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ABSTRACT

In this paper we describe four topologies for interconnecting
many identical processors into a computer network. Each topology
is investigated with respect to average interprocessor distance,
bus 1locad, and routing algorithms. Thesertopologies share the
property that each processor can communicate directly with at

most a small number of other processors.



Processor Interconnection Strategies

INTRODUCTION

During the past few years, the prospect of connecting togeth-
er many small computers has become more attractive. Small
machines are becoming less expensive and will very likely contin-
ue to do so for some time to come. On the other hand, very demm
machines remain costly. In order to make a fast machine faster,
it may be cost-effective to interconnect many small computers,
perhaps hundreds or thousands. Such a combination has been
called a mega-micro computer [Wittie 76].

In this paper, we address ourselves to one aspect of the
design of such mega-mico computers: the combinatoric properties
of several interconnection topologies for very large ensembles of
identical ©processors. The topologies we consider have several
factors in common. They are uniform both in the kinds of proces-
sors and links involved and the patterns of interconnection, they
are all extendable to arbitrarily large ensembles, and they all
have a number of connections that increases linearly with the
number of processors. We investigate each topology with respect
to distances between processors (the number of intermediate pro-
cessors required to vrelay a message), possible traffic
bottlenecks, complexity of routing algorithms, and geometric as-
pects relevant to physical placement of components.

From many points of view, the ideal way to connect N proces-

sors is one in which each processor can communicate directly with

any other. However, this connection strategy requires a number
of connections that grows quadratically with the number of pro-
cessors., As N grows large, the complexity of interconnection may
become unacceptable. Let us assume, therefore, that up to p pro-
cessors can be connected together in a ¢clique: a network in which
each pair of processors is connected directly. We will also cone
sider two processors to be directly connected if the complexity
of sending a message from one to the other is so small that the
transmission can be considered to be an atomic action.

One way to provide complete connection is to dedicate a
two-way transmission line between each pair (Figure 1a). Another
is to place the p processors on a ring (Figure 1b). We shall not
be concerned with the mechanisms for sending, relaying, and. re-
ceiving messages on a ring; rather, we will consider message
transmission to be a single act. Yet another scheme is to have
the processors communicate via a common bus or shared memory
(Figure 1e). Again, we will assume that problems of contention
are not relevant at our level of detail. (However, we will
derive some facts about bus traffic that can be used to estimate
the amount of contention expected.) Throughout the remainder of
this paper, we will use the term bus and illustrations similar to
1¢ to denote a clique of p processors, but all results apply
equally well to other local connection schemes. We will often

refer to processors as nodes in the network.

Processors on more than one bus must be able to transfer mes-
sages from one bus to the other, but the destination node may be

unable to accept the message. In that case, the transfer node
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must hold on to the message until it can send it. Problems occur
if each of two adjacent nodes is holding as much as it can in.its
local buffers and must send a message to the other node. There
is no way that the message can be sent or the buffers can be emp-

tied., Such a situation is known as buffer deadlock.

This problem can often be overcome in networks arranged 80
that each processor lies on at most two busses, Messages pass in
two directions across the processor., One message buffer for each
direction will often be enough at each processor. The buffers
need to be long enough only for one message. This solution will
work if the network is acyeclie. The only way a deadlock could
occur would be for a node to have a message that could not be
delivered. This situation can only arise if the next node wn the
direction of the message has a full buffer, none of whose mes-
sages could be delivered. But all of those messages must be des-
tined for processors further down the path; since there is no
circularity, there 1is no danger that any of those messages need
to pass through the first node, Therefore, the cause of the ob-
struction must be in the network minus the first processor. A
similar argument can show that the obstruction must not include
the second processor, and in fact there is no possiblilty for
deadlock at all.

Even if the network contains cycles, the two-buffer technique
can serve to lessen the severity of buffer deadlock. The only
deadlock situation is then a cycle of processors each of which
has a message for the next processor in the cycle. 1If the

buffers are made large enough to hold several messages, it may be



possible to make the probability of deadlock very small.

The sections that follow treat four topologies of intercon-
nection. The most interesting are the ones we call the snowflake
and the dense snowflake. Others that exhibit extreme properties

are the star and the p-cube.
THE SNOWFLAKE

This structure is based on the hypercube of D. Wittie [wWittie
761, Supposing that N, the total number of processors, is much
larger than p, the number of processors on a bus, how can a
number of p-processor clusters be connected together to form a
network? One way to build a network with vm processors is to
construct p p-processor clusters and link them together by con=-
necting one processor from-each cluster to a new bus. This pro-
cess .om: be iterated to give the following recursive construc-

tion. A levelwone gluster is composed of p processors connected

bv one bus. Each of the p processors is at a gorner of the net-

work. To make a level-two cluster, introduce a new bus that con-
nects together p level-one clusters by linking to a corner of
each one. P of the remaining processors, one from each level-one
cluster, are designated as corners of the level-two cluster. 1In
general, to form a level-n cluster, take p level-(n-1) clusters
and introduce a new bus that connects together a corner of each.

These corners are called the active corners of the level-(n-1)

clusters. Choose a different corner from each of those p clus-
ters to be a oowsma of the level-n cluster. These corners are

called latent corners of the level-(n-1) clusters. Each cluster
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thus has one active corner, one latent corner, and p-2 other
corners., A single processor forms a level-0 cluster, whose p
corners are all that same processor. The construction for n = 3,

p = 3 is pictured in Figure 2.

