 

then seek a decomposition via systems of B.E.,with the highest 

number of inputs to the module be~'ng realized directly by sorne 

of the variables x [5, 16, 20] • 

'1 
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Both of the methods had a disadvantage that with each new 

mapping the decompoaition procedure had te be repeated. More-

over, the position of a module inside of the final circuit was 

a priori determined to have ei ther all the inputs fed by x 

directly or the outputs tied directly to :L. The Lemmas 4.2 -

4.4 and Theorem 4.2 unify the two opposing approaches under~one 

methodology, and allow for the module to be placed anywhere 

inside of the future circuit. Let i t be assumed that a 

(sub)module characteristic function 4>C(~' ~), 1 ~ 1 = m, 

1 ~ 1 = n was selected from the li brary ta ~rm a partial 
-- ..... --

'- realization of an output characterfstic funct1.on 4l (~, :t..), 

1 ~ 1 = r, I:LI~. Wi thout performing any mapping between the 

module and problem variables, the module may be left "floating" 

in the future circuit, and the output characteri$tic function 

(Corollary to Theorem L~.2) / 

:' 

= 

.l. 

mny "Qe formed, where ~, w are new domain and y, 1. nerf 

ranGe variables. Now, a mapping 11 frùm sorne x to some 
x 

v and a mapping ]J y from some w to ~ Y... may be 

,QBlected. (The selection can be guided by similar criteria as 

in [5, 20]). The mappings may be expressed by the equa tians 



! 

! / 
/ 

(' 

= y. 
,) 

for aIl the interconnections to be mad~. Let then 

l.l (x, v) = 1 x - -

• 

and j.I (w, y) = 1 y-

147 

be the corresponding characteristic equatiçns of the 

.. 

two systems of mapping equations. (Note that l.l x and 

l.l Y represent a combinational circuit). The application of 

the mapplngs can then be eX"E:-essed by a neH output charac-

teristic function 

with ~he var~ables from v and y used in the mapp in6s being 

deleted. If 

= 1 

is consistent with respect te solutions 1(~) and y(!,~) 

then the particular mappings l.l x' l.l y wi th the module 

/ 

-t:,orm a partial realization oÎ <lJ (~, y). Thus by applying 

various mappings ).lx and \.ly 
and thon solecting the best 

ones (under sorne heuristic criteria) which form a consistent 

<I> Z = 1, the proces6 may be repea ted to realize <!J 2' etc. 

Note, that lf maps are used to represent Boolean functions 

then the largest map required woul Z:r+q+m+n 
have bits. If 
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.. 
cubical complex representa tion is used then the largest array , 

will'be that of <1> 1 • It rlould require r+q+m+n columns 

and a maximum of 
Jo 

2r + 2
m rows - a very conservative estimate 

4: 

considering the fact that if <1> 1 i3 evaluated as 

U r+m+n+q # ( il> C # <l» then the resulting array is formed from , 

aIl the prime implicants of <1> 1 (Section 5.3.2) L7J. It 

also means, that standard reduction (extraction) techniques 

" 
\ could be auplied ta reduce the size of the array even more. 

If a quaternal encoding of the variables in arrays is used [36J', 

then the uuper limi t on the bit requirement for storing the 

array <1> 1 ls 

Bence for a reasonably sized problem of 

r = 9, q = 10, m 5, n = 4, 

can be represented as a bit map or as an array with 

at most 2 • 2R • 2 14 < 2
20 bits. Con3idering the additional 

advantages of the array representation such as easy Inanipulation 

(Section,5. i , 5.2), then it seems that the more suitable form 

of representing Boolean functions for compute~---.J.lrocessing is 

• that of cubical complexes. 
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The sequential ap~lication of the various ma~pings ~x' 

, 
to a gi'1en ~1 may be a rather time consuming task, even if the 

sequence 

tion of 

of apP1ica~rimmed 

~ 1 under past mappings. 

by using the inconsisténcy informa-

It .,.i]l be shoHn here, however, 

that by increasing the memory requirements and by incorporating special 

(hypothetical) mapping modules, parallel processing of all the possible 

mappings can be performed. The result of the operations beine; an 

encoded list of aIl map-pings whi. ch farm a consistent equation 

<1>2 1 • 

The proposed structure i5 shown in Figur< 6.1. The modules 

and 

mappings 

~ 
x 

. / 

are hypothetical, their funo{Ion ls ta perform the 

and 

-

. ,. 

s 

~ , respectively. 
y 

-- -, ---

v w - -

· M 

· · elle (~,~) 

Their operation is controlled 

, , 

c 
--~v. 

. 

. 
Q 

'~ 
. .. 

t 

FIGURE 6.1. HAPPING NODULE APPLICATION. 



1.'50 

1 

br the parameters sand t in such a way that a constant valu~ of 

s and t selects a particular mapping from the modulk variables to the 

problem variables. The internaI structure of the modules· ~ 

will be derived by first eonsidering a general-mapping modu1e from a 
.;. 

set ~ == { al' a 2' ,',,'. aQ'} to a set ~:= { b1 , , •• , b~ } in terms of!J 

sorne parameters v ={V 1 ' ""v}. - y 

The simplest arrangement vrould be to select y 

a.ssign 

v "2 ••• ,v , Q' 

and then let 

b. 
1. 

= + + ... + i a V , Q' ct 
i=l, ... ,j:I 

----------

(6.1.1) 

wi th an orthonormali t~ ...... ?onstrai~t imposed over all i = 1, ••• , 6 

subsets o~_ ~,-_SO __ é!~ __ to Joree only a single variable ta be connected 
----~~----

to hi for a gi v~n value of v. That is, the parameters must satisfy 

[3, 4, 5, 27 ] 

Q' 
i i i 

l: v. ~ 1 V
j 

• v :;r 0 , j f k, i = 1, ... , ~ . 
1 

, 
k .- , 

:j=l 

The equations can be eombined and repres~~ted by a characteristic equation 

/0 
'" 
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\- ~ - ct 
(\I~ v~) l~ 

1" 
TI [ E TI 1 (6.1.2) 

.J ~/, 
1> 

i==l j=l kfj -', 

j 1 

An addi tional constraint can be obtained by considering one to one 

mapping only. That is, 
, -

i v
k • v j 

k == 0 for aIl i = 1, , .. , ~ , J ,'i, k = 1, "" Ci 

Or in one equation as 

Ci " (v~ v~) TI TI [ TI + ] = 1 

k==1 i=1 jfi 

For (6.1.3) ta be applicable ct ~ ~ must be satisfied. The module ' 

characteristic function <t> H a btained from (6.1. 1) is thus 

"'--- - ---- - --- --$ 
11 = ~ ci " ~ '[ bi (a1 vi j ... + 

i=l i=l ~ 
••• + a ex 

J 

(6.1.4) 

and constrained by (6.1.2), (6.1.3). 

___ , __ '_The to_tal number of parameters ct • ~ is very h1gh even for 

relatively small problemsj however, due to (6.1:2) a~ eCQnomic encoding 
l ... 

of the orthonormal sets [26 ] 
l 

may redu~e' the number of necessary parameters 

by a considerable factor. !WO such encodings will b~ mentioned hereafter. 

