
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 5, MAY 1982

The Extra Stage Cube: A Fault-Tolerant
Interconnection Network for Supersystems

GEORGE B. ADAMS, III, STUDENT MEMBER, IEEE, AND HOWARD JAY SIEGEL, MEMBER, IEEE

Abstract-The Extra Stage Cube (ESC) interconnection network,
a fault-tolerant structure, is proposed for use in large-scale parallel
and distributed supercomputer systems. It has all of the interconnecting
capabilities of the multistage cube-type networks that have been
proposed for many supersystems. The ESC is derived from the Gen-
eralized Cube network by the addition of one stage of interchange
boxes and a bypass capability for two stages. It is shown that the ESC
provides fault tolerance for any single failure. Further, the network
can be controlled even when it has a failure, using a simple modification
of a routing tag scheme proposed for the Generalized Cube. Both
one-to-one and broadcast connections under routing tag control are
performable by the faulted ESC. The ability of the ESC to operate with
multiple faults is examined. The ways in which the ESC can be parti-
tioned and permute data are described.

Index Terms-Distributed processing, Extra Stage Cube, fault
tolerance, Generalized Cube, indirect binary n-cube, interconnection
network, omega, parallel processing, PASM, PUMPS, shuffle-ex-
change, supersystems.

I. INTRODUCTION
THE demand for very high speed processing coupled with

falling hardware costs has made large-scale parallel and
distributed supercomputer systems both desirable and feasible.
An important component of such supersystems is a mechanism
for information transfer among the computation nodes and
memories. Because of system complexity, assuring high reli-
ability is a significant task. Thus, a crucial practical aspect of
an interconnection network used to meet system communi-
cation needs is fault tolerance.

Multistage cube-type networks such as the baseline [29],
delta [15], Generalized Cube [24], indirect binary n-cube [16],
omega [11], shuffle-exchange [26], STARAN flip [2], and
SW-banyan (S = F = 2) [10] have been proposed for use in
parallel/distributed systems. The Generalized Cube is rep-
resentative of these networks in that they are topologically
equivalent to it [19], [24], [29]. The problem with this topology
is that there is only one path from a given network input to a
given output. Thus, if there is a fault on that path, no com-
munication is possible.

Manuscript received October 30, 1981; revised January 22, 1982. This work
was supported by the Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Grant AFOSR-78-3581 and the National
Science Foundation under Grant ECS 80-16580. Preliminary versions of the
material in this paper were presented at the 15th Annual Hawaii International
Conference on System Sciences, January 1982 and the 14th Southeastern
Symposium on System Theory, April 1982.
The authors are with the School of Electrical Engineering, Purdue Uni-

versity, West Lafayette, IN 47907.

This paper presents the Extra Stage Cube (ESC), a fault-
tolerant network derived from the Generalized Cube, capable
of operating in both SIMD and MIMD [7] environments. The
ESC consists of a Generalized Cube with one additional stage
at the input and hardware to allow the bypass, when desired,
of the extra stage or the output stage. Thus, the ESC has a
relatively low incremental cost over the Generalized Cube (and
its equivalent networks). The extra stage provides an additional
path from each source to each destination. The known useful
attributes of partitionability [211 and distributed control
through the use of routing tags [1] are available in the ESC.
Therefore, the ESC is a practical answer to the need for reli-
able communications in parallel/distributed supersystems.

Multistage cube-type networks have been proposed for
many supersystems. These include PASM [23], PUMPS [4],
the Ballistic Missile Defense Agency distributed processing
test bed [13], [22], Ultracomputer [8], the Flow Model Pro-
cessor of the Numerical Aerodynamic Simulator [1], and data
flow machines [5]. The ESC can be used in any of these sys-
tems to provide fault tolerance in addition to the usual cube-
type network communication capability.
The ESC can be used in various ways in different computer

systems. For example, consider how the ESC could be incor-
porated in the PASM and PUMPS supersystems. PASM, a
partitionable SIMD/MIMD machine being designed at
Purdue University [23], is a dynamically reconfigurable
multimicroprocessor system using up to 1024 processing ele-
ments (processor/memory pairs), or PE's, to do image pro-
cessing and pattern recognition tasks. In this context, the
network would operate in a unidirectional, PE-to-PE packet
switched mode [22]. The PUMPS MIMD architecture [4],
also under development at Purdue, consists of multiple pro-
cessors with local memories which share special purpose pe-
ripheral processors, VLSI functional units, and a common
main memory. The network serves in a bidirectional, circuit
switched environment for this architecture, connecting local
memories to the common main memory.

This paper describes some of the capabilities and operational
aspects of the ESC which demonstrate its usefulness. In Sec-
tion II the ESC is defined and related to the Generalized Cube.
The fault tolerance of the network is discussed in Section III.
Next, Section IV describes a routing tag scheme for one-to-one
and broadcast connections. The use and operation of the tags
is detailed for both fault-free and faulted ESC networks.

0018-9340/82/0500-0443$00.75 © 1982 IEEE

443

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-3 1, NO. 5, MAY 1982

Section V treats ESC partitioning properties. Permuting with
the network is discussed in Section VI.

II. DEFINITIONS

An SIMD (single instruction stream-multiple data stream)
[7] machine typically consists of a control unit, N processors,
N memory modules, and an interconnection network. The
control unit broadcasts instructions to all of the processors, and
all active processors execute the same instruction at the same
time. Thus, there is a single instruction stream. Each active
processor executes the instruction on data in its own associated
memory module. Thus, there are multiple data streams. The
interconnection network, sometimes referred to as an align-
ment or permutation network, provides a communications
facility for the processors and memory modules [20]. The
Massively Parallel Processor (MPP) [3] is an example of an
SIMD supersystem.
An MIMD (multiple instruction stream-multiple data

stream) machine [7] typically consists ofN processors and N
memories, where each processor can follow an independent
instruction stream. As with SIMD architectures, there are
multiple data streams and an interconnection network. Thus,
there are N independent processors which can communicate
among themselves. There may be a coordinator unit to help
orchestrate the activities of the processors. Cm* [25] is an
example of an MIMD supersystem.
An MSIMD (multiple-SIMD) machine is a parallel pro-

cessing system which can be structured as one or more -inde-
pendent SIMD machines (e.g., MAP [14]). A partitionable
SIMD/MIMD machine is a system which can be configured
as one or more independent SIMD and/or MIMD machines
(e.g., the DCA [9] and TRAC [17] supersystems).
The Extra Stage Cube (ESC) network can be used in

large-scale SIMD, MIMD, MSIMD, and partitionable
SIMD/MIMD supersystems. It can be defined by first con-
sidering the Generalized Cube network from which it is de-
rived. The Generalized Cube network is a multigtage cube-type
network topology which was presented in [24]. This network
has N input ports and N output ports, where N = 2". It is
shown in Fig. 1 for N = 8. The network ports are numbered
from 0 toN - 1. Input and output ports are network interfaces
to external devices called sources and destinations, respec-
tively, which have addresses corresponding to their port
numbers. The Generalized Cube topology has n = log2N
stages, where each stage consists of a set ofN lines connected
to N/2 interchange boxes. Each interchange box is a two-
input, two-output device and is individually controlled. An
interchange box can be set to one of four legitimate states. Let
the upper input and output lines be labeled i and the lower
input and output lines be labeled j. The four legitimate states
are: 1) straight-input i to output i, inputj to outputj; 2) ex-
change-input i to output j, input j to output i; 3) lower
broadcast-input j to outputs i and j; and 4) upper broad-
cast-input i to outputs i and j [1]. This is shown in Fig. 1.