Internode distance

The maximum distance between any two nodes in an n-cluster is the
distance between two corners: 2% - 1. This formula solves the
recurrence
1 +2MaxDist(n - 1) if n > 0
MaxDist(n) =
0 if n = 0.
The average internode distance c¢an be calculated from

AvgCornDist(n), the average distance from a corner of a level-n

cluster to any node in that cluster:

L p-1
AvgDist(n) = - AvgDist(n-1) + ---(1 + 2 AvgCornDist(n-1)),
P P
1
AvgCornDist(n) = - AvgCornDist(n-1)
P
p-1
+ ==e(20"7 4 AvgCornDist(n-1))
P

(p-1) 20-1
= AvgCornDist(n=1) + weeccecacwa.,
p

AvgDist(0) = AvgCornDist(0) = 0.

These relations come from the recursive nature of the clus-
ter. If two nodes are chosen randomly in a level-n cluster,
there is a chance of 1/p that they fall in the same 1level-(n-1)
cluster, and a chance of (p-1)/p that they do not. 1In the latter

Figure 3

level
n-1
flake

Use of the Central Bus

level-n flake



case, a connection between them will require a cross-cluster bus.
Figure 3 shows this argument pictorially for p = 3.

The solutions to these recurrences are as follows:

20 (2p2 - Up + 2) 1 p-2
AvgDist(n) = ~mmmmempemmmm——ee - ecmemmeeen - eeeoo
2p% - p p? (2p - 1) P
mum - Up + 2
2 mcmmmmmmm——— 20 4 0(1),
2p? - p

2 (p - 1) p-1
AvgCornDist(n) =z me————weon o —m———
P P
For p=3, AvgDist{(n) = (8/15) 27 + 0(1); for 1large p and’ n,
AvgDist(n) 2 20, Since N, the total number of nodes, is p?, we
can express the highest term of AvgDist(n):
wvm - lUp 4+ 2 .
AvgDist(n) = mmmmgm-mooos n1/1og p
2p© - p

Thus, as the number of processors N rises, the average dis-

tance between them rises as the log p root of N. For p = ¥, the

the distance rises as the square root of N. For p = 16, the dis-

tance rises as the fourth root.

Number of busses

n

A level-n cluster has p" processors. The number of busses in

a level-n cluster is
1 + p NumBus(n-1) if n > 0

NumBus{n) =
0 if n = 0.

The solution to this recurrence is

pP -1 N -1
NumBus(n) = ——eeee 2 co-e- |,
p-1 p-1
so the number of busses grows linearly with the number of proces-
sors,
Most processors lie on only one bus and take no part in re-

laying messages. The number of such processors is

p OneBusProcessors(n-i1) - p

OneBusProcessors(n) = if n> 1,
P if n = 1.
or, in closed form,
p? - p N-p
OneBusProcessors(n) =z pP = ~—ecec 2 N = cmmem
.op -1 p -1

Thus the proportion of processors on one bus is

OneBusProcessors(n) 1 p 1 1 . .
ermmcemmemcesemem—=e = ] = ==e } w=me = £ 1 - -~~~ for large N.
NumProe(n) p-1 p-1 N p-1

For p = 3, half the processors have no relaying function, and as
p approaches infinity, a vanishingly small fraction are used for
relaying messages. The sparsity of connection leads one to be-
lieve that some advantage might be gained by adding extra busses
s0 that every processor connects two busses. The dense

snowflake, to be discussed later, builds on this idea.

Routing and addresses

A unique path leads directly from any node in the snowflake
to any other. The correct numbering scheme makes routing easy.
Assign a unique n-digit address (base p) to each node in a
level-n cluster. When p level-{(n-1) subclusters are combined to

form a level-n cluster, assign a distinct digit to each subeclus-



Figure 4 .
ter, and concatenate this digit to the beginning of the address
o000 of each of its processors. The active and latent corners of the
new cluster are the latent corners of the constituent clusters
DOO¥
000} . 00067 numbered one and zero, respectively. See Figure 4§ for the case
ool DO n= U = 3.
: ” ool latent at levels 1, 2, n P 3
00581; ) 003% active at level 3. This tying strategy gives rise to some new terminology: A
oo s
0120 _ ooll 001 o»%q node with address d®=J10J-' (where d means any digit) is the
ol | 0310 A ouix latent corner of its i-clusters for 1<i<j-1, and it is the active
ol o2 7 pan o2 o ) . .
corner of its j-subcluster., It will be the point of connection
o/oa oh_qotlif pagyr NO%L b2a0)
O to the level-(j+1) cluster. This scheme has the property that
o10% & oI & oy, ooy
olop \v. J \\\ 0200 the processors on any one bus are those whose addresses differ in
o1ol onx 610 022p dX31 00 .
/300 atoo a given position. For example, the central bus in Figure 4§ con-
10y AGK =
20} aiol “ Ao nects processors 0100, 1100, and 2100. It is natural to denote
121 122} ¥/o0 012 ﬂw_ 221 this bus by *100. Our conventions for choosing active corners in-
() .
\»\%z* [FFETAN Aty b c»ﬁw;uo sure that each bus has an address of the form dP~!% op
1220 ao f .
1020 121 1 "o U a1 d"=J#103-2, 1n the former case, the bus is introduced to form a
1
g kil Ny level-1 cluster; in the latter case, it is introduced to form a
> O
021 & L Hg ' 2010 level-j cluster. A level-j bus creates a level-j cluster.
/700 i ligl 260
2 Joll i » ol ool To demonstrate routing, let us direet a message from node
foo¥ 118 [[FE e Hogh 200%

2101 to node 2021. A glance at Figure 4 will show that the

unique path is as follows:

Snowflake: n =4, p = 3
With Addresses
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node bus
2101
21%1
2111
211%
2110
2%10
2010
201%
2011
20%1
2021
The algorithm to find the route can be written recursively
on the highest level bus that needs to be employed. It works by
are

finding the smallest j such that the source and destination
in the same level-j cluster. The message then goes from the
source to the active corner of its level-(j-1) cluster, across

the level-j bus to the active corner of the destination cluster,

and thence to the ammnwswwwom.