'r' 
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Encoding 1 1 

Cons}der each. b
i 

separately, then the corresponding subsets 

of ~ 'may be encoded qy ~ 
. ~ i 

sets of distinct parameters E' The 

number of parameters needed in each set is 
* 

rlog2(œ), bringing the 

total number of paraJT':eters to ~. r log2(œ) • The variables \) thus 

become functions of E with the orthonormality constraint (6.1.2) . 
embedded in them. A simple algorithm for the generation of the ortho-

normal functions ca.n be found in [sJ. -.An actual aseignment will be 

shawn in the following example: . 

Example 1 Let Ci = ), ~ ::: 2, then thus 

and 

} 1 1 2 2 2 
== Pl 1'2 \)1 ==1 Pl 1'2 1 

\)1 -1 1 -. 2 -2 2 
== Pl 1'2 \)2 = Pi 1'2 2 : 

,1 -1 -1 1 -1 ...,1· 2 -2 
\») == ---l>1 P2 + J? 1 }2'"l = '0 2 \)J == P2 T_ --

The module characteristic Îunction i8 (6.1.4) 

~ [bi (a1 pî 1'~ + ~~3.2 pî 1J~ + a) p~) 
i=l ~ 

+ b
i
(a1 a2 àJ 

+ a2 aJ pi + a1 a) pi + al a2 p~ 

+ aJ P~ + a2 Pl Pl + al Pl P2)] 

l' 

. ./ 
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The constraint (6.1.3) will take the form 
./ 

Any additional constraints could be expressed in terms of the parameters 

in a similar way. 

'Encadine; 2 1 

, 

L 
number of parameters required may bc achieved by incorporating 

is assumed then ev en higher reduction Oft~ 

the 

1 

constraint (6.1.3) into (6.1.2). The two constraints describe the 

t&tal of Ca - ~): 
distinct states of ~; therefore, there are 

I.E 1 = 

parameters E needed to encode the variables y. as functions ~jE)' 

The particular functions can be obtained ~Q a similar way as fOT 

Encoding 1 - by solving (6.1.2) and (6.1.3) in the space of the 'para-

meters-, and a t the same -time prese~ving the -Illuiual exç.1usi veness of the 

" 
\) mintcrms. The procedure i5 illustrated in the followinfj example. 

Example As bcfare, 'let a 3, . ~ = 2, then 

= 3 

l' 

" 



.... 

( 

(compare~ with 4 parameters in Encoding 1). To obtain the functions 

~(~) th~ follow1ng correspondence between the minterms of ~ (satisfying 

(6.1.2) and (6.1.3)) and the minterms of E may be selected: 

= 

= 

\)l\11V 1 2 -2 -2 
1 2 3 

\1
1

\1
2

\1
3 

-= Pi, P2 P3 

v1 \11 v1 -2 -2 2 
1 2 3 \1 1 \1 2 \1 3 

- -= Pl P2 P3 -

-1 -1 1 
\11 \1 2 \1 3 

2 -2 -2 
\1 1 \1 2 \1 3 

= Pl 1'2 P3 + Pl P2 P3 
= 

-1 -1 i -2 2-2 
\11 \1 2 \1 3 \il \1 2 \1 3 

= = Pl P2 P3 + ül P2 ~ 
,- ,"" 

The individual function v~ obtaine~ by SOlVi1" the' abdve 

Pt P2c! 

The module cparacteristic functaon beine-

4>1'1 = [bi(al Pl P2 + a2 Pl 1'2 + a3 Pi) 

+ b1(al + Pl + P2)(a2 + Pl + P2)(a3 + Pl)j 
~. 

-
Pl P3 

system are 

'1 [ b2(al P2 1'3 + al Pl P3 + a2 Pl P2 P3 + a 2 Pl P3 +- 'a3 Pl P3) 

+ b2(a1 + Pl P2 + P3)(a2 + Pl P2 + Pl P3 + Pl P3 + P2 P3) 

(a) + Pl + P3)] 
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For instanoe, a choice of Pl = 0, P2 = 0, , ~J = DA will 

gener~te the mapping b1 =~, b2 = a2• Any addftional constraints 
• 

" could aga1n ~e added ?y formulating them aS equatiQn~ in ~. 

u , 

Ta compare the ~ncodings, Table 6.1 shows the number of 

. 
- paraJlleter1,?- reqllired fol' varlous 0' and f3, and the two types of 

encoding. 

I.E 1 
0' Enc. 1 Enc. 2 

2 1 1 1· .... 

r- - 2 2 2 1 

3 1 2 " 2 

J 2 4 3 

3 3 6 .3, 
", 

4 1 
r, 

2 • l '2 

4 2- 4 4 

4 J 6 5 .. 
4 i ' 40 8 5 . 

• 5 5 '1.5 7 

'" 7 5 15 12 
Q 

10 5 20 15 c.. 

'5 10 30 Ci < fH 
Q 

• Application to modules and", n 1 



Nodule 

In order ta allow tor free-inputs to the module M, the 

~omain a is composed of the va~iables x and the variable vi to 

which the mapping i5 to be madet i:e. a = {x, vJ 
- - 1 

for 

rr:hus m ~ (r + 1) 
.j , 
J.~ 

functions \)" are needed, (6.2.1) yields 
.J 

::: 

(, 

r 
L 

i=l 

ï x. \). + 
J. .1 

• i = 1, ••• , m. 

If Enc?ding 1 if used thên m· r-log2(F + 1) paramet€rs E are 

required. Encoding 2 would reduce the number of parameters s to 

(r "" lr log2 le r + 1 - m : 
hOrlever, only one free module input would be 

() 

allowed in, any mapping thus oètained. Thc Encoding 1 does not have this 

disadvantage, provided that (6.2.3) is modified bofore applying. Such a 

modification is. rallier difficlllt_ J~_mak~ in cils~_~~ Enc~(~ing 2 where 

even the number of parameters may have to be changed. 

Considcring again a problcm with r::: 9 and m = 5 then 20 

paramcters are required for Encoding l, ann only--1-5 for Encoding 2. That 

would brin{j the total number of variables in the module characteristic 

. 
function to 34 and 29, respcctively. 

" 
Let ~ (~, ~,~) be the characteristic function of the 

,-

module with any ~ncoding in terms of the parameters s. It should be 
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noted that due ta the presence of the vi variable in ~, the function 

o 

has multiple output states v associated with the states of x 

and s - it resemblcs a sequential module. 

-/ Module st 

Similarly as in module' ~, the do main ~ consists of the 

variables' w and y. so chat 
~ 

Hence 

n 

, for 

i E w. \) .. + Yi .1 .1 
j=l 

i 

i 
vn+l , i = 1, ... , q. 

The Encoding 1 can be u~ if the constraint (6;1.3) is.,modified to permit 

muI tiple free outputs. As far as Encodine 2 is concerned, it could "be _~ __ 

used only if q ~ n + 1, and ev en then it iS.~estricted to the maximum 

of 1 free output Yi only. Therefore, it seems that the Encoding 1 

is more suitable here, since usually q > n + 1, and, the modifications 

required to permit multiple free outpu~s in Encoding 2 are not simple ta 

1: • 1 perform. 

