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A Theory of Totally Self-Checking System Design

JAMES E. SMITH, MEMBER, IEEE AND PAKLIN LAM

Abstract—A totally self-checking digital system uses error de-
tecting codes at subsystem interfaces to detect faults before they can
lead to harmful undetected errors. This paper develops a formal model
for studying totally self-checking systems.

Totally self-checking systems are first defined, and, because the
propagation of errors is of critical interest, properties characterizing
error propagation are defined. For a given subsystem the “propagation
graph” is used to represent the error propagation characteristics. The
model is completed by defining a system’s “interconnection graph”
which is formed by connecting the propagation graphs of the subsys-
tems. Then sufficient conditions for which a system is totally self-
checking are stated in terms of the model. The paper concludes with
applications of the model including system design, checker placement,
data contamination analysis, and fault diagnosis.

Index Terms—Checker placement, detecting codes, error propa-
gation, fault secure, self-testing, totally self-checking systems.

I. INTRODUCTION

INCE the first computers, error detecting codes have been
used to detect faults in logic circuits. These circuits are
given the generic name “self-checking” because they are
constantly being checked by normally occurring input se-
quences as they perform useful computation. When a fault
occurs, its presence is indicated by the appearance of a noncode
output at some system interface. This fault indication can be
used in initiate automatic retry or reconfiguration, or to simply
stop the system for human intervention and repair.
Originally, the use of self-checking logic circuits was mo-
tivated by low component reliability, and research was aimed
at design techniques for particular types of circuits, e.g., ad-
ders, memories, and counters. With the advent of transistors
and integrated circuits, component reliability increased to a
point where interest in self-checking declined except for ap-
plications requiring ultrahigh reliability. By the late 1960’s,
however, hardware had become inexpensive enough and
computer systems complex enough to again justify self-
checking techniques, despite high component reliability. For
a review of self-checking techniques prior to 1968, the reader
should refer to [1].
In 1968, theoretical work in self-checking circuit design took
a new turn, primarily as a consequence of work by Carter and
Schneider [2]. Their work went beyond particular circuit de-
signs and pointed toward the study of general models and de-
sign methods. It was also proposed that circuits used to check
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error detecting codes should themselves be self-checking. This
work was followed by that of D. A. Anderson [3] which for-
mally defined an important class of self-checking circuits that
are known as “totally self-checking.” The totally self-checking
(TSC) model has led to many significant results in the areas
of combinational circuit design [4], [S], sequential circuit
design [6]-[8], and check circuit design [9]-[12]. Recently,
several researchers have considered the use of TSC circuits in
an LSI environment [13]-[15].

As for systems, many early computers had some self-
checked parts, for example the Raydac [16], the Univac [17],
and the IBM 650 [1]. More recently, the IBM 360 and 370
series computers [18], [19] as well as several other general
purpose computers have used self-checking features. The Bell
Telephone ESS systems [20] are tailored for telephone
switching and achieve self-checked operation by relying heavily
on duplication. Other work related to the design of self-
checking systems includes the design of self-checking control
units [21]-[23], micro- and minicomputers [23]-[26], and &
paper design of an IBM 360 [27].

In the area of more general and theoretical research, a
limited amount of effort has been directed at totally self-
checking system design. In [3] D. A. Anderson proposed some
general guidelines for building large combinational subsystems
from smaller combinational subsystems. These guidelines were
refined in [28]. In [23], many practical considerations of
self-checking system design are covered, but there is only a
brief discussion of system-level theory.

This paper is concerned with developing a theory of TSC
system design. The main objective is to develop a general model
for TSC systems that can be used for solving both synthesis and
analysis problems.

First, the term TSC as it applies to systems is defined. Note
that we often use the terms “system” and “subsystem” inter-
changeably. This reflects the hierarchical approach we are
using where a system at one level may be used as a subsystem
when constructing a more complex, higher level system. Our
TSC system definition applies equally well to subsystems of
any size. Other characteristics of TSC systems are also defined
and discussed. These deal primarily with the propagation of
errors through a system. A labeled bipartite graph, the
“propagation graph” is used to represent this information.

Next a system made of interconnected subsystems is mo-
delled by connecting the propagation graphs of the subsystems
to form an “interconnection graph.” Sufficient conditions for
which a system is TSC are given in terms of the system’s in-
terconnection graph.

Several applications of the model are discussed. The first
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of these is the hierarchical verification of the TSC property.
The construction of a propagation graph from a system’s in-
terconnection graph is demonstrated. This allows one to use
the system as a subsystem in a larger system so that the TSC
sufficient conditions can be repeatedly checked in a hierar-
chical manner.

Then, the problem of the placement of check circuits is
discussed. The model is used to minimize the number of check
circuits required to make a system TSC (very seldom, if ever,
will a system be TSC without some check circuits located at
key points within it). Two other applications are then briefly
covered, the first is the analysis of a system in order to deter-
mine which subsystems may contain contaminated data after
an error has been detected. The second is the use of model to
gather system diagnostic information following error detec-
tion.