- : isk:
type digit = 0 .. p-1 union mmnmmwmn..
mamwwmm = array[?1 .. nl of digit;

procedure route(source, dest: address);

begin {route}
routel(source,dest,n)

end {route}

10

procedure routel(source,dest : address; level : integer);

{source[i] = dest[i] for i > level}

begin {route?}

if level = 0 then
{trivial path} output(source)

else if source[level] = dest[level] then
routel(source,dest,level-1)

else begin
bus :

= mo:nowmm .. level+1] cat asterisk
cat 03~
if level > 1 ghen bus[j-1] := 1;
dest! := bus;
destif{level] := source[level];

1

routei(source,desti,level-1)

output(bus);

sourcel := bus;

sourcel[level] :=z dest[levell;
route?(sourcel,dest,level-1)
end

end {route1}
This algorithm can be modified in a straightforward way so
that each node on the path does only as much computation as

necessary to transmit the message the next step on its way.

Bus Load

By the load on a bus, we mean the probability that a message
between a random pair of processors will use that bus. We will
express the load on a bus in terms of loads due to messages res-
tricted to various classes of sources and destinations., In each
case, a load of 1 means that a message of the given type certain-
ly goes through the given bus.

Let ActLoad(bus} be the load on a bus due to messages between
arbitrary nodes in the cluster and the active corner of that
cluster. Similarly, LatLoad(bus) is the load on a bus due to
messages between arbitrary nodes and the latent corner. Let

AACrossLoad(bus) be the load on a bus in a cluster connected by

its active corner to another cluster; the paths that contribute
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to this load are those that connect any node in the first cluster
to any node in the second., 1In each of these cases, the size of
the cluster concerned is determined by the number of digits in
the bus name.

The load on a bus can now be expressed recursively on its ad-
dress. We will represent addresses by means of the following
conventions: w stands for an arbitrary string, d for an arbi-
trary digit, * for the asterisk that appears in each bus address,
0 and 1 for any digit not 0 or 1, respectively, and h for any di-
git greater than 1.

The recurrences themselves follow:

p -1
Load(¥*y) = ewew-
p
Load{(w) + 2(p-1)} AACrossLoad(w)
Load(dW) = merememmerc; e ce e ———————————
vm
p -1
AACrossLoad(¥#w) =z wece-
p
_ ActLoad(w)
AACrossLoad(1w) =z wewecwewaua
p
p -1 1
AACrossLoad(1iw) = =---~ ActLatLoad(w) + - LatLoad(w)
p p
p -1
ActLoad(¥w) = «wee-
P
- ActLoad(w)
ActLoad (IW) = —m—emwaaas
P
p -1 1
ActlLoad(1w) = ==w-- ActLatLoad(w) + - LatLoad(w)
P P
p -1
LatLoad(¥w) =z wwew-
P
- ActLoad(w)
LatLoad(0wW) = —emmceaae-
p
p -1 1
LatLoad(0w) = —=--- ActLatLoad(w) + - LatLoad(w)
P D
ActLatLoad(#w) = 1
ActLatLoad(0w) = ActLatLoad(w)
ActLatLoad(1w) = ActLatLoad(w)

12



ActLatLoad{hw) = O

A1l these recurrences have the same flavor; we will describe
AACrossLoad(1w) in detail. Figure 5 depicts the situation. The
source and the bus are, without loss of generality, in the left-
hand cluster, and the destination is in the righthand cluster.
Since the bus address begins with 1, it is in the active subclus-
ter of the lefthand cluster., If the source should be in any oth-
er subcluster, its message must pass through the subcluster of
the bus. It will enter that subcluster by its active corner and
leave by its latent corner. Therefore, it will contribute a load
of ActLatLoad(w) to the bus. This situation occurs (p-1)/p of
the time. If the source is in the active subcluster, then the
message will travel out through the subcluster's latent corner,
contributing LatLoad(w). This case occurs 1/p of the time. The
other recurrences are derived mwswwwde.
) It is straightforward to apply these recurrences to compute
the expected bus load for any bus in the cluster. In the case

n=3,p=3, the load on busses is as follows:

Figure §
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bus Load

*10 6666667
o*1 .3703704
1%1 .3703704
2%1 .3703704
00* . 1399177
10% . 1399177
20# . 1399177
o1% 4362140
11% .4362140
21% .4362140
02# . 1399177
12% . 1399177
22% .1399177

The maximum bus load appears for the center bus, ®qQ0-2,
THE DENSE SNOWFLAKE

In our discussion of the snowflake, we noticed that a high
proportion of all processors are attached to only one bus.
Furthermore, the load on the higher-level busses is substantial.

The dense snowflake (which we will usually call the dense flake)

attempts to remedy this situation by using p-1 busses instead of
only one to connect the p subclusters that make up a level-n
cluster. A dense flake for n = 4, p = 3 is shown in Figure 6.
Now p-1 corners of a cluster are active and the remaining corner
is latent. In a level-j cluster, the latent corner has address
pod-1, The other corners are active, and have addresses mOuvaﬁ
where 0 means any digit but zero.

