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V. CONCLUDING REMARKS

Some directions of extension of the present results would be the
following:

1) give the number of cascade-realizable multivalued functions
with permuted input variable assignments;

2) give the number of symmetry types of multivalued functions
realizable by cascades; and

3) extend the results to the case of disjunctive networks.
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Universal System Diagnosis Algorithms
JAMES E. SMITH

Abstract—A class of simple digital system diagnosis algorithms is
presented, and two members of the class are examined in detail. The
algorithms are based on the assumption that good units can be
replaced during the diagnosis process. Information pertaining to the
system testing structure is not used by the two principal algorithms,
so they can be applied regardless of system structure. The efficiency
of the algorithms in terms of good units replaced is analyzed, and they
are shown to compare favorably with methods for special case
systems that have been proposed by others.

Index Terms—Diagnosis algorithms, fault diagnesis, system
diagnosis.

I. INTRODUCTION

One of the most important tools for locating failures in digital
systems is the application of diagnostic test sets. Tests are usually
derived for each of the subsystems (units), and the application of a
test on some unit typically requires the use of some other unit(s)
which may also be faulty. If a faulty unit is used in the application
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of a test, the test result may be invalid. This test invalidation
greatly increases the difficulty of system diagnosis and makes it a
complex and interesting problem.

In [1] Preparata et al. proposed one of the first, and probably
the best-known, models for system diagnosis. In this model, each
unit has the capability of testing other units by itself, i.e., only one
unit is required for the application of a test. The assumption is
made that if a faulty unit performs a test, a fault-free unit could be
judged faulty or a faulty unit could be judged fault-free. This type
of invalidation of test results will be referred to as symmetric
invalidation.

In [2], Barsi et al. proposed a different type of invalidation as
being more likely when complex units are performing tests. This
asymmetric invalidation assumes that all invalidation takes the
form of a correct unit being judged faulty; i.e., a faulty unit always
fails all of its tests.

While the models [1], [2] may work well if complex subsystems
are used, in many digital systems a number of relatively simple
units, e.g., adders and multiplexers, are employed to perform a
test. To handle this more general case, a model is proposed in [3],
{4] where multiple units may be used to perform a test, and the
failure of any one of them causes the test to be invalid.

In the past, theoretical work has been concerned with the diag-
nosability of systems. A system is k-step t-fault diagnosable if there
exists a sequence of k applications of the test set and repairs of
identified faulty units that allows all the faulty units originally
present to be identified provided the number of original faulty
units does not exceed ¢. An important special case occurs if only
one application of the test set is required; that is, the system is
one-step t-fault diagnosable. For k-step diagnosis, it is typically
assumed that any repaired unit is fault-free and remains so until
all units have been repaired.

One of the most commonly studied problems in system diag-
nosis is the determination of necessary and sufficient conditions
under which a system is ¢-fault diagnosable [1]-[8]. Another prob-
lem often studied is the construction of diagnosable systems that
are in some sense optimal [1], [2], [8], [9]. A third problem is the
determination of diagnosis algorithms [2], [9]-[14].

In practice, “repair” can take the form of replacement or actual
repair. For our purposes, it is convenient to speak of replacement,
although this does not restrict the generality of any of the results.
In most theoretical work it is assumed that no good units are
replaced, but in [9], [10] this requirement is dropped. Such an
assumption is less conservative and is somewhat closer to diag-
nosis techniques that are used in practice. Based on this assump-
tion, Friedman [9] proposes a different measure of system
diagnosability, t-out-of-s (¢/s) diagnosability. A system is t/s diag-
nosable if a set of f < ¢ faulty units can be located and repaired by
replacing at most s units. One-step and k-step t/s diagnosability
are possible, and they are defined in the natural way.

In this paper, we propose a class of very simple diagnosis algor-
ithms that allow the replacement of good units as in [9], [10]. The
algorithms only rely on test results and are independent of system
structure. Consequently, the algorithms can be applied to any
system; it is in this sense that the algorithms are universal. The
algorithms are also guaranteed to result in a correct system,
provided that a fundamental condition on fault detectability is
satisfied. Consequently, they are effective against the broadest
class of diagnosable faults.

