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terms in F(F). Thus SF.j. will be the decimal sum of the smallest
two minterms of F, and SF... that of the largest 2. Then

SF.. = 62 + 63 = 125 SFm = 126 + 127 = 253
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S. = 0 + 1= 1 Sp... = 123 + 125 = 248

SG.i. = 111 + 119 = 230 SG.ax = 126 + 127 = 253

SGm = O + 1 =1 Sgff. = 121 + 122 = 243.

If we use F we are obliged to generate all the S-sequences whose
decimal sums lie in the range (125, 248), whereas if we use G we
are required to generate only those S-sequences whose decimal
sums lie in the range (230, 243). The second range being smaller,
let us choose G for testing 2-asummability ofF for more-than-five-
1 2-sums.
Using notations of [8], no can take the values no = 0, 1. Using

the algorithm from [8], we find that there is no S-sequence with
the given range of no whose decimal sum lies within the trange
(230, 243). Hence, we conclude that F is 2-asummable.
Though a smaller range may not guarantee a smaller number of

S-sequences to be generated, it has been found that in the canoni-
cal form of F less labor is required for testing.

IV. CONCLUSIONS

In the earlier sections a fast algorithm for testing 2-
asummability of switching functions has been developed, which
first tests 2-monotonicity. The 2-monotonicity is tested by a novel
algorithm developed in Section II. The relationship between 2-
monotonicity and 2-asummability investigated in Section III
makes the 2-asummability algorithm of the authors [8] very fast,
since it has been discovered there that 2-monotonicity is equiv-
alent to testing 2-asummability for upto-five-1 2-sums. 2-
asummability testing is normally done to ascertain linear
separability of switching functions of upto eight variables. Empir-
ically it has been found that Algorithm 1 presented above is super-
ior to other techniques for testing 2-asummability for n < 8.
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Abstract-This correspondence states necessary and sufficient
conditions for a multiple stuck-at fault in a combinational network to
be undetected by a test set. The conditions are given in terms of fault
masking relationships. It is shown that several other statements on
this subject which have appeared in the literature are invalid.

Index Terms-Fault detection, fault masking, multiple faults,
multiple fault test sets.

I. INTRODUCTION

Some algorithms for generating test sets for multiple stuck-at
faults in combinational networks begin by finding a test set for
some critical set of single faults (possibly all single faults). Then,
by examining fault masking relations, tests are added to detect
any undetected multiple faults. Algorithms found in [1], [2] fit into
this category. Unfortunately, there is some misunderstanding as
to what masking conditions are necessary and sufficient for a
multiple fault to be undetectable. This correspondence presents a
set of necessary and sufficient conditions in terms of fault masking
relations.
We consider single-output combinational circuits made of AND,

OR, NAND, NOR, and NOT gates. We assume that a fault can be
modeled as gate input or output lines stuck-at logical values. A
single fault consists of only one stuck line while a multiple fault
may consist of any number of stuck lines. A multiple fault Fj is
represented as the set of its single fault components. That is,
Fj = {fi, f2, * * * , fk where fi represents a single stuck line.
A test input vector X, designed to detect a fault Fj may fail to

detect Fj in the presence of another fault. We say that a fault Fi
masks a fault Fj under test Xt if Fj is detected by X, but Fi u Fj is
not.
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Fig. 1. A combinational circuit to be tested.

The circuit shown in Fig. 1 is useful for later discussion and
helps to explain the notation used. We will construct a single fault
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T = 10101
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Fig. 2. (a) Fig. 10 from [3]. (b) Masking relations for the example circuit.

test set T, for the circuit. The only test for F = {ll /0} is
Xa = 10 101, hence X. E TI,. The only test for F2 = {12 /11 is also
X.. It happens that F1 masks F2 under Xa and F2 masks F, under
Xa. The test Xb = 10 100 detects F3 = {13 /1), and we place Xb in
T,. The test Xb is also the only test for F4 = F, u F2 = {l /0,
12/11. Tests for the remaining single faults can be found and added
to T, in any fashion.

II. DISCUSSION AND THEOREM
We are now ready to explore masking relationships that lead to

undetectable multiple faults under a test set. We begin by discus-
sing relationships given in the literature. These relationships are
examined in terms of the circuit and test set Ti, just given.

