
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 4, APRIL 1978

Aspects of Applicative Programming for
Parallel Processing

DANIEL P. FRIEDMAN AND DAVID S. WISE, MEMBER, IEEE

Abstract-Early results of a project on compiling stylized recur-
sion into stackless iterative code are reviewed as they apply to a
target environment with multiprocessing. Parallelism is possible in
executing the compiled image of argument evaluation (collateral
argument evaluation of Algol 68), of data structure construction
when suspensions are used, and of functional combinations. The last
facility provides generally, concise expression for all operations
performed in Lisp by mapping functions and in APL by typed
operators; there are other uses as welL

Index Terms-Compiling, functional combinations, Lisp, multi-
processing, recursion, suspensions.

INTRODUCTION

THE purpose ofthis paper is to review the implications of
recent results in recursive programming under a highly

parallel execution environment. These are early results of a
project aimed at the compilation of stylized purely recursive
code. They have been presented elsewhere [5], but the
implications of this type of compilation for highly parallel
target code have not been gathered in one paper.
As programming tools these results appear as enhance-

ments to applicative programming, enhancements we find
necessary to strengthen classic (Lisp [21], Iswim [3] and [20])
recursive languages to express preimages of classic iterative
programming techniques. While iterative programming is
better developed, more familiar, and better understood than
applicative programming, we strongly believe that it is
unsuited to modern programming problems. Iterative pro-
gramming has its roots in Turing's theoretical work. It grew
with the first computers and matured through the develop-
ment of programming languages (Fortran and descendants)
which at first attempted to model iterative machine architec-
ture and later, because of their universal acceptance,
proceeded to determine that architecture. The work of
Godel and Church, contemporary with Turing's, supports
another philosophy of programming which we feel is
required to conceptualize solutions to problems for im-
plementation on modem hardware.
We adopt a philosophy requiring all programs to be

expressed as functions. There are no explicit loops (hence no
goto controversy), no assignment statements [22] (only
parameter bindings), and no explicit input/output functions

Manuscript received December 3, 1976. This work was supported in
part by the National Science Foundation under Grants DCR75-06678 and
MCS75-08145.
The authors are with the Department of Electrical Engineering, Indiana

University, Bloomington, IN 47401.

(instead input files are taken as arguments to the main
program and output files are results [9]). The language
described below has been implemented semantically in a
single processor environment [16]. The techniques described
here do not change the semantics of the language as far as
computed results are concerned. They will, however, alter a
program by allowing concurrent processors to alter the
space requirements as necessary to allow computation to
proceed.
An issue not discussed here but implicit in all our designs

is the style in which the programmer is expected to express
his algorithm. Stylized recursion [5] is a methodology for
formulating recursive programs which encourages good,
efficient program structure and permits effective analysis
and transformation before the code is executed. It is during
this compilation phase that we expect that parallel proces-
sing can be specified. The programmer does not concern
himself with the possibilities and pitfalls of parallelisms; the
compiler selects the parallelisms from his stylized code and
provides the synchronization of the processes it has
identified. Our control structures allow more of this auto-
matic parallelism selection than classical iterative control
structures.
The remainder of this paper is in five parts. Only the last

explicitly discusses parallelism; the first four develop a
language with trivial syntactic structures but with semantics
which have only been recently proposed and which allow a
remarkable degree of parallelism in interpreting applicative
languages. The first section introduces the elementary
syntax of the language whose only control structure is
a function call; an obvious parallelism allowed is collateral
argument evaluation. The second feature introduced is
functional combination, whereby conceptually parallel
applications of several functions may be dispatched across
multiple arguments yielding multiple results. Third, an
extension of functional combination to arbitrary instances
of the same function or the same argument allows a simple
representation for the concept of "mapping" or "pipelined"
operations on homogeneous structures. The fourth feature,
provided by suspended argument evaluation in the primitive
constructor function, allows for massive unstructured paral-
lelism in a system with thousands of processors. The last
section develops possible interpretations of these features at
run time; the reader more familiar with parallelism than
with applicative programming might scan it first in order to
cast his interpretation of the four language sections in terms
of something more familiar.

v 0018-9340/78/0400-0289$00.75 () 1978 IEEE

289

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 4, APRIL 1978

THE LANGUAGE
The only structure in the language is a parenthesized

acycic list. The programmer may use it to construct arrays
(e.g., a list of lists), trees, and directed ordered acycic graphs
(DOAG's). (N.B., This does not mean that the run-time
structures are necessarily linear or acycic-the compiler
may have changed them.) Functions that manipulate these
data may be built from a given set of elementary list
operations.