II. BASIC SYSTEM PROPERTIES
A. Fundamental Definitions

The term “totally self-checking” was first defined for
combinational networks [3]. We now give an informal defi-
nition extended to include systems. A digital system is fault-
secure if during normal operation any modeled fault either
does not affect the system’s output or its presence is indicated
no later than when the first erroneous output appears. A digital
system is self-testing if any modeled fault eventually results
in a failure indication during normal system operation. A
digital system is totally self-checking if it is both self-testing
and fault-secure. The fault-secure property is intended to
guarantee that any results prior to a failure indication are
correct, and the self-testing property is intended to expose all
faults so that they do not build up and form a nonmodeled
fauit.

To more formally define TSC systems, we consider systems
to behave as a sequential machine. Of course, system design
and analysis methods developed later must depart from clas-
sical sequential machine methods in order to be practical, but
a definition of TSC in classical terms provides a concise and
unambiguous starting point.

Although asynchronous TSC sequential networks have been
proposed [7], [8], we choose to consider synchronous ones.
Aside from the usual advantages of synchronous logic,
checking is easier since it is clear when interfaces should hold
code words. In order to deal with clock failures, one can use
check circuits for periodic signals [29].

Only the necessary notation and informal versions of defi-
nitions and theorems are given in this section. The main results
in this section are most easily proved if additional formal
notation is developed, and a more rigorous set of definitions
are used. To make this section more accessible, however, the
additional formalism and proofs of the first three theorems
were moved to the Appendix.

We consider a system, S, where X is the set of all possible
binary words that can be applied to the inputs of .S, that is X
is the input space of S. Similarly, Y is the state space and Z
is the output space of S.

In fault-free operation, only a subset, 4, of inputs in X are
actually applied to S. A is the input code space of S.B = Y'is
the state code space, and C < Z is the output code space. In

practice, a system or subsystem can receive sets of input lines
from various sources and send sets of output lines to various
destinations. Accordingly, we partition the input lines of S into
r input signal sets. This also results in input spaces X1, X, - -,
X, and input code spaces 4y, A5, - -, A,; A; = X; for each of
the signal sets. Similarly, the outputs are partitioned into ¢
output signal sets that result in output spaces Yy, Y5, -+, Y;
and output code spaces Cy, C,, - - -, C;. We do not decompose
the state into signal sets, because we never explicitly handle
the states. Fig. 1 illustrates the partitioning of inputs and
outputs into signal sets.

We next define a model of the operating environment in
which a system resides. The is necessary to give meaning to the
term “normal operation” used in our informal definitions given
earlier. When a system is in a particular state, only certain
sequences of inputs can be applied by its environment. The
source model, R, is a set of sequence/state pairs, (o, b), where
o is a finite sequence of input code words belonging to A4 that
is potentially applicable by the environment when the system
is in initial code state b. :

Also needed is a description of the failure indication to be
used. The use of noncode outputs, as in [3] is quite common.
Accordingly, the sink model, Z, identifies output sequences
that will be accepted as correct, and includes all sequences
where each output signal set contains only code words.

Definition 1: A system S, is input-output consistent if every
sequence/state pair belonging to the source model causes S
to produce an output sequence belonging to the sink model.

We define the fault model, F, to be a set of logical faults
that modify the logical operation of S. A common fault model
is stuck-at faults, although our definition would allow other
logical fault models.

Definition 2: A system S is fault secure if for every fault in
F, and for every sequence/state pair belonging to the source
model, the faulty system either produces the correct output
sequence, or a sequence not belonging to the sink model.

In terms of time sequences of inputs and outputs, an
equivalent of Definition 2 is that the first erroneous output
from a fault secure network due to a modeled fault is a noncode
output. We will often use this equivalent definition.

The way we have defined a sink model, one can detect an
error by checking for code words on each of the output signal
sets.

We say (a/, b) is a subsequence/state pair of the se-
quence/state pair, {(a, b), if & is an initial subsequence of
a.

Definition 3: A system S is self-testing if for every fault in
F, any sequence/state pair in the source model either produces
an output not in the sink model, or is a subsequence/state pair
of a sequence/state pair that does.

Definition 3 in essence, states that after a fault has occurred,
any finite input sequence that fails to detect the fault can al-
ways be followed by one that does. It is up to the system de-
signer to make sure that the system is exercized so that all
faults are eventually detected—the definition is only intended
to guarantee that this is possible. This is similar to the case with
combinational circuits [3] where it is only required that each
fault is detectable by a code word; it is not explicitly stated that
the code word is actually applied when the circuit is being
used.
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Fig. 1. A system S with r input signal sets and ¢ output signal sets.

Definition 4: A system is totally self-checking if it is
input-output consistent, fault-secure, and self-testing.