Two of the algorithms are studied in terms of the models [1],
[2], [4]. This analysis leads to upper bounds on the number of
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fault-free units that must be replaced, and the bounds can be
evaluated for any system structure, whether regular or not. The
algorithms are shown to compare favorably with other more com-
plex algorithms developed for special-case systems, e.g., “single-
loop” systems. Examples are given that show the algorithms can
often perform much better than the bounds indicate.

II. NOoTATION AND TERMINOLOGY

Models to be considered here are the ones presented in [1], [2],
[4] as well as the model in [4] with asymmetric invalidation. It is
assumed that the systems are morphic [4]. This will allow us to use
graphical models. Many of the results to be presented here can be
generalized so that semimorphic systems [4] and systems requir-
ing more complex models [8], [15], [16] are included. Never-
theless, it is felt that the models to be considered here offer
sufficient generality while allowing the insight that graphical
models provide.

Since the models [1], [2] are special cases of the one given in [4]
(with the appropriate type of invalidation), we present only the
model for morphic systems given in [4]. This model can be for-
mulated either in terms of “units” or “faults.” In [4] faults are
used ; we use units.

A system S is composed of a set of n potentially faulty units
U = {ug, Uy, ", u,—4}. There is a set of m tests, {to, t1, ***, tm—1)s
that can be applied to the units in S. A test ¢; is a complete test for
unit u; if ¢; always fails when u; is the only faulty unit in S and ¢;
always passes when S contains no faulty units. Each test is
assumed to be a complete test for one and only one unit, and at
least one complete test exists for each unit. The set of tests that is
complete for unit u; is denoted as t(u;). For a set of units, {u;,
wj, oy wd, H{us, uj, 0, ) = t(u) O t(ug) U O H(u).

Each test is performed by some set of units. Let T'(u;) be the set
of tests applied at least in part by unit u;. If symmetric invalidation
is assumed and u; is faulty, the result of a test t; € T(u;) is un-
reliable in the sense that ¢; may pass even though u is faulty and
t; € t(uy), or it might fail if u, is fault-free. If asymmetric invalida-
tion is assumed, the result of t; € T(y;) is unreliable only in the
sense that t; might fail even though ¢; € t(uy) and u, is fault-free.
T({uy, uj, -+, uy}) is defined to be T(u;) U T(u;) --- T(ty); it is this
property that makes the system morphic.

The diagnosis model just described can be used to represent a
system as a directed graph. There is an internally labeled vertex in
the graph for each unit. An edge is directed from the node labeled
u; to the node labeled u; if T(u;) N t(u;) # &. The edges are
labeled with the tests in the set T(u;) N t(u;). In some cases it is
convenient to assume that a test result is always valid, e.g., if the
test is applied by some external unit that is assumed fault-free. If
this occurs, the vertex internally labeled with the tested unit is
externally labeled with the test.

The graphical models of [1], [2] result if each test is performed
by only one unit. When this is the case, each edge has a unique
label, and the label can be deleted without the loss of any invalida-
tion information.

In system diagnosis, a syndrome is typically defined to be a
binary vector representing the test outcomes. We define the
aggregate syndrome to be an ordered set ¢ = {gq, 61, """, Ou-1),
where 7 is the number of units in S and o; is the total number of
tests on w; that fail for a given application of the test set.

We now present the diagnosis graphs of several example
systems; the graphs help to explain the notation and are used in
later discussion.

Example 1: This is a single-loop system; tests are performed
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Fig. 1.

Diagnostic graphs for three example systems.

by only one unit and each unit has only one test. Fig. 1(a) shows
the diagnostic graph for a single-loop system.

Example 2: One can use the same interconnection structure
suggested by single-loop systems but with a more complex testing
procedure. Assume unit i applies inputs to unit i + 1, but unit
i + 2 observes the outputs from unit i + 1 (addition is modulo n,
where there are n units). Fig. 1(b) shows a diagnostic graph for a
system with five units. Such a diagnosis scheme cannot be repre-
sented by the models [1], [2].

Example 3: A possible application of the models [1], [2] is to
microcomputer arrays. Fig. 1(c) shows the model for a part of
such a two-dimensional array. Test labels have been deleted since
it is assumed that each test is performed by only one
microcomputer.

