COMPARING SERIAL COMPUTERS, ARRAYS AND NETWORKS,
USING MEASURES OF "ACTIVE RESOURCES"

by

l.eonard Uhr

Computer Sciences Technical Report #446

August 198]

COMPARING SERIAL COMPUTERS, ARRAYS AND NETWORKS,

USING MEASURES OF

"ACTIVE RESOURCES"¥

Leonard Uhr

Computer Sciences Department
University of Wisconsin

Abstract

This paper explores possible measures
of the efficiency and power of a computer
that will allow us to make meaningful com~
parisons not only between different tradi-
tional serial computers, but also between
serial computers and parallel array and
network computers. It attempts to apply
"active resources" (e.g., gates, chip area)
counts to compare protototypical examples
of each of these general types. Active
resources measures suggest that larger
numbers of simpler computers, each with a
small local memory, give the greatest
throughput. The large SIMD arrays appear

to be today”’s best examples of such sys-
tems.
Introduction
New measures are needed to evaluate
and compare traditional serial computers
with parallel network and array computers.

A number of researchers have built or are
buiiding large SIMD arrays, including CLIP4
(buff, 1978), DAP (Reddaway, 1978), and the
MPP (Batcher, 1980). Other researchers are

designing smaller MIMD networks of more
powerful computers, including MICRONET
(Wittie, 1978), PM4 (Brigys et al., 1979)

and PASM (Siegel et al., 197%). These ar-
rays and networks appear to offer enormous
potential increases in both power and
speed, especially for image processing and
other perceptual tasks where large pictures
(e.g., 512 by 512 arrays of picture ele-
ments) must be analyzed (see Uhr, 1982).
But it is difficult to evaluate their effi-
ciency, or to compare them with traditional
sexrial computers.

Today "percent CPU
although people are aware

utilization,"
this does not

*This work was supported by NSF grant
MCsS-8109103 for research on multi-
computer architecture.

tell the whole story, is virtually the\only

measure used to evaluate how efficiently a
computer operates. This percent is arrived
at by accumulating the total time the CPU

is busy executing program instructions. A
system with less than 30% or 40% CPU utili-
zation is considered poor; one with more
than 60% or 70% CPU utilization is con-
sidered very good. (Sometimes the percent
used for operating system overhead is in-
cluded in this measure of productively used
time, sometimes it is not.)

This measure reflects the fact that a
computer’s job is to execute users” pro-
grams (compute); the CPU does that comput-
ing; therefore the computer is busy if and
only if the CPU is busy (computing on user
programs) .

When one views the problem of using a
computer efficiently from this perspective,
one concludes that the whole system should
be designed to keep the CPU busy. This
results in the addition c¢f as much memory
as is needed to ensure that the information
(program statements, data) the CPU needs to
continue working will always be immediately
available., Now that memory has become very
cheap, this rule of thumb appears to be
even more reasonable. Since the processor
is also idled when a program inputs or out-
puts data, multi-programming systems are
used so the processor can always find a
program to werk on. This necessitates
still more memory. Additional input-output
processors, that can work in parallel with
a CPU that is multi-programming, so that
when one program must wait for I-0 another
can immediztely be re-initiated, and fast
cache memories and registers, are all indi-
cated for this same basic reason - to keep
the CPU busy.

Evaluating and Optimizing Traditional Seri-
al Computers

The major way a traditional serial
computer is improved in power and in speed
is by beefing up the CPU, with faster

hardware, and also with more hardware, in-

cluding a number of special-purpose proces-
sors optimized to execute specific instruc-

tions, or that cast frequently used se-
quences of instructions into optimized
hardware. Thus 32-bit parallel multiply,
8-bit character match, floating point ac~

celerators, pipelines for vector arithmet-
ic, and a variety of other pieces of
hardware are put on the CPU”s bus, with the
controller assigning the appropriate pro-
cessor to each instruction the CPU exe-~
cutes, Both this special-purpose hardware
and increased speed from brute technology
make the CPU gobble up data ever faster,
and thus exacerbate the need to add
memor ies, I-O0 processors and a multi-
programming operating system.