B. Error Propagation

An erroneous input at some signal set is either a noncode
word or an erroneous code word. In the remainder of the paper,
we use the term “error” or “erroneous input” to include both
noncode and erroneous code words. The terms “noncode’ and
“erroneous code” are used when we choose to be more spe-
cific.

When it is part of a self-checking system, one faulty sub-
system can cause another (fault-free) subsystem to receive
erroneous input sequences. Consequently, it is important that
we model the propagation of errors through a subsystem. First,
we model the erroneous input sequences a subsystem may
actually receive, and assume it begins in a code state.

The malfunctioning source, RM, represents those se-
quence/state pairs a subsystem observes due to other faulty
subsystems. The initial state is a code state and the sequences
have values from the input spaces, not just the code spaces.
Note that any state after the first may be noncode. In most
cases, it is difficult to exactly characterize the errors that can
occur, so we typically let RM be all pairs of all sequences of
members of the input space and all code states. Example 4, to
be discussed later, indicates some implications of choosing a
more exact RM,

We assume that the synchronous subsystems that make up
a system are all clocked by a common system clock. The input
and output sequences of all the subsystems consist of binary
words that are generated during successive “ticks” of the
system clock. The system clock can be used as a discrete time
base for measuring the time needed to propagate errors.

- Definition 5: For each input signal set i and output signal
set j of system S, if two input sequences are applied to S that
differ only in signal set i, then the minimum response time, 0ij,
is the minimum time it takes the change in input signal set i
to cause a change in output signal set j. If input signal set i and
output signal set j are unrelated, then 6;; = .

The minimum response time can be bounded structurally
by counting the minimum number of storage elements (flip-
flops) on any path from input signal set i to output signal set
j

Example 1: For the simple buffer register shown in Fig.
2(a), 611 = 1. For the more complex structure in Fig. 2(b), 61,
= 3; that is, any change in input signal set 1 take 3 time units
to affect output signal set 1. In the same figure, 05, = 2.

We are also interested in whether noncode inputs produce
noncode outputs, and in the length of time required for this to
take place.

Definition 6: The pair of input and output signal sets i, j is
noncode transmitting if a change from a code word to a non-
code word in a sequence applied at input signal set i always
results in a noncode word as the first error in the output se-
quence at output signal set j; all other input signal sets are
assumed to be error-free. The maximum noncode transmission
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Fig. 2. (a) A register with 6;; = 1. (b) A more complex register structure

with 6;; = 3 and 021 = 2.
time, T;;, is the maximum time it takes for a noncode output
to appear i response to a noncode input. If input signal set i and
output signal set j are unrelated then Tij = .

Definitions 5 and 6 cover the situation where only one input
signal set is in error and the others are unchanged. This
simplifies determining the values of 6;; and Tj;. Because of
reconvergent fan out, however, it is possible for more than one
input signal set to receive erroneous inputs, possibly at different
times. We consider the interaction that occurs when one input
signal set receives noncode inputs and others receive erroneous
inputs.

First, we expand on Definition 5 by considering a system
with two input signal sets receiving errors and one output signal
set. The further generalization to arbitrary systems with
multiple input and output signal sets is straightforward.

Theorem 1: Consider a system .S with two input signal sets,
i and k, and output signal set j. A change in the sequences
applied at both input signal sets affects the output signal set
J no sooner than the minimum time it would take if either input
signal set i or k were changed alone.

Proof: The proof appears in the Appendix. O

Next, we expand on Definition 6.

Theorem 2: Let the pair of input and output signal sets i,
J be noncode transmitting, and let k be any other input signal
set. A change in the input sequence where a noncode word
appears on i and any error appears on k results in a noncode
word as the first error at j, provided that the time of occurrence
of the error on k plus d;; exceeds the time of occurrence of the
error on i plus Tj;.

Proof: The proof appears in the Appendix.

Example 2: Consider a two-rail exclusive-OR network. It
has two input signal sets, each with code space {01, 10} and one
output signal set with code space {01, 10}. A truth table for the
network is shown in Fig. 3(a). Fig. 3(b) shows a realization that
is TSC. Each input-output pair is noncode transmitting, and
since the network is combinational, T, = T = 011 = 02, =
0. If a noncode input is applied to either input signal set, then
a noncode output results. If both input signal sets are noncode,
however, a code output may result (e.g., input 00, 11). The
network of Fig. 3(c) also realizes the exclusive-OR, but it al-
ways produces a noncode output when either or both inputs are
noncode. o

The situation that occurs in the above example is rather
comon in combinational networks; that is, where more than
one input signal set receives a noncode input at the same time.
Unfortunately, if the individual input-output pairs are noncode
transmitting, this alone is not enough to guarantee a noncode
output as in Fig. 3(c). In order to include this situation (and
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Fig.3. (a) The truth table for a two-rail exclusive-OR network. (b) An im-
plementation that is noncode transmitting but not strongly noncode
transmitting. (c) A strongly noncode transmitting implementation.

a similar one for sequential networks) we need the following
definition and its accompanying theorem.