Let st (~, ~,!) be ~he module characteristic function, 

the map~ings being deterrnined by the parameters t vi~EnCOding 1. 

. , 
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.. 
Again, due to the presence of a free~ y. in a the function n .has a 

l. 

s&quent1al character. 

For a problem wi th Cl::: 10 and n::: 4 a,.s.. before, some 30 

parameters would be needed, bringing the total number of variables in n 

to 44. The only practically possible representation might be using 
\ 

cubical complexes, since a map would require over 10~3 bitsS 

Determination of Feasible l''lappings - Nodule Application 1 

The overall circuit characteristic function of (_ 1 M) in 

Figure 6. 1 is gi ven by 

= (Lemma 2.3) 

This circuit has to realize the output char~cteristic function, 
• 

== ( n (~, ~,~) + 

( Q <P ) (Lemma 4.2) 

Hence ~C y <P
1 

must hold for aIl states of w and x with sand t 

taktng constant values. Therefore, feasible mappings and 
; 

exist lf the equation has an identity solution 

\ 
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(constant) for the pararneters sand J:. (The particular mappings are 

obt~1ned by substitutlng the identity solution(s) to the mapping 

t 
functions). By Theorern 2.), thè identity solutions are equivalent ta the 

solutions of the truth equation 

[ • <Il ) C 
( n <l> ) ] = 0 (6.1.5) 

x e B~ w € B~ 

Hence by scanning the identity solutions, the most suitable (under 

sorne criteria as in [5, 28]) can be selected. rnay also be 

guided by the nurnber of redundant domain variables which each such 

mapping would introduce [15, 23]. Ta deterrnine whether an output 

characteristic function ~ (~, y) .has sorne solutions with xi e x 

redundant the ,following test can be performed. 

If 

<l> (.:s, y) 1 

/ 

x.=l 
l 

is consistent then 

<P (~, y) == 1 

contains solutions with redundant 

1 

1 

x .• 
~ 

; 
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Evaluation 

The method of module application without parametric encoding 

of the mappings lJ , ~s rather simple and i t should be possible to 
x y ~ 

incorporate the procedure into any of the existin~ synthesis programs, 

such as [5, 15, 28]. 

The size of the arrays to be stored in [23 ] Hould be 

increased by m columns and at most by 2
m 

rows, where m is the 

number of module inputs. The module application is done once only, and 

then various mappings in the form of constraint equations can be applied 

in a search for a feasible decomposition. The optlmizing principles 

- J could remain wlthout any major change. 

In order to estimate the complexity of par~metric encoding 

of lJ and ~l , the size of ,the arrays/maps rcquircd to evaluate 
x y 

equation (6.1.S) uill be examined. Estimation of the size of functions 

involved: 

r + q variables, m1'lximl!'JI'Q"'K'pproximately 2
r 

rOHS in 

an array. 

m + n 
. m 

variables, maximum approx.lmately 2 rorts. 

r + m + 1 ~ 1 variables, approximately 

rortS (Encoding 2). 

(r + 1)~ 

(r+1-m): 
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• n + q + l:t 1 variables, maximùm' (n+-1)q rows 

~ncoding _1). 

Intermediate results in (6.1.5) 1 

since v can be deleted while forming the 

intersection, the total number of variables 

(ta be stored) is r + n + 1 s 1 

since ~ can be deleted while forming the 

relative ~omplement (# operation), only 

r + n + 1 t 1" variables need to be stored. - ~ 
~ 

l: [ • J the variable~ x and w may be dele~éd in 
x w 

the process of intersecting. ThuG it is 

necessary ,to store 1 ~ 1 + I.!: 1 variable 

- 4' maps 'or arrays • 

. 
Since 1 ~ t + I.!: t is l~rger than any ai' the other variable 

requirements (se8 discussion about the Encoding 1 and 2) then the largest 

ma~ ta be stored i1 l~ 1 + I.!: J bits. 

, 
By examining the row requircments of the various arrays of 

functions, it seems that the largest array would be tnat formed at.the 

, 

last operation in (6.1.5). That would have 1 s 1 + ! t 1 columns, and a 

• . . t f . (n+1)Q. (r+1): very conseTVatl. vc estlma e 0 maXlmum - - rows 1 
1 (r + 1 - m): 

) whi-dr"::iS bascd on the total number of ~ossiblc module variable ta prablem 
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variable mappings. If a 2 bit per variable encoding [35 ] is used then 

there are at most 2 • (n + l)Q. - (r + 1H 
( r + 1 - m)! <1-s 1 + 1 t D bits 

needed to store the result of (6.1.5). The actual bft requirement 

would very lHely be much smaller than that, however. 

Considering again the problem with 
--

r == 9, Q. 10, m 5, n = 4 

then 
~ 

I~ 1 = 15, I! 1 30, -. 
bit map is needed (independently wh ether any 

-

mappings are feasi bIe)"; . compared to the maximum of 

2 • 5
10 10: 1J • (15 "" 30) ~ 2.7 -)( 10 '. 5! 

bits for the arra~. 

Ho computational examples are presented, since even for 

trivial problems the numbcr of variables ïnvolved is rather high for hand 

manlpulatj_on. As far as computer aided synthesiG 15 ooncerncd thcn for 

. 
si.mple prob]'cmGl the forcmcntioned modification -Lo [28] could bc made; 

<.-
.. ! • 

however, p ,-oblcmG of practical in-Lcrcst hav1;-~ larr;e number of variables 

r ~10, q ~ 10, would require long computational ~imcs and have high, 

memory Tequiremonts. If par~~etric encoding_oÎ the mappings is performed 

to allÔ( for Gim~OUS processing of the various possibilities, the 

1 



, 

• ...s'tbrage requirements are close to current technological limi ts. Hence, 

at present, the use of suèh synthesis programs 5eems to be limi ted' to 
• 

rather small problems where a particular type of a solution is sought, 

and ~lhere the tasl< could not be performed "intui ti vely" becàuse of the 

large number of possibilities involved. Therefore, the development of 

such a computer program did not seem to be .iustified for economic reasons. 

A rather interesting possibility arises, howevor, if the 

computntional capability of a digital computer is combined with human 

intui tion via a computer graphies <system. ,There, the computer would 

perform the computational tasks(array operations) and minor decisions 

~ ( 

based on consistency conditions of Boolean equation. The human designer 

could then guide the choice of modules, their placement, and also set 
1 ~ 

the limits on possible mappin~s of problem to module variables. AU , 

the deci&ions could be guided by the future layout of the circuit 

board - a process rather similar to designing integrated circuit masks Hi th 

the aicl of a comnutcr grauhics system. 

6.2 Applic.1.tion #2 Faul t Detection in Combj.national Circuits 

A current problem in switching ci:~cuit manufacturing and 

• maintenance is faul t detection [6, 9, 37, 38]. If the number of 
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inputs to a 6i ven circuit is high then i ts testing by applica'tion of aIl .... 
posai ble input states to a combinational circuit or all input sequences 

to a sequential circuit becomes impractical. Considerir'ig only combina-

tional clrcui ts, i t has been shown that i t is sufficient to apply a 

) 
subret o,t: ~he possible input states to detect aIl single and multiple 

faul ts [ 6, 9, 37, 38]. 