Parallel Array and Network Multi-Computers

Both arrays [e.g., ILLIAC IV (Barnes
et al., 1968), cLIP4 (puff, 1978), DAP
(Reddaway, 1978), MPP (Batcher, 1980)] and
networks [e.g., Cm* (Swan et al., 1977),
PASM (Siegel et al., 1979)] have many pro-
cessors. The obvious way to apply measures
of CPU utilization to them is to average
the percent CPU utilization for all proces-
sors. But there are a number of serious
flaws in such a procedure, as we shall see.

Networks look very bad when such a
measure is used. Each node of a multi-
computer network is a traditional computer,
with all the problems of utilizing the CPU.
But in addition there are many new problems
of contention and of communications, in-
cluding the loading and transferring of
programs, the sending and receiving of in-
termediate results, the requesting and

sending of information not stored locally,
and a variety of other "message-passing"
tasks.

Arrays (here T am considering the SIMD
tightly coupled multi-computers like ILLIAC
Iv, CLIP4, DAP, MPP), because every proces-
sor is executing the same instruction at
any time, suffer when (as frequently hap-
pens) some or many of the processors must
be "disabled" to do nothing, because the
present instruction is not relevant to all
parts of the problem.

Measures That Consider Utilization of All
the System”s Resources
Any computer, including the multi-

computer networks and arrays as well as the
traditional single~CPU serial computer, is
built from processors linked via wires and
switches to memories and to input-output
devices. [This paper will ignore the major
problem of supplying adeguate input and
output channels, except for the following
comments: To the extent we succeed in in-
creasing the throughput of any computer we

thereby increase its processing bandwidth,
and we must therefore increase its input
and output bandwidths commensurately. If
input-output delays are excessive, rather
than rely entirely on multi-programming and
on larger memory and input-output
bandwidths, we can develop languages that
expedite input-output in parallel with pro-
cessing, and languages and operating sys-

tems that anticipate needed data.] Thus a
computer is built from processors,
memor ies, wires and switches. But all of

these components are built from (wires con-
necting) logic gates, which in turn are
built from transistors.

The Computer”s Underlying Gates,
Transistors and Chip Area

We therefore should seriously consider
evaluating a computer”s percent utiliza-
tion, effective power, or efficiency in
terms of the total hardware in that comput-
er, using the number of gates, or the
number of transistors, or, for a particular
chip technology, the number of transistor-
equivalent devices.

As we move from LSI chips, with a few

thousand devices on each chip, to VLSI,
VVLSI, ... chips, with hundreds of
thousands or millions of devices on each

chip, two additional measures become in-

creasingly attractive:

Wires might be counted along with dev~-
ices they connect. Wires (which are merely

very thin etched lines on the chip) become
an appreciable part of the system. It is
important to have a modularized, highly

packed design, -one that puts devices that
must be linked by wires as close together
as possible.

Chip area used by a module of the to-
tal system, whether a specialized proces-
sor, or the total processor, Or a processor
plus its memories, will become an increas-
ingly more appropriate measure. Chip area
is a function of the interactions between
the particular chip fabrication technology
used, the design rules for building gates
and larger modules using gates, and the
ability of the designers and their
computer~aided design tools to minimize
chip area used (see Mead and Conway, 1980).

This then

measuring units:

a) number of gates,

b) transistors,

c) transistor-equivalent devices,

d) devices-plus-wires,

e) chip area.)
These are all similar in that they are far
more micro-modular than the traditional al-

gives several alternative

ternative, CPU utilization. They may ap-

pear to be at too low a level. But they
are of great potential interest, and I
think wvalidity, because they allow us to

compare radically different computers, con-
sider the separate parts of a large CPU
separately, and consider processors and
memory together.

Gate Counts in SIMD Arrays, MIMD Networks,
Serial Computers

To give some examples (see Kuck, 1978,
Uhr, 1982):

A traditional serial computer”’s CPU has
typically used around 10,000 gates (a
super~computer like the CRAY~1 uses roughly
100,000 gates).

A traditional high-speed memory typically

has from 64,000 to 64,000,000 bits of
memory, each bit stored by from 1 to 12
transistors.