Definition 7: The pair of signal sets i, j is strongly noncode
transmitting if it is noncode transmitting and a noncode input
at signal set / always results in a noncode output at signal set
j within time T};; there are no constraints on the initial state
of S or input signal sets other than i.

Theorem 3: Let the pair of input and output signal sets i,
J be strongly noncode transmitting, and let k& be any other input
signal set. A change in the input sequence where a noncode
word appears on i and any error appears on k results in a
noncode word at j as the first error, provided that the time of
occurrence of the error on k plus 0;; exceeds, or is equal to, the
time of occurrence of the error on i plus Tj;.

Proof: The proof appears in the Appendix. O

Theorem 3 differs from Theorem 2 only because the phrase
“or is equal to” is added to the last sentence.

Both input-output pairs in the network of Fig. 3(c) are
strongly noncode transmitting. In Fig. 3(b) they are noncode
transmitting but not strongly noncode transmitting.

C. The Propagation Graph

The properties and parameters characterizing error prop-
agation through a subsystem can be represented by a labeled
bipartite graph called the propagation graph. One set of nodes,
labeled Iy, I, - - -, I,, represent the r input signal sets, and the
other set, labeled Oy, Oy, - -, O,, represent the ¢ output signal
sets. There is an arc from each input node to each output node.
We label the arc from input node /; to output node O; with the
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Fig. 4. (a) A bit-slice of simple TSC subsystem; the inputs and outputs
are 1-out-of-n encoded. (b) The subsystem’s propagation graph.

N
S ) . .
triple (0;; X T;j). 0;; is the minimum response time for the

input-output pair i, j. The second component is /V if the pair
is noncode transmitting but not strongly noncode transmitting,
S if the pair is strongly noncode transmitting, and X if it is
neither. T;; is the maximum noncode transmission time; this
component is an X if the second component is an X.

Example 3: Consider a register that always holds a 1-out-
of-n code word and is loaded from one of two input signal sets
depending on a two-rail encoded load signal. Such a register
might appear as part of the control structure of a TSC system.
A source assumption is that the two 1-out-of-n input signal sets
are never the same code word at the same time. A typical bit
slice of this structure is shown in Fig. 4(a). In the propagation
graph, Fig. 4(b), there are three input nodes (two data and
one control) and one output node. The 1-out-of-# inputs are
not noncode transmitting because the first noncode word may
be ignored if the LOAD signal selects the other input. The
LOAD input is noncode transmitting since a 00 or 11 yields
a noncode output during the next clock period (so 7'3; = 1).
It is not strongly noncode transmitting because it is possible
in the 11 case to have errors on other inputs that produce an
error output that may be a code word. o

In larger subsystems some output signal set may be inde-
pendent of some input signal set. In such a case, the triple
(@S ) labels the corresponding arc in the internal propaga-
tion graph. For convenience, we simply delete the arc in this
case. Hence, if the graph is incomplete, all deleted arcs are
understood to be labeled (@S x).

III. A STRUCTURAL INTERCONNECTION MODEL

Thus far we have defined a subsystem model along with
parameters that characterize the propagation of errors through
it. We now define a graph model for studying the propagation
of errors through an interconnection of subsystems.

Fig. 5(a) shows the structure of an example system. The
subsystems are labeled S; and may be either combinational
or sequential. In order to model the propagation of errors
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Fig. 5. (a) Anexample system formed as an interconnection of
subsystems. (b) The system’s interconnection graph.

through such a system, we begin with the propagation graphs
of each of the subsystems. We add superscripts to the input and
output nodes to distinguish them. That is, input signal set j of
subsystem S; is labeled I, and output signal set j is labeled O
Then we place a directed arc from Oj to If if output signal set
J of subsystem i is connected to input signal set / of subsystem
k. Such an arc is called a connection arc. The original labelled
arcs of the internal propagation graphs are also present, and
we refer to them as internal arcs.

To model the source and sink, we add two sets of nodes. The
source has only output nodes that are labelled OF and are
connected to subsystem input nodes. The sink has only input
nodes that are labeled 7 f , and subsystem output nodes are
connected to them. Fig. 5(b) shows the interconnection graph
for the network of Fig. 5(a).

A. Paths and Path Properties

A path in an interconnection graph is denoted as a sequence
of nodes where there is an arc connecting adjacent nodes in the
sequence. -

Definition 8: A path (O 10k, - -, I%) is a direct path is-
sued from output O} if no node in the path except the first is
in subsystem Si and no node is repeated.

In Fig. 5, a pathis (0% I Ot I3 01 IS 0% I3) but it is not a
direct path. A direct path is (03 I O} IS 0% I3).

