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The goal of this thesis is to develop test generation pro-
cedures for testing microprocessors in a user environment. Classical
fault detection methods based on the gate and flip-flop level or on the
state diagram level description of microprocessors are not suitable for
test generation. The problem is further compounded by availability of a
large variety of microprocessors. They differ widely in their organiza-
tion, instruction repertoire, addressing modes, data storage and
manipulation facilities, etc. In this thesis, a general graph-theoretic
model for microprocessors is developed at the register transfer level.

Any microprocessor can be easily modeled using information only about the
instruction set and the functions performed by it. This information is
easily available in the user's manual. A fault model is developed on a
functional level quite independent of the implementation details. The
effects of faults in the fault model are investigated at the level of the
graph-theoretic model. Test generation procedures are proposed which take
the microprocessor organization and the instruction set as parémeters and
generate tests to detect all the faults in the fault model. The complexity
of the test sequences measured in terms of the number of instructions is
given. Our effort in gemerating tests for a real microprocessor and

evaluating their fault coverage is described.
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1. TINTRODUCTION

1.1. Description of the Problem

Microprocessors constitute a very high percentage of today's
large scale integrated (LSI) circuits. The number of microprocessor-
based digital systems is expanding rapidly. This has given rise to an
acute need for sound theoretical tools to develop efficient, thorough
and cost-effective test programs to detect faults in microprocessors at
all levels: at the component level during fabrication and before
encapsulation, at the chip level before incorporating the microprocessor
into a system, and at the system level in the field. These levels
have their own testing requirements and constraints on test development
and application.

Manufacturers of microprocessors are interested in testing
various components and devices on the microprocessor chip during its
fabrication for DC parametric behavior (such as power consumption, noise
sensitivity, fanin and fanout capability, etc.) as well as dynamic
timing problems, etc. Both manufacturers and users are interested in
testing microprocessors at the chip level for its correct functional
operation at the rated speed. Finally, users and system designers are
jnterested in ensuring that the microprocessor in the system (as well
as the rest of the system) is functioning correctly. Classical fault
detection methods such as the D-algorithm [RBSc67] used for the chip
and system level testing are employed to detect logical faults defined
at a low level such as a line stuck-at-one or stuck-at-zero [CMMe70]

and [BrFr76]. These faults are associated with lines interconnecting



gates and flip-flops. For microprocessors which contain thousands of
gates, flip-flops and interconnections, classical methods must consider
a very large number of faults making test generation extremely
complicated.

Qur approach associates faults with various functions of the
microprocessor (defined at a suitably higher level), such as the
register decoding function, instruction decoding and control function,
data storage function, etc. We give some examples of faults in micro-
processors which we are interested in detecting.

Example 1.1: When the instruction "Load register Rl" is
executed, register R

is loaded instead of register R This may happen

2 1’
due to a faulty register decoding function. The instruction "Interrupt
enable" correctly enables the interrupt, but at the same time the.
accumulator is cleared. This can be attributed to a fault in the instrue-
tion decoding and control function. The instruction "Add the contents

of register R, to the contents of the accumulator," is not correctly

1
executed for a few operands due to faults in the arithmetic and logic (ALU)
unit. We associate these faults with the data manipulation function.
A register may fail to store certain data patterns. This fault is
associated with the data storage function. | i
Another important reason motivating our approach of considering
faults at a functional level is the constraint imposed on testing micro-
processors in a user environment: the test programs need to be generated

without knowing the implementation details of the chip at the gate and

flip-flop level. The only source of information which is readily



available is the typical user's manual detailing the instruction set and

describing the architecture of the microprocessor. Using this information
it is easier to define the functional behavior of a microprocessor and
associate faults with the functions as illustrated in Example 1.1.

In this thesis we are concerned with formulating a sound
theoretical foundation for test program generation for testing micro-
processors in a user environment, particularly at the chip level. We are
interested only in generating deterministic tests to detect permanent
faults which give rise to faulty functional behavior as described in
Example 1.1. We will not discuss testing issues related with dynamic timing
problems, faulty DC parametric behavior or manufacturing or design
processes. For these aspects readers are referred to [TEST75]. Of course,
the "solution" that proposes the execution of each instruction for all
possible operands and in every possible sequence for testing microprocessors
is really not a solution. It only serves the purpose of dramatically
pointing out how difficult the problem really is.

We assume that the external tester monitors all the input and
output pins of the microprocessor. 1In particular, the status pins and
the data and address buses of the microprocessor are continually checked.
Testing is stopped on the detection of any fault, (may or may not be in
real time) since we are not interested in fault location on a chip. The
tester and the external memory which contains the instructions executed
by the microprocessor are assumed to be fault free. Various sophisticated
testers which are commercially available do satisfy the requirements
mentioned above. In this thesis we will not discuss the design and

implementation or operation of a tester. For information on testers



readers are referred to [Hust74] and [Ande76].

Sophisticated testers available for testing microprocessor
chips cannot be conveniently used for testing microprocessors incor-
porated in a system in the field. Recognizing this difficulty various
schemes such as self testing [Ball79], [LiDo79] and transition counting
[Haye76] have been proposed. A notable instrument suitable for field
testing and diagnosis is the signature analyzer available from the
Hewlett-Packard Company ' [HPJO77]. These techniques are aimed at the
ability to test systems in the field without requiring a sophisticated
tester; however, their fault detection capability principally hinges on
how thorough the test programs are, again emphasizing the need for good
test generation procedures. Though the test generation procedures
proposed in this thesis assume the presence of a sophisticated tester,
we believe that these procedures can be used, with relatively easy
modifications, for generating tests suitable for field testing. However,

more research i1s required in this area.

1.2. TheSis Outline

The goal of the thesis is to develop test generationm procedures
for testing microprocessors. These procedures should treat the micro-
processor organization and instruction set as parameters. This is
necessary in view of the fact that today's microprocessors differ widely
in their organization, instruction repertoire, addressing modes, data
storage and manipulation facilities, etc.

In Figure 1.1 the thesis outline is schematically illustrated.

In the beginning of Chapter 2 we survey various models and methods of
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test generation published in literature. Since none of them is suitable
for testing microprocessors, we first-develop a general graph-theoretic
model for microprocessors at the register transfer level. Any micro-
processor can be easily modeled on the proposed lines using information
only about the instruction set and the functions performed by it.
(This information is easily available in a typical user's manual.) This
allows us to treat the microprocessor organization and the instruction
set as parameters of the test generation procedures. We will illustrate
how to generate the graph-theoretic model for a small example microprocessor.

Functional level fault models capable of describing faulty
behavior at a higher level are presented in Chapter 3. These models are
quite'independent of implementation details of a microprocessor. We will
’investigate the effects of these faults on the graph-theoretic model of a
microprocessor. In Chapter 4 we will present test generation procedures
to detect faults in the fault models and prove their fault coverage. The
generation of the test sequence will be illustrated for the example
microprocessor. The generated test sequences comprise valid machine
instructions which are assembled to produce test patterns. This may be
contrasted with the classical methods which may generate bit vectors that
do not correspond to any instruction.

Chapter 5 discusses the complexity of the test sequences measured
in terms of the number of instructions present in these sequences. Chapter 6
reports on the feasibility of our approach. We will describe our effort in
generating tests for a real microprocessor. The results were quite
encouraging. Finally, in Chapter 7, we summarize the thesis and suggest

topics for future research.



2. A MODEL FOR MICROPROCESSORS

Any rigorous exercise of genmerating tests for fault detection
in a digital system should consist of three activities:
1. Constructing a model at a suitable level for describing the
behavior of the digital system.
2. Developing a fault model to define the scope of allowable
faults in the system. A good fault model is usually found
as a result of a trade-off between the need to account for
most of the faults commonly observed in the system and the
need to be able to keep the complexity of test generation
low, and the length of tests short. The nature of the fault
model is usually influenced by the model used to describe the
system as illustrated in Section 2.1 below.
3. Generating tests to detect all the faults in the fault model.
Microprocessor testing practised in industry seems to be based
on ad hoc techniques such as "testing'" each instruction for many operands,
"exercising' various modules in the microprocessor (such as the ALU, shifter,
registers, indexing hardware), or rumning an application program. A
typical example based on such ad hoc techniques is [ChMc76]. A good
tutorial survey of testing methods and tools used in industry can be found
in [FeeW78]. Other sources of information describing testing strategies
practised in industry are the digests of the annual Semiconductor Test
Symposiums sponsored by the IEEE Computer Society [TEST75]. These tech-
niques are not based on a general model for microprocessors. Moreover,
they do not consider any specific fault model. Therefore, the technique

followed for testing one microprocessor may be difficult to extend to



other microprocessors having different architectures. It is also very
difficult to know what faults can or cannot be detected using these
techniques.

We now briefly review various models used in the literature for
describing digital systems. We will comment on their applicability for
modeling microprocessors for the purpose of test genmeration, particularly

in a user environment.

2.1. Review of Previous Models

At the lowest level of the modeling spectrum, models are based
on the gate and flip-flop level description of a digital system in order
to describe its logic behavior. Most of the classical work on fault
diagnosis uses these models. At the highest level of the spectrum,
models are based on the so-called "black box" description of the system;
truth tables are used to describe a combinational circuit and state tables
are employed for describing a sequential circuit. As described below, both
of these extremes are unsuitable for modeling microprocessors for the

purpose of generating tests for them.

2.1.1. Gate and Flip-Flop Level Model

The system is described by a logic diagram consisting of gates
and flip-flops. Thus gates and flip-flops are recognized as primitive
elements. This model usually supports low-level fault models such as a
line stuck-at-one or stuck-at-zero model, which asso¢iates faults with
lines interconnecting gates and flip-flops [CMMe70] and [BrFr76]. These
models were used to test and diagnose digital computers designed with

discrete components and with a knowledge of the detailed logic description



[Mann66]. For an excellent annotated bibliography on this topic, readers
are referred to [Scol72].

These models are not very useful for generating tests for LSI
circuits such as microprocessors which contain a very‘large number of
gates, flip-flops, and interconnections and which therefore require an
enormous amount of computation to generate comprehensive test sets. 1In,
addition, the required gate and flip-flop level description is usually not

available to microprocessor test designers working in a user environment.

2.1.2. State Diagram Model

This model is based on the state diagram description of the
system, giving its output and the next state for any input and present
state. The system is viewed as a black box and all the implementation
details are ignored. Several test methods have been proposed [Koha70] based
on automata identification experiments. Though this model supports a very
general fault model, the length of the test sequence generated grows
exponentially with the number of inputs and states. This restricts the
use of the method only to toy systems having a very small number of inputs

and states and rules out its applicability to microprocessors.

2.1.3. Module Level Model

This model views a digital system as a network of interconnected
modules such as the ALU, register file, multiplexers, demultiplexers,
shifters, control unit, etc. Thus the primitive elements are these
higher level modules instead of gates and flip-flops.

The problem is to generate tests for the entire system using

the available tests for individual modules. This problem as stated above
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is an extremely difficult and unsolved problem [Powe69] and [BaKi76],
though in [BakKi76] methods are given to generate tests for purely combi-
national systems with some hardware modifications. This model is also
not very promising at its present state of research for generating tests
for microprocessors because microprocessors also contain sequential logic
and no hardware modification is possible in an existing microprocessor

chip.

2.1.4. The Robach-Saucier Model

In view of the difficulties pointed out in the previous sections,
Robach and Saucier [RoSa75] and [RoSa78] proposed the following model
for generating tests for control units of digital systems. Every system
can be decomposed into two subsystems, the control and operative parts,
as shown in Figure 2.1(a). The control part is characterized by a repre-
sentation matrix M as shown in Figure 2.1(b). It has n rows corresponding
to the set of elementary commands & = {c

,C ..,cn}, and m columns corre-

1272727
sponding to the set of control states {Ql,QZ,...,Qm}, such that mij =1,
if the state Qj activates the command s and mij = 0 otherwise. The
operative part can be considered to be made up of a set of independent
functional units. The set of commands & is sent to one or more functional
units.

The diagnosis of the control part is performed through the
operative part which is assumed fault free. The system is capable of
performing a set of "algorithms." For these algorithms, the functioning

of the control part is represented by a flow-chart as shown in Figure 2.1(c)

where the nodes are the different control states of the considered
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algorithms, and the edges represent the different possible transitions
between these states; the edges are labeled with the transition conditions
(predicates).

A test of the control unit consists of complete identification
of the states (distinguishability of every state from all other states,
and checking the commands generated by each state through each functional
unit), and verfication of sequences. The fault model allows commands to
be abnormally activated or abnormally inactive. Thus this model considers
basic control commands and control states as primitive elements rather
than gates and flip-flops generating these<commands.

This approach runs into two problems when applied for generating
tests for microprocessors. First, the required information about the
details of control states, basic control commands emitted during a state,
and flow-charts for algorithms (i.e., each instruction of the microprocessor)
may not be available to a test designer working in a user environment.

This problem perhaps could be alleviated by formulating the control states
and commands at a higher level. Even then, the method faces a second
problem; as shown in Figure 2.1(a), it is assumed that the operands

(denoted by P) required for the functional units are directly available,

and the results (denoted by Z') produced by the functional units are
directly observable (possibly with some time delay). On the other hand, in
the case of microprocessors a sequence of instructions needs to be executed,
in general, to provide proper operands to a functionmal unit (or to store
data in a register) and to read out the result of an operation performed

by it (or to read out the contents of a register). For example, consider an

"Add" instruction which adds the contents of an accumulator and a
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scratch-pad register and stores the result in the accumulator. A "Load
accumulator" instruction is needed to load an operand in the accumulator,
while two instructions may be required to store an operand in the scratch-
pad register: the first to load a general purpose register and the second
to transfer the contents from the register to the scratch-pad register.
Similarly the accumulator can be read out only by executing the "Store
accumulator" instruction.

Though the Robach-Saucier approach is a step in the right direction
for testing certain digital systems where the assumptions made in their
model are wvalid, it appears that the limited observability and controllability
of internal registers and logic of microprocessors pose a very difficult

problem in extending the approach to microprocessor testing.

2.1.5. The Thatte-Abraham Model

A methodology for test gemeration based on a model for a
restricted but "typical" microprocessor organization and instruction set
Waé pfopbsed by Thatte and Abraham [ThAb78]. The model considers an
organization for the data processing section of microprocessors shown in
Figure 2.2 and allows only limited but commonly observed types of instruc~
tions, such as instructions performing information transfers between the
main memory and level 1 registers, instructions performing various ALU
operations, instructions performing information transfers among level 1
registers, between level 1 and 2 registers, and among level 2 registers.

The fault model takes into account faults associated with
registers, ALU, buses, and control section such as incorrect decoding of

instructions, missing and extraneous control commands, etc. A drawback
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of this model is that it cannot generate tests for different microprocessor
organizations and instructionssets, i.e., it fails to treat the micro-

processor architecture as a parameter of test generation.

2.2. A New Model for Miecroprocessors

In the light of the discussion in Sections 2.1.1 through 2.1.5,

we summarize various requirements for a model suitable for generating
tests for microprocessors.

1. The model should be based on a functional description defined
at a suitably higher level such as the register transfer level. We will
define the model in terms of data flow that occurs between various registers
and the main memory during the execution of an instruction. This allows
us to describe the functional behavior of a microprocessor by using
information about the instruction set and functions performed by it.
Since this information is readily available in a typical user's manual,
this model is quite suitable, especially in a user environment.

2. The model should be able to treat the microprocessor organization
and instruction set as parameters of the test generation procedure, so
that for a given microprocessor architecture it would be possible to
generate tests. This feature is very desirable as today's microprocessor
differ widely in their organization and instruction set, addressing modes,
etc. This trend is bound to continue with newly emerging and powerful
microprocessors.

3. The model should be able to support a fault model describing
faults in various functional primitives such as the data transfer functionm,

the data storage function, the instruction decoding and control function, etc.,
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allowing us to describe faulty behavior without knowing the details of
their implementation.

For modeling purposes we partition the instruction repertoire
of the microprocessor into three classes. This classification scheme is
very similar to that proposed by Flynn [Flyn74].

1. Transfer class (denoted by class T):

Instructions of this class perform data transfer between the main

memory and a register (on the microprocessor chip), between an 1/0 device
and a register, between registers, and between the main memory locatiomns.
Examples are '"Load accumulator,'" "Transfer register Rl to register R2’"
1/0 instructioms, etc.

2. Manipulation class (denoted by class M):

Instructions of this class manipulate the data stored in the main memory
or registers by performing operations like "Shift," "Add," "Or," "Decrement,"
"Compare" instruction, etec.

3. Branch class (denoted by class B):

Class B consists of all those instructions which do not belong to class T
or M, e.g., "Conditional and unconditional branches," "Jump to subroutine
and "Return from subroutine (i.e., instructions associated with program
sequencing)," "Interrupt enable and disable," "No operation" instruction,
etc.

The proposed model is graph-theoretic in nature. Before defining
the model formally, we motivate it by means of an example. We represent

registers of the microprocessor by labeled nodes and instructions by
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directed labeled edges where edges representrdata* flow during the
fetching and execution of instructions.
Example 2.1: Consider a simple register transfer instruction

I1 transferring the contents of register R, to register R The data

1 2"

flow involved during the fetching and execution of I, can be repre-

1

sented in a graph as shown in Figure 2.3. Nodes R3 and R4 represent

the instruction register and the program counter, respectively.
The edge from node R4 to OUT represents the transfer of address of

a main memory location containing instruction I, from the program

1

counter to the address register of the main memory. This edge is

labeled Ii. The edge from node IN to R3

instruction Il from the main memory to the instruction register. This

edge is labeled Ii. While the instruction transfer is taking place,

represents the transfer of

the program counter is incremented. The self loop around node R

A

represents the function of incrementing the program counter. This loop

is also labeled Ii. The edge from node R1 to R2 indicates the transfer

of data stored in register Rl to register RZ’ i.e., the intended

function of the instruction. This edge is labeled 13 Notice that

1

the data flow represented by the edge labeled I1 takes place before

1

that represented by the edges labeled 12 which, in turn, takes place

i
before that represented by the edge labeled Ii, and so on. Thus the

superscripts on the edge labels indicate a precedence relation in

time.

* )
We use data as a generic term referring to the information as well
as its address.
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Example 2.1 points out some improvements that can lead to’much
more concise and succinct representation of an instruction: we may
represent that data flow which is involved only during the execution
of the instruction and not during its fetching. Since the data flow
involved during the fetching of every instruction is the same,
no information is gained by representing it for each instruction.

On the other hand the data flow involved during the execution of an
instruction really characterizes the function performed by the
to R

instruction. Thus only the edge from node R in Figure 2.3 .can

1 2

be used to repreéent instruction Il.
We now formalize the model. A microprocessor is:modeled

by a system graph (S-graph). Let R = {Rl, 32, R3,...} denote the

set of registers in the microprocessor. Set R includes the so—callgd

general purpose registers, accumulators, scratch-pad registers, on-chip

last-in first-out stack, and the program counter. It also includes

index registers, address buffer register, stack pointer, etc., i.e.,

the registers used in various addressing modes. Included also is the

so-called processor status word containing various processor status bits.

Each register Ri is represented by a node (labeled Ri) of the S-graph.

In addition to the nodes representing registers, we incorporate two more

nodes, named ”1N” and "QUT" in the S-graph, representing the world

external to the microprocessor, i.e., the main memory and I/0

devices.

Let £ = {Il, IZ’ 13,...} denote the set of instructions. The

execution of instruction Ij causes data flow among a set of registers, and
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between the main memory (or an I/0 device) and registers in some
sequence. The data may or may not be manipulated during the flow. We
can represent)the data flow during the execution of any instruction Ij
as follows:

1. There exists:a labeled-directeéd edge  from ndde“%pftO‘ndde*Bqa
if data flow occurs from register RP to register Rq (with or without
manipulation) during the execution of Ij.

2. There exists a labeled directed edge from node IN to node Rj’
if data flow occurs from the main memory or an I/0 device to register
Rj (Withfor without manipulétion) during the execution of Ij.

3. There exists a labeled directed edge from node Rj to node OUT,
if data flow occurs from register Rj to the main memory (or its address
register) or an I1/0 device (with or without manipulation) during the
execution of Ij-

1f more than one edge is required to represent the data flow
during the execution of an instruction, the f%ow may occur in a
specific sequence. The exact sequence may not be known t6 test designers
working in a user environment because the sequence depends on the details
of implementation of the microprocessor hardware. However, it is possible
to deduce the precedence relation in time between the components of the
data flow solely on the basis of logical data dependence, independent
of the details of implementation. We indicate the precedence relation
by means of thé labels assigned to directed edges as explained below.
Among the set of edges representing the data flow during the

execution of instruction Ij’ two edges are labeled I? and I?, where p < ¢
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and p and q are smallest such positive integers, if and only if the data
flow represented by the edge labeled I? must take place before that
represented by the edge labeled I? in order to preserve the underlying
logical data dependence. Two edges are assigned the same label I?, if
and only if the corresponding data flows can occur simultaneously given
the necessary number of resources such as buses and functional units, i.e.,
the required hardware parallelism exists. In the presence of some
limitation on hardware resources, the data flow represented by these two
edges may occur in eithef of the two possible sequences depending onthe
details of implementation. If only one edge is required to represent the
data flow during the execution of instruction Ij’ it is assigned a label
I?. It must be stated that this elaborate notation is used only for clarity
in illustrating the data flow sequence and is not really necessary to
generate tests.

Example 2.2: Figure 2.4(a) represents a "Transfer" instruction
I1 that transfers the contents of register R

to register R Figure 2.4(b)

1 2"
depicts an "Add" instruction 1, which adds the contents of registers R1
and R2 and stores the result in R3. Note that both edges are labeled I;.

If two separate buses are available to route the contents of registers

R1 and R2 to the ALU simultaneously, the data flow represented by these
two edges can take place in parallel. If only one bus is available, the
contents of either R1 or R2 are transferred to the ALU first and stored in
its latch, followed by the transfer of the contents of the other, and

then the addition takes place. The actual implementation determines which

register is selected first for data transfer.
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(a). Il- Transfer instruetion (b). I,- Add instruction

2

FP-6300

(c). 13- Or instruction (d). 14- Rotate left instruction

Figure 2.4. Representation of instructions.
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Figure 2.4(c) shows an "Or" instruction I, which forms the logical

3

OR of the contents of registers Rl and R2 and stores the result in R2. As

explained above, both edges are labeled Il Figure 2.4(d) shows a "Rotate

3"

left" instruction which rotates the contents of register R. left by

1

1 bit. 1
We now explain how to represent instructions which useraddressing

modes by these graph-theoretic techniques. A variety of addressing

modes is:usually available for instructions for fetching operands from

the main memory and storing results into the main memory. Various

examples of addressing modes are direct, indirect, immediate, indexed,

relative, stack, etc. [GsMc75]. &Each addressing mode is characterized by

a sequence of data transfers between registers and the main memory.

Example 2.3: Figure 2.5(a) represents the '"Load register Rl”

instruction, Il, using the so-called implied or implicit addressing
[GsMc75] where the data to be loaded is contained in the memory location
next to the omne storing instruction Il’ i.e., the address of the operand

is derived by implication. The edge from node R, to OUT represents the

2

transfer of the address of the operand from the program counter (RZ),
(which is incremented by 1 by this time and points to the word next to the
one storing instruction Il)’ to the main memory address register, and the

edge from IN to R, represents the data transfer from the main memory to

1

register Rl' Figure 2.5(b) represents the '"Stack push" instruction 12 which

pushes the contents of R1 into the memory location (top of the last-in

first-out (LIFQ) stack maintained in the main memory) pointed to by the

stack-pointer R, and then increments the stack pointer. The edge from

2

node R1 to node OUT in Figure 2.5(b) represents the transfer of data
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(a). Il- Load register R1 instruction (b). 12— Stack push instruction

using implied addressing

Address Address

2 buffer buffer
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(c). 13- Load register R1 instruction (d). 14— Load register Rl instruction
using direct addressing using indirect addressing
I4
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buffer
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(e). IS- Add (Rl),(Rz) instruction

Figure 2.5. Representation of addressing modes.
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(to be pushed on the stack) from R1 to the LIFO stack. The RZ—OUT edge

represents the transfer of the address of the fop of the stack from R2
(stack pointer) to the address register of the main memory. Both these
edges are labeled I;. The self loop around the node R, represents the

2
stack pointer incrementing function. It is labeled 12 because the stack

pointer must be incremented omnly after the data is pushed so that it
points to the location:onsthebstack where next data can be pushed.
Figure 2.5(c) shows how to represent a register load instruction

I, using direct addressing [GsMc75]. As shown in Figure 2.5(c) the address

3

of the location storing the operand is fetched from the address field of

instruction 13 into the address buffer register R2 (represented by the

edge labeled I;). This address is then sent from R, to the address

IN-R 2

2
register of the main memory (represented by the RZ-OUT edge labeled Ig)

and the operand is fetched from the main memory and loaded into R1

(represented by the IN-R, edge labeled Ig). The register load instruction

1

I, using indirect addressing mode can be represented by incorporating two

4

more edges in Figure 2.5(c) (one more edge from node R2 to OUT and omne
more edge from node IN to RZ) as shown in Figure 2.5(d).
Figure 2.5(e) shows the representation of a complicated instruc-

tion 15 ""Add (Rl)’ (RZ)’" where the contents of registers Rl and RZ denote

addresses of operands. The first operand for this instruction is fetched

from the main memory location pointed to by register R1 and stored in the

data buffer register R3 (accounting for the Rl—OUT edge labeled I; and the

IN-R,, edge labeled Ié). The second operand is fetched from the main

3

memory location pointed to by register R2 and it is added to. the contents

of register R3 (accounting for the R,-0UT edge labeled 13, the other edge

2
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from IN to R, labeled Ig and the self loop around R3). Finally the result

3
of the addition (ready in R3) is stored in the main memory location pointed
to by register Rl (accounting for the other edge from Rl to OUT labeled Ig
and the Ry-OUT edge). O

We now illustrate the representation of instructions of
class B.