In the last paragraph of [1, p. 855] it is stated that "A multiple
fault F = {fl,f2, ...,f,,} is not detected by a single fault test set T, if
everyfk, k = 1, 2, , n is masked, under T1, by some subfault of
F." The example given earlier shows this condition to be
insufficient because F4 is detected by T, while every single fault
belonging to F4 is masked under T, by a subfault of F4.
The converse of the above statement is correct, however. This is

proved in [5] for any test set T, not just single fault test sets.
In [2] masking relations are represented by a directed graph,

and a different notation than ours is used. A fault labels each node
of the graph, and an arc goes from node Xi to node Xi with label Tk
if fault Xi masks fault Xi under test Tk. Definition 8 in [2] states,
"Let x = {x1, X2, * **, Xi) be a set of faults. X forms a masking loop
under test set T if both conditions 1) and 2) are satisfied.

1) By relabeling the faults in set X and tests in test set T, the
following masking relations can be established by Fig. 10 [our Fig.
2(a)].

2) For any fault (Xi) in (X) and for any test Tj (Tj E T) which
detects Xi, there exists a set of faults containing Xi and a subset of
tests in T, which exhibit a set of masking relations as in 1."

Reference [2] then goes on, "Definition 8 says that the multiple
fault (X) is undetectable under the presence of test set T." Again,
the example we have given shows this is not the case if X = {X I, X2},
Xi = {l1 /01, X2 = {12 /11, and T = T,. Fig. 2(b) shows the masking
relations for our example using the notation of [2]. Although [2]
discusses all-NAND networks, the circuit in Fig. 1 can be trans-
formed to an all-NAND network, and faults equivalent to Xl, X2,
and X can be found which have the same masking relationships
under T, as those given above.
Another incorrect statement on sufficient conditions for multi-

ple fault undetectability appears in [3] and is pointed out in [4].
Necessary and sufficient conditions for multiple fault undetec-

tability are now given and proved.
Theorem: A fault F in the circuit C is not detected by a test set

T if and only if for each nonempty Fi c F and for each X, E T

that detects Fi there is some nonempty Fj C F such that Fj masks
Fi under X,.

Proof: (If) If we set Fi= F and if the condition of the
theorem is satisfied, then for each X, E T that detects F there is
some Fj C F that masks F under X. Such a masking fault must
always be present when F is present. If F is masked it is by
definition not detected. This leads us to the apparently contradic-
tory statement that if F is detected by some test in T it is not
detected by the test. This statement can only be true if F is not
detected by any test in T.

(Only if) We prove the contrapositive. Say there is a nonempty
Fi ' F where X, E T detects Fi, but there is no nonempty Fj c F
that masks Fi under X,. Then any faults that mask Fi under X,
must contain an element not in F. Hence, if F alone is present, Fi
must be detected by X, since no masking fault can be present.
Hence, X, also detects F. Q.E.D.

This theorem and the earlier example imply that for an algor-
ithm of the type mentioned above to determine whether a multi-
ple fault is undetected, it may be necessary to determine whether
all the subfaults of the fault in question are masked. Some of the
incorrect statements given earlier represent attempts to avoid this
time-consuming process by examining only the masking of parti-
cular subfaults (e.g., single faults). Nevertheless, it should be
pointed out that the algorithms themselves are only incorrect in
that they may assume a multiple fault is not detected when it
actually is. If this happens, another test may be generated for the
fault. The net effect is that the final test set will still detect all
multiple faults, but it may contain unnecessary tests.
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Comments on "A Note on Synchronizer or
Interlock Maloperation"

THOMAS J. CHANEY

Abstract-E. G. Wormald's note' proposes a way to prevent
metastable action in synchronizers. Experimental results from
testing his suggested circuits show that his solution does not work. A
reference to a general proof that synchronizers must have a region of
metastable action is givenL

Index Terms-Arbiter, asynchronous interactions, flip-flop
metastability, glitch, interrupt failure, synchronizer failure.

Wormald' assumed, as have several others [1], that a Schmitt
trigger circuit will "standardize" any input waveform and thus can
be used as part of a flip-flop circuit to provide a circuit which has
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