In our discussion, a direct path will typically begin at an
output of a faulty subsystem. We will be interested in three
types of direct paths that can issue from a faulty subsystem:

1) N-paths (for noncode), that can potentially transmit
noncode words to system outputs.

2) B-paths (for blocking), that can block the propagation
of a noncode word along an N-path by producing an erroneous
code word instead, and

3) E-paths (for error), that can transmit erroneous code
words to system outputs.

Definition 9: A direct path is an N-path if the last node
belongs to the sink (is / 3 for some ¢g) and every internal arc is
noncode transmitting. A direct path is a partial N-path if every
internal arc is noncode transmitting.

In Fig. 5(b), an N-path is (09 I 03 I'}{ O} IS 0% I3) a partial
N-pathis (09I 03 I?).

An N-path passes through a sequence of noncode trans-
mitting subsystems and can potentially transmit a noncode
word from the subsystem output to the system output. The time
it requires to do this is critical because erroneous code words
may also be propagating toward system outputs along different
paths.

Definition 10: The N-path propagation time, N, of the
N-path P = (O},---,1 #) is the sum of the maximum noncode
transmission times T, of all internal arcs (1%, O%) in P.

Definition 11: Given an N-path or partial N-path P = (0
oo M -+ I}), a direct path Q = (0%, -+ -, I is a B-path
with respect to P if it intersects the N-path and begins at the
same subsystem as the V-path, but not necessarily at the same
output. If it does begin at the same output then the B-path
never reenters the initial subsystem.

A B-path may intersect an N-path and errors on both paths
(possibly both noncode) may conspire in such a way that an
erroneous code word is produced.

Referring to Fig. 5(b), with respect to P = (0Y I3 O3} I3 O3
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I]) a B-path according to 1) of Definition 11 is (09 I? 0% I3 O3
I3), and according to 2) a B-path is (0 I} O} I} O3 I).

Definition 12: The B-path propagation time, B, of path
P = (0}, -+, It is the sum of the minimum response times
On of all the arcs (I, O%) in P.

Definition 13: Let P = (O, -+, IT) be an N-path. Let Q
be any B-path with respect to P, and let P’ be a partial N-path
of P that terminates at the same node as Q. Then P is a valid
propagating path if for every such Q, N,y < Bp,and if Ny =
By then the last internal arc in P’ is strongly noncode trans-
mitting.

Informally, at a node in a valid propagating path where an
N-path and a B-path intersect, a noncode word must be pro-
duced before errors on both paths can possibly conspire to
produce an erroneous code word. This is used in the proof of
Theorem 4.

In Fig. 5(b), P = (09 I? 0% O} I§ 0% I?) is an N-path with
N, = 1. The only B-path with respect to P is Q = (00 I} O} I}
0% I5) and By = 5. Therefore, P is a valid propagating
path.

Definition 14: Given a valid propagating path P = (0%, - - -,
I?), adirect path @ = (0% - - - I%), m # [, is an E-path with
respect to P if either

1) ks jor

2) k =jand Q is not a valid propagating path.

Referring to Fig. 5(b), with respect to the valid propagating
path P given above, Q = (031} 0} I3 0} I3 0; I] O] I¥) isan
E-path according to 2) in Definition 14.

An E-path provides a means for propagating an incorrect
code word to a system output, and the time required to do so
is another critical parameter.

Definition 15: The E-path propagation time, Eg, of the
E-path Q is the sum of the minimum response times 0,,,,, of all
internal arcs (I%, 0%) in Q.

For the E-path Q given above, Eg = 4.

B. Sufficient Conditions for TSC Systems

We are now ready to given sufficient conditions for which
a system is TSC. We do this by examining the fault-secure and
self-testing properties separately. First, we discuss the source
a subsystem actually sees when it is embedded in a system.

Say subsystem S; is designed to be TSC for source R;, and
S; is embedded in a system. Then, subsystems separating S;
from the system source R result in an observed source R’ that
S; actually observes during normal system operation. In gen-
eral, R; # R, and we consider three cases in order to deter-
mine the effect on the consistency, self-testing, and fault-secure
properties in S;.

First, say R; 2 R;. Then, consistency may not hold; that is,
some noncode word could conceivably be produced by S;
during normal operation. Hence, consistency would need to
be reverified. Also, the fault-secure property may not hold
because there may be some sequence/state pair in R; — R; that
produces an incorrect code word as the first incorrect output
due to a fault. Hence, the fault-secure property would need to
be verified. Finally, although it is less obvious, the self-testing
property might also fail to hold. This is because a sequence/
state pair in R; — R; might put S; in a state from which a fault

cannot be detected. Thus, the self-testing property, in general,
also needs to be reverified; an exception is if S; is combina-
tional.

