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ABSTRACT

In this document, the logilc structure of a univers.! VLSI chip called the
symbol-slice Reed-Solomon (RS) encoder chip is presented. An RS encoder can be
constructed by cascadlng and properly interconnecting a group of such VLSI chips.
As a design example, it 18 shown that a (255,223) RS encoder requiring around 40
discrete CMOS IC's may be replaced by an RS encoder consisting of four identical
interconnected VLSI RS encoder chips. Besides the size advantage, the VLSI RS
encoder also has the potential advantages of requiring less power and having a

higher reliability.
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SECTION I

INTRODUCTINN

Reed-Solomon (RS) codes (Ref. 1) are nonbinary BCH codes. These
codes can correct both random and burst errors over a communication channel. Re-
cently concatenated coding systems using RS codes as the outer codes have been
proposed for space communication to achieve very low error probabilities (Refs,

2 to 7). Several deep space flight projects sach as the Voyager at Uranus en-
counter, the Galileo, and the International Solar Polar Mission (ISPM) have also
considered using the concatenated RS/Viterbi channel coding scheme. Fence RS

codes are quite important for space communications.

The complexity of an RS encoder 1s proportional to the error-
correcting capability of the code, the speed of the encoding, and the interleaving
level used (Ref. 4). TFor reliable space communication there is a need to use RS
codes with large error-co.recting capability and large interleaving level (Refs.
4, 5, 8, and 9. Hence one 1s especially interested in minimizing the complexity
of RS encoders for space communication applications. In a spacecraft the power,
size, and reliability requirements are usually quite severe. Thus there is con-
slderable interest in a VLSI (Very Large Scale Integration) RS encoder which has
the potential for significant savings in size, weight, and power while at the
same time providing higher reliability over an RS encoder implemented in discrete

logic circuits.

This document introduces a symbol-sliced logic structure suitable for
a VLST implementation of RS encoders. By cascading and properly interconnecting
a group of such VLSl chips, each consisting of a fixed portion of the encoder, it

is possible to ubtain an RS encoder with any desired error-correcting capability
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and interleaving level. As a design example, it is shown that a (255,223) RS
encoder requiring 40 discrete CMOS IC's may be replaced by an RS encoder consist-
in, of four identical interconnected VLSI encoder chips. It is also shown that

these VLSI RS encoder chips can be pucalleled to improve the encoding speed.

1-2



SECTION I1

BASIC CONCEPTS OF FINITE FInlbs

A field 1s a set of elements, including O and 1, any pair of which
may be added or multiplied (denoted by + and %) to give a unique result in the
field, The addition and multiplication are assoctlutive and commutative, and multi-

plication distributes over addition in the usual way, il.e.,

u ®* (vi+w) =@ uRviuty

Every field element u has a unique negative element -u in the same fleld such

that

u+ (~u) = 0

Every nonzero field clement u has a unique reciprocal field element 1/u, such that

u ¥ (1/u) =1

For every field element u

o+usus 1%y

and

o *u=20

If the number of elements in a field is Iinfinite, then it is called
an infinite field. Examples of infinite fields are:

(a) The rational number field.

(b) The real number field.

(c) The complex number field.

2-1



If the number of elements in a field 1o finite, then it s called a {inite field
or a Galios field GF(q,, where q is the number of clements in the fleld. Two

examples of finfte ficlds are given as follows. The first example io the finite
field GF(p) which {s formed by integers modulo p, where p is a prime. 1If p = 2,
then the field 1s called GF(2). GF(2) contains only two elements, i.e., 0 and 1,

The addition and multiplication tables of GF(2) are given as below:

0 1 0 1
0lo | 1 0101 0
11|60 1jo |1
Addition Multiplication

The second example is the finite field formed by polynomials modulo
and irreducible polynomial of degree m with coefficients in GF(p), where p is a
prime. The definition of an irreducible polynomial is given as follows. A

polynomial
m {
p(x) = 3 a, x
i=0
with a, « GF(p) 1is called irreducible over GF(p) if there exists no polynomials
A(x) and B(x) with coefficients from GF(p) such that
p(x) = A(x) B(x)

where

1 £ Degree of A(x) £ m-1



As an example, 1f p = 2, then the polynomials

x8 + xa + x3 + x2 + 1

and
x“ + X + 1
are irreducible over GF(2).