The interconnection network can be described as a set of
interconnection functions, where each is a permutation (bi-
jection) on the set of interchange box input/output line labels

0 0 0 0

1 4 21

2 1 1 2 0

N 3 U
P T
Ui 4 4 PU mS ~~~~~~~~~U
T 6 6

~~ ~
7 7 7 7

STAGE 2 1

STRAI CGHT
J:J--'

EXCHANGE

LOWER UPPER
BROADCAST BROADCAST

Fig. 1. The Generalized Cube with N = 8 and the four states of an
interchange box.

[18]. When interconnection functionf is applied, input S is
connected to outputf(S) = D for all S, 0 < S < N, simulta-
neously. That is, saying that the interconnection function maps
the source address S to the destination address D is equivalent
to saying the interconnection function causes data sent on the
input port with address S to be routed to the output port with
address D. SIMD systems typically route data simultaneously
from each network input via a sequence of interconnection
functions to each output. For MIMD systems, communication
from one source is typically independent of other sources. In
this situation the interconnection function is viewed as being
applied to the single source, rather than all sources.
The connections in the' Generalized Cube are based on the

cube interconnection functions [18]. Let P =-Pn- I * P lpo be
the binary representation of an arbitrary I/O line label. Then
the n cube interconnection functions can be defined as

cubei(Pn- I ... PJP0) = Pn- I * * * Pi+ lPiPi- I .. PIPO

where 0 < i < n, 0 < P < N, and 5i denotes the complement
ofpi. This means that the cube interconnection function con-
nects P to cube' (P), where cubei(P) is the I/O line whose label
differs from P in just the ith bit position. Stage i of the Gen-
eralized Cube topology contains the cubei interconnection
function, i.e., it pairs I/O lines whose addresses differ in the
ith bit position. It is the only stage which can map a source to
a destination with an address different from the source in the
ith bit position.
A link is any line connecting two network interchange boxes.

Note that neither a network input port nor output port is
considered a link. A link has the same label as the box output
and input it joins. A path is a set of interchange box settings
and links which forms a connection between a given source and
its destination. A broadcast path is a set of paths which route
a source to two or more destinations (using the lower and/or
upper broadcast settings of the interchange boxes as
needed).

444

ADAMS AND SIEGEL: EXTRA STAGE CUBE

N

P

T

STAGE 3 2

Fig. 2. The Extra Stage Cub

The ESC is formed from the Generalized Cube by adding
an extra stage along with a number of multiplexers and dem-
ultiplexers. Its structure is illustrated in Fig. 2 for N = 8. The
extra stage, stage n, is placed on the input side of the network
and implements the cubeo interconnection function. Thus,
there are two stages in the ESC which can perform cubeo.

Stage n and stage 0 can each be enabled or disabled (by-
passed). A stage is enabled when its interchange boxes are

being used to provide interconnection. It is disabled when its
interchange boxes are being bypassed. Enabling and disabling
in stages n and 0 is accomplished with a demultiplexer at each
box input and a multiplexer at each output. Fig. 3 details an
interchange box from stage n or 0. One demultiplexer output
goes to a box input, the other to an input of its corresponding
multiplexer. The remaining multiplexer input is from the
matching box output. The demultiplexer and multiplexer are

configured such that they either both connect to their box
(enable) or both shunt it (disable). All demultiplexers and
multiplexers for stage n share a common control signal, as do
those for stage 0.

Stage enabling and disabling is performed by a system
control unit. Normally, the network will be set so that stage
n is disabled and stage 0 is enabled. The resulting structure is'
that of the Generalized Cube. If after running fault detection
and location tests a fault is found, the network is reconfigured.
If the fault is in stage 0 then stage n is enabled and stage 0 is
disabled. For a fault in a link or box in stages n - 1 to 1, both
stages n and 0 will be enabled. A fault in stage n requires no

change in network configuration; stage n remains disabled. If
a fault occurs in stages n - 1 through 1, in addition to recon-

figuring the network the system informs each source device
of the fault by sending it a fault identifier.

Intuitively, for both the Generalized Cube and the ESC,
stage i, 0 < i < n, determines the ith bit of the address of the
output port to which the data are sent. Consider the route from
source S = sn-_I--I to destination D = dn *-. dIdo. If
the route passes through stage i using the straight connection,
then the ith bit of the source and destination addresses will be
the same, i.e., di = si. If the exchange setting is used, the ith
bits will be complementary, i.e., di = s-. In the Generalized

T
P

T

1 ~~~~~0

)e (ESC) network with N 8.

--INTERCHANGE BOX

MULTI PLEXER

DEMULTI PLEXER
(a)

(b)

(c)
Fig. 3. (a) Detail of interchange box with multiplexer and demultiplexer

for enabling and disabling. (b) Interchange box enabled. (c) Interchange
box disabled.

Cube, stage 0 determines the 0th bit position of the destination
in a similar fashion. In the ESC, however, both stage n and
stage 0 can affect the 0th bit of the output address. Using the
straight connection in stage n performs routings as they occur
in the Generalized Cube. The exchange setting makes available
an alternate route not present in the Generalized Cube. In
particular, the route enters stage n - 1 at label Sn_ ... SIso,
instead of s,_1 * s1s0.

III. FAULT TOLERANCE
A. Introduction

In the fault model to be used, failures may occur in network
interchange boxes and links. However, the input and output
ports and the multiplexers and demultiplexers directly con-
nected to the ports of the ESC are always assumed to be
functional. If a port or the stage n demultiplexers or stage 0
multiplexers were to be faulty, then the associated device would
have no access to the network. Such a circumstance will not
be considered.

445

N

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 5, MAY 1982

Once a fault has been detected and located in the ESC, the
failing portion of the network is considered unusable until such
time as the fault is remedied. Specifically, if an interchange
box is faulty, data will not be routed through it, nor will data
be passed over a faulty link. The extra stage of the ESC does
increase the likelihood of a fault compared to the Generalized
Cube due to the additional hardware. However, analysis of an
independently developed related network shows that for rea-
sonable values of interchange box reliability there is a gain in
network reliability as a result of an extra stage [27]. It should
also be noted that a failure in a stage n multiplexer or stage 0
demultiplexer has the effect of a link fault, which the ESC can
tolerate as shown in this section.

Techniques such as test patterns [6] or dynamic parity
checking [22] for fault detection and location have been de-
scribed for use in the Generalized Cube topology. Test patterns
are used to determine network integrity globally by checking
the data arriving at the network outputs as a result ofN strings
(one per input port) of test inputs. With dynamic parity
checking, each interchange box monitors the status of boxes
and links connected to its inputs by examining incoming data
for correct parity. It is assumed that the ESC can be tested to
determine the existence and location of faults. This paper is
not concerned with the procedures to accomplish this, but
rather with how to recover once a fault is located. Recovery
from such a fault is something of which the Generalized Cube
and its related networks are incapable.

B. Single Fault Tolerance: One-to-One Connections

The ESC gets its fault-tolerant abilities by having redundant
paths from any source to any destination. This is shown in the
following theorem.

Theorem 1: In the ESC with both stages n and 0 enabled
there exist exactly two paths between any source and any
destination.

Proof: There is exactly one path from a source S to a
destination D in the Generalized Cube [11]. Stage n of the
ESC allows access to two distinct stage n - 1 inputs, S and
cubeo(S). Stages n - 1 to 0 of the ESC form a Generalized
Cube topology, so the two stage n - 1 inputs each have a single
path to the destination and these paths are distinct (since they
differ at stage n - 1 at least). 0
The existence of at least two paths between any source/

destination pair is a necessary condition for fault tolerance.
Redundant paths allow continued communication between
source and destination if after a fault at least one path remains
functional. It can be shown that for the ESC two paths are
sufficient to provide tolerance to single faults for one-to-one
connections.
Lemma 1: The two paths between a given source and des-

tination in the ESC with stages n and 0 enabled have no links
in common.