These new connections introduce alternate pathways between
processors. For example, to send a message from node 2101 to
node 2021, as we did for the sparse flake, a new path exists
through bus 21%2,

In contrast to the sparse flake, in which most processors are

on only one bus, all but p processors in a dense flake are on two

Figure 6

Latent at levels 1, 2
Active at level 3
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Dense Snowflake: n = #, p = 3
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busses. These p defective nodes may be joined by one additional

bus with address *osnA. which we call the guter bus. Although

this bus completes the structure, it causes some irregularities

in routing.

Internode Distance

We will define the distance between two nodes in the dense
flake to be the length of a minimal path between them, (There
may be several minimal paths. We will discuss routing in a later
section.) Let ActCornDist(n) be the average distance from a ran-
dom node in a level-n cluster to the closest of the p-1 active
corners, and let CornDist(n) be the average distance from a ran-

dom node in a level-n cluster to a given corner. hen we have:

ActCornDist(n) = - (ActCornDist(n-1) + 2n=1y
P
p-1
+ =-- CornDist{n-1)
p
1
CornDist(n) = - CornDist(n-1)
p
p-1
4 ——= (28=1 4 ActCornDist{(n=1)).
P

These recurrences can be understood in reference to Figure T7a.
If a node is picked randomly in a level-n flake, it lies with
probability (p-1)/p in a subcluster that owns an active corner of

the whole cluster. We will call this an active subcluster. In

that case, the distance is CornDist{n-1), since the desired ac-

tive corner is in the same subcluster. With probability 1/p, the

node is in the latent subecluster, and must pass to the closest
active corner of that subcluster and then cross to any of the
other subclusters. The distance across any cluster is MaxDist(n)
= 2P%.1, and one more link must be added to this quantity to ac-
count for the level-n bus that was used. Similar arguments yield
the formula for CornDist.

We can define the average distance {without an outer bus)
AvgDist(n) in terms of an intermediate quantity we will call the
AACrossDist, which is the average distance from a node in one
level-n cluster to a node in a different level-n cluster when
corresponding active corners of the two clusters are connected by
links of length 0. (Hence the name AA.) Figure 7b shows the si-
tuation for AACrossDist(n). The average distance is then:

1
AvgDist(n) = - AvgDist(n-1)
Y

p-1 .
+ —== (1 + AACrossDist(n-1))
P

This formula is based on picking two random nodes in a level-n
network. With probability 1/p, they fall in the same level-(n-1)
subcluster, and with probability (p-1)/p they fall in different
ones. In the latter case, a level-n bus must be taken, and the
two subclusters are connected as in Figure T7b.

If random nodes are picked from each level-n cluster of Fig-
ure 7b, four situations may arise. If both nodes lie in latent
subclusters, which occurs a\vw of the time, the path will lead to
any active corner of the source subcluster; out to any active

corner of the source cluster, and similarly in the other cluster.
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The second case is when one node is in a latent subcluster, and
the other in an active subcluster. The third case occurs when
both nodes are in corresponding active subclusters. The only
hard case is when both nodes are in active subeclusters, but they
are not directly connected. This situation is shown in Figure Tc¢
with the two possible paths that might be taken. Each path has a
component of length 20-1 and a remaining portion as shown Figure
7d. We will call the average distance between nodes in clusters
connected as in Figure 7d the ALCrossDist(n}, since 1links of
length zero connect active corners to latent corners. These four

cases give rise to the four terms in the recurrence:

3

AACrossDist(n) = -z [ (2 ActCornDist(n-1) + 2 2n-1y
P

+

2(p-1) (ActCornDist(n-1) + CornDist(n-1) + 20~1)

(p-1)(2 CornDist(n-1)}

4

{(p-1){p=2) (27! + ALCrossbist(n-1)) ]

+

1
= -3 [ (2p ActCornDist(n-1) + (4p - 4) CornDist(n-1)
P

+ (p2-p+2) 2P=1 4+ (p2-3p+2) ALCrossDist(n-1) J.

The analysis of ALCrossDist(n) 1is quite similar to that for
AACrossDist(n). Three situations can arise when two random nodes
are picked from the clusters shown. In the first case, one lies
in a latent subcluster and the other in an active subcluster. A
link connects these subclusters directly. In the second case,
both nodes lie in latent subelusters. Here there are {wo possi-

ble paths, as shown in Figure 7d. Each path has a component of

length mzlg and a remainder corresponding to w»m:meqa. In the

final case, both nodes are in active subelusters, and once again
there are two paths. .These also share a component of m:nﬁ. and
the remaining connection is again as in Figure 7d. Thus we have:

1
ALCrossDist(n) = -3 [2(p~1)(2 CornDist(n-1))

p

+ (20=1 4 ALCrossDist(n-1))

+ (p-1)2 (27=1 4+ ALCrossDist(n-1))]

1
= -3 [4(p-1) CornDist(n-1) + (p2-2p+2) 20=!

p

+ Anmlmw+mv ALCrossbDist(n-1)].
Simultaneously solving these recurrences with the aid of

Macsyma [Macsyma 75] we derive the formula:

3
p~ - p
AvgDist(n) = —mmcmmmmcecemcc—nae 28
2p3 4+ 3p2-6p+2
p p2-2p+2
+ mmemmmmmccot (mmmmmmzemmen)P
p?+2p-2 p?
P 1
L YL I
2p-1p"

When p = 3, AvgDist(n) = (24/65)2" + 0(1), which is a 31% im-
provement over the sparse flake. As p and n increase, AvgDist(n)
approaches m:ng. or half the average distance, in the sparse
flake.