Now the multiplicative structure of finite fields will be discussed,
If a ficld contains an element a, then the least positive integer N for which
“N = 1 1is called the order of a. In a finite field of q clements, GF(q), there
is a primitive clement a, i.e., an element of order q - 1. Every nonzero clement

of GF(q) can be expressed as a power of «a,

Next the vector sgpace structure of finite fields will be presented.
To do 1it, one needs the following definition of a primitive polynomial. An
irreducible polynomial of degree m over GF(q) 1s called primitive 1f it has a
primitive element of CF(qm) as a root. A finite field of qm elemerts, CF(qm),
can be considered as an m~dimensional vector space over GF(q). A choice for a

basis of GF(qm) over GF(q) is the set

[l, a, az, -—, um—ll

which 1is called the canonical basisg, where a is a root of a primitive polynomial

of degree m over GF(q). In vector form

1, a, uz, -, am—l}

is represented as
1 & (0, 0, -~-,0, 0, 1)
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o e (0, 0, -—-, 0, 1, 0)

(’«2 « (0, 0, ---, 1, 0O, 0)

L, (1, 0, ---, 0, 0, 0)

whereas 0 is mapped to (0, 0, ---, 0). Thus 4«ll elements in GF(qm) except 0 can

be formed by linear combinations of tue canonical basis

1, o, az, -, am-l

As an example, the Galois field of 24 elements, GF(ZA), may be formed
as the field of polynomials over GF(2) modules (xa + x + 1), which is a primitive

polynomial of degree 4. Let o be a root of x4 +x + 1, i.e.,

aa +a+1=20

Then by the definition of the primitive polynomial, all elements of GF(ZQ) except
0 are powers of a. The representation of ai for 4 £1<1% can be determined by the
primitive polynomial. In this example o is a root of x4 + x + 1 over GF(2).

Thus
It follows that

Since -1 = 1 in GF(2), one has



The rest of the element ui for 5%51<15 can be obtained likewise. The 15 nonzero

field elements of GF(ZA) are shown below in both multiplicative and vector space

forms.
ao = 1 = (0001)
ol = a = (0010 )
o = o? = (0100 )
o =3 = ( 1000 )
a4 = a+1 = (0011 )
,as = az + = ( 0110 )
o oo ra? = (1100 )
a7 = a3 +a+1 = (1011 )
a8 = a2 +1 = (0101)
ug = a3 + a = ( 1010 )
o1l o o +a+1 = (O0Ll1)
atl o 3 ;a4 a = {( 1110 )
12 o + u2 +a+1 = (1111 )
ol 2?4 o = (1101 )
ot = o3 +1 = (1001)
als = 1 = (0001 ) =a°
Another example is the finite field GF(28) generated by the primitive
polynomial

X + xA + x3 + x + 1

The exponents versus elements and elements versus exponents tables for

this GF(ZB) are shown in Table 1 and Table 2, respectively.
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——

The addition of two field «:uments in GF(2") is performed by component-

wise addition in the vector representations of the two clements. For example in

) Y.
GF(ZB), n“b + u238 is given by

6 = (0,0,0,0,0,1,1,0) W20

+ 11 o (0,0,0,0,1,0,1,1) « a8

13 = (0,0,0,0,7,1,0,1) o o'%

The multiplication of two field elements in GF(Zn) is performed by a modulo (2“—1)
I I )