Proof: A source S can connect to the stage n - 1 inputs
S or cubeo(S). These two inputs differ in the 0th, or low-order,
bit position. Other than stage n, only stage 0 can cause a source
to be mapped to a destination which differs from the source
in the low-order bit position. Therefore, the path from S
through stage n - 1 input S to the destination D contains only

links with labels which agree with S in the low-order bit posi-
tion. Similarly, the path through stage n - 1 input cubeo(S)
contains only links with labels agreeing with cubeo(S) in the
low-order bit position. Thus, no link is part of both paths. 3
Lemma 2: The two paths between a given source and des-

tination in the ESC with stages n and 0 enabled have no in-
terchange boxes from stage n - 1 through 1 in common.

Proof: Since the two paths have the same source and
destination, they will pass through the same stage n and 0 in-
terchange boxes. No box in stages n --1 through 1 has input
link labels which differ in the low-order bit position. One path
from S to D contains only links with labels agreeing with S in
the low-order bit position. The other path has only links with
labels which are the complement ofS in the low-order bit po-
sition. Therefore, no box in stages n - 1 through 1 belongs to
both paths. o

Theorem 2A In the ESC with a single fault there exists at
least one fault-free path between any source and destina-
tion.

Proof: Assume first that a link is faulty. If both stages n
and 0 are enabled, Lemma 1 implies that at most one of the
paths between a source and destination can be faulty. Hence,
a fault-free path exists.
Now assume that an interchange box is faulty. There are

two cases to consider. If the faulty box is in stage n or 0, the
stage can be disabled. The remaining n stages are sufficient
to provide one path between any source and destination (i.e.,
all n cube functions are still available). If the faulty box is not
in stage n or 0, Lemma 2 implies that if both stages n and 0 are
enabled, then at most, one of the paths is faulty. So, again, a
fault-free path exists.
Two paths exist when the fault is in neither of the two paths

between source and destination. o

C. Single Fault Tolerance: Broadcast Connections

The two paths between any source and destination of the
ESC provide fault tolerance for performing broadcasts as
well.

Theorem 3: In the ESC with both stages n and 0 enabled
there exist exactly two broadcast paths for any broadcast
performable on the Generalized Cube.

Proof: There is exactly one broadcast path from a source
to its destinations in the Generalized Cube. Stage n of the ESC
allows a source S access to two distinct stage n - 1 inputs, S
and cubeo(S). Any set of destinations to which S can broad-
cast, cubeo(S) can broadcast, since a one-to-many broadcast
is just a collection of one-to-one connections with the
same source. 0
Lemma 3: The two broadcast paths between a given source

and destinations in the ESC with stages n and 0 enabled have
no links in common.

Proof: All links in the broadcast path from the stage n -
1 input S have labels which agree with S in the low-order bit
position. All links in the broadcast path from the stage n - 1
input cubeo(S) are the complement of S in the low-order bit
position. Thus, no link is part of both broadcast paths. 0l
Lemma 4: The two broadcast paths between a given source

446

ADAMS AND SIEGEL: EXTRA STAGE CUBE

and its destinations in the ESC with stages n and 0 enabled
have no interchange boxes from stage n - 1 through 1 in
common.

Proof: Since the two broadcast paths have the same
source and destinations, they will pass through the same stage
n and 0 interchange boxes. No box in stages n - 1 through 1
has input link labels which differ in the low-order bit position.
From the proof of Lemma 3, the link labels of the twos broad-
cast paths differ in the low-order bit position. Therefore, no
box in stages n - 1 through 1 belongs to both broadcast paths.

0
Lemma 5: With stage 0 disabled and stage n enabled, the

ESC can form any broadcast path which can be formed by the
Generalized Cube.

Proof: Stages n through 1 of the ESC provide a complete
set of n cube interconnection functions in the order cubeo,
cuben-1, , cube,. A path exists between any source and
destination with stage 0 disabled because all n cube functions
are available. This is regardless of the order of the intercon-
nection functions. So, a set of paths connecting an arbitrary
source to any set of destinations exists. Therefore, any
broadcast path can be formed. o

Theorem 4: In the ESC with a single fault there exists at
least one fault-free broadcast path for any broadcast perfor-
mable by the Generalized Cube.

Proof: Assume that the fault is in stage 0, i.e., disable
stage 0, enable stage n. Lemma 5 implies that a fault-free
broadcast path exists. Assume that the fault is in a link or a box
in stages n -1 to 1. From Lemmas 3 and 4, the two broadcast
paths will have none of these network elements in common.
Therefore, at least one broadcast path will be fault-free, pos-
sibly both. Finally, assume the fault is in stage n. Stage n will
be disabled and the broadcast capability of the ESC will be the
same as that of the Generalized Cube. o

D. Single Fault Tolerance: Finding Fault-Free Paths

The ESC path routing S to D corresponding to the Gener-
alized Cube path from S and D is called the primary path.
This path must either bypass stage n or use the straight setting
in stage n. The other path available to connect S to D is the
secondary path. It must use the exchange setting in stage n.
The concept of primary path can be extended for broadcasting.
The broadcast path, or set of paths, in the ESC analogous to
that available in the Generalized Cube is called the primary
broadcast path. This is because each path, from the source to
one of the destinations, is a primary path. If every primary path
is replaced by its secondary path the result is the secondary
broadcast path.

Given S and D, the network links and boxes used by a path
can be found. As discussed in [11], for the source/destination
pair S and D the path followed in the Generalized Cube to-
pology uses the stage i output labeled dn_1*. d/Li.disi l**
s1so. The following theorem extends this for the ESC.

Theorem 5: For the source/destination pair S = Sn- i ...

siso and D = dn ... d1do, the primary path uses the stage
i output labeled dn- 1 ... di+ Idisi- 1d s - s.so and the secondary
path uses d, I

. di+Idisi *I
. s130, for0 < i < n.

Proof: Stage i, i # 0, is the only stage in the ESC that can
map the ith bit of a source address (i.e., determine the ith bit
of the destination). Thus, if S is to reach D both ESC paths
must use a stage i output with a label that matches D in the ith
bit position. This matching occurs at each stage, so the high-
order n - i bits of the output label will be dn1I . . di+Idi. At
the output of stage i, bit positions i -1 to 1 have yet to be af-
fected so they match source address bits i - 1 to 1. The low-
order bit position is unchanged by stage n for the primary path.
The secondary path includes the cubeo connection (exchange)
in stage n, therefore the low-order bit position is comple-
mented. 0
When a fault has been detected and located, each source will

receive a fault label or labels uniquely specifying the fault
location. This is accomplished by giving a stage number and
a stage output number. For example, if the link between stages
i and i -1 from the stage i outputj fails, each source receives
the fault label (i, j). If a box in stage i with outputs j and k
fails, the pair of fault labels (i, j) and (i, k) is- sent to each
source. For a fault in stage 0, no fault label will be given, only
notice that a stage 0 fault exists. This is because stage 0 will
be disabled in the event of such a fault, so no path could include
a stage 0 fault. Stage n faults require system maintenance but
no labels need be issued, as the stage will be disabled.
A source can check to see if the primary path to its intended

destination contains a fault. If the faulty component is in stage
i, 0 < i < n, the source forms dn_ 1 ... di+ disi- ... s so and
compares this with the fault label(s). If there is a match then
the primary path is faulty. If the primary path is fault-free it
will be used. If faulty, the secondary path will be fault-free and
thus usable.

