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CONCLUSION

The error correction method proposed here makes no assump-
tion about which bits can be in error. The correction that is per-
formed never displaces the count more than one in the counting
sequence. The decoding method is, however, essentially a code
book, table look up process, and any decoder network that imple-
ments it expands rapidly with n.
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Comments on "A New Random-Error-Correction Code"

ERIK PAASKE

Abstract-This correspondence investigates the error propagation
properties of six different systems using a (12, 6) systematic
double-error-correcting convolutional encoder and a one-step
majority-logic feedback decoder. For the generally accepted assump-
tion that channel errors are much more likely to occur than hardware
errors in the decoder, it is shown that the system proposed by Massey
outperforms the system proposed by En in the above note.' Further, a
third system is found which, even iftemporary hardware errors in the
decoder are taken into account, is superior to the system proposed by
En.

Index Terms-Convolutional code, error correcting code, error
propagation, feedback decoder, majority logic, nonlinear feedback
shift register.

I. INTRODUCTION
In the above paper1 En presents a "new" coding system using a

(12, 6) systematic convolutional encoder and a one-step majority-
logic feedback decoder. En claims that the error propagation
properties of his system is better than the corresponding proper-
ties of a similar system proposed by Massey [1], but unfortunately
En does not define what he means by "error propagation."

All channel coding theory rests on the basic assumption that a
channel error is much more likely to occur than a hardware error
in the decoder. Using this basic assumption, we present appro-
priate and precise definitions of error propagation, of propagation
length, and of propagation count in a convolutional coding
system. We then show that the above claim by En cannot be true
unless a definition of error propagation is used which violates this
basic assumption. Finally, we show that a third system exists
which is superior to the one proposed by En, even if temporary
hardware errors in the decoder are taken into account, when our
definitions are used.

II. NOTATION AND DEFINITIONS
Since our results are primarily based on the correspondence by

Massey and Liu [2], we shall use their nomenclature and notation.
The following precise definition is implicit in [2].

Manuscript received April 18, 1977.
The author is with the Institute of Circuit Theory and Telecommunication, Tech-

nical University of Denmark, DK-2800 Lyngby, Denmark.
' J. En, IEEE Trans. Comput., vol. C-26, no. 1, pp. 86-88, Jan. 1977.

Definition I: Error propagation for a feedback decoder is the
event that a decoding error initiates succeeding decoding errors
when all succeeding parity checks are satisfied.
We have emphasized the term decoding error in Definition I to

make it clear that, with this definition, we do not take into
account hardware errors in the decoder; i.e., that we make the
basic assumption described above.

Definition II: Let an error propagation event start with a decod-
ing error at time j and with the syndrome register in state s, let all
parity checks be satisfied after- time j, and let the last decoding
error from this event occur at time i. Then we define the state
propagation length as L, = i - j, and we define the maximum pro-
pagation length as

L= max L,
seB

where B is the set of all reachable states [2], i.e., all states which
can be reached by the syndrome register when it starts from the
all-zero state.

This definition is in agreement with the one used by Robinson
[4], except that we consider only states in B and count L in time
units. A large value of L indicates that, in some cases, the decoder
needs a long period to reconverge to correct operation; it is
noteworthy that during this period the decoder is especially vul-
nerable to further ordinarily correctable channel errors-it is also
noteworthy that further channel errors often cause abrupt recon-
vergence of the decoder.

Definition III: The propagation count r is

r Z 8,
seB

where es is the number of decoding errors propagated from initial
state s in the autonomous case [2] when all parity checks are
satisfied.
A large value of r indicates that the amount of propagated

errors may be significant for the overall error probability.