It may seem that an outer bus could substantially improve in-
terprocessor distances since may pairs of processors that lie
near the edges of the flake would be able to use the outer bus
rather than route their messages across the diameter. However,

the effect of an outer bus is surprisingly small. If AvgDistO(n)



is the average distance in a level-n network with an outer bus,
an analysis similar to the one above gives us the recurrences:
1 p~1
AvgDist0(n) = - AvgDist(n-1) + ==~ (1 + FCrossDist(n))
p P

1

FCrossDist(n) = -3 [2 CornDist{(n-1)
p

+ p(p-1) (2™1 4+ ALCrossDist(n-1))].

Here, FCrossDist is the function suggested. by Figure Te. The

solution to these recurrences is:

p* - 3pf +3p -1
AVEDiStO(n) = =mmpommiemzoootoogooooon 20
2pt+3p3-6p°+2p
nw um -2Pp+ 2
4 mprmmmemgmemmeeene (cmeeosooeoo}f
p' - 4 p2 + 8 p - p?
p 1
2p-1p"

When p = 3, AvgDistO(n) = (62/195)2"% + 0(1), which represents
only a 14% improvement over AvgDist(n) for large n, and as p in-
creases, the advantage obtained from the outer bus drops to zero.
Since the outer bus leads to special cases, we will usually as-

sume that it has not been included.
Routing

The dense flake allows alternate paths between nodes, 80 a
routing algorithm must be able to find a shortest path. 1In addi-
tion, equally good choices should be equally likely, so that in-
dividual busses do not get used more than their share of the

time.

Figure 8

Dense Snowflake Routing Decisions

destination

destination



Figure 8a represents the situation in which the source and
the destination nodes lie in different clusters. If both nodes
lie in corresponding active subclusters, there is no doubt which
intercluster bus to take to cross between the source and the des-
tination subelusters. If both nodes lie in latent subclusters,
then any one of the intercluster busses may be used with equal
cost. 1In this case, one should be chosen randomly. If one node
lies in a latent subcluster, and the other in an active one, then
the intercluster bus that leads to the active cluster should be
used. The only question arises when the source and destination
lie in non-corresponding active subclusters., Figure 8b shows the
two paths that might be chosen. The first uses intercluster bus
1, which is more convenient to the destination, and the other
uses ‘intercluster bus 2, which is more convenient to the source.
Both paths require a traversal of a subcluster, which always
takes 20-1 steps for a subcluster of level n, and both require
both an intercluster bus and an intersubcluster bus. The first
path also requires a segment to the cleosest active corner of its
subcluster and from the latent corner of the destination subclus-
ter (which is active in its cluster) to the destination. Let us
call these lengths SA and DL, respectively. Likewise, the second
path requires DA and SL. The first path should be chosen if
SA + DL < DA + SL.

Each of the distances SA, SL, DA, and DL is of a special
form, since each measures distance to a corner. It is possible
to determine the distance from a given node to the 0O-corner quite

easily. Figure 6 shows the dense flake for p = 3, n = 4. If we
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list all the nodes that lie at various distances from the top
corner, we find that all the nodes at each distance have the same
form. For example, nodes 0010 and 0020 have distance 3. We will
represent them both by 0010. A partial 1list of distances fol-
lows.

distance bus

0 0000
1 0001
2 0011
3 0010
y 0110
5 0111
6 0101
7 0100
8 1100
9 1101

This sequence appears in several other guises in the mathematical
literature. For example, it is a list of adjacent legal states
in the Chinese Ring puzzle, where 0 means a ring is off the pole,
and an h means that it is on the pole. (The goal of this puzzle
is to start at situation 0000 and reach 1111.,) This sequence 1is
the reversing binary number representation of the integers [Knuth
69, p. 178, exercise 4.1.27}. The place value of the 3jtB place
from the right (starting with j=1) is mg'd. Thus the places
represent d.,w. 7, 15, and so forth. Starting with the most sig-
nificant 1, the =sign of the places occupied is alternated as
their contribution is added. Therefore, rev-
value(0111) = 7-3+1 = 5, and revvalue(1101) = 15-7+1 = 9. This
observation provides an algorithm for computing the distance from
any node to a given corner.

The sum of the distances from any node of a level-n cluster

to the latent corner and to the nearest active corner is always
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2%.1: One of these distances if revvalue(1iw), and the other dis-
tance is revvalue(Ow) for some string w of length n-1. Thus,
SA + SL = DA + DL = 2%-1, so SA + DL < DA + SL if and only if
SA < DA. These observations lead to the following algorithm for

routing messages:
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function pick(place:integer; source, dest:address) : digit;
{picks which bus to use, out of 1 .. p-1,
where place = firstdiff(source,dest). }
var sdigit, ddigit : digit;
sdist, ddist : integer;
function dist(place:integer; proc:address):integer;
begin {dist}
if place = 0 then dist :=
else if prociplace] = 0 then
dist := dist(place-1,proc)
= (2%%place - 1) - di

0
e

st(place~1,proc)

®
2
io
(=%
e
1]
ot

p
:= source[place~1];
1= dest{place-1];
git=0) and (ddigit=0)
en {latent-latent} pick :
(sdigit=0) or (ddigit=0)
then {iatent-active} pick :
if sdigit=ddigit
hen {matching active-activel}l pick := sdigit
else begin {unmatched}
{This case can only happen once for any message.}
sdist := dist(place-2,source);
{The distance is the reversing binary
interpretation of source[1..place-2]} . R
ddist := dist(place-2,dest);
if sdist < ddist then pick := sdigit
else if ddist < sdist then pick :=z ddigit
else pick := randomchoice([sdigit,ddigit]l)
end {unmatched};
end {pick};

= randomchoice([1 .. p=11)

= max(sdigit,ddigit)

it
bt
i
{t]
feto
]

ot

The procedure "route" given earlier for routing in the sparse
flake may be used for the dense flake by replacing the statement
"pus[level-1] := 1" by "bus[level-1] := pick(level,source,dest)”.