Since a broadcast to many destinations involves many paths
from the source to the destinations, checking to see if one of
the paths contains a fault may involve more computational
effort than is desirable. To decide if the secondary broadcast
path should be used, a simpler criterion than checking each
path for the fault exists. For a fault in stage i, the test is to
compare the low-order i bits of the source address and the la-
bel(s) of the faulty link or box. All paths must use links and
stage n - 1 to 1 boxes with labels that agree with the source
address in the low-order bit positions. Thus, if the low-order
i bits of the label(s) and the source address agree, then the fault
may lie in the primary broadcast path. Using the secondary
broadcast path avoids the possibility of encountering the fault.
This method is computationally simpler than exhaustive path
fault checking, but it can result in the unneeded use of the
secondary broadcast path.

If there is no strong preference to using the primary versus
secondary path (or broadcast path), the test to check for a fault
can be reduced to just comparing on a single bit position. If the
low-order source address bit and fault label bit agree, then the
primary path (or broadcast path) may be faulty, so the sec-
ondary routing can be used. This simplified procedure will
result in unnecessary use of secondary paths (one-to-one), and
more unnecessary use of secondary broadcast paths.

447

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-3 1, NO. 5, MAY 1982

E. Multiple Fault Tolerance

Theorems 2 and 4 establish the capability of the ESC to
tolerate a single fault in the sense that any one-to-one or

broadcast connection possible in the fault-free Generalized
Cube network remains possible. In other words the ESC with
a single fault retains its fault-free interconnection capability.
For some instances of multiple faults the ESC also retains
fault-free interconnection capability. The necessary and suf-
ficient condition for this is that the primary and secondary
paths are not both faulty.
As faults are detected and located a system control unit can

determine whether network interconnection capability is de-
graded.

Theorem 6: Let A = (i, an-I alao) and B = (j, bn-I
b 1bo), where 1 < j < i < n - 1, be two fault labels. If an- l -*
ai+ Iai 5R bn_ I*. bi+jbi, or if aj-, * * alaio X bj-l - - * bibo,
then there will be at least one fault-free path between any

source and destination.
Proof: A fault-free path will exist for a source/destination

pair S/D if taken together the fault labels A and B do not in-
dicate blockage of both the primary and secondary paths. As
shown in Theorem 5, the primary path uses stage i output dn_

di+1 ddisi I s I so and the secondary path uses dn *
di+ 1 diss- *... s* so. The stage j outputs used are dn *
dj+ 1djsj1.*.*.* s1so and dn-1 dj+ 1djsj_1 * sIso. Without
a loss of generality, it is assumed that j < i. Thus, at stages
i and j the primary and secondary paths both use outputs
with the same bits in positions n - 1 through i and j- 1

through 1, and complementary values in position 0. If an-**
ai+1jai bn-I bi+I bi then at least one of the faults is in
neither the primary nor the secondary path, so at least one of
the paths is fault-free. Similarly, if aj I*. a I bs I-
b, bo at least one fault is in neither path, so at least one path is
fault-free. 0

When multiple faults are detected and located in the ESC
a system control unit must determine the appropriate action.
Theorem 6 is applied if the multiple faults occur in stages n -
1 to 1. The fault label(s) of any new fault(s) is compared with
any existing fault label(s). If each pair of fault labels meets the
test of Theorem 6, then the network retains its fault-free in-
terconnection capability. (Note that the two fault labels as-

sociated with a faulty box do satisfy the requirement of The-
orem 6 since for stages n - 1 through 1, the low-order bits of
such labels agree, satisfying the Theorem 6 criterion aj I.
aPao by- I

- - * b1bo.) With multiple stage 0 or multiple stage
n faults only, the stage is simply disabled, as for a single fault;
fault-free interconnection capability still exists.

If a fault-free interconnection capability exists, full opera-
tion may continue. To continue, the additional fault label(s)
are sent to each source. However, a source must now check a

primary path against a longer list of fault labels to determine
if that path is fault-free. Therefore, system performance may
be degraded somewhat.

If faults exist in both stages n and 0, or if there are faults in
stages n - 1 through 1 and either stage n or 0, complete
fault-free interconnection capability in the ESC is impossible.

Also, where some pair of fault labels fails the test of Theorem
6, complete fault-free interconnection capability is lost.
For an SIMD system where interconnection network routing

requirements are limited to a relatively small number of known
mappings, multiple faults that preclude fault-free intercon-
nection capability might not impact system function. This
would occur if all needed permutations could be performed
(although each would take two passes). Similar faults in
MSIMD or MIMD systems may leave some processes unaf-
fected. For these situations, and if fail-soft capability is im-
portant, it is useful to determine which source/destination pairs
are unable to communicate. The system might then attempt
to reschedule processes such that their needed communication
paths will be available, or assess the impact the faults will have
on its performance and report to the user.

Corollary 1: Let A = (i, a.n .. a Iaao) and B b,
bIbo), where 1 < j < i < n - 1, be two fault labels. Ifa,1
ai+1ai = bnI*... bi+Ibb and aj-1 ... alao = bj-l ... b1bo, then
there exist source/destination pairs for which no fault-free path
exists. These pairs are such that si_- I *S2S1 = ai-I ... a2a],
dn_l-I dd+ldj = bn_ +... by+Ib1 and Sn_ I

...si+ Isi, so, and
dj- I ... d1do are arbitrary.

Proof: From Theorem 5, the two paths between a source
and destination use stage k outputs which differ only in the
low-order bit, 1 < k < n -1. Assume that a path contains the
fault denoted by A. Then the stage i output used is such that
dn- *... di+1dissi I * S2SIX = an-I . a Ia1ao and the stagej
output used must be d, I

... dj+ I djSj- I
. s2s x, where x

may equal so or go depending on whether the path is primary
or secondary. Now an_ 1 ... ai+ jai = bn 1 . .. bi+ Ibi and aj- I
... a1do = bi-, ... b1bo. Thus, the alternate path uses stage
j output dn_ I ... dj+1djsj- I * s2s1T = an_ ... ai+ l aidi_,
* * dj+ 1 djaj- l .. aiiao = bn-I --* bi lbidi-I .. dj+ I djbj- Il.
b I bo. If di I1 dj+ I dj = bi-1 . bj+1 bj, then the alternate
path contains the fault denoted by B. Therefore, there exist
source/destination pairs for which no fault-free path exists.
The relationships dn- I.. di+ Idsi-I ... S25x = an- l

alao and dn_- dj+ldjsjl- 'S2S IX = bn_ ..-b1bo yield
the constraints on the source and destination addresses of si-I
* -*251 = ai-1 * *a2a1 and dn 1 *... dj+Idj = bn_1b+ Ibj. The
values of s, I.si+. sI so, and d1_1 ... d1do are uncon-
strained. 3

For broadcast paths, continued operation under multiple
faults is somewhat more complicated as faults can exist in both
a primary and secondary broadcast path without comprom-
ising fault-free (one-to-one) interconnection capability. The
checks to determine if a primary path may contain a fault
which were described in Section III-D can be applied in this
case. To check for a possible fault in a secondary path, Yo is
used in place of so. If both paths contain faults, a combination
of primary and secondary paths can be used to perform the
broadcast. However, this procedure may be too time con-
suming to be practical.
The exact conditions under which no fault-free broadcast

path exists can be determined and the affected broadcasts
characterized.