If R; 2 R; and R; 2 R; then there are state sequence pairs
in R; that are not in R; and, as before, all three TSC properties
need to be reverified for R

If R; 2 R; then it is clear that the consistency property and

“the fault-secure property must hold with respect to R;. The

self-testing may not hold, since S; may not be exercised thor-
oughly enough; hence, the self-testing property must be rev-
erified for R;. We define subsystem S; in a system to be suf-
ficiently exercised if it is self-testing with respect to its ob-
served source R..

Fortunately, in most cases a subsystem does not see input
sequences it is not designed for, although it might not see all
the sequences it is designed for. Consequently, in the remainder
of the paper we assume that for all subsystems R; 2 R}, and
it is only necessary to show that each subsystem is sufficiently
exercised to verify that the subsystem is self-testing in its
particular environment. To do this one could, at least in theory,
begin with the system source R and derive R}; via simulation.
In practice, this process may be very time-consuming, and one
may instead resort to ad hoc methods for demonstrating that
subsystems are sufficiently exercised.

We now consider sufficient conditions for a system to be
fault-secure.

Theorem 4: Given a system .S composed of subsystems S;,
which are fault-secure with respect to fault sets F;. S is fault
secure with respect to u; F; if for each subsystem output node
O/ there is a valid propagating path, P, beginning at O’ such
that N, < E, for every E-path, Q, with respect to P.

Proof: The proof is rather lengthy and can be found in
[30]. We only outline the proof here.

First, we assume an arbitrary subsystem S; is faulty, and
let ¢ be the time of the first erroneous output on any of its
output signal sets. If t = «, then the system is trivially fault
secure for the fault in question.

Otherwise, the existence of P guarantees a noncode word
will be propagated as the first error to a system output provided
that all subsystems along P receive only correct code words on
input signal sets not on P. This is the case unless there is some
other path from S; to another subsystem on P. The set of B-
paths represents each of these reconverging paths that intersect
the valid propagating path.

By considering only B-paths, we neglect reconverging paths
that are not direct, i.e., those that contain cycles or pass
through the subsystem that begins the path. This is because
any nondirect path that ends at a node must be “longer” than
some B-path that ends at the same node, where “length” is the
sum of the 9;; on the path.

The output nodes along P are then ordered and an inductive
argument is used to show that if a noncode word is propagated
as far as the nth output node, then it will be propagated as the
first error to the n + 1st. This terminates at a system
output. ,

In the process, it is also shown that the noncode propagation
can take no longer than N,. In order to prove the fault-secure
property, it is then shown that no erroneous code output
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reaches a different system output signal set any sooner than
N,. The only direct paths that can produce an output error are
E-paths and by repeatedly using Theorem 1 along an E-path,
the earliest an error can be produced at a system output is Ey.
The condition that IV, < Ep guarantees that at the time the
first error reaches a system output there is a noncode word at
some output signal set. m]

As for the self-testing property, it appears that the first
noncode output of a faulty subsystem must be propagated as
a noncode word to a system output if a valid propagating path
exists. A point that is easily overlooked is that the error prop-
agation properties (Definitions 5 and 6) are defined for the
malfunctioning source RM where the initial states are code
states, i.e., they appear in normal (fault-free) operation.

By Definition 6, a noncode transmitting input-output pair
in a code state. Consequently, if an erroneous code input puts
it in a noncode state it is no longer guaranteed to transmit later
noncode words. It is easily shown that a valid propagating path
is guaranteed to propagate a noncode word when the subsystem
at the beginning of the valid propagating path is fault-secure.
If the initial subsystem is just known to be self-testing, however,
this may not be the case; because even if a noncode output can
eventually be produced, any preceding erroneous code outputs
can invalidate all propagating paths.

In order to verify the self-testing property in a system sep-
arately from the fault secure property, it would be necessary
to begin with a malfunctioning source R™’ where the initial
states are members of ¥ and to reformulate Definitions 5 and
6. Since we are really interested in the TSC property, this is
not a major obstacle, and it does not prevent us from deriving
sufficient condition for the TSC property.

Theorem 5: A system S defined as in Theorem 4 is TSC with
respect to u; F; if

1) each subsystem .S; is TSC with respect to F;;

2) each subsystem S; is sufficiently exercised, and

3) the system S is fault secure by Theorem 4.

Proof: Input-output consistency follows from input-
output consistency of the subsystems and the fact that R; <
R;.
The fault secure property is given.

Because each subsystem S; is sufficiently exercised each
fault can be made to result in a noncode word as the first error
at an output of S;. Then the valid propagating path of Theorem
4 guarantees that a noncode word is propagated to an output
of S. (m]

Example 4: Consider the system in Fig. 6 that is similar to
one given in [23] with the checker placement slightly different.
Control inputs are not shown, and are assumed to be checked
elsewhere. The propagation graphs for the basic components
are shown in Fig. 7. For the multiplexer, neither arc is noncode
transmitting because the first noncode word at a multiplexer
input may not be selected. Then, we hve no guarantee that an
erroneous code input does not follow the noncode input and is
selected. This was assumed in Example 3.