If an outer bus is used, the algorithm changes slightly.

Bus Load

In calculating bus load for the dense flake, we assume that
messages follow shortest paths, and that when more than one shor-
test path exists, all are equally likely. Recurrences similar to
those for bus load in the sparse flake apply to bus load in the

dense flake. 1In addition to the quantities described there, it
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is also necessary to introduce ALCrossLoad(bus), which describes
the load on a bus due to communications between its cluster and
another cluster connected to it according to Figure 7d. This
quantity is analogous to ALCrossDist(n), where n is the number of
digits in the address of the bus. The quantity ActLoad(bus) now
accounts for traffic from arbitrary nodes in a cluster to their
closest active corner. ActLatLoad(bus) measures load on the bus
due to messages between an arbitrary active corner and the latent

corner. The recurrences are these:

p -1
Load(¥*) z mmwua-
P
1
Load(*w) = -
P
Load(w) + 2 (p - 1) AACrossLoad(w)
Load(dvw) 2 wmemecwmmccccc—a. —_—
um
p2 - p+2
AACrossload(®) =z weecmmoooo
2 p©
ﬁm - p+ 2.
AACrossLoad(¥*w) = Smmsmmmmoens
2{p-1)p
ActLoad(w)
AACrossLoad(0w) = cemucccmea
P
- 2 LatLoad(w) + -(p-- 2) ALCrossLoad(w)
BACrosslLoad(0W) 5= —cremmcccccc e e ———————————————
UN
p? - p 42
+ SmsmmemeTeey ActLatLoad(w}
2(p-1)p
nm -2D+ 2
ALCrossLoad(¥#) o ccmeaacoeo
2 vw
nm -2p+ 2
ALCrossLoad(*w) = cecemcacamaa
2 (p-1) p?
(p - 1) LatLoad(w) + ALCrossLoad(w)
ALCrossLoad(0W) 2 —memacme et e c—————
2
P
(p - 1)2
4+ we=e-z-w ActLatLoad{w)
2 vm
_ LatLoad(w) + (p - 1) ALCossLoad(w)
ALCrosslLoad(0w) =z -- w— -

p2
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ActLoad(¥)

ActLoad(*w)} =

ActLoad(0w) =

ActLoad(0w) =

LatLoad(¥*) =

LatLoad(*w)} =

LatLoad(0Ow) =

LatLoad(0w), =

ActLatLoad(¥*)
ActLatLoad(¥*w)
ActLatLoad(0w)

ActLatLoad (0w)

For the case n = 3, p = 3, the bus loadings are as follows:

ActLatLoad(w)
TR
1
P
1
p (-
ActLoad(w)

P
LatLoad(w) ActLatLoad(w)

o e o o o o e o

P p(p=~1)

p -1

1

P
LatLoad(w) + (p - 1) ActLatLoad(w)

P

ActLoad(w)

P

-t

1

p-1

= ActLatLoad(w)
ActLatLoad(w)

p-1
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bus load

*0Q .3333333
0¥Q .1358025
1%Q . 1358025
2%0 . 1358025
oo* .0795610
10% .0795610
20% .0795610
o1#% .2085048
1% .2085048
21% .2085048
o2% .2085048
12% .2085048
22% .2085048

THE STAR

The snowflake has many processors that perform no routing
functions, since they are connected to a single bus. When extra
connections are introduced, as in the dense snowflake, uniqueness
of routing is lost. It is of some interest to see how small the
average internode distance can be made without introducing alter-
nate pathways through the cluster.

To build an optimal cluster in this sense, start with a sin-
gle bus with p processors. This bus will be called the genter of
the cluster, and its p processors form the first ping. Since we
wish to fully connect each processor, we form the second ring by
attaching a new bus to each of the p processors., Each of these
second-ring busses should have a total of p processors. One of

them is the inner node to which the bus is connected. The other

p-1 nodes are outer nodes, and will be used to form the next

ring. A level-n gtar is formed by the combination of all rings 1

to n. Figure 9 shows a star with n = 4, p = 3.
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Number of busses and progessors

The number of busses in each ring follows this recurrence:

(p-1) RingBus(r-1) if r 2 3
RingBus(r) = p if r =2
1 if r = 1

= fp (p-1F"2 ifr 2

p if r = 1.

The total number of busses in a level-n star is the sum of these
quantities, namely
p(p- 10T op
NetBus(n) =z =eememcemcaccwas 4+ 1
p~-2
The number of processors in each ring is given by

RingProc(r) umﬁucdv RingBus(r) if r
P if r

n v
N

=fp (p-)T-tirr2
p fr=1.