Lists, represented with parentheses, are composed of
elementary items or other lists. An elementary item is either
an identifier (which may be bound to another value) or an
integer (which is implicitly bound to itself). For example, the
five following structures are legitimate as data:

123
FRED

(2 3 4 5 6)
()
(FRED (8) (2 MANY () (GREEN)) BANANAS).

A program is a function which takes as datum a list of the
above sort and generates a list or an elementary item as a
value. The program, however, never uses the parentheses
notation explicitly.
The first programming notation is angle brackets: a

bracketed sequence evaluates the list of the evaluated items
of the sequence in order. For example, <6 5 4 3> evaluates
to (6 5 4 3). Let x have the value (2 4 6 8) and let y have the
value (B A N A N A s). Then <x y> evaluates to

((2 4 6 8)(B A N A N A S)).
Bracketed sequences are provided only for creating lists of
fixed size and therefore they can be associated with record
structures of other languages. There is also a list building
function, cons, for building lists ofundetermined length; but
before introducing it we must introduce the syntax for
function invocation.

Function invocations are represented by a pair of items
separated by a colonf: 1. The function position, here denoted
by f, indicates the operation to be performed upon the
argument list 1. Combined with angle brackets this func-
tional syntax is very suggestive of standard mathematical
notation. Instead of min (i,j) we write min: <i i>, and
sum: (2 3 4 5 6> evaluates to 20. (See also [1] and [13] for
similar applicative expressions.) With the binding of x from
above, sum: x evaluates to 20; this case illustrates that the
argument list need not be explicitly bracketed although it
usually is.
A most important primitive is cons; it takes two argu-

ments, an item and a list, and returns the list whose first
element is that item and whose remainder is the original list.
Thus cons: <2 y> evaluates to (2 B A N A N A s). Two com-
plementary operations, first and rest, return the first item on
a list and the list without the first item, respectively. Thus,
first: <x> evaluates to 2 and rest: <y> evaluates to
(A N A N A s). The semantics of these three functions are
particularly interesting [8], and we shall return to them in
the next section.

We shall use other elementary functions without
definition; their meaning is obvious from context. These are
often arithmetic, like sum. and include simple predicates:
null tests if its argument is an empty list and zero tests if its
argument is 0. Example functions are presented by relating a
prototype invocation to its definition in terms of a condi-
tional expression. This definition is presented as an alternat-
ing sequence of tests and values whose interpretation is
assisted by the insertion of the "commenting words" if then,
elseif and else. For example,

min:<ij>
if less: <i j> then i
else j

can be abbreviated by

min:<iI>
less: <i j> i

The tests are evaluated in sequence until one succeeds; the
value immediately following that test is the value of the
function. If no test succeeds then the value of the function is
the value of the last expression in -the sequence if the
sequence is of odd length (the else part), or rarely the empty
list if the sequence is of even length.
As an example we present the definition of the function

allrember which removes all members equal to its first
argument from the list which is its second argument.

allrember: <e 1>
if null: <I> then < >
elseif same: <first: <1> e>

then allrember: <e rest: <1>>
else cons: <first: <1>

allrember: <e rest: <1>>>.
It is also possible to define functions which take an arbitrary
number of arguments in the same manner. An example is the
function concat which returns a list which is the concatena-
tion of all its arguments (each ofwhich is a list). An auxiliary
function, append, is required which concatenates just two
lists.

concat: Is
if null:<Is> then< >
elseif null: <rest: <Is>>

then first: <Is>
else append: <first: <Is>

concat: rest: <Is>>;
append:<la lb>_

if null:<la> then lb
else cons: <first: <la>

append: <rest: <la> lb>>.

Integers may be used as functions: as a function the
integer i simply returns its ith argument. One use of this
notation provides for array subscripting: if c is bound to a
list of lists (a matrix) then 3: 5: c evaluates to the third item
in the fifth list (or the entry in the third column of the fifth

290

FRIEDMAN AND WISE: APPLICATIVE PROGRAMMING FOR PARALLEL PROCESSING

row). The integer 1 may also be used as an identity function,
often with the "invisible argument marker" symbol #.
The symbol # evaluates to a token which is ignored as a

parameter to a function. Its evaluation is therefore useless
except as an eventual argument to some function; in that
role it acts much like the numeral zero: as a place-holder in
argument structures with no ultimate meaning itself. For
example, if d is bound to the evaluation of
< # # 9 # 15 # # > then I: d evaluates to 9, 3: d diverges
since there is no third item in d taken as a parameter list. A
list like d is often used in conjunction with functional
combination (below).