Typical SIMD array computers use much

simpler 1-bit processors, with only 100 to
600 gates per processor, and very small
memor ies for each processor, of from 32 to
4,000 bits. Thus, e.g., a 100 by 100 array
of 10,000 processors might have 5,000,000
to 50,000,000 gates for processors, and
320,000 to 40,000,000 bits of memory.
(CLIP4 has 9,216 processors, totalling
about 3,000,000 gates, and 320,000 bits of
memory. DAP has 4,096 processors, with
about 400,000 gates, and 16,000,000 bits of
memory.)

Table 1. Gate Counts of Resources

in Different Types of Computer.
Tassume 1 bit/gate]

Computer Proc(s) Memory (s}
Serial:
small (8bit) 3,000 64,000
med ium 10,000 6,400,000
large 30,000 64,000,000
super 100,000 256,000,000
1-bit SIMD Arrays:
small 50 32
med ium 100 256
large 300 1,000
super 600 4,000
Examples:
CLIP4 300 32
DAP 100 4,000

MPP (planned) €00 1,000

The contrasts are striking: a tradi-
tional serial computer has from 98% to
99.99% or more of its gates in memory; the
SIMD arrays have 28% (DAP), 63% (MPP), and
9% (CLIP4) of their gates in memory.

Table 2. Total Gates in Arrays.
Computers Proc~Gates Mem-Bits
CLIP 10,000 3,000,000 320,000
DAP 4,000 400,000 16,000,000
MPP 16,000 9,600,000 16,000,000

Estimates of Resources "Active and Working"

When a traditional computer”s CPU is
being "fully utilized" it will be executing
one of its instructions, using several re-
gisters and memory locations from which it
fetches that instruction’s operands and
.into which it stores the results. It will
also be using registers and memory loca-
tions for the actual instructions, plus
controller hardware to decode instructions,
assign particular registers and processors,
and handle a variety of other control func-
tions. Many of the instructions will
operate on 32-bit data. But some instruc-
tions will operate on 8-bit characters,
some on small integers (e.g., 6, 11 or 19
bits), and some on l-bit logic expressions.

When an SIMD system
struction

executes an in-~
one controller will be similarly

act%ve. But now many processors will be
active, and each will use essentially the
same amount of register and high speed

memory as that

processor.

used by the single serial

The hardware needed for the 32-bit
processors will have many more gates than
that used by the 1-bit processors in
today“s 1-bit machines (but it will be
roughly comparable to the 10,000-gate ILLI~
AC IV processor). Because the l-bit pro-
cessor does not have special-purpose pro-
cessors for specific operations, and be-
cause it is so simple, a relatively large
percent of its gates will be used for each
operation. 1In sharp contrast, a far small-
er percent of the gates in a traditional
32-bit computer”s CPU will be used for each
particular instruction. Very roughly, more
than 40%, and probably more than 70% of the
1-bit processor”s gates will be active,
whereas less than 20%, and probably far
less than 10% of the 32-bit processor”s
gates will be used.

The situation for the controller is
guite different. In both cases the con-
troller and its gate utilization can be as-
sumed to be the same. But the array uses
(and hence amortizes the cost of) its one
controller for thousands of processors,
whereas a network of traditional computers
uses a separate controller for each proces-
sor. Since controllers can vary tremen-
dously in cost comparisons are difficult to
make. But there is no apparent reason why
controllers for SIMD systems should be in-
herently more expensive than controllers in
MIMD networks. On the contrary, typically
the SIMD restrictions make them far simpler
(although the MPP controller is unusually

complex) .
Roughly, a processor needs 2 to 8 re-
gisters plus 2 to B8 memory locations to

handle the data involved in the execution
of an instruction. The MIMD processor
needs 2 additional registers to handle the
instruction. This gives striking differ-
ences: A 1-bit SIMD network with 10,000
processors needs 40,000 to 160,000 register
and memory bits to handle the data flow
generated by the currently active instruc~
tion. In sharp contrast, each traditional
32-bit processor (whether in a serial com~
puter or in an MIMD network) needs 256 to
768 register and memory bits.