Example 2.4: Figure 2.6(a) represents a "Jump" instruction Il.
The edge from the node IN to R1 (representing the program counter)
represents the transfer of the jump address from the main memory to the
program counter. The Rl-OUT edge represents the transfer of the jump
address from the program counter to the address register of the:matnsmemory
achieving the jump in the program sequencing.

Strictly speaking, the R1~OUT edge (indicating the jump in the
program sequencing):represents the transfer-6fithe-address ofza main:memory
location for fetching a new instruction. Therefore the Rl-OUT edge really
represents a data flow involved during the fetching of the new instruction.

We take the flexible viewpoint that the data flow denoted by R.-OUT edge

1

could also be considered involved during the execution of the instructions
of class B affecting the regular program sequencing. This viewpoint also
provides a directed edge from the node representing the program counter to
the OUT node, avoiding the awkward situation in which the OUT node would
not be reachable from the node representing the program counter.

Figure 2.6(b) represents a "Jump to subroutine" instruction 1,

where the return address for the subroutine is stored in a local register
called the subroutine register (denoted by RZ)' The program counter is

represented by node R The IN-R1 edge represents the transfer of the

1

jump address from the main memory to the program counter, and the R,-R

172
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(a). I Jump instruction (b). IZ— Jump to subroutine instruction
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(c). 13— Return from (d). 1I,- Skip if the (e). IS- No operation
subroutine if accumulator instruction
bit Z is set = zero
instruction instruction

Figure 2.6. Representation of instructions of class B.
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edge represents the transfer of the contents of the program counter to the
subroutine register, i.e., saving the return address. The return address
must be saved before the jump address is transferred from the main memory

to the program counter. The Rl-OUT edge represents the jump in the program

1 2 _3

sequencing. The labels of edges 12’ 12, I2

indicate the precedence
relations in the data flow.

Instructions causing only conditional changes in the program
sequencing can be suitably represented by tagging instruction labels
with the appropriate condition code (predicate).i . Foriexample;:Figure.2.6(c)
represents a "Return from subroutine if bit Z is set" instruction 13.
If Z = 1, the contents of the subroutine register RZ’ are transferred to

the program counter R The R,-OUT edge represents the jump (conditional)

1’ 1
in the program flow.

Figure 2.6(d) shows a "Skip if the accumulator equals zero"

instruction 14. The predicate can be denoted by "ACC = 0." The node R

represents the program counter. The self loop around node R

1

1 denotes the
conditional skip, i.e., the program counter is incremented if the accumulator

equals zero. Figure 2.6(e) shows a '"No operation' instruction I The

5
Rl-OUT edge represents the transfer of the contents of the program counter
to the address register of ithé maincmemory to-feteh thernextrinstruction in
the regular program sequencing.

Those instructions of class B which do not change the processor

status word but only change the logic level on some status pins such as

"Interrupt enable'" instruction are not represented in the S-graph. ]



29

2.3. An Example Microprocessor

We now illustrate the generation of the S-graph for a small
hypothetical microprocessor. This example will also be used in Chapter 3
to demonstrate the effects of faults on the S-graph, and in Chapter 4 to
illustrate various test generation procedures. Figure 2.7 shows the block
diagram of this microprocessor. It has an accumulator (Rl), a general
purpose register (RZ)’ a scratch-pad register (R3), a program counter (R6)
and a subroutine register (R7) to save the return address of subroutines,
allowing a single level of subroutine nesting. A stack pointer (R4) is
provided which points to the top of a LIFO stack maintained in main memory.
An address buffer register (RS) is provided to store the address of operands.
The ALU is capable of performing ADD, logical AND, SHIFT and COMPLEMENT
operations. The instruction repertoire contains 21 instructions which are
listed in Table 2.1. Though all the architectural features of the example
microprocessor may rot bé present in any real microprocessor, they have
beenkcarefully chosen to illustrate some of the subtle points involved in
test generation. It may be noticed that instructions Il’ I I3, 15, I

2° 6°

I1 and 119 belong to class T, instructions 14, Ill’

112 and 113 constitute class M, while class B contains instructions 19, I

L5 Igs Iygs Tyg0 195 Tog

10°

114,~120 and 121.
Example 2.5: The S-graph for the microprocessor shown in

2
16

1 . . . . .
and 118’ represent the stack pointer incrementing and decrementing functions,

Figure 2.7 is drawn in Figure 2.8. The self loops around R,, labeled I

1
respectively. The self loop around R6’ labeled Ilo.(R1;=0),,represents
the program counter incrementing function during the "Skip" instruction IlO’
if the condition "register R1==O” is satisfied. All the other edges of

Figure 2.8 are self-explanatory. '
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The block diagram of an example microprocessor.
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2.1. The instruction repertoire of the example microprocessor.

Load register Rl from the main memory using immediate addressing.

Load register RZ from the main memory using immediate addressing.

Transfer the contents of register R, to register R

1 2°

Add the contents of registers Rl and R2 and store the results

in register Rl'

Transfer the contents of register R, to register R

1 3"

Transfer the contents of register R3 to register Rl'

Store register R, into the main memory using implied addressing.

1

Store register R, into the main memory using implied addressing.

2

Jump instruction.

Skip if the contents of register R1 are zero.

Left shift register Rl by one bit.

Complement (bit-wise) the contents of register Rl'

Logical AND the contents of registers R, and R, and store the

1 2

result in register Rl'

No operation instruction.
Load the stack pointer (R4) from the main memory using immediate

addressing.

PUSH register R, on the LIFO stack maintained in the main memory.

1

Store register RZ into the main memory using direct addressing.

POP the top of the LIFO stack and store it in Rl'
Load register R2 from the main memery using direct addressing.
Jump to subroutine (return address is saved in the subroutine

register R7).

Return from subroutine.
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Figure 2.8. S-graph of the example microprocessor.
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2.4. Definitions and Notation

Some registers of the microprocessor can be written (loaded with
required data) or read out (i.e., its contents can be stored in the main
memory or sent to an 1/0 device) by executing an explicit instruction.
Examples of such registers are accumulator ana general-purpose registers.
On the other hand, some registers cannot be writtenm or read out by
executing any explicit instruction. For example, the address buffer
register of Figure 2.5(c) can be written as well as "read out" (on the
address bus) only'implicitly during the execution of instruction 13-
Similarly, the stack pointer (Rz) of Figure 2.5(b) can be read out

implicitly on the address bus during the execution of instruction I Note

9"
that in Figure 2.8 also, the stack pointer (R4) can be read out only
implicitly during the execution of instructions I

or I though it is

16 18’

possible to write it explicitly by executing instruction 115. The data
buffer register (RS) of Figure 2.5(¢) can be written or read out only
implicitly. The subroutine register (R7) in Figure 2.8 can be read out
only implicitly by executing the "Réeturn from:subroutine'" instruction 121.
Finally, the program counter can be written only implicitly during the
execution of an instruction of class B which alters the normal program
sequencing.

We assume that any register can be written (implicitly or
explicitly) as well as read out (implicitly or explicitly) using a sequence
of instructions of class T or using an instruction of class B. This
assumption can be easily justified for current microprocessors [Cush77].

In terms of the S-graph, there exists a path from the IN node to every node

(representing a register) consisting of edges representing instructions of
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¢lass T or class B. Similarly there exists a path from every node to the
OUT node consisting of edges representing instructions of class T or
class B.

Transfer mechanisms such as buses are used to transfer data
between registers, functional units, main memory, and I/0 devices during
the execution of an instruction. Since a test designer working in a
user enVvironment may not know the details of implementation of the transfer
mechanisms, or how they are shared or time-multiplexed among different
data transfers, we "map'" a physical transfer mechanism used during the
execution of an instruction onto a set of logical entities called

transfer paths. We illustrate how to perform this mapping by means of

Example 2.6 below. The set of transfer paths associated with instruction
Ij is denoted by T(Ij). The motivation for presenting the notion of
transfer paths is to be able to develop a fault model for the data transfer
function independent of the actual implementation details of the transfer
mechanisms.

Examgle 2.6: With reference to instruction 14 in Figure 2.8,
T(I4) contains three transfer paths, two paths for transferring the
contents of R, and R

1 2
of ﬁhe ALU to R

to the ALU and one path for transferring the output
1 T(I6) contains only one transfer path for transferring
the contents of Ry to Rl’ while T(Il9> contains three transfer paths, one
for transferring data (which is actually the address of an operand) from
the main memory to R, one for transferring the address from R5 to the
address register of the main memory, and the third one to transfer data

from the main memory to R, . T(IZl) contains two transfer paths, one for

transferring the contents of the subroutine register (R7) to the program
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counter, and the second one for transferring the contents of the program

counter to the address register of the main memory. ]

The set of source registers for an instruction Ij is
defined to be that set of registers which provide the operands for

instruction Ij during its execution. This set is denoted bny(Ij).

Similarly, the set of destination registers for an instruction Ij is
defined to be that set of registers which are changed by instruction Ij
during its execution. This set is denoted by D(Ij). Extending this

notation further, S(Il’ T "’AIn) = S(Il) U S(IZ) U...u S(In).

g
D(Il, IZ""’ In) can be defined analogously. |S(Ij)| and lD(Ij)I denote
the cardinality of the corresponding sets.
Example 2.7: 1In the S-graph of Figure 2.8, S(I7) = {Rl}, S(I4)
= {Ry> Ry}, 8(Tp) = {Ry}, s(1,) = {m}, 5(L,,) = {R7}, etc. Similarly
p(ry = {our}, D(L,) = D(Tyy) =D(Ty,) = {Ry}, D(T ) = {r,, our}, D(I,.)
= {Ry, 0UT}, D(T,0) = {R¢, R0tk [s@l =2, Ipa,pl =3. O
The set of directed edges denotipg an instruction Ij in the
S-graph is called:its edge set and is denoted by E(Ij). READ (Ri) denotes
the shortest sequence of instructions of class T or class B that is
necessary to read out register Ri (implicitly or explicitly). Similarly
WRITE (Ri) denotes the shortest sequence of instructions of class T or
class B that is necessary to write register Ri (implicitly or explicitly).
IE(Ij)I, IREAD (Ri)l;fandiIWRITE (Ri)' denote the cardinality of the
corresponding set or sequences.
Example 2.8: For the S-graph shown in Figure 2.8, READ Gil)= <I7>,
READ (Ry) = (Ig, I;), READ'(Rg) = (I, ), READ (R,) = (I, ), etec.
WRITE (R;) = (I;), WRITE (Rg) = (I;,), WRITE (Rg) = (I, I), WRITE (R,)
2. O

It

= (14, 1 Thus, |READ (R3)| =2, |wriTE (R7)l

20>'
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We allow ID(Ij)l > 1 only if instruction Ij involves data transfer
between the main memory. (or an I/0 device) and registers of the micro-
processor during its execution. Thus ID(Ij)I = 1 for all those instructions
which do not involve data transfer between the main memory and some
registers during their execution. We need not consider |D(Ij)| > 1 in the
case of these instructions, because the results of instructions of class M
or T are usually not stored in more than one register. This does not
mean that ID(Ij)I~>‘1*forﬁevery;instruction?¥jthith;causes@datattnansfer
to take place between the main memory and registers during its execution.

Thus we have constructed a godel based on the data flow involved
during the execution of an instruction satisfying the first requirement
given in Section 2.2. The S-graph depends on the instruction repertoire
and the functions performed by it, i.e., the S-graph reflects the archi-
tecture of the microprocessor. As will be described in Chapter 4, this
feature ‘makes it possible to consider the instruction set and organization
as parameters of the test generation procedures. This satisfies the second
requirement given in Section 2.2. The third requirement is related to the
development of a fault model defined at functional level. This is the

topic of Chapter 3.

2.5. Study of Data Transfers Among Registers

In this section we develop a framework to study how the contents
of registers in the microprocessor change when a sequence of instructions

of class T (called by the generic name T sequence) is executed. Specific

occurrences of the T sequence are denoted by symbols o, Gl, 62, etc.

A T sequence 0 is specified by listing its component instructions, i.e.,

0=(I, , I, , +ev5 I. )3 I, is executed first, followed by I, , and so omn.
Jl .]2 Jl’l Jl J2
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We denote this by T, < I, < ...<TI, . An instruction may occur more
3 I2 In

than once in a T sequence. Since we are considering data transfers

among registers only, we concentrate only on those instructiomns of class T

which transfer data among registers, and not between the main memory and

registers. Results derived in this section will be used in Section 4.3.3

for generating tests to detect faults in the instruction decoding and

control function, and for proving their fault coverage.

Definition 2.1: Register R, is l-step txansferrable to:-

register R. under a T sequence 0 = (1. ,I.,, ..., I. ), if the contents
J Jl Jo Jn
of Ri before the execution of the sequence become the final contents of

Rj at the end of the exeecution of the sequence. Such a register Ri is

1
denoted as Rj(c). ol
Lemma 2.1: Given a T sequence T = (1. s L. .y I, > and
i 2 dn
register Rj’ there exists one and only one register R}(G).
Proof: Follows immediately from Definition 2.1. -

Example 2.9: Consider a hypothetical S-graph shown in Figure
2.9. Consider the T sequence ¢ = <IO’ Il’ 12, 13, 14, IS>' We have
Ré(c) = RO’ and Ré(a) = R3. i
If the T sequence 0, in the example above, is executed one :
more time the contents of R3 (before the first execution of the T sequence)
would become the final contents of R6. This observation motivates the

next definition.

Definition 2.2: Register Ri is K-step transferrable to

register R, under a T sequence ¢ = (I, , I, , ..., L, ), if the contents
j ii? T, in
of Ri before the first execution of the sequence become the final contents

t
of Rj at the end of the K h execution of the sequence, where K is the



Figure 2.9.

An example illustrating Definitions 2.1 and 2.2.
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smallest such integer. Such a register Ri is denoted as RK(G). R
J

Example 2.10: For the é;gféﬁh Shdﬁﬁkfﬁ~F{gufe 2.9,
2 - -
RG(G) = R3 under the T sequence 0 = (IO, Il’ 12, 13, 14, 15>. |
If we denote the T-sequence formed by concatenating two

T sequences o, and 02 as Gljcz, then in the context of Example 2.10,

Ré(o-c) = RZ(G) =R Therefore Definition 2.2 may appear rather

3° ‘
contrieved and artifiéialfbecausefR§iC):=*R}(0ﬁncazA.nwu,a), where the
T sequence ¢ -0 . .... ¢ is formed by concatenating K copies of T sequence
0. However, as mentioned earlier, results derived in this section will
be used in Section 4.3.3 where test gemeration procedures are given.
Some of these test generation procedures involve loops contaiming a
T sequence. When the loop is to be executed K times, it is easier and
more natural to consider the T sequence being executed K times rather
than a long sequence formed by concatenating K copies of the T sequence
being executed once.

M denotes the smallest integer such that if any register is
K-step transferrable to a*givenaregisterﬂijunderithe“T‘sequence

o= (Ij s T s eees I Y, then K < M.

1 I n
Lemma 2.2: Given a T sequence C = (1, s Ij s e Ij )
1 2 n
and a’register Rgg théresexists oneand only oneiregister R?(G), where
K =M.
Proof: Follows from Definition 2.2. ]
We are interesteéed in finding the relation between M and
n - the number of instructions in o =<1, , I. , ..., I. ). (Recall
iy’ i i,
that Ij < Ij < ... % Ij .) In order to do this we first show how to
1 2 n
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. 1 . ; . R .
find Rj(d) under a given T sequence O. Consider a set of instructions

A= {1, [1.
Tk K
of course, R%(G) = Rj because the execution of the T sequence o does not

€ o and D(Ij ) = {Rj}}J ‘If oset A is found to ‘be empty, then,

change the contents of Rj‘ Moreover, M = 1. On the other hand, if set A

is found to be nonempty, then choose Ij € A such that there exists no
p
other Ij € A with Ij < I3, i.e., choose I which is executed latest
q P q P

in o but which still belongs to set A. Designate the instruction so

chosen as I, . Note that I, is a unique instruction, and it is the last
1 1

instruction in o which changes the contents of Rj‘

Consider-a set of instructions B, = {I II

1 jk
is found to be empty, then R}(G) = S(Iz )
1

1 EG: D(I' )=S(I ):
I I 24

and T. <1, }. 1If set B
J 21

1
k
because when I, is executed the contents of S(Izl) are the same as they
1

were before the firstiinstruction”in:g was executed.: (Note'that Iy transfers
: 1

the contents of S(Igl) to Rj’ and no instruction that occurs after Igl in

o can change the contents of Rj,) On the other hand, if set B1 is found

to be nonempty, then choose I € Bl such that there exists no other
b

Ij € B1 with Ij < Ij , i.e., choose Ij which is executed latest in ©
q P q p

but which still belongs to set B Designate the instruction so chosen

1
as I, . Note that I is a unique instruction, and I <1I,.
) % I

Now consider a set of instructions B, = {I. |I~ € o, D(I. )

2 Jk Jk Iy

= S(Izz), and Ij < IZZ}. If set B, is found to be empty, then

k 2

R%(G) = S(Iz ). This is explained as follows: When I, is executed the
2 2
contents of S(Iﬁ ) are the same as they were before the first instruction in o
2
was executed: Iy transfersfﬁhe%contents”ofﬁs(lp ) to S(I4 ) and the contents
e "2 3 1

5 %
of S(Izl) do not change between the executions of IZZ and Izl. Izl transfers

the contents of S(Iz ) to Rj’ and no instruction that occurs after I, in
1
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d can change the contents of Rj. Thus the contents of S(Iz ) before the
2
execution of ¢ become the final contents of Rj at the end of the execution

of 0. On the other hand, if set B, is found to be nonempty, then choose

2
I. € B, such that there exists no other I. € B,, with I. <TI. .
] 2 ] 2 J 3
P q p q
Designate the instruction so choosen as I, - Note that I, is a unique
3 3

instruction, and Iy <1, -
3 2
This process of selecting sets A, Bl’ BZ’ ..., and instructions

I, .1, , I, , ... can be continued until set B, is found to be empty.
El zz £3 i
Since Iﬁ. < Iﬁ. < Lo < Iz

i i-1 2
process must terminate in at most n steps, i.e., when set Bi = {Ij IIj € o,

k “k
D(Ij ) = S(Iz ), and Ij <1I, } is found empty, the process terminates and
k i k i
we get R?(G) = S(Iz ). Of course, S(Iz ) could be the same as Rj, in
i i

< I, , and there are n instruction in O, the
1

=

1.

which case M

We call the sequence of instructions <I£ s I£ s e Iﬂ ) the
i i~1 1
characteristic sequence associated with the transfer of the contents of

1 Since each instruction in Gl is a unique

instruction, the characteristic sequence O

R;(G) to Rj’ and denote it by o

1 is also a unique sedquence.

Note that oy is avsubsequencefof .. .Let the initial eontgntg*ofkRﬁ(d)

(i.e., the contents before the first instruction in o is executed) be

denoted by dl' During the execution of o, instructions in 01 = <IE s Iz s
i i-1

P) ) form a "chain" of instructions transferring the initial contents

1
of R%(G} toR,, i.e., I transfers data d, from R%(G) to S(I ), I
3 i L. 1 i £, £,
i i-1 i-1
transfers data d1 from S(Iﬂ ) to S(Iz )y ++.:, finally I, transfers
i-1 i-2
data dl from S(Iz ) to Rj' Concisely we may say that during the execution
1

vy I

of o, each instruction in o, transfers data dl where d1 represents the

1

initial contents of R}(G).
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Example 2.11: Consider a hypothetical S-graph shown in Figure

2.10. Consider the T sequence O = (IS, 114, Il’ Ill’ IZ’ 16’ 19, 13, 113,
14, 113, IlO’ 112, 15>. Note that instruction 113 is executed twice in

the sequence. Of course, in the S-graph it is represented only once using

the edge from mnode R4 to node R,. In this example

3
By = {1, T, S 1\105-“‘15(1435)";? {ry?
By = g Tgo Tygh s T = Tqgs 5(y) = (&}
By = {I5, I,} 5 I, =T, 8, ) = (R},
4 4
B, = {16, Iy, 113} ; Izs =145 s(zzs) = {RA}.
By = {1,] 5 I, =1Ig55(,) ={R]
6 6
By = {I,, T} ; 1‘£7 =1, ; 5(127\) = {r.}
B, = {11} 3 I, =I;38(,)= {RA}.
8 8
ﬁéﬁéé Rl(c) =8(I, ) =R,. Note that I, refers to the second
1 28 4 EB
occurrence of 113 in o, while Iﬂ refers to its first occurrence. The

5
characteristic sequence Gl = <Il’;;2’113’¢213"¥4’ IlS,V;lo,,Ilz>*wh1ch

is a subsequence of o.
Now we show how to £f£ind R?(G) under the T sequence T ¢ =

(for K = M). 1If a register which is l-step transferrable to R;(G)

under the T sequence O does not belong to the set {Rj, R;(O)}, it must be



Figure 2.10.
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S-graph for Example 2.11.
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2-step transferrable to Rj and is designated as R?(G). On the other hand,

if it belongs to the set {Rj, R;(d)} it is 1-step transferrable to Rj’

Il

allowing us to con;lude that M 1. Extending this argument, if a register
which is l-~step transferrable to R?(G) under the T sequence ¢ does not
belong to the set {Rj, R}(G), R?(G), e R?(c)}, it must be (K+1)-step
transferrable to Rj and is designated as R?+1(0). On the other hand,

if it belongs to the set {Rj, R}(G), R?(G), R?(O), vrey R?(U)} it is

p-step transferrable to Rj’ where 1 = p = K. (Refer to Definition 2.2.)

In this case we can immediately conclude that M = K.

We denote the characteristic sequence associated with the
transfer of the contents of R?(G) to Ri_l(G) by 9, for 2 =1 =M.
Concisely we may say that.during:the execution: of ¢y each instruction-in-
Oi transfers data di where di represents the initial contents of R?(c),

for 2 =i =M. This discussion leads to the following lemma.

Lemma 2.3: 'Rﬁ(U) is l-step transferrable to R§_l(o), for

2 £i <M. Some register im the set {Rj, R;(G), R?(O), cees R?(G)} is
l-step transferrable to R?(G). [
Definition 2.3: Leto, =¢I, , I. ,I. , ...» and
i ig” T3 i
o. =Xf1, ,I,,I,, ...) be two subsequence of a T sequence
J I g
g = <Ij s Ij s ., I, . Ui and Gj are defined to be disjoint if the
1 2 n
sets {a, b, ¢, ....} and {p, q, ¥, ...} are disjoint, i.e., {a, b, ¢, ...}

N{p, q, r, ...} =¢. 1ff{a, b, c, ...} N{p, q, r, ...} #0, o, and
Gj are not:digjoint. E]

Definition 2.4: Let Oi, Oj, Ops - be subsequences of a T

sequence T. Subsequences in the set {Gi, Gj, c ...} are defined to be

k’

mutually disjoint if each pair of subsequences is disjoint. They are
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not mutually disjoint if any pair of subsequences is not disjoint. o

. o L, 5, ..., 1, ) can be
31 Jy NI

partitioned into a set containing at most n mutually disjoint

Lemma 2.4: A T sequence o = (I

subsequences. ]

Lemma 2.5: Subsequences in the set {dl, c . GM} are

93
mutually disjoint, where 9y denotes the characteristic sequence
associated with the transfer of R;(G) to Rj’ and Gi denotes the charac-
teristic sequence associated with the transfer of R?(G} to Rﬁ—l(c),
for 2 £1i =M.

Proof: During the execution of ¢, each instruction in oy
transfer data di where di represents the initial contents of R?(G) for
1 =1 =M. Let us assume the contrary, i.e., subsequences in the set
{@1, 02, ceey GM} are not mutually disjoint. Therefore at least one pair
of subsequences, say Gi and Oy must not be disjoint. In this case, at
the end of execution of 0, either the contents of Ri-l(c) are different

k-

from di’ or the contents of Rj 1(o) are different from d This contradicts

e
the assumption that o, is the characteristic sequence associated with the

is the characteristic sequence

k
associated with the transfer of R?(G) to R?-l(d). Therefore subsequences

transfer of R?(O) to R;—l(o), and o

in the set {01, o - GM} must be mutaully disjoint. O

2’
Theorem 2.1: M = n, where n = the number of instructions in
the T sequence ©.