FUNCTIONAL COMBINATION
Functional combination is described elsewhere in some

detail [6] and [7]. It provides the framework which allows
one recurrence to accumulate results in the same way that a
single iterative traversal of data may yield several summary
statistics. We describe its syntax and semantics formally
here. The hallmark of functional combination is the occur-
rence of a list in the function position. In first-order langu-
ages (where forms cannot evaluate to functions) this can
only happen if an explicit list (within brackets) appears
where a function is expected:

<Kf f2 fmo>:<Pl P2 Pn>.
The list immediately to the left of the colon is called a
combinator and is not evaluated. Instead eachfj is presumed
to be a legitimate function; either it has a definition as a
function or it too is a combinator. Any fi must require at
most n arguments; its arguments are extracted from the
structure of the arguments pi to the combinator; each one is
presumed to be a list.
The semantics of functional combination depends on the

length of the arguments and the combinator itself. Let mi be
the length of pi, the ith row. Let

m= min Mi.
O<i<n

The result of evaluating the form with a combinator as its
function is a list of length m. Thejth element in that list is the
result of

fj:<j':Pl if:P2 .. f P.>'
(The integer function j' is the same as the function j except
that a token evaluation of # is counted in selecting the
result. If the result of applying j' is an instance of #, it is
passed as a parameter tof, which ignores it.)

In full blown form we have

<Kf f2 fmo>: <PI P2 Pn>
= <1:<': P1 1: P2 . : P.>

f2: <2':p 1 2 : P2 2 Pn>

fm:<M ':P1 m':P2 ... m Pn>>
An elegant interpretation of the evaluation of such a form
arises from viewing the result of evaluating each pi as the ith
row of a matrix whose columns are then referred to as yT for
1 < j < m. The result of evaluating the entire form is that of

<flY1 f2:Y2 - fm:Yn>.

Thus, the evaluation procedure can be described as an
evaluation of arguments in row-major order with par-
ameters passed to functions in column-major order. The
derivation of m. as a minimum implies a "guillotine rule"
which causes a "jagged" matrix ofarguments to be truncated
at the narrowest width. In the case that m = 0 the result of
the evaluation is the empty list. As an immediate result the
list < > is defined as a constant function: < >: l evaluates to
the empty list regardless of the binding of 1.

In order to facilitate the matrix interpretation of func-
tional combination its invocation will appear with the
arguments on separate lines and vertically aligned to suggest
the columnar relationship. Furthermore, names offunctions
which return results of fixed length will be hyphenated to
suggest the meaning of each component of the answer. For
example:

<sum prc
< 0
< 1
< 0

)duct quotient difference>: <
1 63 19 >
3 11 >
3 9 # >>

evaluates to (1 9 7 8).
A more interesting example illustrates the power of

functional combination as related to recursive program-
ming. The function lt-eq-gt takes a list of numbers and a
numeric value as parameters and returns three results
corresponding to the three components of the partition of
the list by that value: those less than, those equal to, and
those greater than it. The construction of the partition is
accomplished by a single linear recursion over the list. Since
operations like this are common in programming (for
example, it is the key step in the Quicksort algorithm [14]) it
is important that they be expressible in a form analogous to
the simple loop available to iterative programmers.
The following example uses functional combination three

times in essentially the same way: the pattern of invocation
is <..>:<... > which suits the row/column description given
before. An invocation may also appear as <.>: I where 1 is
bound to a matrix which will be decomposed to extract
parameters in the manner described above. It is also possible
to write something ofthe form <K> :f: Iwhich indicates that
the matrix will be the result of invoking a second functionf
on 1.

lt-eq-gt: <1 v>
if null:<l> then << >< >>
elseif less: <first: <1> v>

thencons 1 1 >:<
<first:<l> # #>
lt-eq-gt: <rest: <1> v>>

elseif greater: <first: <1> v>
then K<1 1 cons >:<

< # # first:<l>>
lt-eq-gt: <rest: <1> v>>

else <1 cons 1>:<
<# first:<l> #>
lt-eq-gt: <rest: <1> v>>.

291

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 4, APRIL 1978

Another application of functional combination involves
the invocation of the function being recursively defined with
the combinator. We present an example in which the defined
function appears twice, resulting in two recursive invoca-
tions. In a deep recursion the invocation pattern generates a
binary tree: at the nth level the results are determined by the
results of 2" functional combinations which dispatch 2+n
recursive calls. That tree structure is no accident since the
example is concerned with searching binary trees [18] (those
whose in order [19] traversal visits the nodes in order oftheir
keys). Let l be an unsorted list of perhaps duplicated keys.
We present a function, quickbatch, which probes tree to
extract any information for every key in I and returns a list of
the associations for those keys which had information
planted in tree. The list will be returned in ascending order of
keys; and the search will be batched [23], so that every
subtree is visited at most once.