.8 20 218
addition on the exponents of the two elements. For example in GF(27), «a * g

i{s given by

26

6 = (0,0,0,0,0,1,1,0) « «

I 238
*) 11 = (0,0,0,0,1,0,1,1) & «

TR 4 2 )
58 = (0,0,1,1,1,0,1,0) « o 2h * 238) MOD 255
9

= oa



SECTION 111

REED-SOLOMON ENCODING PROCEDRURES

An RS code word has (BJ-I) symbols, where each symbol has J bits.,  Of
the (ZJ—l) symbols there are (ZJ—l-ZE) informat ion symbols and 2E parity-check
symbols, where £ is the number of symbols an RS code is able to correct, 1f
one treats the (2J-1—2E) informat fon sywbols as the coetfficlents of the poly-
nomial

J 2 "1

J J
IR 99 R
f(x) = xZL 5 + 8 Kt==—t 8, x° -2k + 8 xz ! 2[')
29-1=2E  27-2-2E

where 8 1s the f{th transmitted symbol, then the 2E paritr-check symbols can be

obtained as the coefficients of the remainder of
f(x)/g(x)

where g(x) is the generator polynomial (Ref. 9) of the code. Usually g(x) is

defined as
2K { 2E J
g(x) = q (=a®) = 3 gy %
i= j=o

where a is a primitive element of the Galoils field GF(ZJ), and gl‘s are the co-
efficlents of g(x) with 8y © 1. The generator polynomial defined above does not

have symmetrical coefficients, 1i.e.,

- o ') ——— "
8, ¢ 85— for y =0, 1, 2, , 2E.

A block diagram of an RS encoder which generates the remainder of
f(x)/g(x) is given in Fig. 1. The switches in Fig. 1l are normally in the "ON"

position until the last information symbol gets into the encoder. At this

3-1
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moment all switches are switched to the "OFF" position and the encoder 1is be-
having like a long shift register. The output of the encoder is then taken from
the output of the last shift register. Note that in Fig. 1, 2E mulvipliers are

needed in the encoder.

To reduce the number of multipliers needed, a special class of the
generator polynomial which has symmetrical coefficients was proposed by Berlekamp

(Ref. 10). This generator polynomial 1s defined as

J-1

27 T+4E-1 1 2E j
g(x) = [] (x-a7) = 3 By
12277 g =0
where
Bj = Byp.j and 8, = gyp = 1.

Note that since go =1, only E multipliers are needed (see Fig. 2). Thus using

this new generator polynominal will reduce the number of maltipliers required by

one-half. As an example, the coefficlients of all generator polynomials of the form
14
13
g(x) = (x - o)
i=112

for a l6-error-correcting RS code with 8-bit per symbol are shown in Table 3 for

a = 2, 128, 232, 135, 201, 90, 74, 119, respectively.

There are several schemes for interleaving the RS codes (Ref. 5). One
scheme illustrated ia Fig. 3 as "Interleave B" requires memory only for the parity-
check symbols in the encoder is described as follows. In this scheme the input
bits are grouped into J-bit symbols and transmitted in their natural order. How-

ever every Ith symbol belongs to the same code word, where I is the interleaving
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depth used. Thus 1 code words make up such an Interleaved code block. After the
tnformat fon symbols are transmitted, the parity-check symbols of each interleaved

code word are then transmitted.

1f Iinterleaving is used, then the encoder logic structure is the same
as shown in Fig. 1, except now ecach J-bit shift register is replaced by an I x
J=bit shift register, As an example, o block diagram of a (255,221) RS encoder

with Interteaving level 1 and generator polynomial

where a = 2 In GF(28), which is generated by .l primitive polynomial

x8 + xé + x'l + x2 + 1,

i{s shown in Figure 4. Note that a generator polynomial with symmetrical co-

efficients is used here to save multipliers.