Proof: Follows immediately from Lemmas 2.4 and 2.5. rl

Corollary 2.1: Let the initial contents of registers

1 2
Rj(c), Rj(c), ce R?(G) be dl’ d2, cees dM’ respectively. Then at the

t
end-of K h execution (1 = K = M) of the T sequence O, register Rj will
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contain dK. At the end of ith execution (i > M) of the T sequence O, Rj
will contain some data belonging to the set {dl, d2, ey dMl.

Proof: Follows from Lemma 2.3. -

Corollary 2.2: If register Rj contains the same data d at
the end of each of i executions of the T sequence T = <Ij R Ij s een Ij >,
1 2 T Tn
for 1 £ i =n, then at the end of the (n+~p)th execution of the T sequence

o, for p =1, Rj will contain the same data d.

Proof: Follows from Corollary 2.1, and M = n. O

Corollary 2.3: If register Rj contains the same data d at
the end of each of i executions of the T sequence O containing at most
K~-1 instructions, for 1 = i < K~1, then at the end of KFh execution of
the T sequence 0, %jawillucontainathe“sameidataﬁd.

Proof: Follows immediately from Corollary 2.2. O
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3. TFUNCTIONAL LEVEL FAULT MODELS FOR MICROPROCESSORS

In this chapter we present fault models for various functions
in a microprocessor in accordance with the third requirement cited in
Section 2.2. We develop fault models which are quite independent of the
implementation details of the microprocessor. We categorize various
functions in a microprocessor into the register decoding function,
‘instruction decoding and control function, data storage function, data
transfer function, and data manipulation function. We will present a
fault model for each of these functions at a higher level. We will,
however, point ottt the underlying fault mechanisms in order to clarify the
reasons for choosing the particular models. We will also describe the
effects of these faults at the level of the graph-theoretic model for a

microprocessor presented in Chapter 2.

3.1. Fault Model for the Register Decoding Function

Registers on a microprocessor chip are typically realized as
small #andom~4ccéss memories (RAM) [fﬁfﬁ?Sj: ‘They could also be realized as
separate registers interconnected by a network of multiplexers, demulti-
plexers and buses. Various instructions use registers to fetch operands or
address of operands and to-store results of operations. Register.decoding
refers to the task of decoding the "address' of a register which may be
stored as a specific bit pattern in the instructions involving that
register or which may be generated by the control unit during the execution
of the instructions. We want to develop a fault model for this decoding

function independent of the realization of the decoding mechanism.
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The register decoding function can be modeled as a mapping fD
from R to R U {@},’Where ¢ denotes a null or nonexistent register. ILet
fD(Ri) c R U {¢p} denote the set of registers which is the image of R,
under the mapping fD. If there is no fatlt in the register decoding
function we get fD(Ri) = {Ri}’ for every Ri € R. Under a fault, if
fD(Ri) = {¢}, whenever register Ri is to be accessed (while executing any
instruction which involves Ri), no register is accessed. Obviously if
@ € fD(Ri) then fD(Ri) = {¢} because fD(Ri) = {Rj, Rk,...,¢} is meaningless.
If fD(Ri) # {¢} then whenever Ri is accessed, all the registers in the set
fD(Ri) are accessed. By this we mean, whenever Ri is to be written with
data d, all the registers in fD(Ri) would be written with data d, and
whenever the contents of Ri are to be retrieved or used, the contents
formed by the bit-wise OR or AND function (depending on technology) over
the registers of the set fD(Ri) will be retrieved. Under this fault we
allow fD(Ri) # {Ri}, for every Ri £ R.

This situation can be best illustrated by means of a pictorial
representation shown in Figure 3.1. 1In Figure 3.1(a) the mapping fD is
shown under the condition that there is no fault in the registef decoding

function. TUnder this condition, £_ is a one-to-one correspondence from

D
R to R. When there is a fault in the register decoding function fD becomes,k
in general, a many-to-many correspondence from R to & U {@]. This is
illustrated in Figure 3.1(b).

We mow briefly comment on the fault mechanisms responsible for
faults in the register decoding function. Consider a subset of registers

' < R which is realized as a random-access memory on the microprocessor

chip. Due to faults in the address decoder in this memory some registers
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(a). fD is a one-to-one correspondence from R to R if there is no fault
in the register decoding function.

FP~6459

(b). £ is a many-to-many correspondence from R to R U {¢} if there
are faults in the register decoding function.

Figure 3.1, Representation of the mapping £p.
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in R' could be decoded as some other registers in R' [NTAb78]. This can
be adequately modeled by a many-to-many correspondence from R' to

R U {¢}. Of course, under this fault a register in R' cannot be decoded
as some other register not in .

In order to rule out the possibility of a register R, being

1

under a fault, we must know whether R, and

decoded as another register R2 1

RZ belong to different random-access memories realized on the chip, or

we must know of the existence of some mechanism . (realizing R and}RQ)uunder

1
which this fault cannot be present, i.e., we need to know the implementation
details. Our desire is to make the fault model as independent as possible
of the actual implementation. Therefore we allow fD to be a many-to-many
correspondence from R to R U {¢} under a fault. We are thus considering
the "worst case' behavior under the register decoding faults.

Alternatively registers could be realized as separate registers
and interconnected with a network of multiplexers, demultiplexers and
buses. A typical situation is shown in Figure 3.2, where it is desired to
choose one register from a subset of registers Rl = {Rl’RZ""’Rk}(: R for

 transferring its contents to a register to be chosen from another subset

of registers R, = {R

2 )1 Rt

using a k-to-1 multiplexer for choosing a source register from Rl’ and a

’Rm}(: R. The task is accomplished by

1-to-(m-k) demultiplexer for selecting a destination register from RZ-
The multiplexer and the demultiplexer receive the addresses of the registers
to be selected from the control unit.
Due to faults in these units the wrong registers may be chosen,
or more than one registers could be chosen. Under some fault in the

control unit, an incorrect register address could be sent to the multiplexer
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Address of a

Source Register Destination Register
from the Control Unit from the Control Unit

N

R [ F—
Rl F—=

b N
v

Internal
Bus

2, k-to-1

Figure 3.2. A multip
for data

Multiplexer Demultiplexer

1-to-(m-k)

FP-6460

lexer-demultiplexer mechanism
transfer.
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or demultiplexer resulting into the selection of a wrong register. All
these faults can be adequately modeled by a many-to-many correspondence
from Rl to Rl U {¢}, and another many-to-many correspondence from @2 to
@2 U {¢}. In this particular implementation, a register in Rl may not be
decoded as a register in &2, and vice—versaf We avoid all these implemen-
tatiqn dependent details by allowing fD to be a many-to-many correspondence
from R to ® U {g}.

At this point one may wonder how a register used to store address

of operands such as R. and R7 (in Figure 2.8), could be decoded as a

5

register used to store operands, such as R. and RZ’ particularly in the

1
light of the fact that the widths of registers used to store addresses
usually differ from those used to store data. This is quite likely in the
following situation.

All registers are realized as a RAM array on the microprocessor
chip. Each word of the RAM is 16 bits in width and can be used as a single
register for storing addresses which are 16 bits in width. A single word
can also be used as a pair of registers for storing data which is 8 bits
in width. This is the way registers are implemented on the INTEL 8080
microprocessor [INTE75];

We now-extend the notation developed in Chapter 2. fD(D(Ij))
denotes the set of registers formed by making the union of the image sets
of registers in D(Ij) under the mapping fD. fD(S(Ij)) can be analogously
defined. Extending this mnotation further, fD(D(Il’IZ"";Iﬁ))
= fD(D(Il)) U fD(D(IZ)) u...U fD(D(In)). The set fD(SKIl,IZ,...,In))

can be defined similarly.
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We now illustrate the effects of faults in the register decoding
function at the level of the S-graph by means of the following example.
Example 3.1: In terms of the S-graph of Figure 2.8,

R = {Rl’RZ’RS’RA’RS’R R.}. If fD(RS) = {Rl}, register R, will play the

677

role of the address buffer register R

1

5 during the execution of instructions

1 and I... Thus under 117, R, will be read out correctly, but the

17 19 2

contents of register Rl will be changed instead of that of R If

5
fD(Rl) = {Rz}, when I1 is executed R2 will be written instead of Rl'

Moreover, I7 will read out R2 instead of Rl. If fD(Rz) = {R]ﬁ R3}, then I

will read out R1 * RB’ where % denotes the bit-wise AND or OR function

8

over registers Rl and R3 depending on technology. Similarly when 12 is

executed, both Rq and R3 will be written instead of RZ'

1f fD(RB) = {¢}, then I_ will not change the contents of any

5

register, and 16 will trahsfer a ONET or .a ZEROﬁ to R, depending on

1

technology, instead of the contents of R,. If fD(R7) = {¢}, the "Jump to

3

subroutine" instruction I,, will correctly execute the jump in the program

20

sequencing, but will not save the return address into R The fault will

7
show up when the "Return from subroutine' instruction 121 is executed,
because the program sequence will return to the main memory location
whose address is ONE or ZERO depending on technology, as a ONE or a ZERO

will be loaded into the program counter (R6) instead of the contents

of R7-

ONE denotes a binary vector with each of its bits set to logic 1 and
and having its width equal to that of a register, i.e., ONE = (11...1);
similarly ZERO stands for (00...0).
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If fD(RS) = {R7}, instruction I,, will be executed correctly,

20

i.e., the jump:to subroutine will occur and the return address will be

correctly saved in R7, but now the correct execution of 121 will depend

on whether 117 or 119 were executed within the subroutine. TIf they were

executed in the subroutine, due to the fault fD(RS) = {R7}, the subroutine

register R, will be changed instead of the address buffer register RS’

7

resulting into the loss of the return address saved in R7. Thus 121 will

cause the program to branch to some location that equals the address of

17 or 119 executed within the

subroutine. [

operand used in the last instruction I

3.2. Fault Model for the Instruction Decoding and Control Function

The instruction decoding mechanism is shown as a block diagram
in Figure 3.3. Basically it is a decoder whose inputs are the instruc-
tion opcodes and whose outputs correspond to the control signals that
initiate the execution of instructions. For each valid opcode, one
and only one output of the decoder is activated initiating the execution
of one and only one instruction.

Under a fault in the instruction decoding and control function,
the faulty behavior of the microprocessor can be specified as follows.
When instruction Ij is executed any one of the following can happen:

1. 1Instead of instruction Ij some other instruction Ik is
executed. This fault is denoted by f(Ij/Ik).

2. In addition to instruction Ij, some other instruction Ik is
also activated. This fault is denoted by f(Ij/Ij+ik).

3. WNo instruction ig executed. This fault is denoted by f(Ij/¢).
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This fault model is strongly motivated by the fact summarized
in the following theorem.

Theorem 3.1: If a decoder is realized without any reconvergent
fanout then under a single stuck-at fault its behavior can be formulated
independent of its implementation details as follows: for a given valid
input to the decoder, instead of, or in addition to the expected output
some other output is activated, or no output is activated.

Proof: See the Appendix. U

The assumption of no reconvergent/fanout in the instruction
decoding mechanism is quite reasonable as it has n inputs and as many
as 2" outputs. We would like to allow the faulty behavior stated
above for each instruction of the microprocessor. However, it makes
the test generation procedureé extremely complicated. Therefore we
impose two constraints (given below as 4 and 5) on the decoder behavioer
under faults in the instruction decoding and control function.

4. 1If faults f(Ij/i#) or f(Ij/Ij+Ik) are present then ifistruction

I, will be correctly executed.

k
5. If faults f(Ij/Ik), f(Ij/Ij+ik) or f(Ij/¢) are present then

faults £(I /1, £(1 /T 4T, thb t.
aults f£( q/ J) or £( q/ q J) cannot be presen

The behavior of a decoder under a single stuck-at fault does not
violate these comstraints. .This willzdalso:beuproved in:theiAppendix. ~"Any
number of instructions could be faulty subject to the set of specifications
1 through 5. As an example, under the fault model, faults f(Il/IZ),
f(13/13+12), f(I4/IZ) can exist simultaneously, so can f(Il/IZ), f(13/¢),

f(I4/I6), f(I5/15+i6). Thus, this fault model can account for all single

stuck-at faults in the instruction decoding mechanism.
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In practice, some faults in the instruction decoding and control
function such as f(Ij/Ik) or f(Ij/Iﬁ+1k) may be readily detected if a
different number of machine cycles are needed to execute instructions Ij
and Ik’ or different status signals are emitted during their execution
[ThAb78].

We now illustrate the effects of faults in the instruction
decoding function at the level of the S-graph by means«of the.following
exa?ﬁié,

Example 3.2: 1In terms of the S-graph of Figure 2.8, under fault

f(12/¢), register R, will not be written, i.e., its contents remain unchanged.

2
If f(14/16) is present, then the contents of R3 will be transferred to Rl
instead of the sum of R1 and R2' Under f(I7/I7+{8), the contents of

R1 * R2 will be read out, where as before, * indicates the bit-wise

logical OR or AND function depending on technology. If f(19/19+i3)

is present, the "Jump" instruction I, will be executed correctly, but at

9

the same time the contents of Rl will also be tranmnsferred to RZ'

Note that the faults in the instruction decoding and control
function cannot be treated as faults in the register decoding function.

9 being decoded as R3 if 18 is

executed correctly. Under f(110/121), instead of the '"Skip if the contents

of Rl are zero'' instruction the. "Return from subroutine'" instruction is

executed. Under f(I6/I6+Il3),

to Rl’ where RESULT1 and RESULT2 are the results produced by 1

For example, f(IB/IS) cannot be treated as R

(RESULTL) * (RESULT2) will be transferred

6 and Il

3’
respectively, and * indicates the bit-wise logical OR or AND function

between RESULT1 and RESULTZ. i
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Example 3.3: This example is constructed to show how the-result
produced by executing a program in the presence of a multiple fault in
the instruction decoding and control function differs from the one produced
by executing the same program under the fault free condition. A part of :
the S-graph of a hypothetical microprocessor is shpwn in Figure 3.4(a).
,» I! are instructions of class T. Note that instruction

3

I3 reads out register R3.

1 ¥ N 8 s AT g o f . ’l";.: ; S e i r T
of three faults f(Il/Il+I1), f(12/12+i2),wandkf(13/13+13)waffects the-result

Il’ 12, 13, I3, Ié

We investigate how the simultaneous existence

produced by the microprocessor when it executes the program given in
Figure 3.4(b). Oniy three instructions in the loop are shown. The loop
control is given in terms of a high level language construct (FOR loop)
only for conciseness and ease of understanding.

Assume that the initial contents of registers Rl’ R4, RS’ R6
are ONE, ONE, ONE, and ZERO, respectively. Thus under the fault free
condition, at the end of each of the n iterations of the loop, a ONE is
read out, independent of the value of n.

Under the presence of the multiple fault described above, the
program would correctly read out a ONE at the end of each of the first
three iterations of the loop, but would read out a ZERO instead of a ONE

at the end of each iteration after that. Therefore the program would not

detect the fault if n < 3. -3

3.3. Fault Model for the Data Storage Function

In this section a fault model for the data storage function is
presented which accounts for the faults in various registers. We allow

any cell of a register to be stuck at 0 or 1, and this fault can occur
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(a). A part of the S-graph of a hypothetical microprocessor.

FOR K<« 1 TO n DO

BEGIN
L
I,
I,
END

(b). The program considered in Example 3.3.

Figure 3.4. Illustrating Example 3.3.

59
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with any number of cells of any number of registers. We now illustrate
the effects of faults in the data storage function at the level of the
S-graph by means of the following example.

Example 3.4: 1In terms of the S-graph of Figure 2.8, suppose

the first and third bit of register R, are stuck at 1 and O, respectively.

1

Then, it would not be possible to store any data vector whose first and

third bits are 0 and 1, respectively, in register R., by executing any

13

instruction whose destination register is R If the second bit of

1
register R7 (subroutine register) is stuck at 0, then it would not be
possible to execute the "Return from subroutine'" instruction 121 success-
fully if the return address has its second bit equal to 1. Thus under

a fault in the data: storage: functionisome. instruetions: may net be: s

correctly executed for certain data and address patterns.

-

3.4. Fault Model for the Data Transfer Function

In this section a fault model for the data transfer function
is presented which accounts for faults in various transfer paths, i.e.,
buses. Under a fault in the data éransfer function for any instruction Ij
1. a line in a transfer path in set E(Ij) can be stuck at 0 or 1,
2. two lines of a transfer path in set T(Ij) can be coupled, i.e.,
they fail to carry different logic values. This can happen due to
metallization shorts or capacitive couplings [ThAb78].
We allow any number of transfer paths associated with any number
of instructions to be faulty in this manner. This fault model is very
general and is also independent of implementation details of transfer

paths. Even though physical transfer mechanisms may be shared between
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transfer paths in practice, by allowing each transfer path to be faulty,
we are making the fault model independent of implementation details.
We now illustrate the effects of faults in the data transfer
function at the level of the S-graph by means of the following example.
Example 3.5: Suppose the transfer path carrying data from the
node R, to the OUT node (i.e., the mainimemory) in instruction I, has

2 8

its second line stuck at 0, then instruction 18 cannot be executed
successfully if the data pattern stored in register R2 has its second bit
equal to 1. Suppose the transfer path used to carry the result from the
ALU to register R1 in instruction 14'haVEfitsafirst;aﬁdasecoﬁd;line‘coupled
such that the resulting logic value present on these two lines really
is a logical OR or AND function (depending on technology) of the logic
values that would have been present on these lines, were there no coupling.
Under this fault any ALU result whose«firstiand-second:bitss
differ in the logic values will not be successfully tramsferred to Rl;
if the coupling results in a logical OR function, the first and second
lines of the transfer path:will both carryrazlogic:1l:when~they are=
supposed to carry a 1 and a O, or a 0 and a 1. Similarly if the coupling
results in: a logieal:AND £funection,.the . fifst-and:second-linessofuthene
transfer path will both carry a logic O when they are supposed to carry
aland a 0, or a 0 and a 1. Similar faults could be present with the
transfer paths used to carry addresses. Thus under a fault in the data

transfer function some instructions cannot be correctly executed for

certain data and address patterns. I
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3.5. Fault Model for the Data Manipulation Function

The data manipulation function refers to various functional
units such as the ALU, interrupt handling hardware, hardware:used for
incrementing (or decrementing) the program counter, stack pointer or
index register, hardware used for computing the address of operands in
various addressing modes such as indexed and relative, etc.

A microprocessor is not a network of arbitrary interconmnections
of'these functional units. Therefore we need not really worry about
the problems involved in testing a digital system comprised of ‘a-network of
suchffunctional‘units;as‘mgntioned in Section 2.1.3. In fact, recalling
the discussion of Section 2.4 any register of a microprocessor can be‘
read or written (explictily or implicitly) using a sequence of instructions
of class T, or using an instruction of class B, i.e., the operands
required for an instruction of class M can be stored in the necessary
registers (or are available in the main memory) and the result produced
by it can be read out from the register where it is stored by using
instructions which do not belong to class M.

We do not propose any specific fault model, per se, for the data
manipulation function because of the wide variety in existing designs for
the ALU and other functional units such as increment or shift logic.

We will assume that complete test sets can be derived for the functional
units for any given fault model. The operands necessary to execute tests
for a giwven functional unit can be stored in the proper registers by
executing instructions of class T or B only, and they do not require the
use of any other functional unit. Similarly the results.of these tests

can be read out by using instructions of class T or B only.
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We allow any number of functiomal units to be faulty at one time.

3.6. Fault Model for Microprocessors

We now propose the fault model for microprocessors based on the
fault models proposed in Sections 3.1 through 3.5. At any given time we
allow the presence of any number of faults but only in ome function
described above (in Sections 3.1 through 3.5). Note that we ate allowing
a very general model for microprocessors (as described in Chapter 2).

In addition, if we allow multiple faults in different functions, the
problem becomes extremely complex. In [ThAb78], a restricted model for
microprocessor was considered, (refer to Section 2.5) allowing multiple
faults in different functions. 1In that case the problem turned out to be

very complex but of manageable proportions.
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4., TEST GENERATION PROCEDURES

In this chapter we present test generation procedures to
generate tests for detecting faults covered by the fault models presented
in Sections 3.1 through 3.5. The first step in developing test generation
procedures is to assign:labels:to:the:nodes and edges of the.S=graph:
under comnsideration by using the labeling algorithm given in Section 4.1.
Test generation procedures for detecting faults in the register decoding
function, instruction decoding and control function, data transfer and
storage function, and data manipulation function are given in Sections 4.2,
4.3, 4.4 and 4.5, respectively. The fault coverage of the tests is also

proved.

4.1. Algorithm»é.l:\ The«labeling:Algorithm

This algorithm assigns integer labels to nodes and edges. The
label assigned to a node representing register Ri is denoted by ﬂ(Ri),
and the label assigned to the edge set E(Ij) representing instruction Ij

is denoted by ﬂ(Ij).
Step 1l: Assign a label O to the OUT node.

Step 2: K <« 0;

WHILE a node remainscunlabeledi DO

BEGIN |
Assign a label K+1 to all unlabeléd-nodes:representing
registers whose contents can be transferred (explicitly
or implicitly) to any register whose node is labeled K by
executing a single instruction of class T or B;
K«K+1

END
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Step 3: Assign a label 1 to each edge in the set E(Ij) where Ij is an
instruction that reads out a register (explicitly or implicitly)

during its execution.

Step 4: 1If Ij is an instruction whose edge set has not been labeled in
step 3 then assign a label (K+1) to each edge in the set E(Ij),

where Z(D(Ij)) = K. 0

Thus the labeling algorithm first assigns an integer label to
each node of the S-graph. This label (which is equal to IREAD (Ri)l
as will be shown in Temma 4.1) indicates the shortest "distance" of that
node to the OUT node, i.e., the minimum number of instructions of class
T or B that need to be executed to read out (explicitly or implicitly)
the contents of the register being represented by that node. After
assigning labels to the nodes.of the .S=graph,i:the labeling-dlgerithm
assigns labels to the edges representing instructions. 1In step 4, each
edge in the set E(Ij) representing instruction Ij is assigned a label
K + 1, if the destination register of Ij was assigned a label K in step 1
or 2. Note that in step 4, the edge sets of only those instructions are
labeled which do not cause data transfers from-:registers’ofrthe:rmicro=
procéssors tosthesmain-memoryior antI/Q%deVicevdUIinggtheir;exgeutiOHVW
For%suChaan’inStruétion\¥j,;ID(¥j)'C=fln fKRécallgtheﬁdiscussionf
in Section 2.4.)

On the other hand, the destination set D(Ij) of an instruction
Ij that reads out (explicitly or implicitly) a register during its
execution may contain more than one register. Since the nodes representing

these registers may have different labels, step 4 cannot be applied in this
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case. In this case we use step 3 to assign a label 1 to each edge in the
set E(Ij). The choice of the label may be explained by the fact that in
this case the OUT:node has to be a member of the set D(Ij), and step 1
assigns a label 0 to the OUT node.

For concise description, we will use the phrase“ﬂnggister*%i,with
label K, if the node representing register Ri is labeled K. Similarly
we will use the phrase“”inétrucﬁﬁoni£.“withilébéléK,"mif:theuedge?sétﬁE(Fj)
representing instruction Ij is labeled K. The phrase "Execute READ (Ri)"
means execute instructions in the READ (Ri) sequence; the phrase "“Execute
WRIEE;(%i)"&eanﬁbe interpreted in a similar fashion.

Lemma 4.1: a) TIf £(R)) =K, | READ (Ri)l =K. b) If LX) =1,
Ij reads out (explicitly or implicitly) a register with label 1.

Proof: a) Nodes are labeled in step 2 of the labeling
algorithm. A node is labeled 1 if the register representéed by it can be
read out (explicitly or implicitly) by executing a single instruction of
class T or B. A node is labeled 2 if the contents of the register
represented by it can be transferred to a register whose node is labeled 1
by executing a single instruction of class T or B, and the former register
(whose node is labeled 2) cannot be read out by executing a single
instruction of class T or B. Thus a register Ri whose node is labeled 2
can be read out by executing a sequence of instructions of class T or B
containing two instructions and no shorter sequence exists to read it out.
Therefore IREAD (Ri)l = 2. (Recall the definition of READ (Ri) in Section
2.4.) Extending the argument in this fashion it can bereasily proved that
a register Ri whose node is labeled K can be read out by executing a

sequence of instructions of class T or B containing XK instructions and
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no shorter sequence exists to read it out. Therefore rREAD (Ri)l = K.

(b) 1t Z(Ij) =1, Ij must have been labeled in step 3 of the labeling
algorithm, and it reads out a registef (explicitly or implicitly) during
its execution. Therefore this register must have been labeled 1 in
step 2. O

We now comment on the significance of the labels assigned by
the labeling algorithm. For each register Ri’ E(Ri) indicates the minimum
number of instructions of class T or B needed to read out Ri. Therefore
£(Ri) can be thought of as an "observability index" for register R, -
z(Ij) has a similar connotations Iffﬂ(lj?”z“z,‘z(ljz -~1:indicatéss
the minimum number of instructions of class T or B needed to read out
register D(Ij). if £(Ij) = 1, instruction Ij regds out some register with
label 1; thus the effects of execution of imnstruction Ij are directly
observable at the external pins of the microprocessor if Z(Ij) = 1.