Define a binary tree to be () or a list of three items: (left
information right). Information represents the data stored at
the root of the tree whose subtrees are left and right,
respectively. In this case information is an association of key
and data. The invocation <key tree> extracts the key from
the root of the nonnull tree; the definition requires that this
key be greater than every key in the left subtree and less than
any in the right subtree.

quickbatch: <1 tree>
if null: <I> then I
elseif null: <tree> then < >
else concat:

<quickbatch hit quickbatch>: <
lt-eq-gt: <1 key: <tree>>

tree >
hit: <1 info>

if null: <1> then < >
else <info>.

The last line of quickbatch deserves some explanation. The
result of the use of functional combination is three lists of
associations on keys which are to be concatenated. The first
and third are derived from recursive calls on the left and
right subtrees of the nonnull tree. The middle list is empty
unless the key found at the root of the tree happened to be
mentioned once or more in the target list of the search.
Finally, the sorting of the answer list is carried out by an
implicit Quicksort at each node in the search. tree. The
function lt-eq-gt partitions at key: tree the target list
carried in an unordered batch to tree. For example, if tree
is as shown in Fig. 1, then quickbatch: <<9 2 3 6 8 7 3>
tree> evaluates to ((2 ant)(3 boa)(8 eel)(9 dor)).

STARS
The next language feature is called "star" because of its

syntax, reminiscent of the Kleene star. If z evaluates to A
then the list <z*> evaluates to the list (A*) = (A A A A),
which has the semantics of a list of an infinite number of
A's, although it may be represented in finite space and
printed in finite (star) notation. Similarly, <0*> evaluates to

(1 APL) (S EEL)

(3 BOA) (9 DO

f2 ANT) (4 FLY)

Fig. 1.

an infinite list of zeros (the zero vector) which, fortunately,
may be printed as (0*); <x*), under the binding of x as
(2 4 6 8), evaluates to a matrix with an infinite number of
rows and only four columns which may be printed:
((24 68)*).
The star notation may be applied in constructing combin-

ators if all elements are identical. For instance, in order to
add one to every element of a vector x one can write

<sum*>: <
< 1* >

x >

which evaluates to (3 5 7 9) under our binding for x. The
definition of functional combination above still applies
under the convention that the values mi can be infinity for
starred rows. In the previous example m0 = oo = ml and
M2= 4 so m = 4. Of course, if all mi = oo, then m = ooG, as
established by the convention

<f*>: <

< »>> = <f:<KXT 2 . .".

The star notation may be applied only to the suffix of a list
whose prefix is explicitly expressed: <cons cons sum*> is a
legal combinator and <2 3 4 5*> evaluates to
(2345555...).

Starred structures are most useful in the context of
functional combination. Starred functions are "spread" (or
mapped [21]) across all available columns of the argument
matrix; starred arguments are shared by all columns. As an
example of the impact of stars we present Gaussian matrix
multiplication, leaving the definition of transpose to the
reader.

dotproduct: <vl v2> sum: <product*>: <
vl
v2 >;

row: <vec transp> -<dotproduct*>: <
<vec*>
transp

mtxmpy: <ml m2> _ <row* > : <
ml
<transpose: <m2>*>>.

292

FRIEDMAN AND WISE: APPLICATIVE PROGRAMMING FOR PARALLEL PROCESSING

THE ROLE OF SUSPENDING CONS
The function cons is representative of an entire class of

functions which build structures by filling in the values of
fields within nodes. Syntactically it also serves as a space
allocator although that characteristic plays a lesser role in
the following discussion. We have proposed a new semantics
for cons and its extractor functions first and rest which
avoids the construction of those portions of structures that
are never accessed after their creation. The results apply to
any operation which assigns a value to a field, provided that
it is possible to preserve a record of all relevant bindings.
This criterion is difficult to meet in a system in which users
can change assigned values, but it is easily satisfied under a
regime of applicative programming in which the user can
only create and implicitly release such bindings [15].

Using the function cons as a paradigm of structure-
creating functions, we briefly explain its semantics. When
cons is invoked by the user, the value returned is a pointer to
a newly built structure. Rather than evaluate the arguments
to cons and create the complete structure, we create a
structure consisting of two suspensions. A suspension con-
sists of a reference to the form whose evaluation was deferred
and a reference to the environment of variable bindings in
which the suspension was originally created. These two
structures must remain intact for the life of the suspension.
The reference to the form is a pointer to a piece of program,
so the space it occupies usually represents no great over-
head. Environments present more ofa problem, since we are
accustomed to viewing them only as temporary structures.
Moreover, use of destructive assignment operations gen-
erally requires recreation of the entire environment in order
to assure the integrity of references to the environment as it
existed before the assignment. Destructive assignments, if
not well controlled, become costly; it is fortunate that they
do not exist in our source language.
When either of the functions first or rest is invoked, the