A method will be shown, that will generate rirst aIl the 

input states vIhich could detect a partlculal:' faul t, and second, i twill 

be extendcd to gonerate a minimum len~th test set T 
s 

of input stimuli 

whi clt would detcct aIl sinele stuck at 0 and 1 Eaul ts ln a 

combinational circuit built from combinational modules. The procedure 

is based on the relation~hip between circuit and output characteristic 

functions as developed in Chapter 4. It is especially easy to use if the 

circui t characteristic functions of the modules comprlsing the nehiOrk 

are di Leetly available, for instance, from the li brary of modules as in 

Application 111. i·loreàv8r, i twill also be ~)hown hOvl the Same methodology 

can be appl1~o to r;cnerrttc -Lests for detcctinr; multiple "stuck at" faul'ts 

1 
and bridginr; f'lults. 

'. 

1 
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6.2.1 Dete~tion of a Single Stuck at 0 

Let a oombinational circuit be gi in Figure 6.2. 

It 1s required to find all states of the input variables 3 (stimuli) 
,j 

which would dctect a "stuck at" faul t on a line z feeding into a 

module G of the circuit. That is, if any of those states x 1s 

appliod to the circuit then a faul t on the line z would produce an 

6 

incorrect output ~. 

x - . 

disconnect characterized b 

c 

~ FIGURE 6 ,;i, SINGL~ FAULT DET8CTION. 

cl» (~, z) = 1 

Let <1> (~, y) be the overall circuit characteristio\ function 

wi "hhout any faul Ls present, (The circuit normally rcaIizcs that <jJ ), 

. , 

Furthermore, let the circuit charaderishc functions of a.U the comblna-

t10nal modules which compose C be known. Since the internaI structure 
\ 

; ~ 

of C is kno~n, then by applying Theorem L~. 2 and the Lemmas 4.2 - 4. J, 
r 

'. ' 

.' 
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! • 

the output cha acteristic function 3 <fi 1(~' z), describing the line z 

wh en d1sconne ted frorn the rest of the circui~ can be obta1ned. 

If ~C(~, z) is the circuit characteristic function 

normally reali zi.ng z then 

~1 (~, z) 

identically. A stuck at 1 line z actually produces z = 1, whose 

, 
characteristic function is ~c(~, z) = z. Therefore, the realization 

condi tian is 

Two cases can now oceur, either the relation is satisfied identically, -

then z is redundant in C and the fault cannat be detected, or the 

relation Qolds only for sorne states of x. For aIl the 'Other states of 
( 

x the funcÙon ~ 1. (~, z) is not realized, thus cp (~, yJ i:;; not 

realized, and consequently, an incorrect output y ig produced. 

o 

Therefore, these input states would detect the fault. The relation, 

1 
is not realized at the inconcïstency points of the equation 

.' 
----------

(z + 1 " (6.2.1) 

After simplification - aH input states x which would detect z = 1. 
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form the solutions to the truth equation 
f '-

\ 0# i 
il 

(6.2.2) 

Similarly, a stuck at 0 fault is represen~ed by z = 0, 

and the test states are th~ solutions to 

(6.2.3) 

» 
h 

Exampl'e Consider a circuit shmm in Figure 6.3 [6, 7J. 
~ 

The function 

\ 

y(a, b, c, d) generated by the circuit is __ -' 

> , 
y abc + abcl + acd + bcd 

Hence 

~ (a, b, Cf d, y) = y • (a b ë + a b cl + a c d + b c d) 

a 
1 

b 

c 
2 

cl 

+ y. (a ë + b ë + a Ci. + b Ci. + abc d) 

FIGURE 6.3. EXAHPLE FOR SECTION 6.2. le 
r.. 

y++ <P (~fOy) 

- ---_. 

1 l 
1 
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The circuit characteristic functions for gates 1, 2, J, 4 and .5 are 

, <Il Cl (a, b, zl) = zl a b + t 1 (a ~ br, 

<Il C2( c, d, z2) =- Z c d 2 + z2(ë + ël) 

<Il CJ (zl' zJ) 
- - - -

z2 ' = zl z2 z' rt zl z) + z2 zJ J 

<Il C4(zl' z4) 
-

il 
- - -

z2 ' = zl z2 z4 + z4 + z2 z4 

'. 
<Il C.5(z3-'- z4' y) = y Zj +.Y'1'~4· + Y z) z4 

Note that aIl gates are com~i~~ional 50 that the simpler form of the 

-

expression in Lemma 4.2 c~ be used (see Remark following Lemma 4.2) • . 
Let a fault be assumed on line Then"the following steps will 

generate the test input statesÎof (~, b, c, d). Circuits 1 and 2 

combinedl 

= 

Circuits 1, 2 and 4 combined 1 (Lemma 2.)) 

( 

1 ... 
} 

" 



" 

\ 
.,.' 

e 

<l>Cl,2,4(a, ~.L~). b, c, d, 

1 / - r ( t c1 ,2 ._ ,_If>C4> 
\ 1> .. • 

B
2 

zl z2 € 
2 

z4(a 'c d + b d'tc) ,r 
'-

+ zL~{a b ë +-â'bd+a ë + a a + b Ci + ~ a + abc d) 
-) 

'\ 1 . 
# 

The output characteristic function <l> , 1,,2,J,4 gene:rated through gate 5 1 

-
(Lemma 4.2) 

. 
il> 1,2,J,4(a, b, c, d, z3' z4) 

t ( <l> <l>CS) 
'\ 

= t 
c y e BZ ) 

(z3 + z4) Ca b ë - + a - ( -
c d) a b + a c d +\ b 

Il 
\ 

\ 

Z) z4(a - + b - + a Cl + 'b a +" ,~ c d) + c c 

Hence the"output characteristic f~nction for z) (Lemma 4.4) 
1 

= cI> 1,,2,),4 <I>Cl,2,4 ) .. 

, , 

= zJCa b ë + ~ b Cl) + z)Ca ë + b ë + a Cl + b Cl + a ~~ 

+ a c d + b c d 
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° 
~J(a, b, c, d, 0) - ~'b ë + a b a , -

--_., 
Therefore, any of the fol~owing S~lmu11 would detect~hat s-a-O faULt~.~I~ ___ 

(} 

·a- b c d 
,~ 

1 1 0 0 "\ 

1 1 0 1 /' , 
1 1 1 0 

\ 
... 

/. 

-----t- • 
z"l stuck at 1 

.J ~. 

a ë + b ë + a d + b d + abc a 

Hence any of the following stimuli would detect ~he s-a-l fault 

a b c, d 0>' 

-ci . 
1 t 1 1 . 

$ , 
0 ° 0 0 / -' 

/ 

0 0 0 1 

0 1 0 0 .. 

" 0 1 0, 1 
1 

1 0 0 1 

0 0 1 0 
• r 

~ 

0 1 
, 

1 0 

1 -0 1 0 r 

> .' 
The states 001 1, ,0 1 1 1 and 1 0,1 1 would detect neither faul t. 