Various test generation procedures to be presented in the following
sections of this chapter generate tests in such a way that the knowledge
gained from the correct execution of tests used to check the decoding of
registers and instructions with lower labels is utilized in generating
tests to check the decoding of registers and instructions with higher
labels. Thus the fact that a register with a given label can be correctly
"observed" is used to generate suitable tests for correctly observing
registers with higher labels. Recall that a register with a lower label
implies that it has better observability than the one with a higher label.

These test generation procedures may generate instructions with
higher labels to set up proper operands in various registers while

"checking out" instructions with lower labels. Since, as described above,
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the instructions with higher labels are not checked out yet, they may not
be able to set up the required operands successfully. This imposes the
basie requirement on the test generation procedure: the tests must be
able to check for proper execution of every instruction using other
potentially faulty instructions; otherwise certain faults may mask each
other and never be detected. This point will be illustrated by means of
examples in Sections 4.2 and 4.3.

Since each instruction is checked for its proper execution
using other potentially faulty instructions, it is not necessary to devise
some labeling scheme that assigns labels: to registers-indicating theitr:
"distance'" from the IN node which can signify their "controllability index."
The test generation procedures take into consideration the presence of
faulty instructions (which may fail to store required operands in registers,
i.e., fail to control the registers correctly) to be used in checking out
other instructions.

Recall (Example 2.4) that those instruections of class B which
only change the logic level on some status pins of the microprocessor
(e.g. "Interrupt enable") are not represented in the S-graph. Therefore,
they are not labeled by the labeling algorithm. We assign £(Ij) = 1 for
every instruction Ij of class B which is not represented in the S-graph.
This assignment can be justified as follows: the effects of these
instructions of class B are directly observable at the external pins of the
microprocessor. Since the instructions which read out registers are
labeled 1 by the labeling algorithm, it makes sense to assign label 1 to

these instructions of class B.
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Lemmna 4.2: All instructions of cildss B are assigned label 1.

Proof: Those instructions of class B which are represented in
the S-graph implicitly read out the program counter or a register
containing the addréss of an instruction. These instruactions are assigned
label 1 in step 3 of the labeling algorithm. All the other instructions
of class B (which are not represented in the S-graph) are also assigned
label 1 as explained above. i:

Recall that instructions with label 1 hawe the highest . ..
obseérvability::»Instructions of class B enjoy the highest observability.

Example 4.1: The labeling algorithm will assign the following
labels to the nodes and edges of the S-graph in Figure 2.8.

Step 1: £4(0UT) = 0.

Step 2: 4(Ry) 4(R2) = ARy = LR = 4R = L(R,) = 1, L(Ry)==12.

il
1l

Step 3: 1?,(17)

= £(19) = 4(T,) = 4(1,) = 1.

z(IS) = ﬂ(Ig) z(Ilo) = 2(114) = 4(Tp) = ﬁ(Ilz) = 2(118) =

Il

step 4: £(T)) = £(T,)) = 4(Iy) = £(,) = £(T,)

= 4(1;5) =2, £@) = 3.

P(Typ) = ATyp) = 4(45)

The contents of the program counter (R6) are read out (implicitly)
on the address bus during the fetching of every.imstruction, therefore
Z(R6) = 1. The contents of the subroutine register (R7) are implicitly
read out on the address bus (by routing the contents through the program
counter), hence ﬁ(R7) = 1. Note that 4 (I

= 2(12) = 2, because I, and 12

1 1
both use immediate addressing (Refer to Table 2.1.), and;lD(Il)|”=51D(12)l = 1.

A1l other labels' are self explanatory. - ~ 0
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4.2. Test Generation  Prog¢edure for Detecting Faults in the Register
Decoding Function

The tests generated using the procedure guarantee:-that .
the register decoding function denoted by the mapping fD is a one-to-one
correspondence from R to R.

This procedure uses two data structures, a queue of registers
and a set of registers which are named Q and A respectively. The dqueue Q
is initialized with all the registers such that a register Ri lies ahead
of another register Rj in the queue, if and only if, ﬂ(Ri)ySﬁQQ%i). iThe
set A is initialized to be empty. In each iteration of the test generation
procedure, set A is progressively augmented by removing the register
lying in the front of the queue Q and including it in set A; now the
register which was second in the queue before the augmentation of set A
lies in the front of the queue, i.e., the queue is updated. The tests
generated so far will assure that at any given stage, registers in set A
have disjoint image sets under mapping fD. The procedure terminates when
set A contains all the registers that were initially in the queue and the
queue gets empty. At this stage, the generated tests will guarantee that
all the registers have disjoint image sets underfmapping;fb, establishing
that fD is a one-to-one correspondence. Recalling the discussion in
Section 4.1, the procedure utilizes the knowledge gained from the correct
execution of tests used to check decoding of registers with lower labels
to generate tests to check decoding of registers with higher labels.

ONE and ZERO will be frequently used as operands or addresses
of operands in various test procedures. This choice is arbitrary. We
could have used (1010...10) and its bit-wise complement (0101...01):-as

operands or addresses of operands instead.
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Procedure 4.1 given below generates tests for detecting faults
in the register decoding function. Note that the test instructions are
generated only in steps 3(a), (b), and (c); other steps perform bookkeeping
tasks.

Procedure 4.1: Procedure to generate tests for detecting' faults

in the register decoding function.

Step 1: Initialize the queue Q with all the registers such that
register Ri lies ahead of register Rj’ if and only if,

ﬂ(Ri) S Z(Rj); Initialize the set A as empty.
Step 2: A ¢ register at the front of Q; Update Q.

Step 3: REPEAT
a) Generate instructions to write each register Ri of set A
with data ONE, and the register at the fromt of Q
(if there is one) with data ZERO. (The instructions of
the corresponding WRITE (Ri)~sequenceaneéditofbeggenerated;)
b) Generate instructions to read out each register Ri
of set A, such that register Ri will be read before
register Rj’ if and only if, ﬂ(Ri) = ﬁ(Rj). (The instructions
of the corresponding READ (Ri) sequences need to be generated.)
¢) Generate instructions to read out the register Rj at the
front of Q (if there is one). (The instructions—ofithe
READ (Rj) sequence need to be generéfed.)
d) A« A U {Register at the fromt of Q}.
e) Update Q.

UNTIL Q = empty.

Step 4: Repeat steps 1, 2, and 3 with complementary data. O
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Procedure 4.1 describes the test generation procedure at a higher
level. There are many subtle points involved in the execution details
of this procedure, particularly if some registers can be written or read
out only implicitly. These points can be best illustrated by giving
an example. We show how to apply this algérithm to generate the tests
for the S-graph of Figure 2.8 in the following example .accompanied:
with the explanatory comments. |

Example 4.2: Generation of tests for detecting faults in the

register decoding function for the S-graph of Figure 2.8.

Step 1: Q « RiR,R,ReR(RoRy A © o)

Step 2: A « {Rl}; Q ¢ RyR,RR.R-R,

Step 3:

Tteration 1

a) Il with operand ONE;fI2 with operand ZERO;
b) I 45 /Expected output data = ONE/
c) Ig; /Expected-output-data = ZERO/

) A« {Rl, Rz}
e) Q ¢ RRR.R-Ry

Tteration 2

a) I, with operand ONE; I, with operand ONE;

1 2

115 with operand ZERO; /stack pointer (34) is

written with a ZERO/

b) I.5 Igs /Rluand>R ~arerread-out ; ‘expected outputsdata== QNE/

2
c) Ii63 /stack pointer is implicitly "read out" -on the~address

bus; expected output "data" = ZERO/



d)

e)

73

A« {Rl, Ry > R4}

Q < RgReRyR4

Iteration 3

a)

b)

d)

e)

I1 with operand ONE; 12

I,5 with operand ONE; /Rl’RZ’ stack ppointer ,(:R;A) ‘are

written with data ONE/

with operand ONE;

I,, with address of the operand ZERO; /Rsfismwfitten

implicitly with "data" ZERO/
I Igs Iig3 /RiaandugzgareMexplxcrtlyfreadwoutfwhlle
the stack pointer (R4) is implicitly read out/

I.., with the address of operand ZERO; /R15 is implicitly

17

read out on the address bus with expected output
"data' = ZERO/
A< {Rys Ry Ry, R

Q € Rgs Rys Ry

Tteration 4

a)

1. with operand ONE; I

1 with operand ONE;

2

Lis with operand ONE; /Rl’ R,, stuck po;nter (R4) are

written with data ONE/

I.., with the address of-operand ONE; /Rsvisﬁwfitténfl

17

implicitly with "data" ONE/

I, with jump address = LOC.l; /program counter is

written implictily with data = LOC 1. LOC 1 is chosen

different from ONE/
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b,e) 1LOC 1: L /17 is stored in location LOC 1. Whenithis
instruction is fetched, the program counter is
implicitly read out on the address bus; expected
output "data" = LOC 1 # ONE. R, is explicitly
read out as I is executed/

Igs Iigs 117 with the address of gperandAONE; /R2 is
explicitly read out. R, énd7R57are implicitly read out/
e.

e) Q< R, R

7° 73
Iteration 5

a) I, with operand ONE; I

1 with operand ONE;

2
115 with operand ONE; /Rl’ R2, stack pointer (R4) are

written with data ONE/

117 with the;addréés,of?qperand‘ONE; /Rs%isfwfitténTJ,;;guf;,r
implicitly with "data" ONE/

I

with jump address 10C 2; /program counter is written

9

implicitly with data Loc 2/

1.0C 2: IZO with jump address = 10C 3; /Note that I, is

20

the "Jump to subroutine" instruction, hence

program counter (now containing 1LOC 2 + 1) is saved
in the subroutine register (R7), and a new jump
address = LOC 3 is loaded into the program counter.
Thus R and R7 are written implicitly with 'data"

LOC 3 and LOC 2 + 1, respectively. Choose LOC 3

different from LOC 2 + 1 and also different from ONE/
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b,c) 10OC 3: 17;'/I7gisﬁ§tored1in;LOG}3. “Whenil_ is fetched,

7

the program counter is read out implicitly omn

the address bus; expected output "data" = LOC 3.

Thus, 17 is the first instruction in the subroutine.

17 explicitly reads out Rl/
Igs Iyg3 I, with the address ofégperand~0NE;*/Rz~is~explicit1y
read'OUt,‘“R4 and R; are implicitly read out/

121; /121 is the "Return from subroutine' instruction.
The contents of the subroutine register (R7) are transferred
to the program counter. The next instruction will be fetched
from the location I1OC 2 + 1, as 1OC 2 + 1 is the return
address for the subroutine. When this new instruction is
fetched, the subroutine register will'be effectively read out
through the program counter/

d) A<« {Ry, R, R, Res Res Ro)

e) Q« R3

Iteration 6

a) I, with operand ZERO; /I1 is stored in location LOC 2 + 1.

1

When it is fetched R, is implicitly read out as explained

before/

IS; /R3 is written with data ZERO/

I with operand ONE; IziwithHOPexanﬁfONE;A;rs
Iistith'operaﬁd;ONE;"T17ﬁwith,the'addréssiéf operand ONE;

ZRI,wRii R&gtand R%?are written with "data' ONE/
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T, with jump address = LOC 4; /the program counter implicitly

9
written with LOC 4. Choose 1LOC 4 different from ZERO/

10C 4: I with jump address = LOC 5; /the subroutine register

20
(Rq) is written implicitly with data LOC 4 + 1.
Choose LOC 4 + 1 different from ZERO. When Lo is
fetched the program counter ‘is implicitly read out;
expected output data = LOC 4/

b) 1LOC 5: I._ with the address:of operand ONE;

T3 Igs 1165 T17

/R1 and R2 are explicitly read out; R4 and R5 are
implicitly read out/

1,45 /causes the subroutine register (R7) to be

implicitly read out through the program counter when

the next instruction will be fetched from location

10C 4 + 1
c) LOC’4'+ l;:‘;6€’I75 /R3Q;syread“out“uS1ng:READf(R3) = <I6’:I7>
sequence; expected output data = ZERO. When I6 is
fetched R7 is implicitly read out as explained above/
d) A<« {R;, R,y Rys Ros Ry, R, RB}
e) Q <« empty
Step 4: Repeat steps 1, 2, 3 using complementary data. ]

The generated test sequence will be Il’ 12, 17, 18’ Il’ 12,
115, ...... s 17, 18, 116’ 117, 1213 ¥6’ 17. Thus the "writing' process
involved in step 3(a), and the 'reading'" process involved in step 3(b) and
(c), do involve implicit writing and reading of registers. The whole
procedure requires careful selection of "data", i.e., both the operands

and address of operands. The jump addresses in the "Jump'", "Jump to
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subroutine", and "Return from subroutine" instructions must be carefully
chosen to avoid reexecuting the already executed tests or overwriting
the instructions.

We now present a lemma describing the behavior of a micrOjjf
processor under faulty register decoding. This will then be used to prove
that the tests generated using Procedure 4.1 will detect any detectable
faultiin the.tegister-decoding function.

-~ Lemma 4.3¢ Tet READ (R ) = <1k s Ik goiws I 1)y and WRITE ®,)
m ;

2 1 2
=(I..,.I0 5euey B ). ?

a)ﬂfthp,Bigisfwriéygg;yith}daga,é by. executing the instructioms
in the WRITE (Ri) sequence, all registers in the set fD(D(WRITE (Ri)))

= :ED(D(Ip , Ip b s Ip )) are written with data d, unless (1). fD(D(Ip ))

1 2 n h|
= {¢} for some Ip € WRITE (Ri), 1 =3 =n-1, in which case R is written
h|
with either a ONE or a ZERO depending on technology, or (2). fD(D(IP ))
n

= {¢}, in which case the contents of Ri remain unchanged.
b) When Ri is read out by executing the instructions in the
READ (Ri) sequence, during the process of reading out Ri all registers

k. > Ik 3eees Ik )) are written with data d and data d
1 2 m-1
is read out, if Ri contains data d, unless fD(S(Ik )) = {¢}, for some
k|
« € READ (Ri)’ in which case a ONE or a ZERO will be read out, depending
3 ,
on technology. . 7.

in the set fD(D(I
I

" Proofi= The lemma ‘follows immediately From the faulty behavior
of .the registe¥ decoding «function fD. £
Example 4.3: With reference to the S-graph of Figure 2.8,
READ (R,) = <I6, I7> and WRITE (Rg) = (I, I;). When R, is written with
- data d by executing I1 with data d, and 15, all registers in the set
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= = U =
fD(D(WRITE(RB))) £,0(5 I5)) fD(D(Il)) fD(D(IS)) £ Ry yU £ (R3)
are written with data d, unless fD(Rl) = {¢},?ianhiéh:egse?RBEisiwritten»
w1th either+a ONE or a ZERO, or £ (RS) =u{¢}3“invwhiCh~¢ase the contents of

R remain“unéhangedz;ﬁwheang&iSFread{outlby;execﬁting Eé;andql7,£allgregisters

3

- in the set: £ (R;) :/;are;;fyri;t'e? ‘wfth'idata d~,,'an§,2d§ ta‘d is read out; un less £, (Ry)
= {8} or:£,(Ry) =-{¢}s in whicl case either a-ONE-or a'ZERO is readout. []
Theorem 4.1: The test sequence generated by using Procedure
4.1 is capable of detecting any detectable fault in the fault model: for the
register decoding function.
Proof: The proof is by induction. At the beginning of step 3(a)

of Procedure 4.1, let set A={R, , R. , ..., R, }. Let the induction
1N Tk
hypothesis be fD(Ril) n fD(Riz) n...n fD(Rik) = {¢}, and fD(Rij) # {91,
for each R, € A. At the end of step 3(d) of Procedure 4.1, i.e., when
« ; |
set A is augmented, let set A = {R, , R, , --.5 R, , Ri }, We will
* 2 |

prove that £ (R, ) N £ R, )N ..... nf (R. y N f (R -
Dy D1, Dy i) {$}, and

£E®, ) #{g].
D e
In step 3(a), registers of set A are written with data ONE (ZERO),

and register R, , which is at the front of the queue, is written with
k+1

data ZERO (ONE), by executing* the instructions in the corresponding WRITE

sequences. If fD(Ri )y = {¢}, the fault will be readily detected when
k-1

appropriate instructions are executed to read out R; in step 3(c), as
k+1

it will fail to produce either a ONE or a ZERO following Lemma 4.3. Assume
that for some register R; of set A, f(R; ) N Ry ) # {¢}. If R; 1is
£ £ k+1 £

written after Ri in step 3(a), the fault will be detected when
k+1

e

“Though strictly speaking Procedure 4.1 is a test generation procedure
in the proof we are assuming that the tests are executed.
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R; is read out in step 3(c), since according to Lemma 4.3, all the
k+1
registers in the set fD(Ri ), and hence in the set fD(Ri )y N fD(Ri )
£ £ k+1
) S E,R; ),

will be written with ONE (ZERO). Simce £ (R, ) N £_(R.
D i, D 1 K+l

k+1
when R, is read out in step 3(c), it will either produce a ONE
k+1
instead of a ZERO, or a ZERO instead of a ONE, WNote that since
LR, ) = LR, ), the process of reading out of R, will not require
i i i
£ k+1 £
routing of R, through R, . Similar arguments apply when R, is
i i i
2 k+1 £
written before Ri in step 3(a). 1In this case the fault will be
k+1
detected when Ri is read out in step 3(c).
£

The basis of induction, i.e., when A = {Ri 1, fD(Ri ) # {¢}, and
1 1

when A = {R, , R, }, £ (R.
e AR S
the same arguments used so far. Using these arguments, it is guaranteed

)y N fD(Ri ) = {¢} can be readily proved following
2

n
that fﬂlfD(Ri) = {¢}, where R = {Rl, R2, ceey Rn}. Since all the registers
=

have disjoint image sets under mapping fD’ £_ cannot be a many-to-one

D
correspondence. Moreover, since fD(Ri) # {¢} for each R, ER, fD cannot
be a one-to-many correspondence from R to R. Therefore fD is guaranteed
to be a one-to-one correspondence from ® to R. If follows immediately
that the register decoding function (denoted by fD) is free of any
detectable fault. Note that for some registers, even if fD(Ri) # {Ri}, fD
could still be a one-to-one correspondence. Fori example, we:may haveés

fD(Ri);FgﬂRﬁiQandafﬁ(Rj) = {Ri}. In such a case, the fault is an

undetectable fault. I
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4.3. Test Generation Procedures: for Detecting Faults in the TImstruction
Decoding and Control Function

In this sectionwwe present the test generation procedures to
detect faults f(Ij/¢g§;f(I§/Ik)zJagdff(lj/ljilﬁ) for.each ordered pair of
instructions Ij and Ik. We divide the overall task of test generation
into three subtasks depending on which class (T, M, or B) instructions
Ij and Ik belong to. Following this, we first give the order in which
the tests are applied, and then describe the details of test generation.

The overall task of detecting faults in the instruction
decoding and control function can be divided into three subtasks.
subtask 1: Test for fault f(Ij/¢), f(Ij/Ik), and f(Ij/Ij+Ik),

where Ij € class T, and L € class (T U M).

subtask 2: Test for faults f(Ij/¢), f(Ij/I , and f(Ij/Ij+{

k) k) -

where Ij € class M, and Ik € class (T U M).
subtask 3: Test for faults f(Ij/¢), f(Ij/IR)g and f(Ij/Ij+ik),
where Ij € class B, and Ik € class (TUMU B);
or Ij € class (T U M) and Ik € class B.
The basic philosophy behind this task division is to employ a

systematic approach that tackles a complex problem by dividing it into

logically distinct and smaller subproblems.

4.3.1. Order of Test Application

Before presenting the details of test generation, we first
describe the order in which the tests are applied. The tests for each
subtask described above are to be executed by the microprocessor under

test in the order given below.
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First we concentrate on instructions with label 1, i.e.,

Z(Ij) = 4(1 1, and apply tests to detect faults f(Ij/¢), f(Ij/Ik),

K =
and f(Ij/Ij+1k). Then we apply tests to detect faults f(Ij/Ij+{k),
where E(Ij) = 1 and Z(Ik) = 2. This is followed by tests to detect
faults f(Ij/Ij+Ik), where 2 S‘Z(Ij) < Kmax and ﬂ(Ik) = 1. (Kmax
indicates the maximum value of the labels of edges representing instruc-
tions in the S=-graph.) Thus we check that all instructions with label 1
are decoded correctly, no instruction with label 1 causes additional
execution of an instruction with label 2, and no instruction with a
label greater than 1 causes additional execution of an instruction with
label 1. This procedure can be easily gene;alized and is given in a

precise algorithmic form below.

Algorithm 4.2: Algorithm to determine the order of test

application for detecting £(I./9), f(Ijl£k>’ and f(IjZijEkl%
J
FOR XK <« 1 TO K___ DO | -
max

BEGIN

Step 1: Apply tests to detect faults f(Ij/¢), f(Ij/Ik)’ sk
-+ = = .
and f(Ij/Ij I,), where z(Ij) £(1,) =K
Step 2: Apply tests to detect faults f(Ij/Ij+ik), where
< < £ = < .
1 Z(Ij) K, 4(1,) =K +1, and K< K
Step 3: Apply tests to detect faults f(Ij/Ij+Ik), where
< < =
K+1 ﬂ(Ij) Kmax’ z(lk) K.
END
Strictly speaking, this order need not be followed during

the actual application of tests, but it plays a very crucial role in
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proving that the tests detect faults in the instruction decoding and
control function. Therefore we assume that the testszaresapplied intthe
order given by Algorithm 4.2.

Note that in steps 2 and 3 it is not necessary to check for
faults f(Ij/¢) or f(Ij/Ik) because these faulits are detected by tests
involved in step 1. We now present an example to illustrate the three
steps of the algorithm.

For concise representation we introduce some notation at this

stage. Let 1 IB’ etc., denote sets of instructions. Then f(IA/IB)

A’

would denote a set of faults given by {f(Ii/Ij) l I, € IA and Ij € IB}.

For example, let IA = {Il’ 12} and IB = {13, 14}a then f(IA/;é) =

{f(ll/IB),ff(;i/;d),“f(lzfig),?f(IZ/IA)}. §SymllarlyAf(IA/IA+1E)vand

f(IA/¢) denote the corresponding sets of faults. Needless to say, we do

not incorporate f(Ii/Ii) or f(Ii/Ii+1i) in the sets f(IA/IB) or f(IA/IA+IB).

z(IA) denotes the set of labels of instructions in set IA'
Example 4«4:, This examplesilldstratessthe«stépguof’

Algorithm 4.2 in the case of subtask I for the S-graph of Figure 2.8.

Tterationsad ez 7

Step l: «Apply tests forifaults;fﬁlﬁﬁ¢),‘f(IA/Iﬁ),hané1f(IA/IAi{B) ’
where IA =;1Bwﬁf{lzf~Ié,11161fli7j Iig,ﬁligg,:aﬁgfw,fw-
{13.

= 4
£(T,) (Tp) ‘
Step 2: Apply tests for faults f(IA/IA+iB) where I, = {17, Tgr Iig»

]

Iygo Tygs Tyghs T = {1y Tps Ty Ty T Tps Tpos Tygs Tisls
L(1) = y) = X
and £(1,) = {1}, (Ty) {2}
Step 3: Apply tests for faults f(IA/IA+iB) where I, = {Il, Ly, I,

s> Tgo Tyshs Tp = {150 Tgs Typs 1155 Ty, Tpg), and
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4(r,) = {2, 33, 2(1p) = {13.
Iteration 2:
Step 1: Apply tests for faults f(IA/¢), f(IA/IB), and f(IA/IA+iB)
where I, = {I,, I,, I, I, 1.}, 1, = {1, I,, 1,5 I, I,
Ips Typs Tqgs 115}¢ and £(1,) = £(I,) = 2.
Step 2: Apply tests for faults f(IA/IA+iB) where IA = {17, 18’ I16’
117> T1g> Lyg> Ty» Tps Tgs Igs Tygds Iy = {1}, and
L(1,) = {1, 21, 2(1,) = {3}.
Step 3: Apply tests for faults f(IA/IA+iB) where I, = {15},
Ly = {1y Tys Igs Iy Tgo Ipps Tpps Ipgs Iygd, and
2z, = {3}, 2@1p) = {2},
Iteration 3:

Step 1: Apply tests for faultjf(15[¢):~ (Note that Z(IS) = {3}.) O

The next job is to develop the details of test generation for
detecting faults f(Ij/¢), f(Ij/Ik), and f(Ij/Ij+{k). These details
depend very heavily on the labels of instructions and their source and
destination registers. Therefore we partition the job into various cases
depending on these labels and present the test gemeration procedure for
each case.

At this stage we make an assumption about the labels of edges
representing instructions. If Ij € class M then Z(Ij) £2, i.e., if
E(Ij) > 2 then Ij € class T. Recall from Lemma 4.2 that all instructions
of class B are labeled 1. Thus the destination of an instruction of
class M can only be a main memory location or a register with label 1.