following events occur. A designated field ofthe argument is
checked to determine if it contains a suspension (suspen-
sions are flagged and easily distinguished); if not, then its
content is returned. If a suspension is present, then the
evaluator is invoked upon the designated form within the
preserved environment. The result is stored back in
the designated field in place ofthe suspension (for next time),
and the value is returned as a final result. These events
constitute coercion of the suspension. The two functions,
first and rest, therefore act as probes into the data structure,
with possible effects of a predictable and benign sort, rather
than as simple extractor functions.
As a result of suspending, evaluations are delayed as long

as possible. Ultimately all evaluations take place as a result
of the demands of the driver of the output device which tries
to move the contents of its list to the external device. As it
traverses the list it is outputting, it invokes first and rest,
causing top-level evaluation, which in turn results in the
creation and inspection ofmore structure, indirectly forcing
all of the necessary evaluations. Regardless of the intentions

built are those which are essential to deciding what informa-
tion is to be output. Assuming that conditional expressions
have their usual interpretation [25, p. 335] of being strict in
their first parameter [8, p. 261], least fixed-point semantics
for the language results [8, p. 270].
A fortunate side effect of suspending the creation of data

structures is the ability to deal with infinite structures.
Consider the list defined (but never completely constructed)
by the invocation of terms: <0> where

terms: <n> _ cons: <recip: <square: <n>>
terms:Ksum:(1 n)>).

That list, the reciprocals of the squares of all the positive
integers, might be familiar since its sum, excluding the first
term, converges to ir2/6. Suppose that z were bound to the
result of terms: <0>; in fact, because of the suspending cons,
z is initially bound only to a "promise" ofthis result. As long
as 1: z is not computed (since it diverges on division by zero)
and as long as a complete traversal of the structure is not
invoked, the infiniteness of z poses no problem. An access to
6: z, if essential to the output device, would find the answer
0.04 even though that number had not been present before
that access; it would have been computed had it been of
interest earlier. (This use of cons is similar to Landin's
prefixs developed by Burge [3], but it differs precisely in that
the rest of the list z may be accessed without computing the
divergent first element.) There are other implications ofcons
[11] for infinite structures [17].
The same techniques used for cons may be applied to any

record creating (field assignment) function within the
system. We have proposed an interpreter [8] in which all
field assignments are suspended. This has a great impact;
in particular the construction of environments may be
suspended. This means that no argument will be evaluated
unless the corresponding formal parameter has been ac-
cessed by some operation critical to the execution of the
program (i.e., critical to the creation of output). This effects
the call-by-need argument-passing protocol [26], the call-
by-delayed value [25], and lazy evaluation scheme [12].

Another effect is on the semantics of functional combina-
tion. The result of an application of functional combination
is a list which, not surprisingly, is conventionally built with
cons. If cons suspends evaluation then only those items in
that list which are accessed are ever created. For instance,
the result of an invocation of quickbatch is a list. That list, if
not trivial, is the result ofan invocation ofconcat which uses
cons. Later arguments to concat need not all be computed at
once (or even at all if only a part of the result were ever
needed for printing). The argument list for concat is the
result offunctional combination and thus, as we suggest here
and demonstrate elsewhere [6], [7] need not be computed all
at once. Instead of computing the complete answer, only
that computation path essential to the answer is pursued.
Intermediate environments are preserved in case any
suspensions are coerced later. Recursive calls on the left and

293

of the programmer, the only structures which are actually

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 4, APRIL 1978

the right subtrees often need not both be evaluated. For
instance, only five recursive calls on quickbatch are required
to determine the first information-pair, (2 ant), in the
example above which requires fourteen recursive calls (plus
the outermost call) in order to ascertain the final answer.

OPPORTUNITIES FOR PARALLELISM

With the language defined, we now turn to the opportuni-
ties for parallelism provided in the language. We do not
explicitly require these parallelisms to be performed, nor do
we require that the programmer be aware that they even may
occur. Programs are easily written with these control struc-
tures with the semantics described in the previous section,
which do not depend on concurrencies. It is significant that
some of the semantics of the language allow for improve-
ments in parallel interpretation of programs written in a
very popular language differing only syntactically from ours
[21]. It is the role ofa compiler to detect the opportunities for
parallelism in its pass over the program before run time and
to alter the code to be interpreted in order to provide for the
parallelism allowed by the target hardware. The responsibi-
lities for synchronization are- therefore the concern of the
compiler so the programmer need not worry about issues of
"structured multiprogramming" [2].