In Fig. 1(b), t(us) = t4; T(us) = {t3, to}. In Fig. 1(c), if unit u, is
faulty, a possible aggregate syndrome is 0 =<0, 1,0, 0, 4,1,0, 1,
0, ---) if symmetric invalidation is assumed.

III. A CLAss OF DIAGNOSIS ALGORITHMS

When diagnosing a system within the framework of the diag-
nosis model of Section II, the test outcome (pass/fail), the #(u;),
and the T(u;) may all be considered. The test outcomes and the
units they test [indicated by the t(u;)] are clearly needed for any
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nontrivial replacement strategy to work (a trivial strategy simply
replaces all the units immediately). On the other hand, the T(u;)
reflect the testing structure of the system, and we will discuss
diagnosis methods that do not use this information. Con-
sequently, the methods are independent of the structure of the
system and can be applied to any system.

The fact that the T(u;) are unnecessary is also advantageous
because this information may at times be difficult to determine.
This is particularly true in systems where several fault-free sub-
systems are required to perform a test, and where there is some
nonobvious dependency among the subsystems.

We recall that for unit u;, ¢; is the member of the aggregate
syndrome that indicates the number of tests on u; that fail. Then
the universal diagnosis algorithms belong to the following
scheme.

STEP: Perform the tests to, ty, ***, t,—; and compute o;
Let F = {u;|0; # 0 and u; has not been replaced};
If F = &, then the system is assumed correct; exit;
Choose F’, a nonempty subset of F;
Replace all units in F'; go to STEP.

A particular algorithm is defined by a deterministic method for
choosing F'. We consider two particular algorithms where the
choice of F’ is independent of the T(u;).

Algorithm 1: Let F' = F.

Algorithm 2: Let F' = {u;|u; € F and for all u; € F 0; > 0}}.

These two universal algorithms are intuitively simple and are
probably closer to methods used in practice than the more so-
phisticated algorithms that have been proposed. Algorithm 1
simply replaces all units that have not already been replaced and
which have failed some test. Algorithm 2 replaces only those units
that fail the greatest number of tests considering only those units
that have not yet been replaced. It should be noted that we make
the usual assumption that all replacement units are fault-free and
remain fault-free at least until the algorithm terminates.

In order to characterize the sets of faulty units that the universal
algorithms can correctly diagnose and replace, we first observe
that in a system it is sometimes possible for a set of faulty units to
be present such that invalidations occur which cause all tests to
pass. Clearly, such a fault set can potentially cause any nontrivial
diagnosis algorithm to fail. This is because if all the tests pass,
there is nothing the algorithm can do but assume the system is
fault-free. For this reason, we define a set of faulty units UF to be
completely detectable if some test will definitely fail if UF or any
nonempty subset of UF is faulty. We observe that when asymme-
tric invalidation is gssumed, any set of faulty units is completely
detectable. For symmetric invalidations, fault detectability is dis-
cussed in [4]. Then:

Theorem 1: Assuming asymmetric invalidation, any algorithm
belonging to the class we have defined will always terminate with
a fault-free system regardless of what units are initially faulty.

Proof: At each step of the algorithm at least one unit is
replaced. Since there is a finite number of units and each unit is
only replaced once, the algorithm must eventually terminate. At
the time it terminates, if a test fails, it must be performed on a
replaced unit by a faulty nonreplaced unit. Any test on the faulty
unit must pass, but this contradicts asymmetric invalidation.
Hence, at termination, all tests must pass. Asymmetric invalida-
tion implies all units must be fault-free. O

Theorem 2: Assuming symmetric invalidation, if a completely
detectable set of faulty units is initially present, the algorithms of
the above class will always terminate with a fault-free system.
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Proof: This is similar to Theorem 1; when the algorithm
terminates and a test fails, it must be performed on a replaced
(fault-free) unit by a faulty nonreplaced unit. Any such test results
are invalid and the tests could have potentially passed. Con-
sequently, any remaining set of faulty units is not completely
detectable, so the original faulty units could not be completely
detectable. The theorem follows immediately. O

Theorems 1 and 2 are fundamental theorems. They essentially
say that the algorithms are guaranteed to result in a correct
system if any nontrivial algorithm guarantees a correct system. In
addition, Theorem 2 makes the worst case assumption that a test
result on a faulty unit is always invalid (i.e., it passes) whenever
the test is performed by a faulty unit. In many cases when the
worst case does not occur, correct repair results even though a set
of faulty units is not completely detectable.