Corollary 2: Let A = (i, a, *... aIao) and B = (j,b,- I...
bIbo), where 1 < j < i < n - 1, be any two fault labels. If aj- I

448

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 5, MAY 1982

* alao = bj1. b bo, then there exist broadcasts for which
no fault-free broadcast path exists. These broadcasts are such
that si-1 s2s1 = ai-1 a2a1, d _ ... d jdk = a,-,
a+1ai, and d- ... dJ+d4 = bn-I * bj+Ib1,whereS = sn-
* sIso is the source and Dk = d<k_* dkdkdkand DI dV
... dld are two of the destinations (and are not necessarily
distinct).

Proof: In general, a broadcast path uses stage i outputs
of the form dnI. di+1disi-1 ... s2S1X, where x equals so or
s0 depending on whether the broadcast path is primary or
secondary, and D = dn-I ... d Ido represents one of the
broadcast destinations. As a consequence of Theorem 5, the
two broadcast paths from a source to a set of destinations use
stage m outputs which differ only in the low-order bit, where
1 < m < n - 1. Thus, the alternate broadcast path uses stage
] outputs of the form dni ... s2s-Ifx To con-
struct those broadcasts whose primary and secondary paths
are faulty due to faults A and B, consider the following. Let
the source S = sn l. s I so be such that sn- 1 * S2S1 = an-]
... a2a1, and, without loss of generality let x = a0. Let Dk =
dn ... dido, one of the destinations, be such that dn_l
dk±df = an- - aj+jaj. Let D' = dl ... dldl, another
destination (not necessarily distinct from Dk), be such that
dV-1 ..d3±id4= bn-i bj+Ibj. Given aj- I

... alido= byil
..* bibo, then the equalities dk_ ... dk+id~si ... S2S1X =
a .. alaoanddli...d3+d3s>is2siY= bI... bibo
are true. Any broadcast for which the equalities hold does not
have a fault-free primary or secondary broadcast path. 0

IV. ROUTING TAGS
The use of routing tags to control the Generalized Cube

topology has been discussed in [11] and [22]. A broadcast
routing tag has also been developed [22], [28]. The details of
one routing tag scheme are summarized here to provide a basis
for describing the necessary modifications for use in the
ESC.

For one-to-one connections, an n-bit tag is computed from
the source address S and the destination address D. The
routing tag T = S @ D, where ED means bitwise EXCLUSIVE-
OR [22]. Let tn-1 -*. t1to be the binary representation of T.
To determine its required setting, an interchange box at stage
i need only examine ti. If ti = 0, the straight state is used; if
ti = 1, an exchange is performed. For example, given S = 001
and D = 100, then T = 101, and the box settings are exchange,
straight, and exchange. Fig. 4 illustrates this route in a fault-
free ESC.
The routing tag scheme can be extended to allow broad-

casting from a source to a power of two destinations with one
constraint. That is, if there are 2' destinations, 0 < j < n, then
the Hamming distance (number of differing bit positions) [12]
between any two destination addresses must be less than or
equal toj [22]. Thus, there is a fixed set ofj bit positions where
any pair of destination addresses may disagree, and n - j po-
sitions where all agree. For example, the set of addresses $010,
01 1, 1 10, 11 II meets the criterion.
To demonstrate how a broadcast routing tag is constructed,

let S be the source address and D 1, D2, - - *, D2' be the 2i des-
tination addresses. The routing tags are Ti = S (1S Di, 1 < i <

2i. These tags will differ from each other only in the same j bit
positions in which S may differ from Di, 0 < i < 2i.
The broadcast routing tag must provide information for

routing and determining branching points. Let the routing
information be R = rn 1 .. r1ro and the broadcast informa-
tion be B = bn-l-* b1bo. The j bits where tags Ti differ de-
termine the stages in which broadcast connections will be
needed. The broadcast routing tag JR, B} is constructed by
setting R = Ti for any i, and B = Dk S D', where Dk and D'
are any two destinations which differ by j bits.
To interpret {R, Bj, an interchange box in stage i must ex-

amine ri and bi. If bi 0, ri has the same effect as ti, the ith
bit of the one-to-one connection tag. If bi = 1, ri is ignored and
an upper or lower broadcast is performed depending upon
whether the route uses the upper or lower box input. For ex-
ample, ifS 101, DI = 010, D2 = 01 1, D3 = l 10, and D4 =
111, then R = 111 and B = 101. The network configuration
for this broadcast is shown in Fig. 5 for a fault-free ESC.

Both routing tags and broadcast routing tags for the ESC,
which take full advantage of its fault-tolerant capabilities, can
be derived from the tag schemes for the Generalized Cube. The
ESC uses n + 1 bit routing tags T' = t' * -. tt'o and broadcast
routing tags {R', B'}, R' = r * * r'r' and B' = bn .. blb'. The
additional bit position is to control stage n. Actual tag values
depend on whether the ESC has a fault as well as source and
destination addresses, but are readily computed.

First consider the fault-free case. For both routing and
broadcast tags, the nth bit will be ignored since stage n is dis-
abled when there are no faults. The routing tag is given by T'
= tntn ... t1to, where tn- I tIto = T, the tag used in the
Generalized Cube. The bit t4may be set to any convenient
value. The bits of T' are interpreted in the same way as tag bits
in the Generalized Cube scheme. The broadcast routing tag
is composed of R' = r' ... r1ro and B' = b'bn- I

... blbo,
where rn_- * r1ro = R, bn I*. b1bo = B, and r' and b' are
arbitrary. Again, the bits of {R', B'} have the same meaning
as in the Generalized Cube.
Now routing tag and broadcast routing tag definitions for

use in the ESC with a fault will be described. With regard to
routing tags, the primary path in the ESC is that corresponding
to the tag T' = Otn-1 ... tIto, and the secondary path is that
associated with T' = 1 tn-I-*. tIto. The primary broadcast
path is specified by R' = Orn I*--* r1ro and B' = Obn_1 ...
bibo, whereas R' = Irn_- ... Tiro and B' = obnI ... b1bo
denote the secondary broadcast path.

It is assumed that the system has appropriately reconfigured
the network and distributed fault labels to all sources as re-
quired. With the condition of the primary path known, a
routing tag that avoids the network fault can be computed.

Theorem 7: For the ESC with one fault, any one-to-one
connection performable on the Generalized Cube with the
routing tag T can be performed using the routing tag T' ob-
tained from the following rules.

1) If the fault is in stage 0, use T' = totn- I
.. tIto.

2) If the fault is in a link or a box in stages n - 1 to 1 and
the primary path is fault-free, use T' = Oth.- * *.* tfto. If the
primary path is faulty, use the secondary path T' = 1-t,_ I * *
tito.

449

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-31, NO. 5, MAY 1982

0
U
T
p
U
T

3 2 1 0

Fig. 4. Path used when routing from I to 4 in a fault-free ESC.

0
u
T
p
U
T

STAGE 3 2 0

Fig. 5. Broadcast path used when broadcasting from 5 to 2, 3, 6, and 7 in a fault-free ESC.

3) If the fault is in stage n, use T' = t't,_1 * tIto, where
tn is arbitrary.

Proof: Assume that the fault is in stage 0, i.e., stage n will
be enabled and stage 0 disabled. Since stage n duplicates stage
O (both perform cubeo), a routing can be accomplished by
substituting stage n for stage 0. The tag T' = tot"I t1to
does this by placing a copy of to in the nth bit position. Stage
n then performs the necessary setting. Note that the low-order
bit position of T', to, will be ignored since stage 0 is dis-
abled.
Assume that the fault is in a link or a box in stages n - 1 to

1. T specifies the primary path. If this path is fault-free, setting
T' = Otn-1 tl to will use this path. The 0 in the nth bit po-

sition is necessary because stages n and 0 are enabled, given
the assumed fault location. If the path denoted by T contains
the fault, then the secondary path is fault-free by Theorem 2
and must be used. It is reached by setting the high-order bit
of T' to 1. This maps S to the input cubeo(S) of stage n - 1.
To complete the path to D, bits n - 1 to 0 of T' must be
cubeo(S) @ D = tn-I ... tIto. Thus, T' = Itn_l ... tIto.