This assumption can be easily justified for available microprocessors,
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since the result of an instruction of class M is usually stored in a main
memory location or an accumulator [Cush77]; on the other hand, the
destination register of an instruction of class T can have any label.
Without this assumption the details of the test generation procedures

become extremely complicated.

4.3.2. Test Generation for f(Ij/¢)
The details of test generation depend principally on ﬂ(Ij).
We consider three cases, namely, case A(l), case A(2), and case A(3),
depending on 2(Ij). The suffix A iszused:to.denote thatza case .belongs
tosthe details of test generation for f(Ij/¢). These cases are divided
into subcases which are listed in Table 4.1. For each subcase, the
table gives which test generation procedure is applicable and which

theorem proves the fault coverage.

4.3.2.1. Test Geperation for f(Ij/¢) When E(Ij) =1

This ¢dsesisrreferredstozas case A(l)‘andiisidivided intosumre:
two subcases.

Gase A(1.1): OUT € D(Ij), i.e., Ij is expected to read out a
register with label 1 (according to L.emma 4.1).

Case A(1.2): Ij is an instruction of class B not represented
in the S~graph, i.e., Ij only changes the logic level on some status pins.

In1eitherxsubcaseithe?faﬁlt&detection“isﬁeasywSince?Ij“has?the
highest observability as signified by E(Ij) = 1.

We give the test generation procedures below. It is gtraight~
forward to derive the tests in terms of the assembly language instructions

of the microprocessor to be tested from the procedures to follow. For
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conciseness we say that the microprocessor executes these procedures.
instead of saying that the microprocessor executes the tests generated by
these procedures. For the same reason we treat these procedures as if
they are test execution procedures instead of test generation procedures.
We denote various operands for instructions by OPERAND 1, OPERAND 2, etc.,
and various results stored in registers (as a consequence of instruction
execution) by RESULT 1, RESULT 2, etec.

Procedure 4.2:

This procedure is applicable for case A(1l.1). It
generates tests to detect fault f(Ij/¢) when Z(Ij) = 1 and OUT € D(Ij).
Step 1: Store proper operand(s) in S(Ij) such that when Ij is

executed, the expected output "data" is different from the
quiescent logic value on the data (of’address) bus.
Step 2: Execute Ij' | O

Procedure 4.3:

This procedure is applicable for case A(l.2). It
generates tests to detect fault f(Ij/¢) when Z(Ij) = 1 and Ij belongs to
class B but it is not represented in the S graph.

Step 1: Execute the proper instruction to‘set up the logic value on a
status pin to x (x € {0, 1}) if the instruction Ij under
consideration, when executed, sets up the logic value on that

status pin to X.

1

Step 2: Execute Ij.
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4.3.2.2. Test Generation for f(Ij/¢) Wﬁen E(Ij) =2
This case is referred to as case A(2). 1In this case
|READ (D(Ij))] = 1. Let READ (D(I))) = {1,>. Of course, 2(1) =1,
and by definition of the READ sequence Ik € (T,U:Bﬁaand}OUT;E”pflk).

Procedure 4.4:

This procedure is applicable for case A(2). It generates

tests to detect fault f(Ij/¢) when ﬁ(Ij) = 2.

Step 1: Store OPERAND 1 in D(Ij) and proper operand(s) in S(Ij)
such that when Ij is executed it produces RESULT 1
in D(Ij ), and RESULT 1 # OPERAND 1.

Step 2: Read out D(Ij) by executing READ (D(Ij)).
/Expected output data = OPERAND 1/

Step 3: Execute Ij-

Step 4: Read out D(Ij) by executing READ (D(Ij)).

/Expected output data = RESULT L/ |

Example 4.5: This example (depicted in Figure 4.1) 7. . .six
illustrates Procedure 4.4. Ij is an "Add" instruction which adds

the contents of registers RlzananZ;aﬁdhstoresﬁthe:resﬂlt in Rg-

READ (D(Ij)) = {1k>, £(1,) = 1and I, € class T. OPERAND 1
can be chosen to be ONE, and RESULT 1 to be ZERO, requiring that

operand ZERO be stored in both Ry and Rz. Ik is executed to make

sure that R3 does store OPERAND 1. This is followed by execution of

Ij and Ik' O
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1. Example illustrating Procedure 4.4.

Figure 4.
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Theorem 4.2: Procedure 4.4 detects f(Ij/¢) in case A(2).

Proof: Note that £(I,) = 1 where READ (D(Ij)) = <1k§.
(Refer to Figure 4.1.) Since the tests are applied in the order =poo
specified by Algorithm 4.2, the microprocessor under test executes this
procedure after executing the tests required to detect f(Ip/¢),
f(Ip/Iq), and f(Ip/IP+Iq) where /z(Ip) = z(Iq) = 1, and f(Iv/Iv+IW)
where z(xv) = 1 and £(IW) = 2. Therefore, when the microprocessor under
test executes this procedure it has been already checked that the
READ (D(Ij)) = (Ik)‘ sequence can correctly read out D(Ij) and its
execution does not cause additional execution of any instruction with
label 2; in particular the contents of D(Ij) are not changed after
the execution of READ (D(Ij)). Therefore step 2 ensures that D(Ij)
stores OPERAND 1. This step is mecessary because due to faults
involved in the instructions used to write data in D(Ij), RESULT 17 ©
may be stored in D(Ij) iq§Fgaq of OPERAND 1. 1If step 2 is not executed,
the fault f(Ij/¢) will be maskébd.

In step 3, Ij ds rexecuted which ‘s expected to preduce RESULT 1
in D(Ij). If f(Ij/¢) is present, the contents of D(Ij) will not
change. Consequently when D(Ij) is read out in step 4 the fault will

be detected.

4.3.2.3. Test Generation for f(Ij/¢) When Z(Ij) =K=3
This case is referred to as case A(3). According to our
assumption in Section 4.3.1, Ij € class T. This case is divided into

two subcases.
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Case A(3.1): S(Ij) is not the destination register of any
instruction belonging to the READ (D(Ij)) sequence. Figure 4.2 illustrates
this case, ﬂ(lj) =K =3, E(D(Ij)) = k-1, E(S(Ij)) = K, and READ{(D(Ij))

= (1 T s «++s I_ ). Thus it is possible to read out D(Ij) without

P-1" Pg-2 Py
routing the contents of D(Ij) through S(Ij). In this case we follow

Procedure 4.4. (The same procedure which is used in case A(2).)

Theorem 4.3: Procedure 4.4 detects f(Ij/¢) in case A(3.1).

Proof: The proof follows the same arguments given for the
proof of Theorem 4.2, except for one change. The microprocessor under
test executes this procedure after executing the tests required to detect
£(T /¢y, £(T /T £(I /T _ 4T ) where 1 < £(I_), - 4(I ) S K=1l, .and’

( . ), £( b q), ( /Ty q) ( p), ( q)‘ H
£(I_/I_+1 ) where 1 =< £(I_) = K~1 and £(I_) =K.. Note that in this case
v OV Tw 71 W

READ CD(Ij)) = (I s I . Ip ) as illustrated in Figure 4.2.

Pr-1" “Pr2” T TPy
Since L(D(Ij)) = K-1, 4(T =i, for 1S i'<g-1,

P.)
i
Therefore, when the microprocessor under test executes this

procedure it has been already checked that the execution of any

instruction Iﬁ‘,E READ (D(Ij)) ,does not give:rise to the additional execution
offany“iggtrucéiohﬁwifhffabel‘K;'iD(Ij)?canﬁbeQGOrrectlycread;Out by executing
READ (D(Ij)) inustep®2:.of thisiprocedureyiand after the«exeecution of
READfCD(Ij)YﬂEhe éontegts*of~D(Ij)~are?n@t&changed&(note~that

ﬁ(D(Ij)) =~K—1eand1£(1j) =:K). All the remaining arguments are exactly .

the same as given in the proof’ofiTheorem fu2.nv o aley of an i e O

*-:;ﬁisxlﬁ)gi§fthe«destinatibn@regiéterfdfuanwinstruc—
tion belonging\to*the:READMCD(ITI) seduénce;u:Fégure 4:3.illustrates this

case; Z(Ij) =K =z 3, ﬂ(D(Ij)) = k-1, ﬂ(S(Ij)) = K-2.



Figure 4.2.

1
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Ipwl
1
IpK—Z
& Read (D(Ij))
1
Ipl

~
@ FP-6468

Tllustrating case A(3.1) in Section 4.3.2.
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> Read (S(I;))

@ J
FP~6467

Illustrating case A(3.2) in Section 4.3.2.
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READ (Ds(Ij)) = (1 Y cand READ (:s'(I,-J;)) = (I

s I 5 & 5wy I SR
-1 Pg-2 P Py
T , ., I_ ) where £#(I_ ) =1 for 1 <i <K-1. Let I € WRITE(S(I.))
Pg-3 Py P, s ]

and D(IS) = S(Ij). Therefore, L(IS) = K-1, and £(S(IS)) = K-1.

Procedure 4.5:

This procedure is applicable for case A(3.2). It generates
tests to detect fault f(Ij/¢) when z(Ij) =K =23, and S(Ij) is the
destination register of an instruction belonging to the READ (D(Ij))

sequence.

Step 1: Store OPERAND 1 in D(Ij) by executing WRITE (D(Ij)).
Step 2: Read out D(Ij) by executing READ (D(Ij)).
/Expected output data = OPERAND 1/
Step 3: Store OPERAND 2 # OPERAND 1 in S(]’.S) by executing WRITE (S(IS)).
Step 4: Read out D(Ij) by executing READ (D(Ij)).
/Expected output data = OPERAND 1/
Step 5: Execute I and Ij. /Refer to Figure 4.3/
Step 6: Read out D(Ij) by executing READ (D(Ij)).

/Expected output data = OPERAND 2 # OPERAND 1/ O

Theorem 4.4: Procedure 4.5 detects f(Ij/¢) in case A(3.2).

Proof: 1 = ﬂ(Ipt)*= iaSaK#l,‘for*eaChiinStruction'Ip *in-the
i i
READ (D(Ij)) sequence. When the microprocessor under test executes this
procedure it has already executed the tests required to detect f(IP/¢),
£(L /1 ) and £(I_/I_+L ) where 1 < £(I 2(I ) < K-1, and £(I_/I_+T
T, /1) (T /T 4) T, &) : (X, /1,41

where 1 = ﬂ(Iv) = K-1 and ﬂ(IW) = K.
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Therefore, when the microprocessor under test executes this
procedure it has been already checked that the READ (D(Ij)) sequence can
correctly read out D(Ij) and the execution of any instruction in this
sequence will not give rise to:additional execution of anysinstruection with
label X; in particular the contents of D(Ij) and S(Is) remain unchanged.
(Note that Z(D(Ij)) = E(S(IS)) = K~1.) Moreover, the execution of IS
does not give rise to additional execution of any instruction with
label X, since ﬂ(Is) = K~-1; thus in particular the contents of D(Ij)
remain unchanged after the execution of IS.

In step 2, D(Ij) is correctly read out by executing READ CD(Ij))
and it continues to store the operand stored in it, i.e., OPERAND 1,
after this "read out" process. 1In step 3’.S(Is) is written with OPERAND 2
by executing WRITE (S(IS))ﬁ Since~£(S(Ig)) = ﬁ(D(Ij)) =K-1, it is
possible to write data in S(IS) without routing it through D(Ij) during
the execution of WRITE (S(IS))- Step &4 ensures that D(Ij) continues to
store OPERAND 1 after step 3. Moreover, D(Ij) and S(IS) continue: to .
store OPERAND 1 and OPERAND 2 , "respectively; aftérathe "read out" oo
process in step 4.

Since ﬁ(IS) = K-1, the execution of IS in step 5 will correctly
transfer the contents of S(IS) to S(Ij), i.e., S(Ij) now contains
OPERAND 2 # OPERAND 1. Also the contents of D(Ij) remain unchanged, since
z(xs) = K-1 and E(D(Ij)) = K~1. After this Ij is executed which is
expected to change the contents of D(Ij) to OPERAND 2. If f(Ij/¢) exists,
Ij will fail to do so and the fault will be detected when D(Ij) is read

out in step 6. J
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4.3.3. Test Generation for‘f(Ijilkla'
The details of test generation depend principally on E(Ij) and
z(xk). We consider three cases, namely, case B(l), case B(2), and
case B(3) depending on E(Ij). The suffix B is used to denote that a case
belongs to the details of test generation for f(Ij/Ik). These cases are
divided into subcases which are listed in Table 4.2. For each case, the
table gives which test generation procedure is applicable and which

theorem proves the fault coverage.

4.3.3.1. Test Generation for f(Ij[Lk) when ﬂ(Ij) = 1
This case is referred to as case B(1l) and is divided into two
subcases depending on ﬁ(Ik).
Case B(l.1): ﬂ(Ik) = 2. Since z(Ij) = 1, the results of the

k

the behavior of the microprocessor as observed at its external pins.

execution of Ij are directly observable while those of I, are not. Hence

under the fault f(Ij/Ik) is the same as it would be under the fault
f(Ij/®). Therefore Procedures 4.2 and 4.3 given in Section 4.3.2.1 should
be followed in this case.

Case B(1.2): ﬂ(Ij) = E(Ik) = 1. Many of the faults in this
case would be readily detected because Ij and Ik have the highest

observability. For exampie, Ij and I, may read and write data into the

k

main memory during different machine cycles of the corresponding instruc-

tion cyeles; or during the execution of Ij and I, a different sequence of

k
status signals may be emitted on the status pins. Therefore we will
explicitly discuss the detection of those faults which camnot be easily

detected in this fashion. This case can be further divided into two

subcases, namely, case B(1.2.1) and case B(1.2.2) as described below.
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The tests generated by Procedure 4.6 for case B(1.2.1) are to be applied
before those generated by Procedures 4.7 and 4.8 for case B(1.2.2).

Case B(1.2.1): During the execution of instructions Ij and T

k

the results of the operations performed are "read out'. The operation
performed could be as simple as a data transfer from a register to the
main memory. Examples of this case are given below.

Example 4.6: Instruction Ij is "Store the contents of register
Rl into the main memory using direct addressing,'" and instruction Ik is

""Store the contents of register R, into the main memory using direct

2
addressing."

Now consider another example. Instruction Ij is "Add the contents
of the accumulator and the contents stored at the top of a LIFO stack
(maintained in the main memory) and store the result at the top of the stack,'"
and instruction Ik is "Subtract the contents of the accumulator from the
contents stored at the top of the LIFO stack and store the result:sat the

top of the stack." I

Procedure 4.6

This procedure is applicable for case B(1.2.1). It
generates tests to detect fault f(Ij/Ik) when ﬂ(Ij) = z(Ik) = 1 and during

the execution of Ij and Ik the results: of the operations are read out.

Step 1: Store proper operands in S(Ij) and S(Ik) such that when Ij is

executed RESULT 1 is read out and when I, is executed RESULT2is

k
read out, and RESULT 1 # RESULT 2.

Step 2: Execute Ij. /Expected output data = RESULT 1/
Step 3: Execute I,. /Expected output data = RESULT 2/ ]

k
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Theorem 4.5: Procedure 4.6 detects f(Ij/Ik) in case B(1.2.1).

Proof: If the proper operands are really stored in S(Ik) in

step 1 so that RESULT 2 is read out when I, is executed, the fault will be

k
detected in step 2 itself, as RESULT2 will be read out (instead of expected
output data = RESULT 1).

On the other hand, if the required operands are not stored in
S(Ik) due to faults involved in the instructions used to write data in

S(Ik), the fault may not be detected in step 2; the execution of I, may

k

read out RESULT 1 as the wrong operands are stored in S(Ik)' But in this
case the fault will be detected in step 3 as the execution of I, will
produce RESULT 1. Note that if f(Ij/Ik) is present we assume that L is

correctly executed. (Recall the fault model in Section 3.2.) n

Case B(1.2.2): During the execution of instructions Ij and
Ik the results of the operations performed are stored in registers.

(The results are not read out as in case B(1l.2.1).) The operation: performed
could be as simple as a data transfer from a main memory location to a
register. In this situation the instruction belongs to class T. 1If the
operation involves some data manipulation, the instruction belongs to

class M.

Note that E(Ij) = ﬂ(Ik) = 1. TIf the instruction Ij or Ik belongs
to class M, at least one of the operands for Ij or Ik mustrbe: stored in
the?mainamemoryf*T(Ifaallifﬁeiopergnds for Ij andTIk?arg available ldns oo
registers wé would havelﬂ(lj);nﬂ(lk) z 2. Refer to step 4 of the labeling

algorithm given in Section 4.1.) The address of the operaﬁd stored in

the main memory is computed and then transferred from a register holding
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it to the address register of the main memory. Thus the register storing
the address of the operand is implicitly read out during the execution
of I, and Ik' This is precisely the reason to assign label 1 to Ij and I
(Refer to step 3 of the labeling algorithm.) As mentioned earlier, the

.

K are stored in registers.

If the instruction belongs to class M, the result produced is stored in

results of operations performed under Ij and T

a register with label 1. This is consistent with the assumption (regarding
the label of an instruction of class M) made in Section 4.3.1.

If the instruction belongs to class T the data transferred from
the main memory may be stored in a register with label greater than 1.

In this situation fault detection may or may not be easy as illustrated
in the following example.

Example 4.7: Let instruction Ij be "Load the contents of the
memory location pointed to by register R1 in register RZ’” and let
instruction Ik be "Load the contents of the memory location pointed to by
register R3 in register Rz.” Both instructions store the result of their
operation (which is a simple data transfer) in register RZ' Even if
ﬂ(Rz) =2 2, fault f(Ij/Ik) can be easily detected by choosing different

1 3

will be (implicitly) read out on the address bus instead of

addresses (pointers) in R, and R,. If f(Ij/Ik) is present, the address

stored in R3

the address stored in R1 Wheanj;iSAeXecuted, and:thetfault 'willrbesdetected.

Thusuthis case is’reallyinot different from case B(1.2.1).
We now consider another example where the fault detection is not
so easy. Let instruction Ij be '"Load the contents of the memory location

pointed to by register Ry in register R2,” and let instruction Ik be

"Load the contents of the memory location pointed to by register Rq in
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register R,." In this case f(Ij/Ik)icanfbexdetected;by,storingfdifferent~

3

data in R2 and R3 and then reading out these registers by executing

READ (RZ) and READ (RB)' If ﬁ(Rz) or £(R3) is greater than 1, (i.e., READ (RZ)

orgREAQ:(Rj) {cgntainiinstfuetionsfwithv&abe1$gréa§erfthanél)v it is i«

not guaranteed that READ (Rz) and. READ (R3) sequences can correctly read

out R, and R3 because the microprocessor under test has not yet executed

tests to detect f(Ip/Iq), f(Ip/Ip+iq) where ﬂ(Ip), £(Iq) = 2. 1In this

case we treat Ij and Ik as if they have label ﬂ(Rz) + 1 and £(R3) + 1,

respectively, as far as the test generation for faults f(Ij/Ik)’

f(Ij/Ij+Ik), f(Ik/Ij), or f(Ik/Ikﬂj) ig concerned. ]
Case B(1l.2.2) being considered applies only to those instruc-

tions which store their result in a register with label 1. Depending

on whether the results of Ij and Ik are stored in the same or different

registers we divide this case further into two subcases.

Case B(1.2.2.1): The results produced by executing instructions

Ij and Ik are stored in the same register. Let this register be designated
as Rp; furthermore, let READ (Rp) = <Ip>. Note that Z(Ip) = 1. An
example of this case is given below.

Example 4.8: TInstruction Ij is "Add the contents of the
accumulator and the contents of the memory location (next to the one storing
the opcode of instruction Ij) and store the result in the accumulator,"”
and instruction Ik is "Subtract the contents of the accumulator from the

contents of the memory location and store the result in the accumulator." Ll

Procedure 4.7

This procedure is applicable for case B(1.2.2.1). It

generates tests to detect fault f(Ij/Ik) when Z(Ij) = ﬂ(Ik) = 1, and during
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the execution of Ij and I, the results of the operations are stored in the

k

same register Rp'

Step 1l: Store proper operands in S(Ij) and S(Ik) such that when
Ij is executed RESULT 1 is produced and when Ik is executed
RESULT 2 is produced, and RESULT 1 # RESULT 2.

Step 2: 1IFf Rp € S(Ij) U S(Ik) then read out register Rp by executing
READ (Rp) = <Ipfff /To make sure that Rp contains proper
operand to be stored in step 1. The other member of S(Ij) or
S@Ik) is a location in the main memory./

Step 3: If Rp € S(Ij) U S(Ik) then repeat step 2.

Step 4: Execute Ij-

Step 5: Read out register RP by executing READ (Rp) = (Ip).

/Expected output data = RESULT 1/ i

Theorem 4.6: Procedure 4.7 detects f(Ij/Ik) in case B(1.2.2.1).
Proof: TIf the register Rp is a member of S(Ij) or S(Ik) it
must be ensured that it contains the proper operand to be stored in step 1,
otherwise Ik could produce RESULT 1 ‘instead -of RESULT:2 wand fault imasking
would occur.
The instruction Ip involved in step 2 will correctly read out
Rp because E(Ip) = 1, and the microprocessor under test would have
already executed the tests to detect f(Ip/Iq) where ﬁ(Iq) = 1 (generated
by Procedure 4.6 for case B(1.2.1));‘howeven,;Lfithe;fauﬁt%fflbﬁlﬁﬁlﬁh)
is present, where ﬂ(IP,) = 2 and D(Ip,) = {Rp}, the contents of Rp may

change after it is read out by executing Ip. If this happens it will be

detected in step 3. On the other hand if the contents of Rp do not change
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after the first execution of Ip (in step 2), they will not change after
the second execution of IP (in step 3) either.

In step &4 Ij is executed. If f(Ij/Ik) is present, RESULT 2 will
be produced in Rp in step 4, and it will be detected when Rp is read
out in step 5. d

Case B(1.2.2.2): The results produced by executing instruc-

tions Ij and Ik are stored in different registers. Let the result

produced by Ij be stored in register Rp. Furthérmore, let READ (RP)= (Ip>,
and E(Ip) = 1. An example of this case is given below.

Example 4.9: Instruction Ij is "Load register R1 from the
main memory location (next to the one storing the opcode of instruction

from the main memory

k 2

location." 1

Ij),” and instruction I, is "Load register R

Procedure 4.8:

This procedure is applicable for case B(1.2.2.2).
It generates tests to detect fault f(Ij/Ik) when ﬂ(Ij) = Z(Ik) =1,
and during the execution of Ij and Ik the results of the operations are

stored in different registers.

Step 1: Store OPERAND 1 in register Rp and proper operands in S(Ij)
such that when Ij is executed RESULT 1 is produced in Rp’
and RESULT 1 # OPERAND 1.

Step 2: Read out register Rp by executing READ(RP) = <Ip>.
/Expected output data = OPERAND 1/

Step 3: Repeat step 2.

Step 4: Execute Ij.
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Step 5: Read out register RP by executing READ (Rp) = <Ip>.

/Expected output data = RESULT 1 # OPERAND 1/ (]

Theorem 4.7: Procedure 4.8 detects f(Ij/Ik) in case B(1l.2.2.2).
The proof of this theorem follows the proof of Theorem 4.6

closely and will not be repeated here.

4.3.3:2. Test @Generation for f(Ijllk) when ﬁ(Ij) =2

This case is referred to as case B(2) and is divided into two
subcases depending on whether or not D(Ij) = D(Ik).

Case B(2.1): D(Ij) # D(Ik). In this case under the fault
f(Ij/Ik), the contents of D(Ij) remain unchanged as they would remain
under the fault f(Ij/¢). Hence, the procedure for this case is the
same as Procedure 4.4. Furthermore, using arguments similar to those in
the proof of Theorem 4.2, it can be proved that Procedure 4.4 detects
f(Ij/Ik) in this case.

Case B(2.2): D(Ij)r:gD(lﬁ)}rAThis&taéeziswnbtwtreatedihe%e because
allithe details considered:for case C(3s1) in Sedtion 43374.3. apply: to-this
casend :Procedures4s 17oused ko detect fK;j/Ij+ii):inQCaée C(34i1) (wefer to
Table 4.3) can deteet £(I./I ) in case B(2.2) discussed here. This will

be pointed out in the proof of Theorem 4.16.

£4.3.3.3. Test Generation for f(Ij[lkl,When ﬂ(Ij) =K =3
This case is referred to as case B(3). Note that Ij belongs
to class T according to our assumption in Section 4.3.1. This case

can be further divided into two subcases depending on whether or not

D(Ij) = D(Ik).
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Case B(3.1): D(Ij) # D(Ik). In this case under the fault
f(Ij/Ik), the contents of D(Ij) remain unchanged as under the fault
f(Ij/¢). Hence, the procedures for this case will be the same as
Procedures 4.4 and 4.5. Note that Procedure 4.4 is applied in case A(3.1)
and Procedure 4.5 is applied in case A(3.2). Using arguments similar
to those in the proofs of Theorems 4.3 and 4.4, it can be proved that
Procedures 4.4 and 4.5 detect f(Ij/Ik) in this case.