[

The total number of processors in the star is given by
NetProe(n) = 1 + (p-1) NetBus(n)
p (p-1" - p

———m————— e 2

p -2

1

The number of processors in a level-n star is thus approximately
(p-1)P. The maximum distance is MaxDist(n) = 2n - 1. The formu-
las given above become simpler if the level 1 bus .osw< has p=-1
processors assoclated with it. We c¢all this structure the

partial star., In this case, we get the following results:
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RingBus(n) = (p - 1)1
(p-1)0 - 1
NetBus(n) = —mem—mme———
p -2
RingProc(n) = (p - 1)B
AUI._vS.*._ -1

NetProc(n)} 2z mewewecocemm=
p -2

Even though the maximum distance between two processors is
quite small, and there are no alternate paths, physical crowding
among outlying processors becomes severe. This situation is due
to the goal of the star: to place as many processors as close to-~
gether as possible. If the physical radius of the network is to
increase linearly with the number of rings, then a three dimen-
sional space can accomodate a quadratic increase in the number of
processors per additional ring. However, the number of proces-
sors wn.m star is exponential in the number of rings, and there-

fore cannot fit without either increased crowding or physically

broader and broader rings.
Routing and addresses

The star has an exceptionally easy addressing and routing
scheme. A processor of ring r will have an r-digit address.
Each of the processors on the next ring out will have the same
address followed by one of the digits 0 to p-1. The numbering
scheme is shown in Figure 9.

A node at ring r can receive a message either from its inner
bus or its outer bus. If the message comes from the inner bus,

either it has r digits in its address, in which case it is in-
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tended for the node itself, or it has more. In the latter case,
the node directs the message to the appropriate node in the next
outer ring by examining the (r+1)th digit from the right in the
address. If the message comes from the outer bus, it might be
for the node itself, in which case the address will match exact-~
ly, or it might be for some other node. In the latter case, the
message is drifting inwards until it finds the level at whiech it
can begin to travel back out. This reversal will happen at the
node whose address matches the destination address for all but
one place in the node address. If this criterion is met, the
node directs the message through the inner bus back out to the
node on its ring with the proper final digit. If this criterion
is not met, the node directs the message through the inner bus to

the node of the next inner ring.

Bus load

As before, we are interested in how many processors lie in
each direction from any given bu. Because of the central sym-
metry of the star, the omwmcwm«wo: will yield the same result for
any bus in the same ring r.

The p nodes on a bus in ring r > 1 lie in two directions:
one is inward, and p-1 are outward from this ring. Let Out(n,r)

represent the number of nodes reachable in a level-n star from a

ring-r bus along one of its outward nodes. Then
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Aﬁldvﬂl1+a -1
Out(n,r) = summation (p=1)¥ = comemmcmcmeeoo |
1<kin~r p -2
Likewise, we can define In(n,r) to be the number of processors
that can be reached by along the path inward from a ring-r bus in

a level-n star., For the sake of mathematical simplicity, we will

deal with the partial star. We then derive that:

1 + (p=2) Out(n,r-1) + In{(n,r-1) for r > 1,
(0 for r = 1.

In(n,r)

(p-1)0*1  (p-q)n-r+2
——————— - —————————— (O] P D= 1,

p -2 p -2

Now we can express the load through a ring r bus in a level-n
star by computing:
p2h Load(r) = (p-1) (p-2) Out(n,r)2 &« 2 (p-1) Out(n,r) In(n,r)
- Aunmva_ MAn:dvmsfmw+w - mﬁnndvauw+m +p = 1]
s 2 Aonmvumﬂﬁn|“vmsnw+w - (p-1)0+2 _ Auudvmanmw+z
+ (p=1)0-F+3]
The extreme values of Load(r) occur for r = 1 and r = n, At

these points, we find that

AU - avNS
Load(1) = 2 T
P
Av - ~v=+“
Load(n} & 2 -meegmme-
P
Extensions

All the processors on the outermost ring of a star are still con-
nected to only one bus. There are several ways to close the
graph. Sutures could be made from each outermost node to p-1

other 1leaf nodes in other arms of the star. A processor at the
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edge will have address udvm...cw for an r-ring network. The
neighbors across the rift have address adcm...uﬁ, where au £ Dy..

There are RingProc(r)/p = Aundv1|“ suture busses needed for this

connection when r > 2. We call this form of network the

gross-star.

Another way to close the graph is to form a nova from p

identical copies of a star placed over each other so that the
edges are aligned. These copies are sutured together at the edge
by pip-1)r=1 suture busses. Now each outermost node has found
its p-1 mates, which have, in fact, the same address. It will be
necessary to add one digit to the address of each node to indi-
cate on which of the p planes it lies. Each processor has p-1

shadow processors with the same address in the other planes.

The algorithm for routing messages must deal with the alter-
nate pathways through the structure. Since the initial purpose
of the star was to see how densely processors could be arranged
without alternate pathways, the extension under consideration is
no longer in the mood of the previous discussion. However, it is
an interesting exercise to find a good routing strategy that will
deliver any message across the shortest path that leads from the
source to the destination.

Suppose that two nodes wish to communicate. If they lie on
the same plane, then they follow the path dictated by the routing
algorithm outlined above. If they inhabit different planes, the
message can cross the suture either outward from the source or
outward from the destination, Define the parent ring for the

source-destination pair as the outermost ring whose addresses
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source