Another observation is that the only upper limit on the number
of faulty units that can be diagnosed is the one that may be
implicitly imposed by the detectability condition.

One can also make some observations regarding the computa-
tional complexity of the algorithms. With each step (an applica-
tion of the tests and the choice of units for replacement), only O(m)
operations are performed where m is the number of tests. It seems
that any nontrivial k-step diagnosis must be at least this complex
for each step if the result of each test is even considered. The
number of steps required by the algorithms is more difficult to
analyze, but it is clearly bounded by the total number of units
replaced since at least one unit is replaced at each step. Taking
this into account, it follows from later results that for large classes
of systems O(f) steps are sufficient, where f units are actually
faulty.

We observe that if Algorithm 1 is applied when there is asym-
metric invalidation, then only one step is required, since all faulty
elements must fail all their tests. Hence, when applied to such a
system, Algorithm 1 is of complexity O(m).

Testing required by the algorithms can be simplified on steps
after the first because o; for a unit u; that has already been
replaced is not needed. If UR is the set of units that have already
been replaced, the tests in t{(U®) do not need to be performed.

Finally, one could modify Algorithm 2 to select just one u; with
the maximum o¢; using some rule. This would tend to decrease the
average number of good units replaced while increasing the
number of steps required. In our later analysis we are only con-
cerned with the worst case number of good units replaced; con-
sequently, we will not complicate this analysis with some arbitrary
selection rule.

1V. EFFICIENCY OF THE ALGORITHMS

Thus far we have only established that the proposed diagnosis
algorithms always work given a detectability condition. However,
if they require the replacement of large numbers of fault-free units,
they are of little practical value. In this section, we analyze Algor-
ithms 1 and 2 to determine bounds on the number of good units
that may be replaced. The algorithms are shown'to be efficient in
terms of good units replaced for broad classes of systems, and the
algorithms compare favorably with more complex special-case
algorithms proposed by others.

For discussing the efficiency of the algorithms, some of the
concepts introduced by Friedman [9], [10] are useful. From [9], a
system S is k-step t/s diagnosable if by k applications of the diag-
nostic test set sequence any set of f < ¢ faulty units in § can be
diagnosed and repaired by replacing at most s units. The par-
ameter t reflects the maximum number of faulty units that are
assumed to be possible. For the algorithms presented here, there is
no such explicitly assumed upper bound. Hence, we choose to
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discuss f/s diagnosability. That is, if f faulty units are actually
present, at most s units need to be replaced in order to get a
correct system. Consequently, s will typically be a function of f,
while s is a function of ¢ in [9], [10].

Before proceeding, we define two fundamental parameters that
are used in the determination of worst case f/s diagnosability for a
system composed of the set of units U.

T = maximum | T(;)|; the maximum number of tests
wet performed at least in part by
any unit.

the minimum number of tests
performed on any unit.

" = minimum |¢(u;)] ;

u;elU

Theorem 3: For the system S with either symmetric or asymme-
tric invalidation, the use of Algorithm 1 results in at worst
fAT™ + 1) f diagnosability.

Proof: In order for a fault-free unit to be replaced, it must fail
some test, i.e., some test result on the unit must be invalid. The
maximum number of invalid test results is fT™. Consequently,
fT™ is a bound on the number of fault-free units replaced. Then
with the f faulty units, at most (T + 1) f units are replaced.

O

The bound on diagnosability of Theorem 3 can be reached if
each faulty unit invalidates a test on T different good units. In
situations where (T + 1)f > n, where n is the total number of
umits in the system, then clearly one should take f/n as a bound on
diagnosability. This same comment holds for all bounds on diag-
nosability given in this paper.

For single-loop systems, | T(#;)| = 1 for any unit ;. Theorem 1
implies that such systems are f/2f diagnosable when Algorithm 1
is used. In [9] diagnosis algorithms are given that are specifically
for single-loop systems. It is interesting to compare Algorithm
1 with these other methods.