3-7



ORIGINAL PAGE 1S
OF POOR QUALITY

OFF FEEDBACK
ON o OFF
T " bettiel ,
INPUT viren FINITE FIELD HIET REG 04—
" MULTIPLIER A ON " switch 12
s &
% ' OUTFUT
FINITE FIELD . b
aoogr [ e
(IR E O .
s

o =LO H -0 u
o =L o

i

|

d
|
T

|
T
l
]
—
i

SRunn

S S
914 J::i:) l'<f> C;?
1
S S
95 _i)‘l"d}‘ '—'}
3
Figure 4. A Block Diagram of a (255,223) RS Encoder With

Interleaving Level I and
143

g(x) = n (x-a)

i=112

o Jz@ié_s - O |
% JM—-S L”@—’s -
oo _:E:@J"Cg—ws - L—’C?—*S -
v AT o—f_H
s : N 1

]

]




e s e e B s v e e Nt ot e A 43t o A

SECTION 1V

SYMBOL-SLICE VLSI RS ENCODER ARCHITECTURE

A finite field multiplication is a quite complicated operation. There
are basically three techniques for fmplementing a finite field multiplication.
The first technique 1o to uge log and antilog tables stored in read-only memorices
(ROM's) (Ref. 4). The second technique i{s to use a linear feedback shift register
oyne of approach (Ref. 10). The third technique {s to use the property of the
trace in a finite field to form a smaller ROM lr bk-up table (Ref. 11). Due to
the advent of LSI ROM technology, techniques 1 and 3 are usually used in an RS
encoder design optimized for diascrete IC's. As an example a 400 KHZ (255,2133)
RS encoder using the Berlekamp's approach (Ref. il) requires only around 40 CMOS

10!
ES

43
(=)

When one is interested in further drastic reduction of the power and
size of an .8 encrZer for high speed applications, one has to consider VLSI imple-
mentations. An RS encoder design optimized for discrete IC's usually does not
have a modular structure. Hence when one uses such an architecture for VLSI lay-

out, one has the following problems:

(L The design is too big to be put on one chip.

(2) If a multichip approach i{s used, then one needs several chip
designs, where each chip has an impractical number of input/

output pins.

(3) The design is not modular. Therefore the design is not easy to

adapt to other RS code parameters.

4=1



Hence there is a need to find a VLSI logic structure which can alleviate the

above pvoblems.

The repetitive architecture of the RS encoders shown in Figs., 1, 2,
and 4, suggested that a symbol-slice type of VLSI chips, each one consisting of
a fixed portion of the encoder, may be cascaded to form a complete RS encoder.
Also to reduce the VLSI chip size, RS encoders using generator polynomials with
symmetrical coefficients are preferred. Hence we will put emphasis on this

type of VLSI RS encoder.

As an example, we will design a VLSI encoder chip for a 255-symbol,
8-bit per symbol, lé-error-correcting, RS code with an interleaving level of 5.

The primitive polynomial used is

x8 + x4 + x3 + x2 + 1

The generator polynomial for this RS code is

143
g(x) = n (x-at)
1i=112

where a = 2, The coefficients of this g(x) are given in the first column of Table
3. The encoder logic structure for the above RS code parameter is id:ntical to
the one shown in Fig. 4, except now I = 5. There are several ways of partitioning
the RS encoder into four sections. One way which requires a minimum of input/
output pins is to include four rows of logic shown in Fig. 4 into one section.
Each section is then realized by a universal VLSI RS encoder chip. Another way

tc partition the RS encoder shown in Fig. 4 into four sections is to include 8

rows of logilc in each column into one section. Each section is then realized by

4-2



a universal VLSI RS encoder chip,  These VLSI RS encoder conflgurations are

deacribed as tollows.

4.1 VLS1T RS ENCODER USING e ROW PARTITIONING TECHNIQUE

The loglce structure of the universal VLEI RS encoder chip using the
row part it foning technique ts shown {n Fig, 5. The entire VLSI encoder asystem,
which consists of tour fdeutical VLS1 RS encoder chips cascaded and properly in-
terconnected together is shown in Fig. 6. Each VLSI RS encoder chip has 24 pins.
A detatled description of the VLST RS encoder chip and the entire VLS1 RS encoder

system s describe  as follows:

4,1.1 Conerator Polynomial Coefficlents Table

Since a generator polynomfal g(x) with symmetrical coefticients is
used, the coetlicionts ot x" s always 1. Hence there (s no need for a multiplier
to operate on this coetffctont (see Fig. 4).  Consequently tf the new generator
polynomial fs used, then one only needs E/N multiplicrs on cach VLS1 chip, where
Eofs the ervor corvecting capability of the code and N ts the total number of