Finally, assume that the fault is in stage n. Stage n will be
disabled, and the routing tag needed will be the same as in the
fault-free ESC. o

Recall from Section III-D that the procedure for deter-
mining if a primary broadcast path is faulty may result in
unnecessary use of the secondary broadcast path. As the fol-
lowing theorem shows, generating broadcast routing tags to
use the secondary broadcast path incurs minimal additional
overhead relative to primary broadcast path tags.

Theorem 8: For the ESC with one fault, any broadcast
performable on the Generalized Cube with the broadcast
routing tag JR, B} can be performed using the broadcast
routing tag JR', B'l obtained from the following rules.

1) If the fault is in stage 0, use R' = ror,- 1 r1ro and B'

=bob,,, blbo.
2) If the fault is in a link or a box in stages n - 1 to I and

the primary broadcast path is fault-free, use R' = Or,- I .

r1ro and B' = Ob,_ I b1bo. If the secondary broadcast path

3
N
p
U 4
T -

-5

6

STAG E

N
p
U
T

450

ADAMS AND SIEGEL: EXTRA STAGE CUBE 4

has been chosen, use R' = Ir, * rIro and B' = Ob,
bibo.

3) If the fault is in stage n, use R' = r r r1ro and B'
= b, I b1bo where r4 and b' are arbitrary.

Proof: Assume that the fault is in stage 0. As a direct
consequence of Lemma- 5, any broadcast performable on the
Generalized Cube using the broadcast routing tag JR, B) is
performable on the ESC with stage 0 disabled and stage n
enabled (i.e., stage 0 faulty). The broadcast routing tag sub-
stitutes stage n for stage 0 by having ro and bo copied into r'n
and bn, respectively. This results in the same broadcast because
the order in which the interconnection functions are applied
is immaterial for one-to-one routing and broadcasting. Spe-
cifically, if ri = 0 and bi = 0, then in the set of destination
addresses, di = si; if ri = 1 and bi = 0, then di = Yi; and if bi
= 1, then di can be 1 or 0. When bo = 0 and there is a fault in
stage 0, if ro = 0 the primary broadcast path is used, and if ro >
= 1 the secondary broadcast path is used. When bo 1 and
stage 0 is faulty, the stage n interchange box routing the
message performs a broadcast, and a combination of primary
and secondary paths connect the source to its destinations.
Each address bit is affected individually, making the order of
stages irrelevant.
Assume that the fault is in a link or a box in stages n - 1 to

1. JR, B} specifies the primary broadcast path. If it is fault-free,
setting R' = Orn_ I

... r1ro and B' = Ob- 1. bIbo will use this
broadcast path. If the primary broadcast path contains the
fault then the secondary broadcast path is fault free as a con-
sequence of Theorem 4. Setting R' = Ir-I. rr-o and B' =
Obn_ ... b1 bo causes the broadcast to be performed using the
secondary broadcast path.

Finally, assume the fault is in stage n. Stage n will be dis-
abled, and the broadcast routing tag needed will be the same
as in the fault-free ESC. 0

Theorems 7 and 8 are important for MIMD operation of the
network because they show that the fault-tolerant capability
of the ESC is available through simple manipulation of the
usual routing or broadcast tags. Table I summarizes routing
tags and Table II summarizes broadcast routing tags for the
ESC.

In the case of multiple faults where the conditions of The-
orem 6 are met (i.e., there exists at least one fault-free path
between any source and destination), routing tag utility is
unchanged. That is, each source checks the primary path for
faults, but against a longer list of fault labels. The routing tag
is still formed as in rule 2) of Theorem 7.

Broadcast tags can be used to determine if the primary or
secondary broadcast path of the broadcast specified by the tag
contains a fault. To check if a fault in stage i is in the primary
broadcast path, the source constructs L = I 1* 10 such
that forO <j <i,lj = si, and fori <j < n - 1, ifb = 1 then
l} = X (DON'T CARE), otherwise 1i = sj @D rj. If L matches a
fault label (with "'x" matching 0 or 1), then the primary path
contains a fault. Note that if so is used in place of so, the sec-

ondary broadcast path can be checked. This test can be used

TABLE I
ONE-TO-ONE ROUTING TAGS FOR THE ESC

Fault Location

No FauLt

Stage 0

Stage i,

O < i < n,

or any link

Stage n

Routing Tag T'

T = t' ntn-1 ...tit
rTO = tOtnl-1 .. tl to
T' = Ot .n-..t1to
if primary path

is fault-free;

T' = ltn- @1t

if primary path

contains fault

T = t'ntni*... tito

TABLE 11
BROADCAST ROUTING TAGS FOR THE ESC

Fault Location Broadcast Routing Tag {R',B'}

No fault Rs = r nrn ... r1rO
B' = b nbn-1... b1b0

Stage 0 RI rorn-1... r1rO
a' = b b

Stage i,

O < i < n,

or any link,

RI= Orn...rlr1r0
B = Obn-1 ... b1b

if primary broadcast

path is fault-free;

= lrn...r vF
B' Ob1n. . . b1 b
if primary broadcast

path contains fault

Stage n R' = 'nr ... r1r0
nn-"10

for both single faults and multiple faults (by repeating the test
for each fault label).

V. PARTITIONING
The partitionability of a network is the ability to divide the

network into independent subnetworks of different sizes [211.
Each subnetwork of size N' < N must have all the intercon-
nection capabilities of a complete network of that same type
built to be of size N'. A partitionable network allows an
MSIMD, partitionable SIMD/MIMD, or MIMD machine
to be dynamically reconfigured into independent subsys-
tems.
The Generalized Cube can be partitioned into two subnet-

works of size N/2 by forcing all interchange boxes to the
straight state in any one stage [21]. All the input and output
port addresses of a subnetwork will agree in the ith bit position
if the stage that is set to all straight is the ith stage. For ex-
ample, Fig. 6 shows how a Generalized Cube with N = 8 can

451

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 5, MAY 1982

0 0 0 0

/ 4 A2 A1

> =11\/ _1- \ 7 20

N 5 3 A 3 U

u 42 4 P

U
T 6 B S T

7 7 B 17

STAGE 2 1 0

Fig. 6. The Generalized Cube network with N = 8 partitioned into two
subnetworks of size N' = 4, based on the high-order bit position. The A
and B labels denote the two subnetworks.

be partitioned on stage 2, or the high-order bit position, into
two subnetworks with N' = 4. Since both subnetworks have

all the properties of a Generalized Cube, they can be further
subdivided independently. This allows the network to be par-

titioned into varying size groupings that are powers of two. For
example, a network of size N = 64 could be partitioned into
subnetworks of sizes 32, 16, 8, 4, and 4.
The ESC can be partitioned in a similar manner, with the

property that each subnetwork has the attributes of the ESC,
including fault tolerance. The only constraint is that the par-

titioning cannot be done using stage n or stage 0.
Theorem 9: The ESC can be partitioned with respect to any

stage except stages n and 0.
Proof: The cube functions n - 1 through 1 each occur

once in the ESC. Setting stage i, 1 < i < n - 1, to all straight
separates the network input and output ports into two inde-
pendent groups. Each group contains ports whose addresses
agree in the ith bit position, i.e., all addresses have their ith bits
equal to 0 in one group, and 1 in the other. The other n stages
provide the cubej functions for 0 < j < n and j # i, where
cubeo appears twice. This comprises an ESC network for the
N/2 ports of each group. As with the Generalized Cube, each
subnetwork can be further subdivided. Since the addresses of
the interchange box outputs and links of a primary path and
a secondary path differ only in the 0th bit position, both paths
will be in the same partition (i.e., they will agree in the bit
position(s) upon which the partitioning is based). Thus, the
fault-tolerant routing scheme of the ESC is compatible with
network partitioning.