At the same time that we say that the compiler should
detect parallelism for run time, we should point out how the
source language helps the compiler in this task by allowing
simple program structures. Most notably, the language does
not have destructive assignment statements; it is free of side
effects. All variable/value bindings are established as
parameter/argument bindings in function linkages, and they
are therefore not subject to change during their lifetime. An
obvious (but not new [27]) opportunity for parallelism is
collateral argument evaluation, establishing these bindings
simultaneously since they are defined independently of one
another. These bindings are abandoned after all computa-
tions under the environment of the function invocation have
been completed, but until then they remain intact. This
integrity of environments, essential to the suspending cons,
also alleviates the concurrency problem, since no conflict
arises because of a reader accessing-a value as a writer alters
it [4].
The feature of suspending cons, itself, provides opportun-

ity for massive parallelism. A system implemented with only
the user's invocations of cons suspended, or with those and
all the system structures suspended, may have hundreds of
suspensions pending on the system during the course of
computation. In a single processor system all (but one)
of these would await probing by the system functions, first
and rest before their coercion would be initiated. If the
run-time environment were enriched with idle processors,
then any of these suspensions could be coerced simultan-
eously without delaying the progress of the critical evalua-
tion (the single one active on a single processor). Let us
designate that distinguished evaluation as the colonel and
any other processors available will be called sergeants.
The parallel evaluation strategy is to keep the colonel

working on the same critical process which would occupy a
single processor and to allocate the sergeants to suspensions

which are "near" the colonel process. Since evaluation of
suspensions usually converges to nodes containing new
suspensions rather quickly, sergeants tend to finish tasks
rapidly after which they are reassigned to new ones "closer"
to the moving colonel. (It is possible that a sergeant could
fall into a divergent evaluation and therefore be lost to the
system until the suspension it was evaluating becomes
irrelevant.) The colonel behaves exactly as a single processor
would, except that from time to time it accesses what would
have been a suspension and instead finds the result already
provided by a sergeant who had passed through earlier. The
definition ofthe "near" metric should be chosen to maximize
the likelihood of this fortunate event. The sergeants scurry
about the system following the colonel doing their best to
satisfy his anticipated needs. Some of their effort may be
wasted since not all handiwork of sergeants need be accessed
by the colonel. Yet the time to compute the final result is no
more than the time using a single evaluator since parallelism
has been provided at essentially no overhead. There is no
cost due to interprocessor communication, and little inter-
processor conflict depending on memory architecture and
access pattern. Some additional cost may arise from the
enforcement of the "near"j metric; but this requires overhead
only as a sergeant process is initiated-not while it is
running.
Even though a processor has been led down the garden-

path (diverges) [8], there is still an opportunity for recovery,
if the value it is supposedly computing is discovered to have
become unnecessary to the system. This, in fact, is rather
easily accomplished because processor allocation is so
closely tied to the data structure. The same mechanism
which determines that a node has become useless and is to be
returned to available space need only stop execution of any
process (some wayward sergeant) which is operating on a
suspension referenced from that node. Since all space al-
located by the colonel for its computation will be returned
after the result has been provided, it follows that all ser-
geants will be recovered as well by that time. Therefore, ifthe
colonel's computation converges it is not possible to lose a
sergeant; all space and processors will be restored to the
system.

Functional combination offers two sorts of parallelism.
The first is exemplified by the code for It-eq-gt. In the
definition for this function the recursion is linear down the
list parameter, but at each recursion step each of the three
developing results must be handled. Clearly the three pieces
of the final result can be handled by three concurrent
processes. So a simple but bounded parallelism is provided
depending on the size (m in the definition above) ofthe result
when all elements of the combinator are defined indepen-
dently of the function definition in which the combinator
appears.

Another kind of parallelism results if that function itself
appears in the combinator. The coding of the function
quickbatch is an example of this. If m processors are
allocated for computing the result of a combinator and a
combinator has occurrences of the function being defined as
somefj, then a process tree can result with processors active
only at the leaves. The reason a tree is produced is that a

294

FRIEDMAN AND WISE: APPLICATIVE PROGRAMMING FOR PARALLEL PROCESSING

single processor evaluating a recursive function might en-
counter an instance of functional combination and become
dormant while the m processes from that instance compute.
If some of those processes are recursive invocations, then
each of those processes may become dormant in the same
way. If all processes terminate then the invocation tree is of
finite depth with degree m at any node, with dormant
processes at all nonleaves, and with active processes only at
the leaves. If a combinator has more than one recursive call
in such a scheme then a very "bushy" process tree can result.
For example, the quickbatch function of the Quicksort
Algorithm can be implemented so that every recursion
requires a new processor. At the nth level 2" processors may
be required. The processors are all evaluating the same
function definition under disjoint (and static) environ-
ments, however, so that lock-step evaluation is entirely
appropriate.