4

chips required fn a VILSL encoder system. 1o the desi{gn oxample, B = 10 and N = 4.
Henee 4 multipliers are used on cach VLS RS encoder chip. Ty make the VLSI chip
untversal, all distinet coettictents except 1 of the generator polynomial arve

stored {n a read-only memory on the chip.  In general, an Exd=bit table is needed.
In the desipn example B e lo, J = 8, Hence a 16 x 8=bit table is selected.  The
outputs ot an ExJ-bit table {s ted into N, E/N-to-one multiplexors. The outputs

of the multiplexors are selected by log,N {nput pins called the "chip select" or

"¢ seloct' pins.  These outputs are then fed Into the inputs of the E/N wultipliers.

In the design example two "¢ select” pins (plns 22 and 23) and four, four-to-one

multiplexors are used. The 16 x 8 table and the multiplexors can easily be

h-3
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implemented by four, 4 x 8 ROM, with G select signals as the address control lines

of each ROM. The coefficients of g(x) selected on each chip are shown in Fig. 6.

4.1.2 Finite Field Multiplier

Next we will discuss the architecture of the finite field multiplier.
To connect the multiplier properly between chips and at the same time minimize the
number of input/output pins used, a linear feedback shift register type of multi-
plier (Ref. 9) rather than a ROM table look up type of multiplier (Ref. 4) is
adopted. The multiplier used 1s of a serial-parallel type. The loglc structure
of the multiplier is shown in Fig. 7. The J-bit generator polynomial coefficient
is read out from the ExJ-bit ROM table and fed into the multiplier J-bit in paral-
lel whereas the other input, generated by the feedback input (pin 2) "ANDed'" with

the feedback enable (pin 1), is fed into the multiplier bit-by-bit in serial.

The output of the multiplier is loaded into an 8-bit shift register in
parallel at the end of every 8th bit clock (1 symbol clock time). The parallel
data is serialized by this shift register. The most significant bic¢ (MSB) output
of this shift register is added with the MSB of the 40-bit shift register, which
is either on the same chip or on a different chip, and the resulting data is
shifted into the least significant bit (LSB) of the next 40-bit shift register.
The adder is implemented by a two-input EXCLUSIVE-OR gate (there are eight
EXCLUSIVE-OR gates on each chip). Each adder takes an input from a multiplier
output which is either on the same chip or on a different chip, depending on the

coefficients of the generator polynomial.

4.1.3 Input and Feedback Control Switches
The switch #1 shown in Fig. 4 is implemented by an AND gate on the chip

with the bit-serial data input (pin 3) and the feedback enable signal as the
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two inputs. The teedback enable signal is provided by an external modul» 255
counter which is driven by a clock equal to the bit clock divided by 40 (see
Fig. 6). This signal {s true when the counter s counting from 1| to 223; other-
wise {t is talse. The outpue of switch #1 {s added with the MSB of the 40-bit
shift register 85 outprt on the same chip to gencrate the tfeedback output sipnal

(pin %), This signal {s redundant {n all but the first chip (sce Fipg., o),

The switch #2 shown in Fig. 4 {s ifmplemented by an AND pate on the
chip with the feedback enable and feedback fnput signals as the two inputs.  The
teedback Input signals on all chips (pin 2) are connected to the teedback output
signal (pin 5) on the first VLSI chip., The output of switch #2 is ted into all

multipliers on the chip bit-by-bit in serial.