Case B(3.2): D(Ij) = D(Ik). Note that ﬂ(Ij)\i 2(Ik)ﬁéﬁKggand
E(D(Ij)) = z(D(Ik)) = K-1. Therefore no instruction in the READ GD(Ij))
sequence can have a label greater than K-~1. This case is illustrated in
Figure 4.4. Note that READ (D(I.)) = (I , L s +.., I_ ) where

] Pg-1" Pg-2 Py
Z(Ipi) =1, for 1 =i = K-1. Depending on ﬂ(S(Ik)) the case can be further
divided into two subcases. Case B(3.2.1) applies when £(S(Ik)) < K, and
case B(3.2.2) applies when z(S(Ik)) = K. Note that E(S(Ik))‘} X,

since 2(Ik) = K and I, belongs to class T. (Also refer to the labeling

k

algorithm given in Section 4.1.)

Case B(3.2.1): £(S(Ik)) < K. 1In this case the instruction I
does not belong to the READ (S(Ik)) sequence. (This will be proved in
the proof of Theorem 4.8.)

Procedure 4.9:

This procedure is applicable for case B(3.2.1). It generates

g+ tordéeteet 11e E4T |, /T:) iwhei L = () .= B2 3,D(L) .= p(L,
tests tovdetect fault f(IjjIk) whe,,nwéxz(;gj) ‘,z(Ik)“; K= 3, D(Ij)‘ D(L,),

and ﬁ(S(Ik)) < K.
Step 1l: Store OPERAND 1in S(Ij) and OPERAND 2 in S(Ik) such that
OPERAND 1 # OPERAND 2.

Step 2: Execute Ij.
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FP-5468

Figure 4.4. 1Illustrating case B(3.2) in Section 4.3.3.3.
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Step 3: Read out S(Ik) by executing READ (S(Ik)).
/Expected output data = OPERAND 2/
Step 4: Read out D(Ij) by executing READ (D(Ija).

/Expected output data = OPERAND 1/ f3

Theorem 4.8: Procedure 4.9 detects f(Ij/Ik) in case B(3.2.1).

Proof: Note that z(Iﬁ)K?}K: ,Sincegﬁxsfiﬁgjaﬁ Ky flosinstruction in
the?Eﬁ%ﬂiéSXIR)xusequencé ‘canchavesas labelagreater :than. K~1; implying that
I, £ READ (3(I,)). Therefore READ (S(I,)) reads out §(I,) without
routing it through D‘(Ij ) = ‘D(Ik')

When the microprocessor under test executes this procedure, it
has already executed the tests required to detect f(Ip/¢), f(Ip/Iq),
and f(Ip/Ip+1q) where 1 < ﬂ(Ip), E(Iq) £ K-1, and f(Iv/Iv+iW) where
1= ﬂ(Iv) = K-1 and ﬂ(IW) = K. Therefore, when the microprocessor under
test executes this procedure it has already been checked that the
READ (D(Ij)) and READ (S(Ik)) sequences correctly read out D(Ij) and S(Ik),
respectively. (Recall that no imstruction in the READ (D(Ij)) or
READ (S(Ik)) sequences can have a label greater than K-1.) Moreover,
after the execution of these sequences the contents of D(Ij) and S(Ik)
do not alter.

In step 2, Ij is executed and it is expected to produce OPERAND 1
in D(Ij). 1f f(Ij/Ik) is present, OPERAND 2 will be produced in D(Ij)
instead of OPERAND 1, provided S(Ik) really contained OPERAND 2 when Ij
is executed. 1In this situation the fault will be detected in step 4.

(Note that in step 3, READ (S(Ik)) reads out S(Ik) without routing it
through D(Ij) = D(Ik).) On the other hand, due to faults involved in the

instructions used to write data in S(Ik), OPERAND 2 may not be stored
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in S(Ik); in this case the fault will be detected in step 3 itself. .

Case B(3.2.2): ﬂ(S(Ik)) = K. In this case Ik € READ (S(Ik)).

Procedure 4.9 used for case B(3.2.1) cannot be used in this case
because in step 3, READ (S(Ik))~Wi11?reéd out S(Ik) by routing it through
D(Ij) = D(Ik), destroying its contents.

Procedure 4.10:;

This procedure is applicable for case B(3.2.2). -It
generates tests to detect fault f(Ij/Ik) when E(Ij) = E(Ik)‘=&K = 33
D(Ij)’f—‘"D(Ik)~=5 and £ (S (Ik)) = K,

Step 1: Store OPERAND 1 in S(Ij) and OPERAND 2 in S(Ik) such that
OPERAND 1 # OPERAND 2.
Step 2: For i < 1 TO K DO
BEGIN
Execute Ij;
Read out D(Ij) by executing READ (D(Ij)).
/Expected output data = OPERAND 1/
END
Step 3: Execute Ik.
Step 4: Read out D(Ik) by executing READ (D(Ik))ﬂ= READ (D(Ij)).

/Expected output data = OPERAND 2/ i

Theorem 4.9: Procedure 4.10 detects f(Ij/Ik) in case B(3.2.2).
Proof: 1In step 2 of Procedure 4.10, register D(Ij) is read

5 - , -+-5 I_ ). (Refer to

Pr-1" Pg-2 |

Figure 4.4.) Recall that Z(Ij) = E(Ik) = K, and I,(Ip ) =i, for
i

out by executing READ{(DKIj)) = (1 I

1 =i =K-1. When the microprocessor under test executes this procedure,
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it has already been checked that f(Ip/¢), f(Ip/Iq) and f(Ip/IP+1q) do
not exist, where 1 =< ﬂ(lp), ﬁ(Iq) £ K~1. Therefore, D(Ij) can be correctly
read out by executing READ (D(Ij))~

If OPERAND2 is really stored in S(Ik) in step 1, the fault
f(Ij/Ik) will be detected when D(Ij) is read out during the first
iteration of step 2, since OPERAND 2 will be read out instead of OPERAND 1.
On the other hand, due to the faults involved in instructions used to
write data in S(Ik), OPERAND 1 may have been stored in S(Ik). In this
situation the fault will not be detected during the first iteration of

step 2. We now prove that it is necessary and sufficient to repeat the

loop in step 2 K times, where IREAD (D(Ij))| = K-1.
Sufficiency: So far the microprocessor under test has not

executed the tests to detect f(IV/Iv+1W)3 where 1 = l(IV) = K-1 and

= <
K+1 z(IW) K

ax” I1f a fault f(Ip./Ip + Ip!) is present, where

i i i
Ip € READ (D(Ij)) and K+1 = z(Ip,) = Kmax’ it has yet not been detected.
i i
Consider a sequence of instructions <I v s L ¢ 5, .., I .> where I _,
k-1 Pg-2 P Py
belongs to this sequence if and ohly if the fault f(Ip /T + Ip,) is
i i i
present, for 1 =i = K-1. Since K+1 =< (I _,) =K and K 23, T ,
p; max P;
belongs to class T according to our assumption in Section 4.3.1.

Therefore, we designate the sequence (I, , I, , ..., I ,» as the T
k-1 Pr-2 Py

sequence 0'. Note that there are at most K-1 instructions in o'. Thus

when the READ (D(Ij)) sequence is executed in“step 2, the’T sequence o

is also executed in addition. Consider the register which is l-step

transferrable to S(Ik) under the T sequence ¢!, The contents of this

register before the execution of READ G)(Ij)) in the first iteration of

step 2 will become the final contents of S(Ik) at the end of the first
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iteration of step 2. This may alter the contents of S(Ik)'

During the first K-1 iterations of step 2 READ (D(Ij)) is
executed K-1 times, and so is the T sequence ¢'. If register S(Ik)
contains OPERAND 1 at the end of each of i iterations of step 2,

(i.e., at the end of each of i executions of the T sequence o', for

1 =1i £ K-1), then by Corollary 2.3, at the end of the Kth execution of
the T sequence o', S(Ik) will contain OPERAND 1. Recall that there are
at most K-1 instructions in the T sequence ¢'. 1If this is so, the
fault will be detected in step 4 as OPERAND 1 # OPERAND 2 will be read
out.

On the other hand, if at the end of any of the first K-1 iterations
of step 2, S(Ik) contains data different from OPERAND 1, the fault will be
detected in the next iteration of step 2 when D(Ij) is read out by
executing READ (D(Ij)), as the output data will be different from OPERAND 1.

Necessity: Let the loop in step 2 be repeated only p times,
where 1 < p = K-1. (Recall that K = 3.) Consider the register which is
p-step transferrable to S(Ik) under the T sequence ¢'. Since there can
be as many as K-1 instructions in o', such a register can exist (from
Theorem 2.1). 1If this register contains OPERAND:2, and S(Ik) and each
register which is j-step transferrable to S(Ik) (1 = 3j = p-1) under the
T sequence ¢' contains OPERAND 1 at the beginning of the first iteration
of the loop; then théfcontenES&of”S(Iﬁ)3wi11ibé&equal toOPERAND:1 - at:the-
end of each of 1 iterations of the loop, for 1 = i =< p-1, and they will
become OPERAND 2 at the end of the pth iteration of the loop. (Refer to

Corollary 2.1.)
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Therefore, OPERAND 1 will be read out during each of p iterations
of the loop in step 2, and OPERAND 2 will be read out in step 4, as expected.
Thus the fault may remain undetected if the loop in step 2zis:repeated-less

than K times. 7

4.3.4. Test Generation for*f(I}/Ijﬁii)ﬁ‘;% SE
The details of test generation depend on z(Ij) and ﬂ(Ik).
We consider six cases, namely, case C(1l) through case C(6). The suffix C
is used to denote that a case belongs to the details of test generation
for f(Ij/Ij+1k). These cases are divided into subcases which are listed
in Table 4.3. For each case, the table gives which test generation

procedure is applicable and which theorem proves the fault coverage.

Thisx§a§ek13,xefgrredfto as case GC(1). ﬁAsdinhthe case BKl.Z), many
faults in this case Wouidfbefxeadi1y«det§9tedfbecausefIjiandziﬁqhave:the
highest observability:s :This case can beé divided into two su@cases,mnamely

case C(1l:1) and case C(1.2), ‘exactly in:the" same way case B(L.2) was divided

intoscase B(14241) andecase™B(1a2:2): + (Refer. to Section”4.323wla)ad

The tests
generétédﬁby»?roéedureﬁ4.ll7fbr case G (1z rarento be applied: before:those:
generated: by-procedutes.for case C(L.2).

Case C(1.1): During the execution of Ij and Ik the results of
the operation performed are ''read out".

Procedure 4.11:

This procedure is applicable for case C(l.1). It generates

tests to detect f(Ij/Ij+ik) when ﬂ(Ij) = 4(I,) = 1 and during the execution

i

of Ij and Ik the results of the operations are read out.
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Step 1: If possible; store proper operands in S(Ij) and S(Ik) such that

when Ij is executed RESULT 1 is read out and when Ik is executed

RESULT 2 is read out, and (RESULT 1) V (RESULT2) # (RESULT 1).

/V denotes the bit-wise logical OR function/

Step 2: Execute Ij. /Expected output data = RESULT 1/
Step 3: Execute I, . /Expected output data = RESULT 2//

Step 4: If possible, store proper operands in S(Ij) and S(Ik) such that

when Ij is executed RESULT 3 is read out and when Ik is executed
RESULT 4 is read out, and (RESULT 3 ) A (RESULT 4) # (RESULT 3).

/N denotes the bit-wise logical AND function/

Step 5: Execute Ij. /Expected output data = RESULT 3/
Step 6: Execute I, ! /Expected output data = RESULT 4/ L

k
The underlined phrase "if possible' in steps 1 and 4 may
come as a surprise. However, it may not be possible to satisfy conditions
given in both the steps due to the nature of the operations performed

under the instructions Ij and Ik' The following example illustrates the

point.

Example 4.10: ALetxinstructionanrbe*?StoreﬁthegcontentSﬁdf

register R1 into the main memory location (next to the one containing
the opcode of instruction Ij),” and instruction Ik be "Perform the logical

AND of the contents of registers R1 and R2 and store the result into the

main memory location." The requirement in step 4 of Procedure 4.11 can be

satisfied by storing a ONE in R, and a ZERO in R, so that under Ij a ONE

1 2
is read out and under I, @ ZERO is read out, and (ONE A ZERO) = ZERO # ONE.
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On the other hand, no operands would satisfy the requirement

in step 1. This can be easily proved.: Let OPERANDl.“and OPERAND 2. be’

1 2

and I, will read out RESULT2 = (OPERAND 1) A (OPERAND 2) . 1If f(Ij/Ij+Ik)

is present, then as illustrated in Example 3.2, (RESULT 1) * (RESULT2)

stored in R, and R, respectively. Ij will read out RESULT 1 = OPERAND 1

would be read out, where * denotes the bit-wise logical AND or OR function
depending on technology. In this situation, if * is the OR function, Ij
would read out (RESULT 1) V (RESULT2) = (OPERAND 1) V ((OPERAND 1) A
(OPERAND 2)) = OPERAND 1 = RESULT 1, as expected. Thus, the fault

f(Ij/Ij+ik) is an undetectable fault. [

Theorem 4.10: Procedure 4.11 detects all detectable

f(Ij/Ij+{k) faults in case C(1.1).

Proof: TIf the proper operands as required by the condition in
step 1 are really stored in S(Ik), and f(Ij/Ij+{k) causes the actual
result read out under instruction Ij to be the bit-wise logical OR
combination of RESULT 1 and RESULT 2, the fault will be detected in step 2
as (RESULT 1)V (RESULT 2 ) # RESULT 1 will be read out. On the other hand,
under faults involved in the instructions used to store data in S(Ik),
wrong operands may have been stored in S(Ik) in step 1{ In this situation
the fault will be detected not in step 2 but in step 3 when I, is executed.

k

(Recall the fault model in Section 3.2; if f(Ij/Ij+1k) exists, I is
correctly executed.) Steps 4, 5, and 6 detect the fault if f(Ij/Ij+ik)

causes the actual result read out under instruction Ij to be the bit-~wise

logical AND combination of RESULT 1 and RESULT 2. M
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Case C(1.2): During the execution of instructions Ij and Ik
the results of the operations performed are stored in registers. (The
results are not read out as in case C(1l.1).) This case is identical to
case B(1.2.2), and all the points illustrated in Example 4.7 do apply
here too. Depending on whethgr the results of Ij and Ik are stored in
the same or different registers we dividedthisccasevintoéstwousubeasesy .
namely, case C(1.2.1) and case C(1.2.2), exactly in the same way “use

case B(l.2.1) was divided into case B(1.2.1.1) and case B(1.2.1.2).

Case C(1.2.1): The results produced by executing instructions

Ij and Ik are stored in the same register. Let this register be
designated as Rp; furthermore let READHGRP) = (IP>. Note that ﬂ(Ip) = 1.
(Refer to Example 4.8:) 1In this case we follow Procedure 4.7 given for
case B(1.2.2.1), except for two modifications:

1. In step 1 of Procedure 4.7, RESULT1 and RESULT 2 should
’satisfy the condition (RESULT 1) V (RESULT 2 ) # RESULT 1.

2. Step 1 through step 5 of Procedure 4.7 are repeated, and RESULT 1
and RESULT 2 should satisfy the condition (RESULT 1) A (RESULT 2)+# RESULT 1.

It can be easily proved that the procedure detects f(Ij/Ij+1k)

in this case by following the similar arguments used in the proofs of

Theorems 4.6 and 4.10.

Case C(1.2.2): The results produced by executing instructions

Ij and Ik are stored in different registers. Let the result produced by

I, be stored in register Rp. Furthermore, let READ (RP) = <IP>. Note

k
that £(1 ) = 1.
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Procedure 4.12:

This procedure is applicable for case C(1.2.2). It
generates tests to detect fault f(Ij/Ij+Ik) when ﬁ(Ij) = %(Ik) = 1, and

during the execution of Ij and I, the results of the operations are stored

k
in different registers.
Step 1: Store OPERAND 1 in register Rp and proper operands in S(Ik) such that

When“IeﬁiS?executedﬁRESULTl.aisgstorédgin*Rg and RESULT'1  # OPERAND 1.

k
Step 2: Read out register RP by executing READ (Rp) = <IP>-
/Expected output data = OPERAND 1/
Step 3: Repeat step 2.
Step 4: Execute Ij'
Step 5: Read out register RP by executing READ (Rp) = <Ip>
/Expected output data = OPERAND 1 # RESULT 1/ U

Theorem 4.11: Procedure 4.12 detects f(Ij/Ij+ Ik) in

case C(1.2.2).

The proof of this theorem follows closely that of Theorem 4.6

and will not be repeated here. 0

4.3.4.2. TeSt’Generation,for»f(Ij/Ij+Ii)fWhenbﬂélj) =1
andsLLT5) ==27 . ‘ 2 S
Lo

This case is referred to as case C(2). We divide this case
into various subeases, namely, case C(2.1) through case C(2.4), depending
on whether D(Ik) c S(Ij) and whether during the execution of Ij the result
of the operation performed under Ij is read out. Tests generated for
case C(2.1) and case C(2.2) are to be applied before those for case C(2.3)

and case C(2.4).
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Case C(2.1): D(Ik) c S(Ij), and the result of the operation
performed under Ij is read out during its execution. An example of this

case is given below.

Example 4.11: 1Instruction Ij is "Push the contents of the
accumulator on the top of a LIFO stack maintained in the main memory,"
and instruction Ik s "Transfer the contents of register R1 to the
accumulator." 1In general, Ij may perform some operation on its operands

and then read out the result. [

Procedure 4.13:

This procedure is applicable for case C(2.1). It generates
tests to detect f(IJ./IJ.+Ik) when f&(IJ,) =1, z(Ik) =2, D(Ik) c S(Ij), and
the result of the operation performed under Ij is read out during its
execution.

Step 1l: Store proper operands in S(Ij) such that when Ij is executed
RESULT 1 is read out. Store proper operands in S(Ik) such that
when I, is executed, it changes the contents of D(Ik) so that if

k

Ij is executed after I, , RESULT2 # RESULT 1 will be read out.

k,
Step 2: Execute Ij. /Expected output data = RESULT 1/

Step 3: Repeat step 2. /Expected output data = RESULT 1 # RESULT2/
Step 4: Execute Ik.

Step 5: Execute Ij. /Expected output data = RESULT 2 / 1

Theorem 4.12: Procedure 4.13 detects f(Ij/Ij+ik) in case C(2.1).

Proof: 1If the proper operands as required in step 1 are really
stored in S(Ik) the fault will be detected in step 3, because RESULT 2 will
be, read out instead of RESULT 1. If proper operands are not stored in

S(Ik) due to the faults in instructions used to write data in S(Ik), the
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fault may not be detected in step 3, but it will be detected in step 5
because the output data will then be different from RESULT 2. O

Case C(2.2): D(Ik) e S(Ij) and the result of the operation
performed under Ij is read out during its execution.

Procedure 4.14:

This procedure is applicable for case C(2.2). It generates
tests to detect fault f(Ij/Ij+{k) when Z(Ij) =1, ﬁ(lk) =2, D(Ik) & S(Ij),
and the result of the operation performed under Ij is read out during its
execution.

Step 1: Store proper operands in S(Ik) and OPERAND 1 in D(Ik) such that
when kaiségkecwtedfitﬁﬁfoduceS@RESUEIIL # OPERAND 1 in D(Ik)'
Step 2: Execute Ij.
Step 3: Read out D(Ik) by executing READ (D(Ik))'
/Expected output data = OPERAND 1/
Step 4: 1If £(S(Ik)) z 2 then repeat steps 2 and 3 else go to step 5.
Step 5: Execute Ik.
Step 6: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = RESULT 1 # OPERAND 1/ O

Theorem 4.13: Procedure 4.14 detects f(Ij/Ij+{k) in case C(2.2).

Proof: If the proper operands as required in step 1 are really
stored in S(Ik) the fault f(Ij/Ij+I}9 will be detected in step 3 because
RESULT 1 # OPERAND 1 will be read out. On the other hand, if proper:
operands are not stored in S(Ik) because of faults in the instructions
used to store data in S(Ik)’ OPERAND 1 may be produced in D(Ik) when Ik is

‘executed. In this situation step 3 will not detect the fault f(Ij/Ij+{k).

The necessity for step 4 is now explained.
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At this stage the microprocessor under test has not executed
the tests to detect f(Ip/Iﬁ+iq) where ﬂ(IP) = 1 and ﬁ(Iq) = 3. If
f(Ip/Ip+iq) is present and D(Iq) c S(Ik) (requiring ﬂ(S(Ik)) = 2), then
the execution of READ CD(Ik)) in step 3 may cause a change in the
contents of S(Ik) due to the additional execution of Iq. This will be
detected in step 4 as the output data will be different from OPERAND 1.
On the other hand, if the contents of S(Ik) remain unchanged after step 3
they will remain unchanged after step 4 also. 1In this situation the
fault will be detected in step 6 as the output data will be different

from RESULT 1. ]

Case C(2.3): The results produced during the execution of
Ij and Ik are stored in the same register. (The result of the operation
performed under Ij is not read out, as in case C(2.1) or case C(2.2).)
Let this register be designated as RP; furthermore let READ (Rp) = (IP>.
Note that ﬂ(IP) = 1. (This is consistent with our discussion in

Example 4.7.).

Procedure 4.15:

This procedure is applicable for case C(2.3). It generates
tests to detect fault f(Ij/Ij+1k) when E(Ij) =1, ﬁ(Ik) = 2, and the results
produced during the execution of Ij and Ik are stored in the same register

designated as Rp.

Step 1: If possible, store proper operands in S(Ij) and S(Ik) so that
when Ij is executed RESULT 1 is produced in RP and when Ik is
executed RESULT 2 is produced in RP, and (RESULT 1) V (RESULT 2)

# (RESULT 1).

Step 2: Execute Ij.
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Step 3: Read out RP by executing READ (RP) = <IP>.
/Expected output data = RESULT 1/
Step 4: If E(S(Ik)) = 2 then repeat steps 2 and 3 else go to step 5.
Step 5: Execute Ik'
Step 6: Read out RP by executing READf(RP) = (Ip).
/Expected output data = RESULT 2 /
Step 7: Repeat step 1 with the change that (RESULT 1) A (RESULT 2)
# (RESULT 1).

Step 8: Repeat steps 2 through 6. O

Theorem 4.14: Procedure 4.15 detects f(Ij/Ij+Ik) in

case C(2.3). O

The proof of this theorem follows closely those of Theorems
4,10 and 4.13, and hence is not given.

Case C(2.4): The restlts produced during the execution of
Ij and Ik are stored in different registers.

Procedures 4.16:

This procedure is applicable for case C(2.4). It
generates tests to detect fault f(Ij/Ij+1k) when Z(Ij) =1, ﬂ(Ik) =2,
and the results produced during the execution of Ij and Ik are stored in

different registers.

Step 1: 1If possible, store proper operands in S(Ik) and OPERAND 1 in D(Ik)

so that when Ik is executed RESULT 1 is produced in D(Ik) and

RESULT 1 # OPERAND 1.

Step 2: Execute Ij.
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Step 3: Read out D(I,) by executing READ (L))

/Expected output data = OPERAND 1/
Step 4: 1If E(S(Ik)) 2 2 then repeat steps 2 and 3 else go to step 5.
Step 5: Execute Ik'
Step 6: Read out D(Ik) by executing READ (D(Ik))'

/Expected output data = RESULT 1/ U

Theorem 4.15: Procedure 4.16 detects f(Ij/Ij+Ik) in

case C(2.4). ]

The proof of this theorem follows the arguments given in the

proof of Theorem 4.13, and hence is not given.

4.3.4.3. Test Generation for f(Ij[ljilk) When 2(Ij) = ﬂ(Ik) =2

This case is referred to as case C(3) and is divided into two
subcases, namely, case C(3.1) and case C(3.2) depending on whether or
not D(Ij) = D(Ik).

Case C(3.1): D(Ij) = D(Ik). The basic requirement of test
generation in this case is to store proper operands in S(Ij) and S(Ik) such
that if Ij is executed it produces an x € {0,1} in some bit (say the pth bit)

of D(Ij), and if I, is executed it produces x in the same bit of D(Ij).

k
When Ij is executed x * x will be produced in the pth bit of D(Ij),iif
f(Ij/Ij+Ik) is present. (% denotes the logic AND or OR function.) Note
that x * x # x, for x = 1 and * = AND, and for x = 0 and * = OR. Thus,
if D(Ij) is read out after executing Ij the fault will be detected.

If D(Ij) ¢ S(Ij) and D(Ij) & S(Ik), no specific data need to be
stored in D(Ij) in order to satisfy this requirement. On the other hand

if D(Ij) & S(Ij) or D(Ij) & S(Ik), in order to produce an x in the pth
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bit of D(Ij) when Ij is executed, and to produce x in the pth bit D(Ij)
when Ik is executed, it may be required that some specific logic value

t . th
must be stored in the p h bit of D(Ij). If x must be stored in the p
bit of D(Ij), the situation is referred to as "situation A"; if X must

be stored in the pth bit of D(Ij), the situation is referred to as

"situation B." The following example should clarify these two situations.