These semantics require very little interprocessor proto-
col. Upon interpretation of functional combination the
active process goes dormant and spawns m new processes.
Each of these processes is independent and need not initiate
communication with any other user process except to report
its result. As it reports its result a process dies but its
dormant parent is jarred; we call this process stinging. A
stung parent becomes active when it is stung with the
(chronologically) last result. Therefore, the only run-time
processor synchronization involves process creation and
stinging. (Environments are static!) This is no more com-
plicated than what is required for collateral argument
evaluation.
The star notation used on an argument to functional

combination merely denotes that the argument is to be
shared by all m processors. When the combinator itself is a
starred structure then the combinator is homogeneous and a
different sort of concurrency may be used for interpreting
the function. This use of combinators is most similar to
mapping functions in [21] and their generalization in [24].
An example is the code for dotproduct above in which all
additions may take place concurrently. Due to the expres-
sion of the combinator with star, the compiler can easily
detect that the same operation will be performed on all
objects in the data structures which are arguments to the
combinator. Then the evaluation may proceed using pipelin-
ing across the n arguments to the starred combinator.

Similarly, the starred notation used within the combina-
tor itself denotes that the code for the function is to be used
by each of the m processors. Under parallel interpretation
this kind of functional combination has the semantics of
shared pure code. For instance, the algorithm for mtxmpy
specifies that the code for the function row is to be shared by
all processors used in interpreting its functional combina-
tion, i.e., by up toM processors in anM byN matrix times an
N by P matrix problem. Also, row specifies that the code for
dotproduct can be shared by the up to N processors used for
its functional combination, where each of these is starred
combinator distributing the code for the primitive instruc-
tion product across P processors. Thus up to N x M x P
multiplications might be performed simultaneously by
processors interpreting the shared code in parallel.

CONCLUSIONS
Functional combination allows the use ofknown forms of

controlled parallelism, whereas the suspending cons will
allow masses of sergeant processors to be occupied on
heuristically useful computation. The former facility fits
existing hardware which now requires specific higher level
languages and specially trained programmers in order to
occupy the processors productively. The latter approach
offers a hope for occupying a machine with arbitrarily large
numbers of processors whose temporal configuration
cannot be known to the programmer.

This ability of our semantics to use a system with massive
parallelism (thousands of processors) is very important for
future hardware design. Such systems will not be built unless
there is a way to program them, even though the current cost
of processors suggests that they will be technically possible.
With communication cost high and processor cost negli-
gible, pressure will build for a massive computation on
data whileithey remain within storage directly accessible to
any processor. Not only do our semantics admit such
massive (albeit heuristic) parallelism, but also they achieve
these results on a well-known language, pure Lisp, imposing
these semantics on programs extanL fifteen years ago.
Taken together these approaches to programming in

purely applicative source code provide the programmer
with higher level tools for expressing algorithms so that the
compiler can recognize and compile parallel code.

ACKNOWLEDGMENT

The authors wish to thank C. Brown who helped refine
this paper. Thanks are also due to S. Smoliar who pointed
out the implications of functional combination for sharing
code.

REFERENCES
[1] J. Backus, "Programming language semantics and closed applicative

languages," in Proc. ACM Symp. Principles of Programming Langu-
ages, pp. 71-86, 1973.

[2] P. B. Hansen, "Concurrent programming concepts," Computing
Surv., vol. 5, no. 4, pp. 223-245, 1973.

[3] W. H. Burge, Recursive Programming Techniques. Reading, MA:
Addison-Wesley, 1975.

[4] P. J. Courtois, F. Heymans, and D. L. Pamas, "Concurrent control
with 'readers' and 'writers'," Commun. Assoc. Comput. Mach., vol. 14,
no. 10, pp. 667-668, 1971.

[5] D. P. Friedman and D. S. Wise, "Unwinding stylized recursions into
iterations," Comput. Sci. Dep., Indiana University, Bloomington, IN,
Tech. Rep. 19, 1975.

[6] , "Functional combination," Computer Languages, to be
published.

[7] , "An environment for multiple-valued recursive procedures," in
Programmation. Paris, France: Dunod Informatique, 1976.

[8] , "CONS should not evaluate its arguments," in Automata, Lan-
guages and Programming, S. Michaelson and R. Milner, Eds. Edin-
burgh, Scotland: Edinburgh Univ. Press, 1976, pp. 257-284.

[9] , "Output driven interpretation of recursive programs, or writing
creates and destroys data structures," Inform. Processing Lett., vol. 5,
no. 6, pp. 155-160, 1976.