If partitioning is attempted on stage n the result will clearly
be a Generalized Cube topology of size N. Attempting to
partition on stage 0 again yields a network of size N, in par-
ticular a Generalized Cube with cubeo first, not last. In neither
case are independent subnetworks formed. O

In Fig. 7 the ESC for N = 8 is shown partitioned with re-

spect to stage 2. The two subnetworks are indicated by the
labels A and B. Subnetwork A consists of ports 0, 1, 2, and 3.
These ports addresses agree in the high-order bit position (it
is 0). Subnetwork B contains ports 4, 5, 6, and 7, all of which
.agree in the high-order bit position (it is 1).

Partitioning can be readily accomplished by combining
routing tags with masking [22]. By logically ANDing tags with
masks to force to 0 those tag positions corresponding to in-

terchange boxes that should be set to straight, partitions can
be established. This process is external to the network and, so,
independent of a network fault. Thus, partitioning is unim-
peded by a fault.

In PASM, partitioning is designed to be based on I/O port
addresses within a group agreeing in some number of low-order
bit positions. The ESC as defined cannot support this type of
partition. However, a variation of the ESC can perform low-
order bit partitioning. Beginning with a Generalized Cube, an
ESC-like network can be constructed by adding an extra stage
to the output side of the network which implements cube,_ 1.
Call this new stage -1. Thus, from the input to the output, the
stages implement cube,-,, cube,-2, -.., cube1, cubeo, and
cube,,-,. The same fault-tolerant capabilities are available in
this new network, but partitioning may be done on stage 0.
Hence, low-order bit partitioning is available. Partitioning on
stages n - 1 and -1 is not available.

VI. PERMUTING

In SIMD mode generally all or most sources will be sending
data simultaneously. Sending data from each source to a single,
distinct destination is referred to as permuting data from input
to output. A network can perform or pass a permutation if it
can map each source to its destination without conflicts.
Conflict is when two or more paths include the same stage
output.
The fault-free ESC clearly has the same permuting capa-

bility as the Generalized Cube. That is, any permutation
performable by the Generalized Cube is performable by the
ESC. If stage n in a fault-free ESC is enabled, the permuting
capability is a superset of the Generalized Cube. Also, the ESC
routing tags discussed in Section IV are entirely suitable for
use in an SIMD environment.

Because of its fault-tolerant nature, it is possible to perform
permutations on the ESC with a single fault, unlike the
Generalized Cube. It can be shown that in this situation two
passes are sufficient to realize any Generalized Cube perfor-
mable permutation.

Theorem 10: In the ESC with one fault all Generalized
Cube performable permutations can be performed in at most
two passes.

Proof: If a stage n interchange box is faulty, the stage is
bypassed and the remainder of the ESC performs any passable
permutation with a single pass. If the fault is in a stage 0 box
the permutation can be accomplished in two passes as follows.
In the first pass, stages n and 0 are bypassed and the remaining
stages are set as usual. On the second pass, stage n is set as
stage 0 would have been, stages n - 1 through 1 are set to
straight, and stage 0 is again bypassed. This simulates a pass
through a fault-free network.

While stages n to 1 of the ESC provide the complete set of
cube interconnection functions found in the Generalized Cube,
a single pass through the stages in this order does not duplicate
its permuting capability. For example, the Generalized Cube
can perform a permutation which includes the mappings 0 to

452

ADAMS AND SIEGEL: EXTRA STAGE CUBE

N
p

T U~~~~~~~~~~ 6
STAGE 3 2 0

Fig. 7. ESC network with N = 8 partitioned into two subnetworks of size
N' = 4, based on the high-order bit position. The A and B labels denote
the two subnetworks.

0 and 1 to 2. Stages n to 1 of the ESC cannot do this. The order
of the stages is important. Thus, the two pass procedure given
is necessary.

When the fault is in a link or a box in stages n - I to 1, then
at the point of the fault there are less than N paths through the
network. Thus, N paths cannot exist simultaneously. The
permutation can be completed in two passes in the following
way. First, all sources with fault-free primary paths to their
destination are routed. One source will not be routed if the
failure was in a link, two if in a box. With a failed link, the
second pass routes the remaining source to its destination using
its fault-free secondary path. With a faulty box, the secondary
paths of the two remaining sources will also route to their
destinations without conflict. Recall that paths conflict when
they include the same box output. From Theorem 5, the pri-
mary path output labels for these two paths at stage i are dln_

d!+1d!s3_) sjs' and d _.1 **_* S2S2, 0 < i <
n, where the superscripts distinguish the two paths. Note that
d= d and that the two source addresses are distinct. Thus,
the stage i output labels of the two primary paths are distinct.
The secondary path stage i output labels differ from the pri-
mary path labels only by complementing the 0th bit position.
Therefore, the secondary paths are also distinct. o

Permutation passing can be extended naturally to the
multiple fault situation.

Corollary 3: In the ESC with multiple faults but retaining
fault-free. interconnection capability, all Generalized Cube
performable permutations can be performed in at most two
passes.

Proof: For a performable permutation the primary paths
between each source/destination pair are by definition pairwise
nonconflicting. From the proof of Theorem 10, if two primary
paths do not conflict then their two associated secondary paths
do not conflict. Thus, there is no conflict among the secondary
paths. Therefore, in the ESC with multiple faults but retaining

fault-free interconnection capability, a permutation can be
performed by first passing data over those primary paths which
are fault-free and then passing the remaining data using sec-

ondary paths.
For multiple faults in stage n, that stage is disabled and

permutations are performed in one pass. With multiple faults
in stage 0 the same procedure for the case of a single stage 0
fault is used, performing permutations in two passes.

VII. CONCLUSIONS

The reliability of large-scale multiprocessor supersystems
is a function of system structure and the fault tolerance of
system components. Fault-tolerant intercommunication net-
works can aid in achieving satisfactory reliability.

This paper has presented the ESC network, a derivative of
the,Generalized Cube network that has fault tolerance. The
fault-tolerant capabilities of the ESC topology were proven.
The partitioning and permuting abilities of the ESC were

discussed. A minor adaptation of the routing tag and broadcast
routing tag schemes designed for the Generalized Cube was

described. This allows the use of tags to control a faulted as

well as fault-free ESC.
The family of multistage interconnection networks of which

the Generalized Cube is representative has received much
attention in the literature. These networks have been proposed
for use in supersystems such as PASM, PUMPS, the Ballistic
Missile Defense Agency test bed, Ultracomputer, the Nu-
merical Aerodynamic Simulator, and data flow machines. The
ESC has the capabilities of the Generalized Cube plus fault
tolerance for a relatively low additional cost. Distributed
control of the network with routing tags is straightforward.
Thus, the ESC has the potential for being a useful intercon-
nection network for large-scale parallel/distributed super-

systems.

0
U
T
p
U
T

453

454

ACKNOWLEDGMENT

The idea of using an extra stage for fault tolerance was
suggested to the authors by D. H. Hunt. The authors thank R.
J. McMillen for his comments.