A fregquent criticism of the SIMD array
is that often many of its processors must
be disabled, or, more subtly, may appear to
be doing something but in fact are grinding
out results that will never be used. The

latter situation is almost impossible to
detect. But rough estimates of between 30%
and 80% ctive processors averaged over a

wide range of programs and instructions
seem plausible. This figure can also be
controlled quite simply, by combining the
array with a serial processor or network
that handles instructions where too few of
the array”s processors would be active.

Table, 3. Active Resources in Different
Types of Computers. [Assume 1 bit/gate.
Estimates, some relatively rough, are based
upon the examination in the text.]

Computer: Processor Gates:
Total Active &

Memory Gates:
Total Active %

Serial 10,000 <1000 <10% 64,000 18 0.004%

SIMD Array 300 200 66% 1,000 16 2%
CLIPZ 300 150 50% 36 16 40%
DAP 100 75 75% 4,000 16 0.3%
MPP 600 400 663 2,000 16 0.6%

Table 4. Cost of Contrellers
Over Different Computers.

Amortized

Computer Processors Controller/Processor$
Serial 1 100%
MIMD N 100%
SIMD N 100/N%
CLIP4 10,000 0.001%
DAP 4,000 0.0025%
Mpp- 16,000 0.0006%

"Active Resource" Comparisons
of Serial, SIMD & MIMD Computers

SIMD systems with 1-bit processors
have a far larger percent of their gates
allocated to processors, use a higher per-
cent of processor gates for each instruc-
tion, and use a far higher percent of

memory bits for each instruction.

MIMD networks, when each node is a
traditional computer with its traditional
large memory, start exactly like the tradi-
tional computer. But then they must pay a
number of new overhead costs, to handle and
store messages, synchronize processors,
store multiple copies of data and of pro-
grams, resolve contention, and so con. And
they must expect processors to be idled a
good percent of the time simply because
they are waiting for data that other pro-
cessors have nect yet finished generating.
Careful designs, appropriate technologies,
efficient operating systems, and programs
that map efficiently onto the network can
minimize, but not eliminate, the resulting
degradations in performance.

' This presents an extremely discourag-
ing picture for MIMD networks, unless they
use different kinds of computers from the
traditional. Here, however, there are at
least three important possibilities:

1) The local memory assigned to each
processor can be made much smaller, since
that processor will have to work with only
a portion of the total set of information
needed to execute the total program. It
seems likely that a system’s memory size is
preponderantly a function of the programs
being executed and their need to store data
and intermediate results, rather than the
total number of processors in the system.

Basically, there are three in-
gredients: A program must be executed by
processors, which need memory. It seem
plausible that, if anything, the more pro-

cessing power the less memory needed, since
there is 1less need to store intermediate
results for long periods of time. (This
assumes that the system”s input and output
bandwidths are sufficient, so that memory
is not needed as a buffer.) But a good map-
ping of program onto network (see Bokhari,

1981) becomes more critical as memory is
decreased, since it Dbecomes more likely
processors will not £find the data they

need, and the message-passing needed to get
that data will waste the time of other pro-
cessors as well.

2) Each processor might be made
simpler, especially by eliminating most of
the expensive, rarely used special-purpose
processors. This would greatly increase the
percent ultilization of processor gates.
This may be Jjustified by the fact that the
problem is being decomposed, and spread
over the many processors in the network.
Each processor”s computing burden is there-
fore reduced.

3) Processors might be made simpler by
breaking the typical CPU apart, into a net-
work of different types of special-purpose
processors. But an increased burden may be
put on the programmer, and/or the operating
system, to map processes onto the appropri-
ate processors, while keeping the overall
mapping efficient. Possibly here a recon-
figuring capability would be wuseful (see,
e.g., Lipovski, 1977).

Discussion, Possibilities, Problems

The processors are the only gates that
are actually working, and the memory regis-
ters they use are the only concurrently ac-
tive memories. It therefore seems highly
desirable to increase the percent of such
active processors as much as possible,
while keeping each processor and each
processor”s memory as small as possible.