III. ANALYTIC RESULTS
There are six different (12, 6) systematic convolutional encoder

and one-step majority logic feedback decoder systems that can
correct two random errors. These are listed in Table I. System I is
the system proposed by En', system III is the one proposed by
Massey [1], while PFeterson and Weldon [3] use system IV as an
example of a system that can produce infinite error propagation,.
i.e., L =oo. In Table II, we have listed the values of L and r for
these systems. These results were obtained by the procedure
outlined in [2] which applies Lyapunov's direct method to the
nonlinear feedback shift register (NFSR) which is used as the
feedback decoder. Definition II implies that L = o, if the NFSR
is unstable and not even driven-stable [2]; system IV has L = oo.
Conversely, Definition II implies that L is finite if the NFSR is
stable or driven-stable. For systems with finite L and r, the actual
values can be determined simply by calculating L, and e, for all
s E B; the calculation is facilitated by the fact that one needs only
to consider the NFSR in the autonomous case. For the six
NFSR's in question, s5 0 in the autonomous case so that there
are only 32 states to consider. Since only states with three or more
l's can possibly propagate errors, only 16 states need to be
checked for each system.

In general, we believe that the best system to select in practice is
the one with the smallest overall bit error probability; we would
like to stress that this system is not necessarily the one with the
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TABLE I
Six DIFFERENT DOUBLE-ERROR-CORRECTING CODING SYSTEMS

Sys. Convolutional Feedback Decoder with

System Encoder with Enc. Input to Threshold Function

No. Polynomial G(D)

g0 g1 g2 g3 g4 g5 A1 A2 A3 A4

I 1 1 1 0 0 1 s 51 52 ( s3 s4® s5
II 1 0 0 1 1 1 5 si(54 s3 s4

III 1 0 0 1 1 1 s50 S1i s5 s3 s54
IV 1 0 0 1 1 1 50 s1( s4 5230s5 s3

V 1 0 0 1 1 1 s0 S.1 (i) S2 255 s3 s4
VI 1 1 0 1 1 1 50 Si s2 ai 55 '3

TABLE III
SIMULATION RESULTS FOR THE CODING SYSTEMS IN TABLE I: PROPA-

GATION FACTOR Rf BASED ON 40 000 INFORMATION BITS TRANSMInED
OVER THE BSC WITH CROSSOVER PROBABILITY p

System

No. Propagation Factor Rf
p = 0.10 p = 0.08 p = 0.06 p = 0.04 p= 0.02

I 2.1 2.3 2.2 2.1 2.1

II 2.0 2.0 2.0 1.9 1.8

III 1.9 2.0 2.1 1.9 1.7

IV 2.3 2.4 2.7 3.2 2.8

V 2.0 2.1 2.3 2.2 1.6

VI 2.4 2.5 2.6 2.4 2.5
. _

smallest amount of error propagation. However, calculation of
the overall bit error probability is very difficult and depends on
the particular channel. Therefore, if the choice among different
systems has to be based only on simple analytic calculations, we
believe that the best system to select is the one with the smallest
values of L and r. Thus from Table II it follows that system II
could generally be expected to be the best; it also follows that the
system proposed by Massey [1], system III, could generally be
expected to outperform the system proposed by En,1, system I.

Finally, we consider the effect of a temporary hardware error in
the decoder. Under such circumstances, the syndrome register can
reach a state s 0 B. If L, = oo for this state, then an infinite
number of succeeding decoding errors results if all further parity
checks are satisfied; but this can happen only when the NFSR is
not stable. Thus the interesting case is, of course, when the NFSR
is not stable but is driven-stable. Hence, for system III, a tempor-
ary hardware error in the decoder can produce a situation which
looks like "infinite error propagation," but this cannot happen for
systems I, II, V, and VI. This phenomenon apparently led En to
claim that, as regards error propagation, system I outperforms
system III. But, as can be seen from Table II, En's claim is only
true if the basic assumption stated in the introduction is
abandoned. Since system II has a stable NFSR, it can also be seen
from Table II that, even if temporary'hardware errors were taken
into account, this system could still be expected to outperform the
other systems.