' . 
(' 
J. 

, t 
-- - -

," - . 6 
- ' . 

(:J 

( T 

--r-- -

cf 

----
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6.2.2 ~1inimal Length Single Faul t Test Sets 

It has been shown [9] that aIl single faults ln a comb1fla-

ti6nal circuit are detected if aIl single faults on the circuit's checkpoints 

are detected. The checkpoints being defined as aIl prirrary inputs which 

do not fanout apd aIl fanout 'branches. 

Let i '" 1, ••• , k be sorne variable~ marking aIl the 

lines associated with the checkpoints of a circuit ·C. Before proceding 

to generate a minimal length test set covering aIl single fault:::; 01'). the 

k checkpoints, the sets' of test stimuli for each li ne Z. 
l 

generated first by the method shown 'in Section 6.2.1. Therefore, let 

<P • (x, z.) 
1-1 

~ 

i=l, ••• ,k 

be.the output characteristic functions associated with these lines. 

Furthermore, let 

.. 

Hence a stimulus 

! 

or 

resp ecti vely. 

'V ?(x) = ; . (x J 0) , 
l - 1 -. .' , , 

" 
'11 • 

1 ~ . (x, 1) 'V .(x) 
l - 1-

x* will detect a stuck at 0 or 1 fault on ~in9 

'V ?(xM-) 
l -

1 

/ 

/' , 
r 

\ 

./ 

_ l __ . - . • 

z. 
, ~ 

if. 

li 

• 
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A minimal length test set T s is defined as the smallest 

* Bet of input stimuli which wauld detect aU singlè "stuck at" faul ts on 

the checkpoints. Therefore, in terms of the ~ functions, it is the 
i, 

smallest set such that 

1t V i 3 
1 T ~'l' ~(~1) 1 x € 3 S 

~i 

and 3 
2 T· '1' :(i) 1 • x € 9 == 

S l -

Hence the determination of T can be formulated as a coverinG proble~. s 

As such i t could be 50) ved using a covering table Hl th i ts ro 

by aH states of ~ (B~), and the columns labellcd by the fu 

o 1 . 
'l'. l 'l'., i = l, ..• , k. A check mark i5 then n]élccd in an 

l l 

j 
if 'l'?( 1 \ x.i) = 1. A minimal coyer of the fur. :.tons 

l - \ 

-- \",\ --, 1 

A maior disadvantage of the tabular method ahove i., that 
l'I 

must then be obtained by any extraction procedure. 

\ -

'r. 
l 

the 

taole is extended over al] states of x. A smal1er coverinG . ( 
could 

be obtained by first forming pairwise intersections' [ 9 ] of 

, . 
'l'i so as to find the minterms common to the laq;cst passi ble---Lu1:~~llL.oî 

thcse functions. 

A purely algebraic metbod based on mutual intersections of 
1 

• 
th~functions 'l'i could be developed as folloHs: 

--,; 
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Let E be a set of 2k parameters 

{O 1 0 1 Ü P~ } , E = Pl' Pl' P2' P2' ... , Pk' 

and form a function 

k 
(p~ 0 ' 1 

P :;= Tl + 'fi i (~)) • (p. + 'fI~(x)). 
l l -

i=l 

... 
Delete aH terms in the Err form of P, whose E part of the product 

subsums another term' s Epart. After all 'such tems were deleted the 

modified function P- con tains only the largest non-zero products of the 

funçtion 't'i' The variables from E contained in a term mark those 

'fi. which did not take part in that product terme 
l 

At this point, let p* be the smallest subfunction (im-plicant) 

set J?. 

that the set formed as a union of all th~ missing -paramet-ers 

from aIl ~he product terms of p* 

A set T i5 then formed as followsl 
s 

'. , 
f - if .. 

is equal,to the complete 
1":, ~ 

F'or each term in P* select 

a single ,state x j for which the term becomes dependent only on the 

p9.rameters E (the x part is equal to 1) 1 

/ \ 

is a member of T. s 

, 

The method was -pr'esented wi thout a formaI proof 1 but i t closely 

f0llows the method of pairwise intersections Rnd fi~ding the smallest cover. 
l ' 

"-' 
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6.2.) Detection·of Other Types of Faults. 

Multiple "stuck at" Faults 1 

Frorr. possible multiplicity of faults, only double 

faults will herEY for reasons of simplici ty. However, the 

method i5 easily extendable to co ver any fault multiplicity. 

Let and Z2 be two chcckpoints in a circuit C for 

which a double fault test is'to be senerated. Similarlyas in Section 6.2.1, 

l~ the lines zl and z2 be disconnected and their output characteristic 

'\ function ~ 12('" zl' z) ~et 
tljlll(x) = <j)12(~' 1,1) 

-. , ----'-- _'JI1?C~) _ = _4' 12 (2!' 1, 0) 

0 

Iji 01(x) = ~ 12(~' 0, 1) 
.. 
f 

Iji OO(x) ~ 12(~' 
œ 

0) == 0, 
\, -

J.< 
A double Zz = a; a, a € B2' can thus be detected byall 

.'~ 1#)' 

states of ~hich 
fjo ! • 

Minimal length test sets Cqn th en be obtained by a similar method as 

diSCU5sed in Section 6.2.2. 

" } 
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Bridging Faults 1 

./ 

A bridge between Unes zi and z2 will force z1 II' z2' 
/ 

/ ". 

Such faul t 
'.1 - all the would be tHen detected by states of x which are the 

l, 

inconsistency points of the equation 
t,.' 

<I>12(~' Zl}(Zl z2 
-

2,2) zi' + zl = 1 

!. 
with respect to the soluti6ns zl(~)' z2(~)' In other words, let 

" '{~( x) . - L 

Z e B
2 

1,z2 2 

, 
then a stimulus xli- will detect the p,articular bridging faul t if 

/ 

1'"(~*) == 1. 

6.2.4 Concluding Remarks 

Using the methodology described in the preceedirg sectiona, 

test sets of input stimuli for detecting various types of faults can be 
1 

generated. f'linimum length test set can then be obtained by a covering 

, 
procedure mentioned in Section 6.2.(>. / The entire test generating -

J" 

procedure could easily be programmed for ~tal computer! especially 

if cubical complexes are used to represent the various functions. The 

( 

!: 
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algorithm could also be incorporated 1nto the computer aided synthesis 

prograM mentioned in Section 6.1, sinee both prscedures would use the ~ame 

library of module characteristic functions. 

J 

( 
\r , 

". 
":"\ . 
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CHAPlliR 7 

CONCLUSION 

In fthiS final chapter" an overall summary of the orig;nal con-

tributions described in the preceeding.sections is -presented, and natural 

extensions of these contributions are put forward as to-pics for further ... 

research • 

.. 

, ' 

Summary 

7.1.1 Theoretical Aspects 

The roots of the(~ork lie in the theory of systems of Boolean 

equations. Therefore, sorne major to-pics related to the formation of a 

characteristic 'equation ~(~, y) = 1 (function ~(~, y)) of a system of 

B.E., to its consist~ncy, and to the methods of solution were reviewed in the 

.- first three sections of Chapter 2. The following pro-perties of B .• Ei.1Pertinent 

ta the research were then elaborated UpOTh in Section 2.4: 

Detection of a unique solution and of identity solutions by a 

sim-ple algebraic method. 