But this is not nearly so simple as it
appears, and there is a major danger., For
gates can be made active (just as computers
can be made active), although, or even be-
cause, they are doing very little, in a
needlessly cumbersome way. When this is
the fault of the programmer we c¢an say,
"compare systems on efficiently coded pro-
grams," But to achieve efficiency the pro-
grammer may well have to take the architec-
ture into account; yet it is very difficult
to achieve the most appropriate, most effi-
cient algorithms for radically different
new architectures. And the architecture
itself can force needless inefficiencies,
as when avoidable message-passing burdens
the system.

When the architecture is appropriate,
the SIMD array of 1-bit processors gains
appreciably in several ways:

amount of

It bas a much higher per cent of gates in
processors as opposed to memory.

It uses a higher percent of its much
simpler processor gates to execute each in-
struction. .

It amortizes the cost of the single con-
troller over the relatively large number of
simple processors.

It uses a
memory
cuted.

much higher percent of its
registers for each instruction exe-

Potentially, this can
increases in

give striking
computing power. However
these several aspects c¢an be urbundled,
when desirable (and especially if this ar-
chitecture is too restrictive), giving a
variety ' of possible systems that might be
explored. Most of today”s SIMD systems are
2-dimensional arrays, using l-bit proces-
sors. But they need not be, since any in-
terconnection topology, with any type of
processor, can be used with a single con-
troller. Nor is a single-controller SIMD
system necessary. A small set of controll-
ers might be amortized among a relatively
larger set of processors, as in a pyramid
(Uhr, 1981, 1982) or a partially reconfi-
gurable network like PASM (Siegel, 1979).
Minimizing the amount of memory, and the
unnecessary processing (as in
needless message-passing) both seem desir-
able. These depend upon appropriate archi-
tectures, where data need not be shipped
around more than necessary, or stored for
longer times than necessary.

MIMD networks of traditional computers
have all the traditional inefficiencies,
plus major new ones of their own, because
of new overheads from message-passing and
synchronization. Today these overheads are
extremely heavy (e.g., it takes thousands
of times longer to pass data between pro-
cessors than to process those data). Un-
less these overheads can be drastically re-
duced, or the individual computers are
redesigned to have a higher percent of ac-
tive resources, it may be preferable to
speed up a single computer as much as pos-
sible’ rather than to network several com-
puters together.

Possibly the crucial feature
systems lies in

of SIMD
the algorithm-structured
architecture, which allows for efficient
processing (when program and data are
mapped properly into the architecture). To
the extent that this is true, it may be
possible to make MIMD networks and mixed
SIMD-MIMD systems similarly efficient,

At least two other architectures
should be examined, and more detailed,
deeper comparisons devised to compare these
radically different serial, parallel and

parallel-serial syétems. The' two architec-—

tures are pipelines (e.g., the Cytocomput-
er, Sternberg, 1978) and systolic arrays
(Kung, 1980).

A pipeline tends to use Pprocessors

specialized for a particular type of prob-
lem (e.g., @ window operation for image
processing, floating point arithmetic for
numerical matrices). Hence the processor
can be relatively simple, with a relatively
high percent of active gates. Memory trad-
itionally is even smaller than in the ar-
rays, since intermediate results are im-
mediately pumped into the next processor in
the pipe. But each processor must have its
own controller, albeit a relatively simple

one.

Systolic arrays are, basically, 2-
dimensional pipelines that have very simple
special-purpose processors, configured into
a system that will execute a particular al-
gorithm. Therefore the "processor" can be
guite small, e.gd., 25, 10 or even 5 gates,

and the memory tailored to the absolute
minimum needed for that algorithm. The
program instruction and controller func=

tions are taken over by hard-wiring.

Both pipelines and systolic arrays are
more specialized, or even special-purpose.
They handle a much smaller set of programs,
but they may be more efficient for those
they can handle. A set of special-purpose
systolic arrays reminds one of a CPU”s ar-
mory of special-purpose processors on a
‘common bus. But now data might be pumped
through sequences of these processors, ap-
propriately configured so that many. rather
than one, will be busy at each cycle.

Here we see specific examples of the
general phenomenon of the price that must
be paid for generality.