[101 , "Aspects of applicative programming for file systems," in Proc.
ACM Conf Language Design for Reliable Software, SIGPLAN No-
tices, vol. 12, pp. 41-55, 1977.

[11] D. P. Friedman, D. S. Wise, and M. Wand, "Recursive programming
through table look-up," in Proc. ACM Symp. Symbolic and Algebraic
Computation, pp. 85-89, 1976.

[12] P. Henderson and J. Morris, Jr., "A lazy evaluator," in Proc. 3rd
ACM Symp. Principles ofProgramming Languages, pp. 95-103, 1976.

295

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 4, APRIL 1978

[13] C. E. Hewitt and B. Smith, "Towards a programming apprentice,"
IEEE Trans. Software Eng., vol. SE-1, pp. 26-45, Jan. 1975.

[14] C. A. R. Hoare, "Quicksort," Computer J., vol. 5, no. 1, pp. 10-15,
1962.

[15] , "Towards a theory of parallel programming," in Operating
Systems Techniques, C. A. R. Hoare and R. H. Perrott, Eds. London:
Academic Press, 1972, pp. 61-71.

[16] S. D. Johnson, "An interpretive language based on suspended
computation," M.S. Thesis, Dep. Comput. Sci., Indiana Univ.,
Bloomington, IN, 1977.

[17] G. Kahn and D. MacQueen, "Coroutines and networks of parallel
processes," in Information Processing 77, B. Gilchrist, Ed. Amster-
dam, The Netherlands: North-Holland, 1977, pp. 993-998.

[18] D. E. Knuth, Sorting and Searching. Reading, MA: Addison-Wesley,
1973.

[19] Fundamental Algorithms (2nd ed.). Reading, MA: Addison-
Wesley, 1975.

[20] P. J. Landin, "A correspondence between ALGOL 60 and Church's
lambda notation-Part I," Commun. Assoc. Comput. Mach., vol. 8,
no. 2, pp. 89-101, 1965.

[21] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I.

Levin, LISP 1.5 Programmer's Manual. Cambridge, MA: M.I.T.
Press, 1962.

[22] S. S. Patil, "An abstract parallel-processing system," M.S. Thesis,
Dep. Elec. Eng., M.I.T., Cambridge, MA, 1967.

[23] B. Shneiderman and V. Goodman, "Searching of sequential and tree
structured files," ACM Trans. Database Syst., vol. 1, no. 8, 1976.

[24] G. Tesler and H. J. Enea, "A language design for concurrent
processes," in Proc. Spring Joint Comput. Conf Washington, DC:
Thompson, 1968, pp. 403-408.

[25] J. Vuillemin, "Correct and optimal implementation of recursion in a

simple programming language," J. Comput. Sys. Sci., vol. 9, no. 3, pp.

332-354, 1974.
[26] C. Wadsworth, "Semantics and pragmatics of lambda-calculus,"

Ph.D. dissertation, Oxford Univ., Oxford, England, 1971.
[27] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M.

Sintzoff, C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker,
"Revised report on the algorithmic language ALGOL 68," Acta
Inform., vol. 5, no. 1-3, pp. 1-236, 1975.

Daniel P. Friedman was born in Middletown,
CT, on August 16, 1944. He received the B.S.
degree in mathematics from the University of
Houston, Houston, TX, in 1967, and the M.A.
and Ph.D. degrees in computer science from the
University of Texas, Austin, in 1969 and 1973,
respectively.
From 1968 to 1969 he was an instructor in

the Department of Computer Science, University
of Houston, and from 1971 to 1973 he was an
Assistant Professor at the Lyndon Baines Johnson

School of Public Affairs. In 1973 he became an Assistant Professor in
the Department of Computer Science, Indiana University, Bloomington,
His research interests include robotics, semantics, graph processing, and
applicative programming languages.

David S. Wise (M'71) was born in Findlay, OH,
on August 10, 1945. He received the B.S. degree
in mathematics from Carnegie Institute of Tech-
nology, Pittsburgh, PA, in, 1967, and the M.S.
and Ph.D. degrees in computer sciences from the
University of Wisconsin, Madison, in 1969 and
197t, respectively.
From 1971 to 1972 he was a lecturer in the

Computer Science Department at the University
of Edinburgh. In 1972 he joined Indiana Univer-
sity, Bloomington, where he is now Associate

Professor. His research has been in the fields of formal grammars and
programming languages. His presentation of this paper at the 1976
International Conference on Parallel Processing, Waldenwoods, MI was
voted best of the conference.

Dr. Wise is a member of the Association for Computing Machinery,
Omicron Delta Kappa, and Tau Beta Pi.

296