REFERENCES

[I] G. H. Barnes, "Design and validation of a connection network for
many-processor multiprocessor systems," in Proc. 1980 Int. Conf.
Parallel Processing, Aug. 1980, pp. 79-80.

[2] K. E. Batcher, "The flip network in STARAN," in Proc. 1976 Int. Conf.
Parallel Processing, Aug. 1976, pp. 65-71.

[3] , "Design of a massively parallel processor," IEEE Trans. Com-
put., vol. C-29, pp. 836-840, Sept. 1980.

[4] F. A. Briggs, K. Hwang, K. S. Fu, and M. C. Dubois, "PUMPS archi-
tecture for pattern analysis and image database management," in Proc.
Pattern Recognition Image Processing Conf, Aug. 1981, pp. 387-
398.

[5] J. B. Dennis, G. A. Boughton, and C. K. C. Leung, "Building blocks for
data flow prototypes," in Proc. 7th Symp. Comput. Architecture, May
1980, pp. 1-8.

[6] T. Feng and C. Wu, "Fault-diagnosis for a class of multistage inter-
connection networks," IEEE Trans. Comput., vol. C-30, pp. 743-758,
Oct. 1981.

[7] M. J. Flynn, "Very high-speed computing systems," Proc. IEEE, vol.
54, pp. 1901-1909, Dec. 1966.

[8] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph,
and M. Snir, The NYU ultracomputer-A general-purpose parallel
processor, Ultracomput. Note 32, Rep. 034, July 1981, 33 pp.

[9] S. 1. Kartashev and S. P. Kartashev, "A multicomputer system with
dynamic architecture," IEEE Trans. Comput., vol. C-28, pp. 704-720,
Oct. 1979.

[10] G. R. Goke and G. J. Lipovski, "Banyan networks for partitioning
multimicroprocessor systems," in Proc. Ist Symp. Comput. Architec-
ture, Dec. 1973, pp. 21-28.

[11] D. H. Lawrie, "Access and alignment of data in an array processor,"
IEEE Trans. Comput., vol. C-24, pp. 1145-1155, Dec. 1975.

[12] S. Lin, An Introduction to Error Correcting Codes. Englewood Cliffs,
NJ: Prentice-Hall, 1970, p. 43.

[13] W. C. McDonald and J. M. Williams, "The advanced data processing
testbed," in Proc. COMPSAC, Mar. 1978, pp. 346-351.

[14] G. J. Nutt, "Microprocessor implementation of a parallel processor,"
in Proc. 4th Symp. Comput. Architecture, Mar. 1977, pp. 147-152.

[15] J. H. Patel, "Performance of processor-memory interconnections for
multiprocessors," IEEE Trans. Comput., vol. C-30, pp. 771-780, Oct.
1981.

[16] M. C Pease, Ill, "The indirect binary n-cube microprocessor array,"
IEEE Trans. Comput., vol. C-26, pp. 458-473, May 1977.

[17] U. V. Premkumar, R. Kapur, M. Malek, G. J. Lipovski, and P. Horne,
"Design and implementation of the banyan interconnection network
in TRAC," in Proc. AFIPS 1980 Nat. Comput. Conf., June 1980, pp.
643-653.

[18] H. J. Siegel, "Analysis techniques for SIMD machine interconnection
networks and the effects of processor address masks," IEEE Trans.
Comput., vol. C-26, pp. 153-161, Feb. 1977.

[19] , "Interconnection networks for SIMD machines," Computer,
vol. 12, pp. 57-65, June 1979.

[20] , "A model of SIMD machines and a comparison of various in-
terconnection networks," IEEE Trans. Comput., vol. C-28, pp. 907-917,
Dec. 1979.

[21] , "The theory underlying the partitioning of permutation net-
works," IEEE Trans. Comput., vol. C-29, pp. 791-801, Sept. 1980.

[22] H. J. Siegel and R. J. McMillen, "The multistage cube: A versatile in-
terconnection network," Computer, vol. 14, pp. 65-76, Dec. 1981.

[23] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E.
Smalley, Jr., and S. D. Smith, "PASM: A partitionable SIMD/MIMD
system for image processing and pattern recognition," IEEE Trans.
Comput., vol. C-30, pp. 934-947, Dec. 1981.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-31, NO. 5, MAY 1982

[24] H. J. Siegel and S. D. Smith, "Study of multistage SIMD intercon-
nection networks," in Proc. 5th Symp. Comput. Architecture, Apr. 1978,
pp. 223-229.

[25] R. J. Swan, S. H. Fuller, and D. P. Siewiorek, "Cm*: A modular
multi-microprocessor," in AFIPS 1977 Nat. Comput. Conf, June 1977,
pp. 637-644.

[26] S. Thanawastien and V. P. Nelson, "Interference analysis of shuffle/
exchange networks," IEEE Trans. Comput., vol. C-30, pp. 545-556,
Aug. 1981.

[27] S. Thanawastien, "The shuffle/exchange-plus networks," presented
at ACM Southeast Regional Conf., Apr. 1982, to be published.

[28] K. Y. Wen, "Interprocessor connections-Capabilities, exploitation,
and effectiveness," Ph.D. dissertation, Dep. Comput. Sci., Univ. of Il-
linois, Urbana, Rep. UIUCDCS-R-76-830, Oct. 1976, 170 pp.

[29] C. Wu and T. Feng, "On a class of multistage interconnection networks,"
IEEE Trans. Comput., vol. C-29, pp. 694-702, Aug. 1980.

George B. Adams, III (S'8 1) was born in Wilming-
ton, DE, on March 1, 1956. He received the B.S.
degree in electrical engineering from Virginia
Polytechnic Institute and State University,
Blacksburg, in 1978, and the M.S.E.E. degree
from Purdue University, West Lafayette, IN, in
1980.
Currently, he is pursuing the Ph.D. degree in

electrical engineering from Purdue University.
His research interests include computer architec-
ture, parallel processing, interconnection network
design, and parallel processing algorithms.

Mr. Adams is a member of Tau Beta Pi, Eta Kappa Nu, and Phi Kappa
Phi.

Howard Jay Siegel (M'77) was born in New Jer-
sey, on January 16, 1950. He received the S.B. de-
gree in electrical engineering and the S.B. degree
in management from the Massachusetts Institute
of Technology, Cambridge, in 1972, the M.A. and
M.S.E. degrees in 1974, and the Ph.D. degree in
1977, all in electrical engineering and computer
science from Princeton University, Princeton, NJ.

In 1976 he joined the School of Electrical Engi-
neering, Purdue University, West Lafayette, IN,
where he is currently an Associate Professor. Since

January 1979 he has also been affiliated with Purdue's Laboratory for Ap-
plications of Remote Sensing. His research interests include parallel/dis-
tributed processing, multimicroprocessor systems, image processing, and
speech processing.

Dr. Siegel served as the Guest Editor of the IEEE TRANSACTIONS ON
COMPUTERS Special Issue on Interconnection Networks and is on the Edi-
torial Board of the Journal ofDigital Systems. He is currently Chairman of
the IEEE Computer Society TCCA (Technical Committee on Computer
Architecture), a Vice Chairman of TCDP (Technical Committee on Dis-
tributed Processing), the Vice Chairman of the ACM SIGARCH (Special
Interest Group on Computer Architecture), an IEEE Computer Society
Distinguished Visitor, and the General Chairman of the Third International
Conference on Distributed Computing Systems, to be held October 1982. He
is a member of Eta Kappa Nu and Sigma Xi.