Systolic arrays are built exactly to
achieve isomorphic mappings of hardware to
algorithm.

Serial computers pay a heavy price in
random memory access for a single proces-
sor, which allows isomorphic mapping via
software. Serial computers have a very low
percent of active resources because of the

serial "Von Neumann bottleneck" (Backus,
1978).

Arrays and networks can be given a more
or less general topology, and sometimes
good algorithms map well, or even perfect-
ly, but sometimes not.

Networks of traditional processors have

all the inefficiencies of serial computers,
plus many more of their own, because of the
often excessively high overheads from
message-passing and poor synchronization.

Networks might be made more efficient by
specializing both processors and topology
to (sets of) problems, in the spirit of
systolic arrays.

Limited reconfiguring might help effect
this (at the non-negligible cost, which
must be taken into account, of reconfigur-
ing switches).

Summary and Conclusions

Several radically different types of
multi-computer array and network systems
can now be built. Each has its advantages
and its disadvantages.

The very large SIMD arrays of simple
1-bit processors, each with a small local
memory, appear to use the highest percent
of active resources and therefore, poten-
tially, to be able to give the greatest,
and fastest, throughput.

But arrays tend to be specialized, at
ljeast today. Judicious combinations of ar-
rays (as in pyramids or other stacks of ar-
rays) and of arrays with networks, and also
limited reconfiguring, might serve well to
increase generality while maintaining high
utilization.

References
Backus, J., Can programming be liberated
from the Von Neumann style: a function-
al style and its algebra of programs,
Communic. ACM, 1978, 21, 613~-641.

Barnes, G.H., Brown, R.M., Kato, M., Kuck,
p. J., Slotnick, D.L., and Stokes, R.A.,
The ILLIAC IV Computer, IEEE Trans. Com~
puters, 1968, 17, 746-757.

Batcher, K.E., Architecture of a massively

parallel processor, Proc. 7th Annual
Symp. on Computer arch., ACM, 1980,
168-174.

Briggs, F., Fu, K. S., Hwang, K. and Patel,
J.p PM4- -~ a reconfigurable multimi~
croprocessor system for pattern recogni-

tion and image processing, Proc. AFIPS
NCC, 1979, 255-265. -

puff, M. J. B., Review of the CLIP image
processing system, Proc. National Com-
puter Conf., 1978, 1055-1060.

Kuck, D.J., The Structure of Computers and

Computation: Vol. 1, New York: Wiley,
1978.

Kung, H.T., The structure of parallel algo-
rithms, In: Advances in Computers, vVol.
19, M.C. Yovits (Ed.}, 1980, 293-326. (a)

Lipovski, J., On a varistructured array of
microprocessors, IEEE Trans. Computers,
1977, 26, 125-138.

Mead, C.A. and Conway, L.A., Introduction

to VLST Systems, Reading, Mass:
Addison-Wesley, 1980.

Reddaway, S.F., DAP =~ a flexible number
cruncher, Proc. 1878 LASL Workshop on
Vector and Parallel Processors, Los
Alamos, 1978, 233-234.

Siegel, H.J., et al., PASM: A Partitionable
Multimicrocomputer SIMD/MIMD System for
Image Processing and Pattern Recogni-
tion, School of Electrical Engineering
TR-EE 79-40, Purdue Univ., West Lafay-
ette, 1979.

Sternberg, S.R., Cytocomputer real-time
pattern recognition, paper presented at
Eighth Pattern Recognition Symp., Na-
tional Bureau of Standards, April, 1978.

Swan, R.J., S8.H. Fuller and D.P. Siewiorek,
Cm* -~ A modular, multi-microprocessor,
Proc. AFIPS WCC, 1977, 637-663.

Uhr, L., Network and array architectures
for real-time perception, Computer Sci-
ences Dept. Tech. Rept. 424, Univ. of
Wisconsin, 1981.

Ubr, L., Computer Arrays and Networks:
Algorithm-Structured Parallel Architec-
tures, New York: Academic Press, 1982.

Wittie, L.D., MICRONET: A reconfigurable
microcomputer network for distributed
systems research, Simulation, 1978, 31,
145-153.