In [9], six different strategies are given. Strategy 2 is a t/t diag-
nosis approach that assumes only faulty units are replaced. Of the
five strategies that allow replacement of fault-free units, Strategy 1
is a one-step approach and Strategies 5 and 6 are two-step
methods. As a consequence, Strategies 1, 5, and 6 are rather
inefficient, and it is not fair to compare general k-step procedures
with them. On the other hand, Strategies 3 and 4 are k-step
methods and do offer a fair comparison. Strategy 3 is a ¢/3t — 1
diagnosis method while Strategy 4 gives t/2t — 1 diagnosis. Hence,
our f/2f proceures compare very favorably in general, especially
when one considers the difference between f/s and t/s diagnosis.

As in [9], the average efficiency of the algorithms is usually
much better than the bounds. To demonstrate this, we present an
example that is taken from [9].

Example 4: In a single-loop system S with 32 units, the units
Uiy, Uya, Uys, Uzy, Uz, Uza, and u,s are faulty. We denote the
aggregate syndrome after the ith test application as ¢’. Then

1 = <00000000000100000000011110100000>.

Note that because of notational differences our ¢' and R; in [9]
differ by a cyclic shift of one position (recall that o, reflects the test
results for u,).

According to Algorithm 1, units uyy, U1, U422, Uz3, U4, and uze
are replaced. Then, at step 2,

a? = <00000000000(*13000000000001100000>.

Hence, units u,, and u,5 are replaced. Unit u,¢ is not replaced as
it was replaced at step 1. Then,
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¢ = <00000000000001000000000000000000>.

Now, unit u,5 is replaced, and ¢* is all 0’s implying a fault-free
system.

In this example, seven units were faulty and nine were replaced.
In [9] Strategies 3 and 4 resulted in eleven and nine units being
replaced, respectively. a

Of course, Algorithm 1 can be applied to other than single-loop
systems. For example, its application to the systems of Fig. 1(b)
results in at worst f/3f diagnosability and for the arrays of Fig. 1(c)
f/5f diagnosability is the worst case.

We now turn to Algorithm 2 which is generally more efficient
than Algorithm 1 in terms of replacement of fault-free units.

Theorem 4: For the system S with symmetric invalidation, the
use of Algorithm 2 results in at worst f/(T — " + 2) fdiagnosab-
ility provided that ™ < T.

Proof: (By induction on f) f= 0=> no units are replaced, and
the theorem holds trivially.

Let UF be the set of faulty units initially present, and assume the
theorem holds for all |UF | < f. Atthe end of somestep j,j > 1, let
U¥% be the set of replaced units and U¥ the set of replaced faulty
units. We consider two cases.

Case 1: There is some j > 1 where |UF|<2|U¥|. At this
point, the system still contains | U" — U¥| faulty units. We could
conceptually begin Algorithm 2 at this point with the partially
repaired system as input. Since j > 1, some units have been
replaced; furthermore, because |U%| < 2| U} |, some faulty units
have been replaced and |U" — U¥| < f. By the induction hypoth-
esis, at most |UF — UF |(T” — ™ + 1) additional fault-free units
are replaced as Algorithm 2 continues. Considering the
| U¥ — UY| fault-free units that have already been replaced in the
first j steps, a total of at most |U" — UJ|(T™ — ¢ + 1)+
|U® — U%| fault-free units are replaced. Now, |UF — Uf| =
|UT| = |US], |UF = Uj| = |UF| - | U], and

[UF | <2|U5]

from the condition for Case 1. Substitution then implies that at
most |UF (T — ™+ 1) — |UF|(T™ — t™) fault-free units are
replaced. Finally, since " < T, |U"|(T" — ¢™ + 1) is a bound
on the fault-free units replaced. Since f faulty units are replaced
and |UF| = £, f/(TM — t™ + 2) f diagnosability results.

Case 2: At all steps, |U%¥| >2|U¥|. Then it is possible to
match each faulty unit with a fault-free unit that is replaced during
a step no later than the step during which the faulty unit is
replaced. Further, each faulty unit can be paired with a different
fault-free unit.

Lemma: The sum of the initially invalid test results on any pair
is at least t™.

Proof: If the fault-free unit was replaced when it failed more
than ¢™ tests, then clearly the claim holds. If the fault-free unit was
replaced when it failed i < ™ tests, then at least i test results on the
fault-free unit were initially invalid, and at least t™ — i test results
on the faulty unit in the pair were invalid, or the faulty unit would
have been replaced at a step prior to the replacement of the fault-
free unit. Hence, at least ™ — i + i = ™ test results were invalid
for the pair. This proves the lemma.