4.1.4 Input/Output Data Connections

There are eight input/output lines on cach chip. Of these eight lines,
four lines (pins 8, 9, 11, 17) are input lines and the remaining are output lines
(pins 6, 7, 10, 13). Pin 8 {s normally connected to pin 6 on the same chip except
for the last chip, where pin 8 is grounded. Pins 7 and 9 are normally connected
to pins 17 and 13, respectively on the next chip except for the last chip, where
pin 7 is connected to pin 11 on the same chip and pin 9 is connected to pin 4 on
the first chip. Thus one has a railroad type of data connections between chips.
The reason tor connecting pin 4 on the first chip to pin 9 on the last chip is a
consequence of an inherent 8-bit multiplier delay. To replace the multiplier
on the x" position by the switch #1 output, one needs to delay this output also
by 8 bit. to line up the bits.  For other chips besides the first chip, the 8-bit

register outputs are not used.

4-8



The encoder output is taken 8 bits earlier from the MSB of the last
40-bit shift register on the first chip. This is because when the last bit of the
last symbol in the information part of the code is shifted into the encoder, the
contents of each multiplier are loaded into the 8-bit output shift registers
waiting to be added with the MSB of the 40-bit shift registers. These 8-bit
symbols in the multiplier output registers actually belong to the fifth code
word in the interleaved code array. However the parity-check symbol of the first
code word is already being computed and now sitting 8 bits from the MSBs of each
40-b1it shift registers. Hence the 32-b1t output (pin 14) of the ‘ast 40-bit
shift register on the last chip Is the output of the VLSI RS encoder system,

This output is taken when the external modulo 255 counter is counting from 224

to 255. Since at these times switches #1 and #2 are turned off, the entire VLSI
encoder system is behaving like an Ix2ExJ-bit (e.g., 5 x 32 x 8-bit ir the design
example) shift register. Thus the 5 x 32, 8-bit parity-check symbols are read
out from the VLSI RS encoder bit-by-bit in serial and appended to the 5 x 223,

8-bit information symbols.

4.2 VLS1 RS ENCODER USING THE COLUMN PARTITIONING TECHNIQUE

The logic structure of the universal VLSI RS encoder chip using the
column partitioning technique is shown in Fig. 8. Note that this chip is very
similar to the one shown in Fig. 5 except now one has to provide output pins to
all multipliers and input pins to all adders on the chip. Hence this chip uses
6 more input/output pins than the one shown in Fig. 5. The entire VLSI RS en-
coder system using this loglc structure is similar to the one shown in Fig. 6
except now the interchip connections between adders and multipliers are of the

pyramid type shown in Fig. 9.
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The 40-bit shift registers in the above two versions of the VLSI
R&¢ eacoder chips can be replaced by random access memories (RAMu). In this case,
a write-after-read operation should be performed during each bit time from the same
location just read out from the RAM to simulate the shift register operation,
Consequently, this version will not operate as fast as the shift register version.
The first advantage of using the RAM approach is that interleaving level control
can easily be incorporated into the RAM address control logic. Of course, input
pins must be provided to select the interleaving level. Hence a more flexible

VLSI RS encoder cihip can be obtained using the RAM approach.

The second advantage of using the RAM approach is that a RAM cell
usually occuples a smaller chip area than that of a static shift reglster. Hence
a smaller VLSI RS encoder chip size can be obtained using the RAM approach. It
1s estimated that it is impossible to put the entire shift register version of the
VLSI RS encoder chip design on a 235x235 mils CMOS/bulk VLSI chip using a 7 um
ntandard cell approach on all logic. However, if one uses custom RAM and ROM
cells design to implement the 40-bit static shift registers and the 16x8 table
and 7 um standard cell design for the rest of the logic, then it 1is possible to
have a one-chip design. Of course, the entire RS encoder chip design can easily
be put on a smaller chip if a VLSI technology (say 3 um standard cell approach)

is used.



SECTION V
PERFORMANCE OF THE VLSI RS

ENCODER SYSTEM

For design verification, both the shift register version and the
RAM version of the VLSI RS encoder chip and VLSI RS encoder system are implemented
using discrete CMOS IC's and are now operational. ‘The throughputs of these two
verslons are 800K bits/sec for the shift register version and 200K bita/sec for
the RAM version, These throughputs are expected to go much higher if the actual

VLS1 encoder chips are used.