'" Determination of a characteristic equation equivalent to a 

system of two equations related by the fact that the solu-. 

, ' 0' 

tions of the first equation are required to form the do.main 

• of the second equation (Lemma 2.3). 
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The second case played an important role whon an analysis of switching 

, circuits was performed in Chapters :3 and 4. First, however, the concept 

of a çharrLcteristic function (equation) of a system of B.E. \olas applied 

,-
to chariLc~e-ri ze a e;enèraJ ru,rcui t (F'iVlre, J.1) reprcsentéd by a l"lealy 

type machine (Definition 3.2). It resulted in the definitions of a number 

of ,~recial characteristic functions which re] ated the ,input stlmu~i th 

the internaI states and the output responses of the ci.rcuit. (Definitions 

3.2, 3.3, 3,~6, J.12, 3.14). ;I,utual relûtionshi.p between t~ese functions 

" was analyzed in Lemma 3.2, Theorem 3.1, while Lemma's 3.1, J.3, 3.4 and 

1 3.5 showed how a description of the stable, oscillatory and transient 

statos of the circuit can be obtained from the correiPonding characteristic 

equations,by analyzin3 their solutions and conGistency. Tho above steps 

. 
eventually lead to the formulation of a circuit characteristic function 

'.; 
,j 

~t(~' y) (Theoren 3,3, Definition 4.1) which related, through (\J == 1, 
c 

the input states x wlth thé stcady out?ut stat~s y that may possibly 

,.. 
be assumed by the circuit if a proper input sequence i5 applled, 

A trivial case Hhen a circuit h::l::; comhLn::ltion8.1 bchaviour 

was studied in Thcorcm J. 2. F'urthermore, ~ t W'lS shown in Tbeorem' 3. J 

that combination:31 behaviour (Definition 3.13) of an internally 
li 

sequential circuit is character:itzed by the existence of a unique solution 

to ~c(~, r) = 1. Assuming the internal ~tl~ctur8 of the circuit to 
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consist of a next state generatorf g and an output ~enerator f 

(Figure J.1), the function ~ c(~' y) was fonned as 

l: 
z' 

( <il c 
g 

(Definitions 5.12, 3.1l~; Theorem J.3) by application of Lemma 2.J. The 
...... 

expression gi ves an insight ;'nto the mechanism by which a sequential -.... 

circui t may produce a combinational output. Namely, that the outout 

-/generator f. filters out'the possible multiple internaI steady states 
r., 

z of for each input state ~, ~and thus a unique output state Y... 

is generated. 

Realization of multiple ou~put incompletely specified t 

swi tching functions y(~) ,by eombinational and sequential networks was 

-th en treated in Charter 4., An output characteri~tic function <p (2S' yJ 

(Defini tion h.2)' was formally defined i~ such a way that the maximum per-

. 
missi ble steady output st'â.tes which a circuit may assume so as to satisfy 

sorne requirements are descrlbed by the solutlons of , 

1. 
ri- • 

If a partieular circuit (represcnted by ~) opcrate~ wlthin these 'Pc 

states,then th~t faet was defin~d as a rcalization of the output • 

eharacteristic f\mctipn, and i t was shawn tha t in sueh a case the 

relation 

" 
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ls satlsfied (Lemma 4.1). The original requirement placed on a circuit 

was to realizc \Y..(~); however, it was demonstratod in Theorem 4.1 that 

the realization of ..l(~)\) corresponds to the realization of an output 

characteristip funct ion deri ved from the system of relations 

, . 
" 

Consoquently, the function Y..(~) is rcalizcd by a circuit C if the .~ 

relation betweon the respec~ve characteriGtic functions is satisfied. 

This notion was further extended to coyer realizations by 'circuits which 

conslst of cascade and parallel interconnections of functional modules. 

By ~ssumin~ that sorne of the modules in the circuit are still unknown, the' ,. 
problem of. functional decomposi tion was showr: to be equi valent to the 

problem of solving"a system of 2 Boolean eJuatlons re~at~d by the orùer 

( ~) relati.on. 
-. . Thus the various approaches to decomposition as mentioned 

in Section LL 1 werc unified and eX]1ressed under one mcthodology in 

Lemma's 4."2, IL) and l~.4. Their combincd effect H8S th en stated in the, 

main dccomposHion hcordn (Theorem L~.2) and Hs Corollnry. 

The un fylntç impaçt of the mdhodolo('S 0 r charnctorhjtic 

functions on fJlnctional decomposi tion call be summarlzed as follows 



'/ 

, 
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• 

iRi 

Independently of the position of the still un~nown ~odule 

inside the netwcrrk two conditions must be satisfied for a decomposition/ 

" 
realization to exist, namely, 

(1) a decomposition exists if the corresponding output 

charadteristic equation cI> (~, 'iJ = 1 derived for 

the unknown module ls consistent; 

(2) a circuit moùule C will comuiete the realization 

• provided that cI> C ~ cI> i0 satisficd. 

The partic'ular\output characteristic function cI> can be obtained as 

specified in the forementioned Lemma' s or Theorem L~. 2. 

The condition (2) above ls valid even lf the r.1odule is of a 

sequential character, provided that ~he circuit characteristic function 

properly describes its steady output, states under the possible inllut 

stimuli. Furtnermore, if a combinatlonal circuit is desired as"the 

missing modul~ then its output fUnction (~f x only) can be obtained as 
- Il, 

an elementary solution of the correspondlng output characteristic 

equation cjJ = 1. 

Having shown chat circuits wlth feedback loops (and thus with 

mul tiple output states) could 'be used to realize combinational swi tching 

functions, a more. detailed inquiry into the necessity of such loops in , 

, 
l' 

,--( 
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1 

minimal circuits realizin~ a given output characteristic function was 

" 
performèd in SecÜon 4.3. There, Theorern 4.3 stated a nece6sary 

J, . , 
condition under' which the feedback in a sequential circuit ~ realizing 

sorne <t> is redllndal')t. If the condition is satisfied then ,g could be 

made to degenerale in{o a purely combinational equivalent ~* obtain~d 

by 'freezing the feedback inputs of ~ at sorne constant value. Moreover/ 

it was demonstrated that the resultlng feadbackless circuit would not be 

as complex as the sequential.origi.nal. A subclass of the degenerat~ çases 

(for, sorne !lJ ) was named "direct transi tion circuits ". 
/ 

They are characterized 

by the property that any transition from an unstable state leads d~rectly to 

l 

astate permi tted by the output charac-l;,erishc function. Sin'ce any quas,i-

n~rmal (O-transition) circuit realizing !lJ beloD[;s to this subclass, any 

non-degeneratc circuit must be passin;?; throu8h transient states 

(k ?-1 transition). Furthermore, some of those states must not be nermit-

ted by cIl (Corollary 2 to Theorem 1~.J), that is, the output char::lcteristic 

L , 

...... (' ~ L 
,~ , '\ 

il , 
function'must not be realized during the transitions. The immediate implica-

tion i5 that al though fecdback in cÇ>mbination::ll networks might possibly 

reduce the overa11 c'ost, the' behaviour of 0uch ci.rcui ts vlOul~ be inherently .,. 