Example &4.12: Suppose instruction Ij is "Transfer the contents

of register R, to register R,," and instruction I, is "Perform the

1 2° k
logical AND operation on the contents of register R2 and R3, and store
the result in R2'” Instructions Ij and Ik are represented in a graph in

Figure 4.5. We must store x = 0 in the pth bit of R,, and x = 1 in the

1
pth bit of both R, and R,, so that if Ij is executed x = 0 is produced

3’

in the pth bit of RZ; and if Ik is executed x = 1 is produced in the pt

h

bit of R, - Thus, this is an example of what we have referred to as
situation B. An example of situation A can be easily obtained by simply

renaming instruction Ij as Ik’ and vice-versa, and letting x = 1. I

We now present two subprocedures to be used in these two
different situations. Tollowed by this we will present Procedure 4.17
(which is a test generation procedure for case C(3.1)) which calls
Subprocedure A (as a subroutine) when situation A is present and calls
Subprocedure B when situation B is present.

Subprocedure A:

This procedure is called as a subroutine by Procedure 4.17

when situation A is present.
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FP-6469

Figure 4.5. 1Illustrating Example 4.12.
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Step 1: Execute Ij.
Step 2: Read out D(Ij) by executing READ (D(Ij)).

/The pth bit of the output data = x/
Step 3: If ﬂ(S(Ik)) = 2 then repeat steps 1 and 2 else go to step &.
Step 4: Execute Ik'
Step 5: Read out D(Ij) by executing READ (D(Ij)).

x/ L

]

/The pth bit of the output data

Subprocedure B:

This procedure is called as a subroutine by Procedure 4.17

when situation B is present.

Step 1l: Execute Ik.
Step 2: Read out D(Ik) by executing READ (D(Ik)).
/The pth bit of the output data = x/
Step 3: 1If Z(S(Ik)) = 2 then repeat steps 1 and 2 else go to step 4.
Step 4: Execute Ij.
Step 5: Read out D(Ij) by executing READ (D(Ij)).

/The pth bit of the output data = x/ ]

Procedure 4.17:

This procedure is applicable for case C(3.1) and -
case B(2.2). 1t generates tests to detect fault f(Ij/Ij+{k) when ﬂ(Ij)

= %(Ik)+= Zganng(lj)?=LD(;k),fahd?faﬁltff(gaﬂ%k)WWhenfEK}j)w=.E(I* = 2 and

)
D(Ij) = D(Ik).

FOR i« 1 TO 2 DO

BEGIN
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Step 1: IF i = 1 THEN x <« 0 ELSE x <« 1.

Step 2: 1f possible, store proper operands in S(Ij) and S(Ik)

such that if Ij is executed it produces x in some bit

k
- . th ..
produces x in the p  bit of D(Ij).

(say the pth bit) of D(Ij), and if T, is executed it

Step 3: If step 2 requires x to be stored in the pth bit of D(Ij)
then execute Subprocedure A else execute Subprocedure B.

END.

Note that if D(Ij) ¢ S(Ij) and D(Ij) & S(Ik), then as mentioned
earlier no specific data need to be stored in D(Ij) in step 2 of
Procedure 4.17. Therefore strictly speaking either of the subprocedures

could be called in step 3.when D(Ij) & S(Ij) and D(Ij) & S(Ik).

Theorem 4.16: Procedure 4.17 detects f(Ij/Ij+ik) in case C(3.1)
as well as f(Ij/Ik) in case B(2.2) .. vun iv

Proof: 1In step 2, proper operands are chosen in S(Ij) and
S(IR) to produce x in some bit (say the pth bit) of D(Ij), if Ij is
executed, and to produce g in the same bit of D(Ij), if Ik is executed.
if f(Ij/Ij+Ik) is present; X * x will be produced in the pth bit of D(Ij),
when Ij is executed. If:f(Ij/ii)‘iSapresenti§5wiilzbégprodﬁced:inutheu
pth bit of D(Ij). The first iteration of the FOR loop is for detecting the
fault if * denotes the OR function, and the second iteration of the loop
is for detecting the fault if * denotes the AND function.

Without loss of generality we assume that * denotes the OR
function and situation A exists. Therefore in step 3, Subprocedure A is

executed as a subroutine. If proper operands are really stored in S(Ik)

in step 2 of Procedure 4.17, the fault will be detected in step 2 of
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Subprocedure A when D(Ij) is read out. On the other hand, proper operands
may hot be stored in S(Ik) due to faults involved in instructions used to
write data in S(Ik)' In this case the fault will not be detected in step 2
of Subprocedure A. The microprocessor under test has not yet executed
tests to detect f(Ip/Ip+Iq)wWhere5§(I;)'=;1+andﬁg(1q)“2 BT*therefore the
execution of READ (D(Ij)) in step 2 of the subprocedure may cause
additional execution of an instruction Iq such that K(Iq) = 3 and D(Iq)

c S(Ik). If this changes the contents of S(Ik) the fault may be detected
in step 3 of the subprocedure, otherwise it will be detected in step 5.

(Refer to the details of the proof of Theorem 4.13;) )

Case C(3.2): D(Ij) # D(Ik). In this case we follow the
procedure below.

Procedure 4.18;

This procedure is applicable for case C(3.2). It

= 2 and

generates tests to detect fault f(Ij/Ij+ik) when E(Ij) = ﬁ(Ik)

D(Ij) # D(Ik).

Step 1: Store proper operands in S(Ik) and OPERAND 1 in D(Ik) such
that when Ik }s executed™ it produces RESULT 1 in D(Ik);hi
and RESULT 1 # OPERAND 1. 1If z(s(Ik)) = 1, read out S(Ik) by
zexecuting READ (S(Ik)).
/To make sure that S(Ik) contains expected operands/
Step 2: Execute Ij.
Step 3: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND 1 # RESULT 1/

Step 4: TIf E(S(Ik)) z 2 then repeat steps 2 and 3 else go to step 5.
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Step 5: Execute Ik.
Step 6: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = RESULT 1/ iy

Theorem 4.17: Procedure 4.18 detects f(Ij/Ij+ik) in
case C(3.2).

Proof: We will give only the sketch of the proof since the
basic ideas are essentially the same as used in the proofs of Theorem 4.10
through 4.17. 1If proper operands are really stored in S(Ik) in step 1
the fault will be detected in step 3, since RESULT 1 will be read out.
On the other handjy if proper operands are not stored in S(Ik) due to
faults in instructions used to write data in S(Ik$, the fault will be
detected either in step 1 (if Z(S(Ik)) = 1) when S(Ik)kis read out, or

in step 4 or 6. O

4.3.4.4. Test Generation for f(Ijlljilk) When ﬂ(Ij) = E(Ik) =K =3
This case is referred to as case C(4). Note that according

to the assumption in Section 4.3.1, instructions Ij and Ik belong to class T.
When the microprocessor executes the tests to detect faults f(Ij/Ij+ik),
where ﬁ(Ij) = E(Ik) = K = 3, it has already executed the tests to detect
faults f(Ib/Ip+{q) where 1 < ﬂ(Ip) = K:}ﬁ and ﬂ(Iq) < 2; in particular it has
been already: checked«that“the éxecution of any instructiontofnlabel iSaK-1
will not give rise to the additional execution of any instruction of class M.
(Recall our assumption in Section 4.3.1 that if-Ij belongs to class M,
z(Ij) = 2.) We divide this case into two subcases depending on whether

or not D(Ij) = D(Ik).
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Case C(4.1): D(Ij) = D(Ik)' Since £(Ij) = E(Ik) = K,
%(D(Ij)) = K-1. This case is illustrated in Figure 4.4, where depending
on ﬁ(s(lk)) this case can be further divided into two subcases.
Case C(4.1.1) refers to Q(S(Ik)) < K, and case C(4.1.2) refers to 2(S(Ik)) = K.
Note that E(S(Ik)) 7 K, since ﬁ(Ik) = X and Ik‘e class T. (Refer to the
labeling algorithm given in Section 4.1.)

Case C(4.1.1): L(S(Ik)) < K. 1In this case we follow the

procedure below.

Procedure 4.19:

This procedure is applicable for case C(4.1.1). It generates
testg to detect fault f(Ij/Ij+ik) when ﬂ(Ij) = ﬂ(Ik) =K =z 3, D(Ij) = D(Ik),
and Z(S(Ik)) < K. This procedure is essentially the same as Procedure 4.9
executed twice, with the following modifications: During the first
execution of the procedure, in step 1 the condition to be satisfied by
OPERAND 1 and OPERAND 2 is given by (OPERAND 1) V (OPERAND 2) # OPERAND 1,
and during the second execution of the procedure the condition to be :

satisfied is given by (OPERAND 1) A (OPERAND 2) # OPERAND 1.

Theorem 4.18: Procedure 4.19 detects f(Ij/Ij+Ik) in case C
(4.1.1).
Proof: The proof of this theorem parallels closely that of

Theorem 4.8. We will, therefore, stress only those points where they differ.

Inistep 27 of=Procédufe: %19§ﬁ1§ isl8xecuted andciteiscexpected tooproduce

OPERANDWL@in?D(IH).i If f(Ij/Ij+1ﬁ)féii§t33i(0PERANDJQV?T(QEERA&H)Z)twould
be produced instead, where as before * denotes the logical AND or OR

function, provided S(Ik) really contained OPERAND 2 when Ij is executed.

In this case the fault will'be detected in 8tep 4. On the other hand,
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due to the faults involved in the instructions used to write data in S(Ik),
OPERAND 2 may not be stored in S(Ik); in this case the fault will be

detected in step 3 itself. ]

Case C(4.1.2): E(S(Ik)) = K. .  In this«ecase we follow:Procedure
4:10ctwicey with:the sameimodifteationsngiven:for ecase C(4.1u1). We refer to

this modified Procedure 4.10 as Procedure 4.20.

Theorem 4.19: Procedure 4.20 detects f(Ij/I§+Ik) in

case C(4.1.2). o

The proof of this theorem follows closely those:of Theorem 4.9
and 4.18, and hence is’not repeated here.

Case C(4.2): D(Ij) # D(Ik). Depending on ﬁ(S(Ik)) this case
can be further divided into two subcases. Case C(4.2.1) refers to
z(S(Ik)) < K, and case C(4.2.2) refers to E(S(Ik))v=;K. Note ‘that
E(S(Ik)) ? K, since E(Ik) = K and I, belongs to class T.

Case C(4.2.1): E(S(Ik)) < K. 1In this case we use the procedure

below.

Procedure 4.21;

This procedure is applicable for case C(4.2.1). It

generates tests to detect fault f(Ij/Ij+1k) when ﬂ(Ij) = A4(1,) =K =3,

k)

D(Ij) # D(I,), and £(s(1,)) < K.

§E§§_lé Store OPERAND 1 in S(Ik) and OPERAND 2 in D(Ik), such that
OPERAND 1 # OPERAND 2.

Step 2: Read out S(Ik> by executing READ (S(Ik)).

/Expected output data = OPERAND/L/
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Step 3: Execute Ij.
Step 4: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND 2 / J

Theorem 4.20: Procedure 4.21 detects f(Ij/Ij+Ik) in
case C(4.2.1).

Proof: Since ﬁ(S(Ik)) < K, no instruction in the READ (S(Ik))
sequence can have label greater than K-1. Also z(D(Ik)) = K-1, hence
READ (S(Ik)) reads out S(Ik) without routing its contents through D(Ik).
When the microprocessor under test executes this procedure, it has
already executed the tests to detect f(IP/¢), f(Ip/Iq)’ and f(Ip/Ip+iq)
where 1 = ﬁ(IP), Z(Iq) < K-1, and f(Iv/Iv+IW) where 1 < ﬂ(lv) < K-1 and
Z(IW) = K. Therefore, in step 2 of this procedure, S(Ik) is correctly
read out to make sure that it stores OPERAND 1, and it continues to store
OPERAND 1 after READ (S(Ik)) is executed. 1In step 3,ij*isﬁexecuted. "IE
f(Ij/Ij+1k) is present, OPERAND 1 will be stored in D(Ik) and the fault

will be detected in step 4. i

Case C(4.2.2): ﬂ(S(Ik)) =:K. .In thisceasevwe follow: the
procedure below.

Procedure 4.22:

This procedure is applicable for case C(4.2.2). It

generates tests to detect fault f(Ij/Ij+{k) when ﬂ(Ij) = 4(I =K =3,

k)
D(Ij) # D(Ik), and J&(s(lk)) = K.

Step 1: Store OPERAND 1 in S(Ik) and OPERAND 2 in D(Ik), such that

OPERAND 1 # OPERAND 2.
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Step 2: FOR i <« 1 0 K DO
BEGIN
Execute Ij;
Read out D<Ik) by executing READ (S(Ik)).
/Expected output data = OPERAND 2/
END
Step 3: Execute Ik'
Step 4: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND 1 / Cl

Theorem 4.21: Procedure 4.22 detects f(Ij/Ij+1k) in
case C(4.2.2). ]
The proof of this:thecrem followszvery closely that of:Théorem

4.9 and is'not repéated heres: =y

4.3.4.5. Test Generation for f(IjZLjiik) When 1 < Z(Ij) < K,
/&(IR) =K+1, and K = 2.

This case is referred to as case C(5). Note that Ik belongs
to class T because E(Ik) = K+1 and K 2 2. Since ﬁ(Ij) < K and E(Ik) =K+1,
£(D(Ij)) < K-1 and E(D(Ik)) = K; hence D(Ij) # D(Ik)' We divide this case
into two subcases depending on whether the value of E(S(Ik)) is less than
K or is equal to K or K+1. Note that it cannot be greater than K#1

because 2(Ik) = K+#+1 and I, belongs to class T.

k
Case C(5.1): «?/(S(Ik))’S K~1. We follow Procedure 4.21:din
this case. Following the arguments similar to those given in the proof

of Theorem 4.20, it can be proved that Procedure 4.21 also detects

f(Ij/Ij+Ik) in case C(5.1).
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Case C(5.2): ﬁ(S(Ik)) =K or K+1. We follow Procedure 4.22
in this case. Following the arguments similar to those in the proof of
Theorem 4.9, it can be proved that Procedure 4.22 also detects f(Ij/Ij+ik)
in case C(5.2).

4.3.4.6. Test Generation for £(I./I.4+I ) When K+1 <4(I.) =K ,
iTi 7k i max
and £(1.) = K.
n

This case is referred to as case C(6) and is divided into three
subcases depending on the value of K.
Case C(6.1): 2 = L(1.) =K __, and £4(I,) = 1. In this case the
i max k
fault f(Ij/Ij+Ik) will be readily detected due to the highest observability

of I.. For example, during the execution of I data is transmitted

k

between the microprocessor and the main memory or an I/0 device, or the

k’

logic values on certain status pins are changed (e.g., during the
execution of the "Interrupt enable" imstruction). Such is not the case
during the execution of Ij’ therefore f(Ij/Ij+Ik) will be readily detected
when Ij is executed.

Case C(6.2): 3 = ﬂ(Ij) = Kmax’ and Z(Ik) = 2. The following
procedure is followed in this case.

Procedure 4.23:

This procedure is applicable for case C(6.2). It generaktes

+ < =< = .
tests to detect fault f(Ij/Ij Ik) when 3 Z(Ij) Kmax’ and Z(Ik) 2

Step 1: Store proper operands in S(Ik) and OPERAND 1 in D(Ik) such
that when Ik is executed RESULT 1 is produced in D<Ik)’ and
OPERAND 1 # RESULT 1. 1If D(Ij) < S(Ik) then store a proper

operand in S(Ij) such that when Ij is executed the contents of

D(Ij) will not change. /To ensure that after executing Ij,
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the contents of S(Ik) remain unchanged/
Step 2: Execute Ij.
Step 3: Read out D(Ik) by executing READ (D(Ik)).
/Expected output data = OPERAND 1/
Step 4: 1If E(S(Ik)) 2z 3 then repeat steps 2 and 3 else go to step 5.
Step 5: Execute Ik.
Step 6: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = RESULTil// L]

Theorem 4.22: Procedure 4.23 detects f(Ij/Ij+ik) in

case C(6.2);

The proof of this theorem is not given as it follows the same
arguments given in the proofs of Theorems 4.10 through 4.17.

Case C(6.3): K+1 = ﬂ(Ij) = Kméx’ E(Ik) = K = 3. Therefore
according to the assumption in Section 4.3.1, instructions Ij and Ik
belong to class T. 1In this case the procedure given below is followed.

Procedure 4.24:

This procedure is applicable for case C(6.3). It generates
i < < =
tests to detect fault’f(Ij/Ij+1k) when K+1 ﬂ(Ik) K oy ﬂ(Ik) K,

and K = 3.

Step 1: Store OPERAND 1 in S(Ik) and OPERAND 2 in D(Ik) such that
OPERAND 1 # OPERAND 2. If D(Ij) = s(zk) then store OPERAND 1
in S(Ij). /To ensure that after executing Ij, the contents
of S(Ik) remain unchanged/

Step 2% Execute Ij-
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Step 3: Read out D(Ik) by executing READ (D(Ik)).
/Expected output data = OPERAND 2. S(Ik) would continue to
store its data dfter executing READ (D(Ik)), since
£(s(1,)) = K/

Step 4: Execute Iy-

Step 5: Read out D(Ik) by executing READ (D(Ik))

/Expected output data = QPERAND 1/ J

Theorem 4.23: Procedure 4.24 detects f(Ij/Ij+Ik) in

case C(6.3). , ' d
The proof of this theorem is not given as it follows the same

érgﬂmentSﬁuéedﬁin;the;prOGfsaof»TheorémSY4:lefhiodgﬁ?4;17.

4.4, Test Generation Procedures-for DetectingiFaultssifn the Data: Transfer

Function and the:Datai Storage Function

We motivate the discussion by means of an example. ILet ¥

T. , I, 5 ...y I; be a sequence of instructions of class T such that

3 I i ,

E(Ij s E(Ij ) E(l'fj )} form a directed path from the IN node to the
1 2 k- '

OUT node in the corresponding S-graph. Let the transfer paths in sets

(L. ), T(I. ) ... T(I, ) each be w lines in width. Figure 4.6
Jq 32 Jk

illustrates the notation. We propose Procedure 4.25 to detect any fault in
), and in registers D(Ij s D(Ij )y ..., D(I,

T, ), T@. ), «.., T(T,
Jl 32 1 2 Jk“l).

k 1

The fault models for the data storage function and data transfer function
are given in Section 3.3 and 3.4, respectively.

Procedure 4.25:

Ij with data: 111...1 ; /Write D(Ij ) with data 111...1/

1 P 1

wowideh w width’
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FP=6470

Figure 4.6. TIllustrating the notation used in Procedure 4.25.
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I, 3 I, «..3 I, /Expected output data = 111...1/
Ja7 I3 I s
w width
1, with data, 11...1 00...0 /Write D(I, ) with data 11...1 00...0/
I1 —> —> 11 —> «——
w/2 w/2 w/2 w/2
I, I, 5 ...5I.; /Expected output data = 11...1 00...0/
J2° I3 T —p >
w/2 w/2

Ij with data 11...1 00...0 11...1 00...0 ;
1 —p —Pp f—Pp —>
w/k w/b w/k w/h

/Write D(Ij ) with data 11...1 00...0 11...1 00...0/

1 w/h  wl/b w/h w/b
I.53I,; ...51.; /Expected output data = 11...1 00...0 11...1 00...0/

Jp I3 Ik

—> —> —> ¢——>
w/b w/h w/b w/k

Ij with data  1010...10; /write D(Ij ) with data 1010...10/

1 t—b 1 4P
w W
T, 3 I, 35 --.3 1. ; /Expected output data = 1010...10/
I 13 I S
W

Repeat the instructions above with complementary data.

Theorem 4.24: ©Procedure 4.25 detects

1) a line in any transfer path in the set T(Ij y u T(ch)
1 9

27
stuck at 0 or 1.

2) two or more lines in any transfer path in the set

T(T, )UT@, YU ... U T, ) coupled.
i i, i

k

3) a cell of any register in the set D(]:__.| ) U D(Ij yu ..
1 2

1

stuck at 0 or 1.

Uil . U T
! ( 4

. Unbn(a,
Ik-1

k

)

)
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Proof: 1If a fault: is described by 1 or 3 above, it will be
deteéted either after the execution of sequence I.é, Ij3’ ceay Ijk when
the expected output data = 111...1, or after the execution of the sequence
when the expected output data = 000...0.

Procedure 4.25 also detects any fault described by 2, because
at some stage of the procedure any given two lines of a transfer path
are required to carry diffefent logic values i.e., x and g, X € {0,1},
respectively. TIf these two lines are coupled they will fail to carry
different logic values, and the fault will be detected after the subsequent
execution of the sequence I.2, Ij3’ cens Ijk. [

We define the set of tests in Procedure 4.25 "transfer test set"

and the associated data being routéd on the corresponding transfer paths

"transfer test data'. Consider the transfer paths associated with the

instructions of class T. Concentrate on the subgraph of the S-graph
that represents instructions of class T only. We call this subgraph the
T-subgraph. Let P1 be a directed path from the IN node to the OUT node
in the T-subgraph. All the instructions which are represented by edges

constituting path Pl are said to be covered by path P Let {Pl, PZ’ veey P }

1 n
be a set of directed paths from the IN node to the OUT node of the T-subgraph
such that this set collectively covers all the instructions of class T.

It is clear from Theorem 4.24 that if the transfer test data is routed from
the IN node to the OUT node using the transfer test sets consisting of
instructions covered by each path in set {Pl, PZ’ ...Pn} any fault in the
transfer paths associated with the instructions of class T, or any fault

in the data storage function will be detected (since the transfer test

data is "routed" on every edge of the T-subgraph, every node of the graph



138

is also visited).

We need to test the transfer paths associated with the instruc-
tions of class M. Let ”Rio Rj - Rk” denote a typical instruction of class M
which performs an operation denoted by "o" on the contents of register Ri

and Rj’ and stores the result in register R We need to choose a set of

K
proper operands in Ry and Rj‘such that when the instruction "Rio Rj - Rk"

is executed it generates and stores data corresponding to the transfer

test set in R . We then need to route these data from Rk to the QOUT node

by executing READ (Rk). This test ensures that the transfer path from

the data manipulation logic (e.g. the ALU used in executing instruction
”Rio Rj ~ Rk”) to register Rk is fault free. Therefore any result generated

by this instruction can be faithfully transferred to R Consider instruc-

e
tion 14 in the S-graph of Figure 2.8. We execute Procedure 4.26 to test

the transfer path from the ALU to R (It is assumed that the microprocessor

1
is an 8~bit processor.)

Procedure 4.26:

I1 with data 1111 1111 ;

12 with data 0000 0000 ;

14 5
I7 5

Repeat the tests above with data (1111 0000, 0000 0000),
(1100 1100, 0000 0000), (1010 1010, 0000 0000), (0000 0000 0000 0000),

(0000 1111,2000070000), (001120011,70000 0000), (0101 0101, 0000 0000). [J

We also need to check that the transfer paths connecting Ri

and Rj to the ALU in the "Rio Rj - Rk” instruction are fault free. This



139

ensures that any pair of operands ecan be applied to the ALU in the

k” instruction. For this we need to check that any line in the

transfer paths from Ri and Rj to the ALU can be set to 0 or 1 independent

"R,0 R, = R
1 |

of the logic values on any other line in these transfer paths. Consider
instruction 14 in Figure 2.8. We want to test the transfer paths
connecting LY and R2 to the ALU. We execute Procedure 4.27.

Procedure 4.27:

1. with data 0000 0001 ; /R1 stores 0000 0001/

1

I, with data 0000 0000 ; /R2 stores 0000 0000/

14 5

L /Expected output data 0000 0001/
I, with data 0000 0010 ; /R1 stores 0000 0010/

12 with data 0000 0000 ; /R2 stores 0000 0000/

14 5

I, s /Expected output data 0000 0010/

il with data 1000 0000 ; /R, stores 1000 0000/

T, with data 0000 0000 ; /Rzﬁstores 0000 0000/

2
I, s
LOM /Expectéd output data 1000 0000/
I, with data 0000 0000 ; /R, stores 0000 0000/
I2 with data 0000 0001 ; /R2 stores 0000 0001/
I, s
I /Expected output data 0000 0001/
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I, with data 0000 0000 ; /R1 stores 0000 0000/

1
I, with data 0000 0010 ; /R2 stores 0000 0010/

I, s

1 /Expected output data 0000 0010/

I, with data 0000 0000 ; /R1 stores 0000 0000/

1
I, with data 1000 0000 ; /R, stores 1000 0000/
14 5
I, /Expected output data 1000 0000/
Repeat the test above with complementary data. N

We need to execute tests similar to those given in Procedures
4.26 and 4.27 for every instruction of class M. Finally we must test
the transfer paths associated with the instructions of class B. This
is accomplished by choosing the set of jump or branch addresses such
that they correspond to the transfer test set for jump, branch, return
from subroutine, etec., instructions. For example, in order to test the
transfer path associated with the jump instruction (instruction 19)
in Figure 2.8 we need to execute Procedure 4.28. It is assumed that the
width of the address bus is 16.