One technique to improve the VILSI RS encoding speed is to multiplex
the RS encoder chips. une type of multiplexing 18 to set the RS encoder chip
interleaving level selection in the RAM approach to 1 (no interleaving) such that
for a N-level of interleaving, a N-fold parallelism can be achleved. This scheme
15 {llustrated in Fig., 10, Note that ecach row ot the RS encoder chips in Fig. 10
are used to encode a RS code word corresponding t+ the one shown {n each row of

the code array structure in Fig., 3.

Another type of multiplexing {8 to use the relationship that if

f(x) = £, (x) + 1, (x) + === + fy (x)
then
ORI S e
g(x)  w(x) g (x) 8 (x)
can be realized by implementing fi(x)/g(x) for 1 = 1, 2, ---, N in parallel and

then summing the results from these parallel operations. Thus 1if one treats each

5-1
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fi(x) as A polynomial, whose coefficients are sclected from every Nr'h incoming
symbols starting from the Lth symbol, where { = 1, 2, -=-, N, then one can select
the encoder chip interleaving level to 1 and use the logic ‘structure similar to
the one shown in Fig. 10 to realize the ti(x)/g(x) operation, The output of cach
row of encoder chips ip this case needs to be properly delayed and summed to

generate the encoder output f(x)/g(x).

Another technique to improve the VLSI RS encoding speed is to process
the J-bit incoming symbols in parallel. Parallel adders and multipliers are
needed in this configuration. A throughput improvement of .J times can be
achieved using this approachi. The disadvantages of this technique are:

(1) A lot of input/output pine are nceded for the parallel data

paths,

(2) A larger chip size is required to implement the VLSI RS encoder.



SECTION VI

CONCLUSIONS

We have just shown the logic structure of a symbolic~slice VLSI
RS encoder chip and the VLSI RS encoder system built by these chips. A design
example has been given for a (255,223) VLSI RS encoder chip and VLSI RS encoder
system. It has been shown that an RS encoder consisting of four identical CMOS
VLSI RS encoder chips connected together may replace around 40 CMOS IC's re-
quired by an encoder design optimized for discrete IC's. Besldes the size ad-
vantage, the VLSI kS encoder also has the potential advantages of requiring less
power and having a higher reliability. Finally, it is shown that such chips
can easily be multiplexed to improve the encoding speed.  The symbol-sliced logic
structure presented in the report could also be applied to design VLSI RS

decoders [12]. A separate report on this subject will be provided.
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APPENDIX
VLSl REED-SOLOMON ENCODER FOR THE PROPOSED NASA/ESA

TELEMETRY CHANNEL CODING STANDARD



Alter the completion of the VLST RS encoder project, the following
selt ol RS code parameters have been proposed in the NASA/LSA telemetry channel

coding standard (Ret. Al):
(D prim{tive polynomial

8 2
x -+ x7 + x 4+ x + 1.

) generator polynomfal
4

143 “i

a(x) = II X - (1)
{=112

where o satisties the equation

)
x8 + x7 + x4+ x + 1 = 0.

(1) Number of bits per symbol (J) = 8.
(4) Number of symbols per code word (N) = 255,
(5) Number of correctable symbol errors (E) = 16,

(6) Interleaving depth (1) = 5§,

Note that the foregoing R3 code parameters are those used in the
design example {n Section IV with two exceptions. These are the primitive
polynomial (l.e., the field generator polynomial over GF(2) and the code gener-
ator polynomial. These polynomials were selected by Berlekarp in an architecture
which minimizes the discrete ICs. Reference A2 provides a detailed description

of such an architecture. To adapt to this new set of "S code parameters, one
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needs to use a new field element table as well as a new table of generator

polynomial coefficients, These are given in Tables Al and A2 respectively.

Thus, to design a VLSI RS encoder for the new code parameters, one
only needs to replace the generator polynomial coefficienis ROM table shown in
Figure 5 by the coefficients given in Table A2 under the heading ull. Also one
needs to replace the finite field multiplier shown in Figure 7 by the multiplier

shown 1in Figure Al.
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