However, if we examine the environment of the multiplexer
in Fig. 6, it happens that due to a fault “upstream” from the
multiplexer all multiplexer inputs are either correct or noncode.
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Fig. 6.

(a) A system adapted from Fig. 4.1 of [23]. (b) The system’s
interconnection graph.

Using a more exact RM based on this observation, we see that
following a noncode input word the first erroneous output will
be noncode (possibly caused by a different input) although we
cannot say how long it will take. We do observe that the first
error propagated and the first noncode word propagated re-
quire the same time, however. Consequently, we assume 7'y,
= 6;; = A and T,; = 0,; = B where A and B are finite but
unbounded. Then the multiplexer can be modeled by labeling
itsarcs (A4S A) and (B S B).

We note that the “z-detection lossless™ concept as used [23]
always assumes that erroneous input streams contain only
noncode and correct code words. In the general case, however,
an incorrect code word can appear after a noncode word.

To continue our example, connecting the internal propa-
gation graphs and adding source and sink nodes yields the
system interconnection graph shown in Fig. 6(b). The subsystem
output node O} has N-paths

P =(0i ;011508 1] O] I5 O} I3),
P,=(0{ 1 01 I 01’ I3),
Py;= (0l 1} 0} 1507 11 O] 5 O} 13),
P, = (0] I? 0} I} O} I}), and
Ps= (01 I} 01 I; 07 I} O} I3).
Pg = (0! I? 0% 1§ 0% I) is a B-path with

respect to Py and Bp, = Np, (P} = (O} I 03 I§ O$ I7)), but
(I% 0%) is not strongly noncode transmitting, so P; is not a valid
propagating path. P, and P4 do not have any B-paths and,
therefore, are valid propagating paths. The paths P, and P;
are E-paths with Ep, and Ep, > 1 depending on 4 and B, but
they may equal 1 in the worst case. Pp, = Np, = 1 so the
condition of Theorem 4 holds for O}.
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Propagation graphs for some basic TSC components. (a) register.

(b) adder. (c) checker. (d) multiplexer (data paths only).

Valid propagating paths that satisfy the theorem for the
other I} are

0r: (1101 1Y)

or: 10 1)

of: (0f 1301130t 13)

of: (0f 1t 0t 1)

of: (of 1] 01 1 0% 13)

ol (o1 130t 1)

0}: (01 13), 07: (01 I}), 01°: (0° I3).

All of them satisfy the condition of Theorem 4 with respect
to E-paths, so the system is fault-secure. If each subsystem is
self-testing and sufficiently exercised, then the system is TSC
by Theorem 5. |

IV. APPLICATIONS
A. System Design

A major application of the system model just developed has
been suggested in the previous section—verification that a
system is TSC. A possible difficulty is that if the sufficient
conditions of Theorems 4 and 5 are applied to a large system
made of many subsystems, the number of possible N-paths,
E-paths, and B-paths that need to be checked may be exces-
sive. A solution is to decompose the system into subsystems and
to check each of the subsystems against the sufficient condi-
tions. Then, after they are verified to be TSC, they can be
composed for form larger subsystems that can be checked
against the conditions. This process can continue in a hierar-
chical manner until the entire system is checked.

In order to facilitate this hierarchical verification process,
we give methods for constructing the propagation graph of a
TSC system or subsystem, given its interconnection graph.

Say the given interconnection graph has a source with out-
put nodes OR O%, - - -, OF and a sink with input nodes I3 I3
.-+ IZ. These are connected to certain subsystem inputs and
outputs, respectively. We form a propagation graph with input
nodes Iy, I, - - -, I, corresponding to the nodes OF, O%, - - -,
ORX and with output nodes Oy, 0,, - - -, O, corresponding to
nodes /£, I3, - - -, I? in the interconnection graph. Arcs are
drawn connecting all the I; to the O; (unless there is no path
from OF to I7 in the interconnection graph; in this case we
delete the arc following our earlier convention).

Next, the arcs need to be labeled with the triples

S
(03 <N> T;).
X

The 0;; are found by taking the least sum of the ¢’s along
paths from OR to I f It should be clear that this actually lower
bounds the minimum response time, but as such it can still be
used for 0;; without affecting Theorem 4 or 5.

To determine if an input-output pair i, j is noncode trans-
mitting, we determine whether there is a valid propagating
path beginning at OF and ending at /7. Any E-paths or B-
paths that begin at OF, k # i, are neglected since the noncode
transmitting property is determined with only the input signal
set i being erroneous. If there is si¢ch a valid propagating path,
the least sum of the noncode transmission times along all valid
propagating paths is T;. To check the strongly noncode
transmitting property, we must verify that the shortest valid
propagating path (or one of them if there is more than one)
propagates noncode words within time 7;;, regardless of input
sequence and initial state. It can be shown that a sufficient
condition for a valid propagating path to be strongly noncode
transmitting is that each internal arc on the path is strongly
noncode transmitting.