hazardous during thcir transition penods (Corollary J ta Theorcm li-. 3) • As 
o 

. 
a matter of fact, the existence of such trans.lent states desq:-lbes 'the main 

difference between parallel and seriaI information processlng systems. 
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•• 

That is, ~arallel processing (in space) 
" 
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generates the steady state 
, ' 

, 

re6ponses faster (no transient states): 'out more har~are ma:l be required 

,..-' ,,' 

as compared to a seriaI case wh~~' the processinc is done by iterations 

in time. Thùre, however, sorne internal memoryo(feedback) is required to 

store the intermediate results (transient states)' which do not yet form 
.. ' 

the correct final output. A simp\e example is a fast parallel adder as 

compared with its seri~l equivalent. 
k ' ., " 
,~ 1 1""""""--

~ven though ~he direct transition circuits are of no practical 

. ' 

value, :t;or ~hey are 'al'ways 'g.~!;;enerate with rest'ect tol the output characteris-
" ' , 

, 
tic function realized, it was shown in Theorem 4.4 that any such circui~ caTI 

, ' 

be obtained via a~general solution .~ = n(!, E) of the output char~teristic 

equation , , 

" 

1. 

Un~rtunately, a similar procedure has not y~t been.discpvered for the non-.. 
• , , 

~egen~rate cases; however, as already merftioned, the Corollary 2, to 

Theorem 4.3 stated sorne of thc neOfssary con1itions'that such circuits must 

satisfy •. 

" 

,'/ 
0 

'. 
'1 

/ , .. 

. ' 
,f' 

1 
J 
'" , 

o 

l, ., 
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7.1.2 Computational Aspects 

" ~ 

The theoretical work of Chapters 2, J and 4 was done 1ndepen-

dently of any particular form of Boolean funetion représentation. However, 

in arder ta i llustrate the resul ts on examples, sorne computational fom 
-. 

with associated operations had to be selected. Two typical forms were 
" ' / ' . 

reviewed in. Chapter 5, Section 5.1, namely, the l'iarquand maps and the 

Ql' () cubiea cl)~np~exes arrays • l t was shawn th en Û(Section 5.2' (Algori thms) 

• and Section 5.) (BxamDles) that the forma) descriptions of the previous 
~ . 

chap.ters cou) ct easiJ y be transcri bed into ei ther of the computa tional forms. 
. \ 

This ease of conversion is due to the fact that the methodology is inde-

pendent of any data structure. 
\ 

Neverthele~ cubical complex~s and 
/ 1. 

op~rations see~ to yielq'the most transparent representation of the ~ , 

algori thm's, since sone of the operations defined or: arrays have an il1}med!iate 

meaning in the cor:text of characteristic fur~ction.s (e.g. t .. 
~ 

D' , +-+ L qJl <P 2 +-+ <Il 1 # lÎ'2 ·etc ) . 
:L Bly/ ". 

:LE 2 J' ~ 

, ' , 
AIso, tllf' ;'lrr;lY opcrators 8110w for (-)RSY doscriptiQn of com-putationaJ pro-

, cedures if) a \olay r;imilar ta pragramvlirl[; languaees. / 
u -~he ahove mentioned close rel a tionshiD between characterlstic ( 

.. functioftr;; and, cubical complexes becomes especially apparent when the so ' 

called "function ar~ay" r7] of .l(~) is compared wi th 'the array of tne 
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\ 
tf"' 

output characteristic functlon of X(~) as used in Theorem 4.1. 

It can be shown that the two arrays are co ver equivalen~ (comva~e 

Algori thm 5.10 here wi th Algori thm J. 5 of [7J). SimD arl y, the circuit 

chara&teristic function of a ~urely combinational circuit c~Tesponds to 

the:function array descri~t~at circuit. 

function as a concept is ~ore general, Sll1Ce 

However, the charact~ristic 

i t allows for represent~ng 

, 

both C9~bin;'lti~ an~ . sequential circu'i ts in .'J unificd manrwr. t::ven more 
{ "',~ 

impQrtant is UIC fact, though, that charâcteristic functions can be 

analyzed using the theory of B.~., indeperdently of the form in which they .. 
would eventually be represented. " Thus c6nsi5tency of an array, functional 

realization, decompositlon, redûndancy of input and state variableo" and 

combinational behavlour can be prcciscly defincd'using the method~logy of 
~ 

( 

.. 
1 

. . ~ 

characteristic functions as corresponding to the consistency of a Boolean equation, 5, 

, 
satisfaction of the ~ relation behleen two equations, the existence of 

a solution in a system of two equa tions rela ted bY .( , the existence of U 
- , . 

, l' 

a solution ta il B.E. undcr relatcd constralnts, a.nd the presence of. a 

unique solution in FI circuit characteristlc cquntlon, re:::;pective.ly. 
c 

J 
Similar definitions can be developed ta dcscribc a number of cther 

properties of switchlng functians and circuits (e.g. symrnetry, :xistcnc~ 

. 
of disjoint dccomposi tions, etc.). In other word:::;, if "funcMon a:;rays" ...... 

are consi~tently replaced by arrays of characteristic Yunctions then thé 

\ 

,. 
• 
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\ 

properties of 'the' cubi~al co~plex rep~esentatioh ,of mUlti;llC 

functions can be studied usin& a powerful taol - the th~ry of B.E, 
î 

} 

" 

Applications 
J 

1 11 ,. 

r 

.. 

\ 

ln prder ta. demanstra tE! .that the methodalogy.can. be used ta 

, , 
~ol'1e problel11s of pradical inte,rest, the l'1ateria1 i,n Cha1)ter () CDn'centratéd '. 

. 

on developing two part~cular app.lications. It was shown'thatl 

( 1) .. 
. . 

The methodology of ~haracteristic functions permits a ratner 
, , 

.flexible 'approach tQ ma~lar i-ynthesis of combinational ~. 
/ 

, circuits by decompasition, and tba t " \ 

.( 2) the output characteristic 'functions (equations) des'cribing 
lit 

the Anternal struqture of a combinational çirè~it carry' 

enough information' to allow for a unified approach ta 

the generation of test sets of input stimuli for detectin€i( 

various ,types of faults i~side such circuits. 
l} 

In both cases above, the development of solution steps wasrhone without 

any 

the 

dep~ndence on a data struc(,. howevcr, 

methodologyas stressed'in Section 7.1.2, 

. 
map ,or fl-rray alge>ri thms is ra ther tri vial. 

. ' 
due ta the properties of 

the conversion to 'ei ther 

. . 