IV. SIMULATION RESULTS
To test the appropriateness of using L and r to select the system

with the smallest amount of error propagation, a simulation was
performed using the method given by Sullivan [5]. This method
uses, for comparison purposes, a "genie-aided" feedback decoder
which feeds back the true channel error e' instead of the estimated

TABLE II
ANALYTIC RESULTS OF ERROR PROPAGATION PROPERTIES

FOR THE CODING SYSTEMS IN TABLE I
System Results of Applying Lyapunov's Propagation Propagation

No. Method on Feedback Decoder Length L Count r

I A1 1 = lStable 5 16

II A8 = Stable 3 4

III S9 = 8, A8 = 23|Driven Stable 3 9

V slo= 9, Ag = 13,14,15,26,27,301
Unstable

v A11 = S|Stable 5 17

VI 1 1 |Stable 5 17

TABLE IV
SIMULATION RESULTS FOR THE CODING SYSTEMS IN TABLE I: NUMBER
OF INFORMATION DECODING ERRORS AMONG 40000 INFORMATION BITS

TRANSMITTED OVER THE BSC WITH CROSSOVER PROBABILITY p

System No. of Information Decoding Errors

No. with Feedback Decoding

.1p = 0.10 p = 0.08 p = 0.06 p = 0.041 p = 0.02

I 3627 2279 1170 400 35

II 3220 1910 999 350 32

III 3208 1961 1017 344 32

IV 3754 2328 1317 526 68

V *3386 2150 1131 374 33

VI 3953 2469 1284 442 58

value e". In other words, erroneous feedback never occurs and
error propagation is thus impossible. We define the propagation
factor Rf to be the ratio between the number of information dec-
oding errors made by a system with feedback decoding over that
of a "genie-aided" feedback decoder with the same decoding func-
tion. We used a binary symmetric channel with crossover probabi-
lity p. For each value of p, 40000 information bits were
transmitted for each system.

Table III shows the values of the propagation factor Rf. Except
for system VI for which the values of Rf are slightly larger than
expected, we observe a good agreement with the selection criteria
outlined above. In Table IV we have also listed the total number
of decoding errors made by each system. Clearly systems II and
III outperform the other systems in the sense of minimizing the
overall error probability for the channels considered.

V. CONCLUDING REMARKS
The majority logic feedback decoder was originally developed

under the assumption that channel errors are much more likely to
occur than temporary hardware errors in the decoder; the appro-
priateness of a feedback decoder is questionable if this assumption
is violated. Thus we conclude that, if the systems are used in an
appropriate way at all, the system proposed by Massey outper-
forms the system proposed by En. However, in general, we would
recommend system II over either since system II minimizes over-
all error probability and, furthermore, cannot produce a situation
which looks like "infinite error propagation" even if temporary
hardware errors in the decoder occur.
As a final remark, we mention that determination ofthe propa-

gation length L based on application of Lyapunov's method to the
NFSR of the decoder is to our knowledge the best way to analyze
error propagation for codes with a relatively small register, i.e.,
codes with rates R . 4. For codes with R <I where the number of
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syndrome states becomes large, it often pays to consider instead
the postdecoded bits e"% = j 0eA j, j = 1, 2, ., m, as was
done by Sullivan [5] in investigating the error propagation
properties of uniform codes. We would like to point out, however,
that, after a slight modification, Lyapunov's method, can be
applied to the postdecoded bits to determine L
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Author's Reply2

JOHN EN

Abstract-Without proof Paaske3 states that "... En1 cannot be
true." Paaske's statement is based on his qualitative assumption that
channel error is "much more likely" to occur than a hardware error
in the decoder. The author will show that En's statements are still true
under Paaske's assumption. Previous correspondence was cited by
Paaske and claimed to be "the best way.. ." tojudge a code based "on
the particular channel" and 40000 test pattern bits. Hence, he claims
that the system II and the Massey code outperform the En code.
However, the En code can outperform both system II and the Massey
code under other channel characteristics and other sets of test bits.
Therefore, the method quoted by Paaske is inconclusive at best.
Massey's Threshold Decoding is a significant contribution. Re-
gardless of his original assumption, his particular decoder does
propagate infinite errors However, this should not be considered as
criticizing Massey's work. The En code has been proved empiricafly
to be free from catastrophic errors under any error sources. Since
Paaske did not prove anything to the contrary, all of En's original
claims stand as before.