===~ path one, source plane
=+=~+< .= path one, destination plane

sestteeeeiee path two, source plane
$+4a4y44, Path two, destination plane

S0=2,8 =2,Db0=1, DI =3, PO =k,
Path one has 7 links; path two has 9 links

Routing in the Nova

destination

33

form a prefix for the address of both the source and the destina-
tion. One way to send the message is for the source to direct it
inwards to the parent ring, then to lead it outwards past the
destination's shadow (since it is still in the wrong plane} and
then randomly out to the edge. It then crosses the suture into
the destination plane and comes back in to the destination, The
other path directs the message outward from the source 1m:mos~<
to the edge, across to the destination plane, back in past the
source's shadow, in to the parent ring, and then out to the des-
tination,. These alternate paths are depicted in Figure 10. If
either the source or the destination lies on the parent ring,
these two methods will yield the same path (if random motion out-
ward means to pass the shadow if it lies outward of the current
location). 1In other cases, the paths are different. The lengths
can be expressed in terms of several ring differences. Let SI be
the ring difference from the source in to the parent. Let SO be
the ring difference from the source out to the edge. Define DI
and DO similarly. Let PO be the ring difference from the parent
out to the edge. Then the first type of path has this distance:
Dist(1) = SI + PO + DO.
The other path has this distance:
Dist(2) = SO + PO + DI.
Path one 1s to be preferred when SI + DO < SO + DI. Since

PO = SI + SO = DI + DO, path one is better when SI < DI. A simi-
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lar computation applies to the case of the cross-star.

THE P-CUBE

We examined the star to find the smallest diameter 1in the
graph without introducing alternate paths. Now we would like to
examine a structure that minimizes internode distance, but allows
multiple paths, while maintaining the constraints that each bus
have exactly p processors and each processor be connected to ex-
actly two Dbusses. Arrange 2P busses at the vertices of a
p-dimensional unit cube. The three-dimensional case is shown in
Figure 11. Each bus can be addressed by its position in space,
which is a sequence of p binary numbers, Adjacent busses are
those differing by one digit. Between each pair of adjacent
busses sits a processor, whose address is the same as that of
each of its busses, except it holds the character "¥" in that po-
sition in which the busses differ. (This nomenclature is dual
to the form that we have been following so far.) The only way to
enlarge a p-cube is to increase p. The number of processors is
the number of edges in a p-cube, namely

ProcNum(p) = p 2P-1 .,

Internode distance

It is more convenient in this case to discuss the interbus
distance. The distance between two busses is the Hamming dis-
tance (the 1-norm distance) between their addresses. It is clear

then that

Figure 11
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P-Cube, p = 3 .
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MaxDist(p) = p.
The average distance between two busses can be found by noticing
that there are exactly C(p,d) busses at a distance d from any
bus, where C(n,k) is the binomial coefficient of n and k. Thus
the average distance is
AvgDist(p) = summation 4 C(p,d) = p/2.
0<d<p

Routing

It is very straightforward to route messages in the p-cube,
The source node has an address formed of a binary string with a
"¥" in it. Either the destination is the same, in which case the
message has been delivered, or there is a difference in some po-
sition. Choose arbitrarily any position of difference., Turn the
* into the proper digit for the destination at that position
(thereby determining nuwo: bus to take) and replace the differ-
ence bit with a new *, thereby determining which of the p nodes
to go to on the other side of that bus. If there are d differ-
ences in the  addresses, then there are d! ways to choose the
order in which the discrepant digits can be fixed, Each of these
ways forms a different path, although many paths share common

subpaths. Any path will go through d busses, but there are mn

busses that could be chosen.

36

Bus Load

Since all busses are functionally identical, the fraction of
messages that crosses any bus is the inverse of NumBus, so we get

Load(bus) = 2P for each bus,
CONCLUSION

We have compared several related topologies for interconnect-
ing large collections of identical processors and evaluated them
with respect to various combinatoric properties. The highlights
of our results are summarized in the table at the end of this
section,

Several questions remain unanswered. The recurrences that
describe bus 1load in the snowflake might be solvable, and the
problem of bus load in the dense snowflake seems substantially
more difficult. More generally, we would like to derive statis-
tics about the distribution of bus loads in the sparse and dense
snowflakes, The authors are currently attacking this area.

An issue not addressed in this paper is the survivability of
various topologies in the event of component failures. The regu-
larity of the topologies we describe should make answers to this
question follow easily from general graph theoretic techniques
such as those summarized in [McQuillan 77]. For example, the
star and the sparse flake are both trees. Therefore, failure of
any bus disconnects the network. The dense flake and the hyper-
cube are much better in this respect.

Although we feel that the structures we describe are natural
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oo:mmnzmaomm of the goals mentioned in the introduction, we make
no claim that they are exhaustive., There may very well be other
topologies that perform better than the ones we considered. We
hope that the techniques presented here will prove useful in the
investigation of other structures. For example, if we alter the

model to assume that processors are connected by links rather

than busses, with at most p links from any processor, we are led
to a graph very similar to Figure 1c. Interpreting the circles
as processors rather than busses, we can calculate interprocessor
distances 1in the processor-link model as interbus distances in
the processor-bus model.

The biggest problem involved in the construction of a megaw
micro computer is software. Very little is known about the task
of writing operating systems to make such a multi-processor us-
able except that the task is hard .[Wulf 1974, Ornstein 1975].
The authors hope to tackle this problem in the near future. In
the meantime, we hope the present work will be helpful to the

designers of hardware.

Number of
processors

Number of
busses

Distances
max
mean

Bus load

max

Uniformity among

processors

Crowding

Ease of routing

Sparse
Flake

p?-1

p~1

AL

p-1

-

good
mild

good

Dense
Flake

2p? - 1

20,

amstd

good
mild

fair

Star

Aﬁldv5+ald

p=-2
(p-1)P-1

p-2

2n - 1

(p-1)2n
- P

vm:

(p-1 v:+.._

o el
vm:
very good

very severe

good

P~Cube

p NUIA

2P

p/2

o=P

excellent
severe

excellent
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