Procedure 4.28:

wwith jump address 0000 0000 0000 0000 ;
with jump address 0000 0000 1111 1111 ;
I, with jump address 0000 1111 0000 1111 ;
with jump address 0012 0011 0011 0011 ;

I, with jump address 0101 0101 0101 0101 ;
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Repedt the test above with the complementary set of jump addresses. J

4.5, Test Generation Procedure for Detecting Faults in the Data

Manidipulation Function

As described in Section 3.5 we assume that complete test sets
are available for detecting faults (for some specified fault model)
in the ALU and other functional units such as a shifter, logic used to
increment the program counter, or the interrupt handling logic. The
operands specified by such test sets can be provided to a functional
unitszusingy . in-general) dssequence of instructions:offelass:Ty.
Similarly, the result produced by a functional unit can be read out using
a sequence of instructions of class T.

If the logic level description of functiomal units is available,
test sets can be generated for them using classical fault detection
algorithms based on the stuck-at fault model. On the other hand, if we
do not know the logic level details of the ALU, but know, for example,
that it is realized using an iterative logic array we can generate test
sets for it as explained in [Dias76]. Another approach would be to
generate test sets for functionmal testing of the ALU, shift, increment,
compare logic, etc., using binary decision diagrams [Aker78}.

Even though some faults associated with the instruction
decoding and control function look like faults in the data manipulation
function, and vice versa, the set of faults in one function is not a subset
or superset of the set of faults in the other function. For example,
under a fault in the instruction decoding function an "Add" instruction
may be decoded as a "Subtract" instruction. This fault cannot be

distinguished from a fault in the ALU: however, if the test procedure
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for detecting faults in the instruction decoding and control function
(presented in Sectiom 4.3) is executed correctly, it cannot guarantee the
absence of faults in the ALU. 1In order to detect a fault in the ALU

or any other functional units we need to execute the corresponding test
sets. Similarly if the test procedure for detecting faults in the

data manipulation function is executed cqrrectly, it does not guarantee
the absence of faults in the instruction decoding and control functiom.
For examplé, whenever an "Add" instruction is executed, it may

additionally activate an instruction that complements a certain register

not involved in the '"Add" instruction. Such a fault can be detected by the
test procedure used to detect faults in the instruction decoding and
control function and not by the test procedure used to detect faults in

the data manipulation function.
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5. COMPLEXITY OF THE TEST SEQUENCES

We now determine the complexity of the test sequences generated
by various procedures given in Chapter 4. The complexity is measured
in terms of the number of instructions generated as a function of -~ the
number of registers in set R, or n - the number of instructions in the
instruction repertoire. This will help in exploring the relatiomship
between the architecture of a microprocessor and the complexity of the
test sequences.

Theorem 5.1: The worst case complexity of the test sequence
generated by Procedure 4.1 is;@(ng), where |Rl = ng.

Proof: TLet us consider the number of instructions that are
generated in steps 3(a), (b), and (c¢) of Procedure 4.1 when there are K
registers in set A, i.e., IAI = K. As a result of the labeling algorithm,
max(ﬂ(Ri)) = K' = K for every register R of set A. Also, every number in the
integer set {1,2, ..., K'} is assigned as a label to at least one register
in set A. Therefore, in the worst case, during step 3(b) we need to
generate Z(1 + 2 + ... + K) instructions which would read oﬁt the registers
of set A, where |A| = K. Since set A is augmented only by one register
during each iteration of step 3, in the worst case, kéi Z(L+2 4+ ,.. 8
instructions need to be performed for reading out registers of set A.
Similarly, in all iterations of step 3(c), a total of Eéi (K + 1) instruc-
tions need to be generated to read out the register at the front of the
queue.

Since there are only ny registers, the register that is
"farthest away" from the IN node can be written by executing at most n

R

instructions of class T. Moreover, if this register needs ne instructions
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to be written into, the "next farthest away" register will require (nR-l)
instructions, and so on. Therefore when IA! = K, in the worst case,

g~ (R - 1) + n- R - 2) + (nR- 1) + n_ instructions are required to write

R

the registers of a set A during step 3(a). During all iterations of
n_-1

: R
{ — - - - PR
step 3(a), a total of El p¥ 0y (R - 1) +n_-(K - 2) + + n

instructions are needed to write the registers of set A. Similarly in
n_ -1
all iterations of step 3(a), a total of R§1 (nR- K) instructions are

needed to write the register at the front of the queue, in the worst case.

When all the terms involved in series are summed up, a total of

ng + Zni - nR - 2 instructions are generated. Hence the worst case

complexity of the test sequence is O(ng). 0
It is instructive to illustrate the worst case example which

is shown by a partial S-graph in Figure 5.1. Note that GKni) complexity

is only for the worst case. For np = 7, 432 instructions are generated

in the worst case. However, for the example microprocessor (where n, = 7)

only 2 x 53 = 106 instructions are generated as shown in Example 4.2.

The exact number of instructions depends on the distribution of integer

labels of the nodes. 1In fact, if all nodes have label 1 (i.e., if the

architecture contains only the so-called accumulators and general purpose

registers which can be directly loaded into and stored from the main

memory), the complexity of the test sequence would be @(ng). On the

other hand, if the architecture allows scratch-pad registers and on-chip

LIFO stacks, for example,; (giving rise to nodes with labels greater

than 1 in the S-graph), the complexity of the test sequence approaches @(ng).

It is very difficult to find a ¢losed form solution for the

worst case complexity of the test sequence generated by procedures in
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rT1
FP-6471

Figure 5.1. The worst-case example requiring O(ni) instructions
to be generated by Procedure 4.1.
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Section 4.3. We will therefore concentrate on the dominating term in the
worst case complexity calculation. This dominating term can be attributed to
the loop.in step:2;of Procedures«4:10, 4.20and 4,22;31Le;Ani? beqtheshumber
of instructions whose edge sets have been labeled i in thegs-graph. As

denoted earlier, let be the maximum value of labels associated with the

Knax

Km%x” Knax i

LA omy = g - The dominating term accounts for 3 n_. (i)
i

instructions generated by step 2 of Procedures 4.10,24.207and 4.22.

‘5&89458t5-~ Thus?

If the architecture allows instructions which are represented:
by edge sets with labels much greater than 1, the length of the test
sequence could become very large in the worst case, since the complexity
grows exponentially (note the ii factor in the expression above). This is
because instructions represented by edgessetsswith:large«labelssimpart:
very poor observability to the architecture, i.e., a large number of
instructions need to be executed to read out internal registers; this is
reflected in the increased length of the test sequences generated by
procedures in Section 4.3. However, the expression above is applicable
only in the worst case; in many typical architectures Kmax = 3, deemphasizing
the effect of the dominating term. In fact, if Kmax <2 (i.e., the instruction
repertoire containsrinstructions:that store:their result in the main menory
or:the accumulators and generdl-purpose registers), Procedures 4.104:4.20
and 4.22 will not be required at all. 1In the case of such architectures,
the complexity of the test sequences generated by the procedures given in
Section 4.3 can be approximated to O(ni) because there are G(ni) faults
(in the instruction decoding and control function) and none of them will
require Procedure 4.10, 4.20:0r 4.22vto genérate tests: for its 'Note that no

other procedure has a loop similar to that in step 2 of Procedures 4.10, 4.20
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and 4.22. Therefore the complexity of test sequences generated by these
procedures can be approximated to G(ni).

The length of the test sequence generated by various procedures
given in Section 4.4 depends on the widths of data and address buses,
the nature of operation "o" performed by instructions "Rio Rj - Rk” of
class M, and the distribution of integer labels associated with edge

sets, i.e., np and Koax® 1f there are many instructions with higher

i

labels (i.e., large n for larger i), the length of the test sequences

I,
required to detect a f;ult in the data transfer and data storage functions
increases.

For today's microprocessors n, typically ranges from 4 to 32,
while n. ranges from 30 to 200. Note that the complexity of the test
sequences for detecting faults in the instruction decoding and control
function is at least @(ni), while the complexity of the test sequences
for detecting faults in thevregister decoding function is between
O(né) and @(ng). Therefore the test sequences used to detect faults in

the instruction decoding and control function constitute a deminant portion

ofsthestést sequénces foriasmicroprocéssor.
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6. A CASE STUDY

Test sequences were generated for a real microprocessor by applying
the test generation+procedures developed:in: the thesis. The goal o6fsthe study
was ‘two=fold.. First, we:-wanted to generate the test: séquences: to gain:insight
intoaproblemsfinvolvedlihlusing the test genération procedures: We believe that
this is'an essential first step towards automating:the test generation:procedures
which will operate on a givén S=graph.: :Sécondly, wéswanted. to evaluate the fault
coverageﬁofwﬁheatéstwseqﬁénces for stuck-at faults for a real microprocessor.

A microprocessor from the Hewlett-Packard Company was used. The
HP microprocessor is a single chip, n~channel MOS, 8 bit parallel, control
oriented processor. All instructions and data are transferred in and out
of the microprocessor with an 8 bit bidirectional data bus. Program
addresses are ‘transferred out-on:sanill bit address bus. There:can:be:up to
15 1/0 ports. The normal program may be interrupted by use of the
interrupt request control line. The interrupt scheme is fully vectored
with 256 possible vectoxrs. The processor can control external circuits
and check their status through the use of 7 bidirectional control lines.

The microprocessor contains one 8 bit accumulator, one control
logic unit, one 1 bit extend register, sixteen 8 bit registers, one 8 bit
magnitude comparator, one 11 bit program counter, ome 11 bit subroutine
stack register, and one 11 bit interrupt stack register. The instruction
set ‘has 187 instructions that includes instructions transferring data
between the memory and the accumulator, between the memory and (sixteen
8 bit) registers, between the accumulator and registers, between the
accumulator and 1/0 devices, instructions performing bit manipulations and
magnitude comparisons, instructions performing conditional and unconditional

jumps in the program sequencing, etc.
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We adopted the following strategy in applying the test sequences.
Since, as shown in Chapter 5, the test sequences for the instruction
decoding and control function form the dominant portion of the test sequences
for the microprocessor, we first applied the test sequences for the register
decoding function, the data transfer and the data storage function, and
the data manipulation function. The length of these sequences was approx-
imately 1 K instructions. This was followed by application of the test
sequences for the instruction decoding and control function. The length
of these sequences was approximately 8 K instructioms. (Recall that there
are 187 instructions in the instruction repertoire.) The test sequences
were generated by using only the information about the instrﬁction set and
organization of the microprocessor.

In order to determine the fault coverage of the test sequénces
for stuck-at faults, a detailed gate and subnetwork model of the micro-
processor (obtained from Hewlett-Packard) was used on the TESTAID III fault
simulator. Approximately 2200 single studk-at faults were simulated. The
test sequences generated were run in segments (since the simulator could
not handle all the tests at one time) and the fault coverage of each
segment was noted. The test sequences for the register decoding, data
storage, data transfer, and data manipulation functions were able to detect
about 907 of all single stuck-at faults. About 6% of the faults gave rise
to simultaneous executionof multiple:instructions as-described by the-
fault model for the instruction decoding and control function. Many of
these faults were subtle and difficult to detect and very elaborate test
sequences were required (accounting for 8 K instructions). For example,
when executing the instruction "Skip if the th bit of the accumulator is OV

(with n between O and 7), under a particular single-at fault, the above
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instruction will be executed correctly, but at the same time, the contents
of the accumulator are also stored in the nth register. Some examples

of f(Ij/Ij+Ik) faults found in the case study are given in Table 6.1.

(the table lists instructions Ij and Ik.)

The remaining faults (about 4%) were associated with the power-up
and initialization logic, or were undetectable because of redundancies
in the logic, or required invalid opcodes to detect them. Thus for this
particular microprocessor the fault coverage was excellent.

The test generation effort was quite straightforward and we
believe that it can be automated without much difficulty. The overall
results of the case study were quite promising and we are convinced that
our approach is a viable and effective one for generating tests for micro-

processors.
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Table 6.1. Instructions Ij and L for which fault f(Ij/Ij+ik) exists.

Instruction Ij . Instruction Ik

Clear the extend bit. Transfer the contents of the accumulator
to register RS‘

Return from interrupt - Transfer the contents of the accumulator

and enable interrupt. to register Rl'
Clear the third control Disable interrupt.
flag.

Skip if the first Enable interrupt.

control flag is zero.

Clear the first bit of Clear the zeroth bit of the accumulator.
the accumulator. ‘
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7. CONCLUDING REMARKS

7.1. Summary of Thesis

The purpose of this research has been to develop test generation
procedures for testing microprocessors that would treat the microprocessor
organization and instruction set as parameters. The test generation
effort is assumed to be in a user environment whére the gate and flip-flop
level details of the microprocessor are not known. The procedures will
generate tests which can be assembled into valid machine instructions.

The microprocessor under test executes these instructions which are stored
in the memory of an external tester which continually momnitors all the
input and output pins of the microprocessor. A fault is detected when the
data on any output pin is different from the expected data.

In Chapter 2, the instruction repertoire of the microprocessor
was divided into three classes (T, M, and B). Then a graph-theoretic
model for microprocessor (called the S-graph) was developed. FEach register
is represented by a node in the S-graph and data flow involved during the
executio£ of an instruction is represented by a set of directed edges.

The motivation behind this approach was to be able to construct a model

for the microprocessor for test generation purposes using only the informa-
tion available in the typicaliuser's manual.” This is because the gate and
flip-flop level information needed to comstruct a model at the logic level
is not only unavailable, but classical test generation methods which go
hand in hand with the logic level model will be very complicated and
expensive due to the very large number of gates and flip-flops on the
microprocessor chip.

Functional level fault models describing faulty behavior in the

register decoding function, instruction decoding and control function, data
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transfer function, and data manipulation function were presented in Chapter 3.
Various underlying fault mechanisms responsible for functional level faults
were pointed out. The fault models are quite independent of the details
of implementation. The effects of faults on the behavior of the micro-
processor were described at the level of the S-graph.

In Chapter 4, test generation procedures were given to detect
faults in the fault models. The first step in test generation is to
assign integer labels to the nodes and edges of the S-graph by using the
labeling algorithm given in Section 4.1. The label assigned to a node
indicates the shortest 'distance" of that node to the OUT node (in terms
of the instructions of class T or B); the label assigned to the edge set
representing an instruction is directly derived from the label assigned to
its destination register.

Test generation procedures presented in the subsequent sections
of the chapter take full advantage of the information obtained from these
labels; tests are generated in such a way that the knowledge gained from
the correct execution of tests used for checking the decoding of registers
and instructions with lower labels is utilized in generating tests for
checking the decoding of registers and instructions with higher labels.

In Chapter 5, the complexity of test sequences generated by the
test generation procedures in Chapter 4 was studied. The complexity is
measured in terms of the number of instructions generated as a function of
nR-Vthe number of instructions in the instru¢tion repertoire. "The worst
case complexity of the test sequence for the register decoding function
was shown to be O(ng); however, if all registers have label 1 (indicating

the highest observability) the complexity would be @(hi).
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It was shown that if the instructions have labels less than or
equal to two, the complexity of test sequences for the instruction decoding
and control function is @(ni). If the architecture allows instructions
with labels greater than two, the complexity increases very rapidly.

Since ny typically ranges from 4 to 32, while n, ranges from 30 to 200,
the test sequences fo? the instruction decoding and control function
constitute a dominant part of the test sequences of a microprocessor.

In Chapter 6 we have described our effort regarding the develop-
ment of test sequences based on the test generation procedures in Chapter 4
for a real 8-bit microprocessor from the Hewlett-Packard Company.
Approximately 2200 single stuck-at faults were simulated. About 96% of
these faults were detected by these test sequences. The remaining faults
were associated with the power-up and initialization logic, or were
undetectable because of redundancies in the logic or they required invalid
opcodes for their detection. The results of our study were quite promising.

Thus to summarize the thesis, our approach allows us to treat
the organization and instruction set of microprocessors as parameters of
the test generation procedures. The information needed to comstruct the
S-graph is easily available in the user's manual. We believe our approach
is a viable and effective one towards generating test sequences for micro-

processors.

7.2. Suggested Future Research

The S-graph of the microprocessor is capable of modeling most of
the architectural features observed with current microprocessors. However,
it cannot model some of the features observed in the new, powerful 16-bit

microprocessors. For example, instructions exchanging data among two
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register files cannot be.adequately modeled. - Iniorder to under-

stand the effects of these architectural features on test generationm,
further research needs to be done to model these architectural features
using the S-graph or some other similar technique.

Fault model for the instruction decoding and control function
considers only "'gross" faults f(Ij/¢), f(Ij/Ik), and f(Ij/Ij+Ik). Our
case study regarding the test generation for the Hewlett-Packard micro-
processor and the subsequent evaluation of the fault coverage showed that
this fault model was adequate to account for all single stuck-at faults
in the instruction decoding and control function of this particular'micro—
processor. We do not know how adequate the fault model would be for other
microprocessors, particularly the new 16-bit microprocessors. (Some of
them have an on-chip microprogrammed control unit.)  Further :research needs
to-be directed towards evaluating the necessity of modeling other faults
such as the ones that give rise to partial execution of an iﬁstruction,
or a change in the sequence of data flow involved in an instruction.
Furthermore, if the evaluation study points to the necessity of the improved
fault models, the mext problem will be to describe the effects of these
faults at the level of the S-graph and then develop test generation proce-
dures to detect these faults.

Another important area of future research is to study the appli-
cability ofrthe test sequences generated by the procedures of Chapter 4 in
a testing environment where the sophisticated tester required by our
approach cannot be used. For example, in field testing, the external
tester must be very simple and most of the testing tasks (such as ¢omparing

the output result on a bus with the expected result) must themselves be
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carried out by the microprocessor under test. Future research must be
directed towards investigating the modificatioms to the proposed test
generation procedures to make them suitable for field testiﬁg, or for the
so-called "self-testing'" operations. Self-testing involves some hardcore,
i.e., that part of hardware which must be assumed to be fault free.
Therefore identification of the hardcore and its testing by an external
tester are two major problems that need to be solved for any self-testing
scheme.

Finally, future research needs to be directed towards the
challenging problem of design for testability. Architectural features
which enhance testability should be investigated. Allowing registers and
instructions with as low labels as possible (imparting high observability)
is obviously a step in the right direction. Such a solution might degrade
the performance of the microprocessor in yet unknown way. The underlying

testability-performance trade-offs should also be investigated.
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APPENDIX

We consider the behavior of a decoder (for a given valid input)
under a single stuck-at fault. The decodér is assumed to be realized
without any reconvergent fanout. This assumption is quite reasonable as
a decoder has n inputs and as many as o™ outputs. No other restriction
is imposed on its implementation.

Figure A.1 shows a schematic diagram of a decoder which has k
primary inputs labeled Xis Kys cees Ky and n primary outputs labeled
Cys Cos wees c_» where n = Zk. The set of valid input vectors is a subset
of the set of all possible input vectors. Therefore, the set of walid
input vectors contains n < 2k input vectors. The set of valid inmput
vectors which activate output ci is denoted by X(ci). Since for any
given valid input vector one and only one output is activated IX(ci)I =1
and X(ci) n X(cj) = ¢ if and only if ¢y # cj.

Figure A.1l also shows the last level of gates just before the
primary outputs. In order to maintain complete generality, each gate
is shown as a module and not as a specific gate (such as AND, OR, NOR ox
NAND) . These gates are labeled with the corresponding outputs. ci
becomes active if and only if all inputs to gate Q£ are active. (For AND
.and NAND gates, logic 1 is an active input; while for OR and NOR gates,
logic 0 is an active input.) If the output of gate Qi is active, the
output of gate cj must be inactive (ci # cj). Thus when c, is active,
at least one input of gate éj must remain inactive to ensure that cj is
inactive. We can partition the inputs of gate cj into two sets, A(c?)

and I(c;), where A(c?) is the set of inputs of gate Cj which are active
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Figure A.1. Schematic diagram of a decoder illustrating the
notation used in the proof of Theorem 3.1.
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when output s is active, and I(d?) is the set of inputs of gate qj which
are inactive when output c. is active. ©Note that I(c?) # ¢. We mnow
prove Theorem 3.1 which is restated below for easy reference.

Theorem 3.1: If a decoder is realized without any reconvergent
fanout then under a single stuck-at fault its behavior can be formulated
independent of its implementation detail as follows: for a given valid
input to the decoder, instead of, or in addition to the expected output
some other output is activated, or no output is activated.

Proof: We prove the theorem by contradiction. Assume that
under a single stuck-at fault, the input vector X(ci) activates outputs
cj and Cis in addition to, or instead of c, . Therefore under the fault,
both I(G?) and I(di) become active in addition to A(d?) and Aédi). Since
there is only a single fault, the inputs in I(d?) and I(ci) can be traced
back to a line where the fault occurs. This line is denoted by f in
Figure A.1l. (This could be a primary input line.) Since the decoder does
not have any reconvergent fanout, ]I(c?)l = 1 and lI(Ci)l = 1; moreover,
the primary inputs which can be traced back from the inputs in A(c?) are
different from those which can be traced back from line f. Similarly, the
primary inputs which can be traced back from the inputs in A(di) are
different from those which can be traced back from line f. Thus, if there
is no fault in the decoder,!the’logicvvalueson line f can be controlled by
changing the logic values only on those primary inputs which can be traced
back from line £, withoutwchangingﬁtheElggicvvéiues~onginputSiinﬁA&é?)&and
A(c;).

We now consider the following '"thought experiment" under the

fault free condition.
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1. Apply X(ci). This will also activate the inputs in A(c;) and

A(cli{).
2. 1f necessary, change the logic value on those primary inputs
which can be traced back from line f in order to activate line £, without

making the inputs in A(gj) or A(Ci) inactive.
This will make both I(C?) and I(¢}) active which means that both
cj and ¢, will become active. Thus even though there is no fault in the

k

decoder, some valid input vector activates both Cj and c, , which is

k
impossible. 1
Theorem A.1: If a decoder is realized without any reconvergent
fanout then under a single stuck-at fault if X(ci) activates cj instead of,
or in addition to ci,,chj)awillwagtiYate only cj.
Proof: We prove this theorem also by contradiction.

1) First assume that under a single stuck-at fault X(ci) activates
cj’ instead of, or in addition to ci, and X(cj) does not activate any
output. Therefore the inputs in I(éj) can be traced back to a line where
the fault occurs. This line is denoted by f in Figure A.2. Since the
decoder does not have any reconvergent fanout, II(C§)l = 1, and no input
in A(c?) can be’traceq back to line f£. When X(cj) is applied no output
is activated; in particular cj is not activated. This can happen only if
some input in A(c?} can be traced back to another fault which keeps that
input permanently inactive; but this would violate the assumption of a
single stuck-at fault.

2) Now assume that under a single stuck-at fault X(ci) activates cj,
instead of, or in addition to o and X(cj) activates C1o instead of, or

in addition to cj. Therefore, the inputs in I(@?) and I(ci) can be
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Figure A.2. ‘Schematic diagram of a decodér illustrating the
notation used in the first part of the proof of
Theorem A.1l.
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traced back to a line where the fault occurs. This line is denoted by f
in Figure A.3. Since the decoder does not have any reconvergent fanout,
lI(é?)l = 1 and lI(éi)' = 1; moreover, the primary inputs which can be
traced back from the inputs in A(c;) are different from those which can
be traced back from line f. Similarly, the primary inputs which can be
traced back from the inputs in A(Ci) are different from those which can
traced back from line f. Thus the logic value on line f can be controlled
by changing the logic values only on those primary inputs which can be
traced back from line f, without changing the logic values on inputs in
A ('d?) and A (ci) .

We now consider the following '"thought experiment" when there is
a fault on line f as shown in Figure A.3.

1. Apply X(ci). This will also activate the inputs in A(c?). Due to

the fault on line £, the input in I(c?) also becomes active, consequently
activating cj. At this time some input(s) in A(ci) must be inactive

because ¢, 1s mnot active.

k

2. Change the logic value on those primary inputs which can be
traced back from line f in order to activate line f (for this X(cj) needs
to be applied), without changing the logic values in.A(c?) and A(ci),fi:e.,
the inputs ian(c§)~are aCtiVeyégd“somé“inpdtfs) in A(ci) are inactive.

Thus we get in a situation where X(cj) does not activate €y

even though fault on line £ exists, contradicting our assumption. I

Corollarly A.1: If a decoder is realized without any reconver-

gentkfanputfthénﬁundérva;single~stuckéat faultwiffX(CE)fdbes not o
dctivate any output, or activates € instead of, or in addition to cj,

no X(cé) will activate Cj’ instead of, or in addition to Cq’ for cq # cj.



C1
Xl '
3 JES— : ¢ ¢
. ¢,
—— Ck
Xy
Cn

FP-6574b

Figure A.3. Schematic diagram of a decoder illustrating the
notation used in the second part of the proof of
Theorem A.1.
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Proof: Follows directly from Theorem A.1l. M

Constraints 4 and 5 given in Section 3.2 are consistent with

Theorem A.1 and Corollaxry A.1l.
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