Index Terms-Catastrophic error propagation, convolution code,
feedback decoder, infinite error propagation, majority logic decoder.

In the accompanying correspondence,3 there are several points
made which are subject to discussion. Paaske makes the
statements:

.. . basic assumption ... channel error is much more likely to
occur than a hardware error ..." ".. above claim by En
cannot be true unless a definition of error propagation is
used which violates this basic assumption." (Introduction,
paragraph 2)3

There are two problems with that statement. First, "much more

2 Manuscript received April 18, 1978.
The author is with Advanced Technology, Cubic Corporation, P. 0. Box 80787,

San Diego, CA 92138.
3 E. Paaske, "Comments on 'A New Random Error Correction Code'," this issue,

pp. 255-257.

likely" is not a sufficient premise to permit the judgment "...
cannot be true...." In order to make such a statement Paaske
would have to state that there are absolutely no other error
sources existent except channel errors. Since Paaske cannot rea-
listically assuMe such a premise, Paaske's statement is unfounded.
A decoder need only to have a catastrophic failure once, and even
the poorest decoder without a catastrophic failure mode can be
judged as a better code.

Second, as will be discussed, En's claims are not based on
Paaske's basic assumptions; they are based on En's basic
assumptions.

Paaske also states:

"6... calculation of the overall bit error probability is very
difficult, and depends on the particular channel.... choice...
based only on simple analytic calculations, ..."

and:

".... best system ... smallest overall bit error probability ...".

These statements indicate contradiction. His choice is based only
on a particular channel characteristic and a very limited number
of test pattern bits (40000). Paaske's judgments can be easily
reversed under other circumstances. The En code can outperform
both system II and the Massey code, even under Paaske's criteria.
The method cited by Paaske which he considered to be "the best"
is trivial and inconclusive at best. Chien [1], Gallager [2], En, and
other mathematicians agree that a better code is a code that suits
the noise environment best. Even a simple repeat of message may
be better than any error-correcting code for low-noise wire com-
munications. Chien and En both agree that a good defense should
be prepared before any presentation. It is apparent that Paaske's
"best way"' needs strong proof in order to make that claim.
The most controversial statement:

"En's claim is only true ifthe basic assumption stated in the
introduction is abandoned."

is simply a reiteration of the statements made in Paaske's intro-
duction. Again, it must be remembered that the basic assumption
to which reference is made is Paaske's basic assumption, not En's,
and contains the evasive statement "... much more likely ...,"
which is hardly justification for such a strong statement.

It is clear that the Massey code fails catastrophically (produces
an infinite string of errors) where the En code does not. It is also
clear that En in the original paper made claims based on the
following:

1) All error sources, including hardware errors, are considered.
2) Error propagation is considered to be infinite error propaga-

tion, as defined in Peterson and Weldon [3].
3) Finite error propagation is not discussed because of uncer-

tain noise environment. In fact, Peterson and Weldon also stated,
"In this book finite error propagation is not considered" [3, p. 400,
footnote].

4) Comprehensive testing of a code is much more reliable than
simplified analytical calculations.

5) A "one of the best" code does not propagate errors, and
absolutely corrects two bits in twelve consecutive bits.
Given that these are En's basic definitions, and that they are the

definitions upon which a choice is made, En's code outperforms
Massey's. Paaske has not addressed this point directly; he has
redefined his bases (particularly 1), 2), 3), and 4) above) so as to
not consider all sources of error, and he then has made
unqualified statements as to the validity of En's claims.

All of the systems which Paaske proposed are available from
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