-~ .. 
l 

1 • 

/ 

( 
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, , 
directions taken in functlonal decomposition'(Section 4.1) under one 

<P \ 

theory, tho position of a building lIodule (combi~ ti?nal ,or . .seq~entiaI) 

\ . \, <!# • 
inside the future circuit need ~ot be determin~d/i-n c dvancè. Tlfus an ~ 

, 

output characteristic function describine' a "flàating" module is obtained 

, 
first, .an~ then the module inputs ~nd outputs can be fixed by applying 

. ~ 
mapping constraint equations.so as to yiela the best conditions for 

.~ 

satisfyinc; the particular circuit optimization goais currently in use. 

!'loreover, the mapping constraints could be combined into two 'hypothetical 

mappine mQdules ( and n ) which are controlled by constant para-

-'-<. 
meters. It was dembnstrated that if these modules are.used in conjunction 

\ 

with the buildin~ module,then a truth equation for the parameters can be 

construded so' that any solution to the equation dcscribes a feasible 

mapping'j and thus à va] id deCOmpOqiti~ther ~rocedure is.relatively 

simple to incorporate into the optimizing routines Qf sorne ol the existing 

Ho'wever, the storage/time requirT-co~puter a~ded sy~t~ithmS. 

ments of these 'proerams would stIll remain hi~h (by present cl5lY standards) 

'. 

to be füu:'11h1e .for solvlnc; problcms of practlcal interest. Thèrefore, no 

, 
actual computer proGral'1 was developed, sinee i ts design was not justified 

on economic grounds. 

, ., _.1"-- .. 
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More practical results were obtained in the second appli-

cation dealing wlth fault detection. It was shown that a Set of ' .... • 
stimuli which would detect a pa~ticul~r.faul •• éorresponds,t? the set of 

inconsistency points (sin~l~riti~s) of an'?utput characteristic func­
~ 

tion (equation) deriv~d for the line ~ich the fault ls ~ssumed. 
1 

Furthermore, it was demonstrated that single and multiple "stuck a:t" 

as well a.a bridging faul ts could be detect,ed usi ng the same''lmethod. A 

covering procedure was the~proposed for selecting 

sets sui tabJ-e for detecting all single "stuck at" 

cedure could be 

before, and its 

.. 
extended to inelude other types of 

conversion to a compJler algorithm 

minimal length test 

faults. The ~o-' 

faults mentioned 

should be relatively 

easy, sinee the methodologf' of charaeteristic funetions is used 
'1 

throughout. 

7.2 Future Researeh 

The ~ollating:;:;'5 seem. ta ~e immediàtely suHable far 

further exploràtion based on the methodologieal tools developed here. 

", 

, 
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7.2.1 -Circuit Synthesis '-

" 
\ 

(a) The design of non-degenerate s.equenti~l circul tt ~hij would 
,1 

realize a gi ven output characteristic fUnction. 

J' 
Improvements'in general synthesis programs as out~~~d in 

Chapter 6, with the possibility ot incluqing external feed-

back loops, depending on the resul ts obtained in (a) above •. 

(c)' Application of the methodology 9f characteristic functions 

(d) , 
. , 

ta the decomposition of sequent\~l circuits with associated 

hazard analysi s. . 

~ue to the similarity between array representation of 
, ...j 

characterlstic. functions and "function a:r:rays': as discussed 

.. 
in Séction 7.1.2, a possibility for 

development of efficient algorithms 

research arises in the 

for generati~nimal 
. solutions to Boolean equations. It seems likely that some 

of the procedures used for minimiz.ing or reducing multiple 

li f ". output functions in. an array foim could be altered so as to 

perform the task • 
.... 

. , 

6 

l./ 

, 

1~ 
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.. 
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Faul,t Detection 

} ( 
Development of effi~ient èomputer algor~~hms which woultl 

(! 
generate minimal lensth test sets for cletecting variqus. 

type.:5t,0f faul ts in combinaUonal circuits, as discussed in 

i 
Expans~on of the fault detection method of Chapter 6 to 

cover'sequential circuits. It soems that'the state transi-
1 

ti~ characteristic 'function (Definition 3.2) would.be a , 

suitable tool for such an analysis. 

f 
1 

(c) (A corollar~ to fault detection , the design of easily 

testable circuits by monitoring faults of their submodules 

, 
asing circuits WhlCh implement the output characteristic 

functions associated with the submodules, as shawn in ~ 

Figure 7.1. The method Might be especially attractive , 

in the case of LS1 circuits whose internaI structure ls 

" very complex t and wl)ere there is 'no access to lthe rvartous 
~ ~ ," 

:c;ub-circuits contained pn the chips. Howcvcr, thora ls a 

number of maior problems which ha~e ta bc resolved first, ~ 

namely 

~. 
i'lhat form the circuits implementing an output 

characteristic function should have. 
... 

l 'l 



'. . , 

, 

f 

r 

, . 

ni). How complex such a moni toring technique would 

be as compared to cu~ent methods, wh1ch 

usually imple~ent a given circuit twice (or 

more) and then use co~parator~e~ide 

191 • 

)'lhether a correc,t output response i$ obtained. 

~ 

• 
(iii) Hhat output characteristic function should be 

used if the module monitored is redundttnt in" 

the overall network. 

Possible advanta~es of the characterj stic func tion approach 

" 
.. 

could be summar"tzed as folloHs : 

. 
Ca) The checking circui t would have a structure different from that of 

. "t· 
the module moni tored, thus the' chance of inducing the same 

manufac.turing faul ts in bath circlli ts wO'.lld be decreased, 

Tesulttns in more reliable performance. 

(b) If <P C is the ci:r::c~i t Bharacteristic function and 1> 

r 

the oU'~pu t characteristi..c function' of the module, then all 

.r th8 stat.es in 1>' <PC can bo considered as don't caro 

is assumed) when deslgninG the chockin6 . ' 

circui-t. -

/ 
\ 

• 
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steâdy state : 

z = 0 fault 

z = 1 no fault 

c 

" 

... 
x y. -

M 
w -

<Pc 

'--

/ 
<Pc ~ <P ! ... , - 'l 

.~. 

FIGURE: 't.l. FAULT liO?UTORING. 

--- ...... 

Final Remarks , 
In order to underline the title of the thesis, the following 

are the main unjfylnG aspects of the methodology of characteristic 
1 

.' 
functions 

(a) - The representation of cO'11binational and sequential circuits 

c?-n .ne unlfied wi th respect to the synthesis of combinati.onal 

. networks. 

(b) The various directions taken ln the synthesis 01 combinational 

circuits (Section 4.1) may be approached llsing one methodology. 

, 

, 
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Since "function ~rra'ys" were, shown ' to be jus t special cases 

of characteristic functions represented as arrays, the 
, , , 

methodological tools ~f Bool~n equations can be used 

for ùeveloping and analyzing computational procedures which . , 

are based on that data structu~~. 

. 
The formula~ion·of detection procedures for varlous" types of 

faul t's in combinational circuits may be done using a unified 
~ 

ap\?roach. 

rneth~d010~ might ~eem to be comp.ut:tiona~ ) 

the case of simple cirC'" . .1i ts, its advantage ~,_/ more complex, especially in . ~ 

" 
lies in the underlying phi}osophy which allows for describing ,solutions, 

ta various logic design problems in terms of ~imple concepts related to 

tçe prouertics of Boolean equa}ions. 

4 -. r 
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