There are |UT| pairs, so a sum of at least |U” |t™ tests are
invalid for all the pairs. At most T | UF| total invalidations are
possible, so any nonpaired fault-free units must have at least one
test result invalidated by the remaining T | UT | — ™| U* | invali-
dations. Hence, at most T |UF | — ¢"| U® | nonpaired fault-free
units - are replaced. With the |U"| paired ones, a total of
|UF|(T™ — ¢ + 1) fault-free are replaced. With the |U"| =f
faulty units, /(T — t™ + 2)f diagnosability results. O
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By considering different system parameters, other bounds may
be derived that are at times better than the one in Theorem 4.
However, the one given was chosen because it is easy to state and
simple to apply. Further, for a given T and ™ < T a system can
be constructed that reaches the bound. In such a system, each
faulty unit has only one valid test, and each fault-free unit has one
invalid test; Algorithm 2 takes two steps; all the tests pass in the
second step.

If £ > T™, at worst f/2f diagnosis is possible because the excess
in ™ can only make diagnosis more precise than when t™ = T™.

Better bounds are also possible if system structure is restricted.
We examine one such class of systems that occur frequently in the
literature. This class of systems can be modeled as in [1], [2] and
have |t(u;)| = | T(w;)| for all u;. Members of this class include
single-loop systems, D;, systems [1], and systems where u; tests u;
implies u; tests u;. The array of Fig. 1(c) is of the latter type. We
call such systems balanced. If all the units in a balanced system
have the same |#(u;)|, then clearly T = t™ and f/2f diagnosis
follows immediately from Theorem 4. However, the same result
holds for balanced systems where the |t(u;)| are unequal.

Theorem 5: In a balanced system S with symmetric invalida-
tion, Algorithm 2 results in at worst f/2f diagnosis.

Proof: The proof parallels the proof of Theorem 4 and is
omitted due to its length. O

Example 5: As a consequence of Theorem 5, the arrays of Fig.
1(c) are f/2f diagnosable by Algorithm 2. A more careful analysis
shows that much better diagnosability results from the use of
Algorithm 2, at least for small f. In particular, 1/1, 2/2, 3/3, 4/5
diagnosability result. O

We now consider Algorithm 2 when asymmetric invalidation is
assumed.

Theorem 6: For the system S with asymmetric invalidation, the
use of Algorithm 2 always results in at worst f/(T*/t"| + 1)f
diagnosability.

Proof: Due to asymmetric invalidation, any faulty unit must
fail at least ¢™ tests. In order for a fault-free unit to be replaced, it
must fail at least as many tests as some faulty unit. Since Tfis an
upper bound on the total number of tests on fault-free units, at
most | TMf/t™ | fault-free units can fail ™ or more tests. O

V. CONCLUSIONS

From a practical standpoint, the algorithms presented here
have the following advantages:

1) They are easy to describe and easy to understand; they
follow intuition in that only units that fail tests are replaced.

2) They are computationally simple.

3) They do not depend on system structure; the T(u;) are not
needed. This is important because in some cases the T(y;) may be
difficult to obtain.

4) The number of good units replaced is usually low; a notable
exception may be systems for which the |#(u;)| are relatively small
and where the | T(u;)| are relatively large. For these systems,
some algorithm depending on system structure may be necessary
for efficient replacement.
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5) The number of units that can be faulty is bounded only by a
fundamental detectability condition that also appears to bound
any nontrivial diagnosis algorithm.

From a more theoretical point of view, we observe that there is
a tradeoff between the complexity of a diagnosis algorithm and its
efficiency in terms of good units replaced. At one end of the scale
is the.trivial algorithm that ignores both test results and system
structure and simply replaces all units every time. The algorithms
given here are another critical point on this scale; here only test
results are considered.

There is little doubt that including structural information in the
determination of F’ can reduce the number of fault-free units that
are replaced. However, in many situations the extra structural
information can complicate the algorithm. Consequently,
research is being directed at designing f/s diagnosis algorithms
that take structure into account and which provide a good bal-
ance between algorithmic complexity and efficiency in terms of
good units replaced.
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