Example 5: We now design a simple microprogrammed
control unit and verify it to be TSC in a hierarchical manner.
For more detail, refer to [30].

A microinstruction has a format as shown below.

N | C | D | CONTROL SIGNALS

N: specifies source of next microinstruction address. It
consists of 2 bits and indicates that the next address is derived
from

1) incrementing the current address by 1 or by 2 depending
on whether or not a skip condition is satisfied,

2) the opcode in the macroinstruction register (actually the
opcode mapped through a PLA),

3) the D-field of the microinstruction (i.e., a jump).

C: specifies conditions for a conditional skip.

D: contains data and is used for unconditional jumps, among
other things.

Control Signals: All the various control signals that go into
the data structure and enable registers, control ALU’s, etc.
These are divided into subfields in some way which is not of
particular interest here.

We assume the controller is initially designed in a top-down
manner. Fig. 8 shows the controller broken into three subsys-
tems and Fig. 9 shows subsystem S; decomposed into even
simpler components. Diagrams of S, and S3 are in [30].
Verification of the TSC property will be done in a bottom-up
manner. We begin with the propagation graphs of the basic
components as shown in Fig. 7. These are initially designed to
be TSC, and their error propagation characteristics are de-
termined. These propagation graphs are used to form the in-
terconnection graph for the subsystem. The interconnection
graph for S is shown in Fig. 10, and it is necessary to add a
TSC check circuit at the PLA output to make S| TSC (refer
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Fig. 8. The three major subsystems of a microprogrammed controller.
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Fig.9. The subsystem S; from Fig. 8 decomposed into smaller

subsystems.

to the next section for checker placement). Then, the propa-
gation graphs for the subsystems are generated. The graph for
S isin Fig. 11(a) with the graphs for S, and S in Fig. 11(b)
and 11(c). These propagation graphs are combined to form the
interconnection graph for the entire controller [Fig. 12(a)].
At this point, it is determined that more TSC checkers are
needed at some controller outputs (shown with dashed lines).
Finally, the propagation graph for the entire controller can be
generated [Fig. 12(b)]. This graph can now be used at still
higher levels in the system of which the controller is a part.

B. Checker Placement

A TSC check circuit [9] is a combinational circuit that
monitors an interface for noncode words, and when one ap-
pears its presence is immediately signaled by the checker. The
propagation graph for a TSC checker is shown in Fig. 7(c).

By attaching a TSC checker to an output node and letting
the checker output feed the sink (i.e., it is a system output), a
valid propagating path from the output node satisfying the
condition of Theorem 4 is guaranteed. In terms of the model,
this is because there are no B-paths with respect to the N-path
that passes through the checker, and the “length” (V) of the
N-path is 0. Consequently, by adding TSC checkers any output
node can be made to satisfy Theorem 4. Of course, adding a
TSC checker might also create a valid propagating path for
other output nodes besides the one to which the checker is at-
tached.
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Fig. 10. The interconnection graph for the subsystem shown in Fig. 9
(the decomposition of S from Fig. 8).

I <s1> 9
o—2" 0

T2 ¢is> O2

Fig. 11. The propagation graphs. (a) S of Fig. 8 (derived from Fig. 10).

(b) S> of Fig. 8. (c) S of Fig. 8.

In this section, we study the problem of placing checkers so
that a system that does not satisfy Theorem 4 is converted to
one that does. While this checker placement problem could be
solved on a purely ad hoc basis, we derive a method that adds
the least number of checkers needed. Not surprisingly, this
turns out to be a covering problem and as such has NP-com-
plexity. Nevertheless, it may be of practical use in situations
where there is a small number of subsystems, and it can be used
as a starting point for deriving near-minimal procedures of
lower complexity.

We consider partial N-paths and their corresponding B-
paths and E-paths. A single connecting arc is considered here
to be a degenerate partial V-path. :

Definition 16: A partial N-path P = (O, - - -, I}) is a partial
valid propagating path if it satisfies the condition of Definition
13.

It is easy to see that any initial portion Q = (0;'- ---I™) of
a partial valid propagating path P = (Oj-, RN (JETRN (SR T
also a partial valid propagating path because all B-paths with
respect to Q are also B-paths with respect to P.

We now come to what could be termed the “checker
placement theorem.”

Theorem 6: Given a partial valid propagating path P = (O;

, O™ I¥) in a system’s interconnection graph, the nodes I§,

§, Iy and arcs (O} I5), (IS O5), (O5 12) are added. The in-

ternal arc (I Of9) is labeled (O S O) (i.e., we have added a

TSC checker). Then P’ = (O} --- Oy I§ 05 I}) is a valid
propagating path.

Proof: P is an N-path and since I§ and I3 have in-degree

1, P’ has only the B-paths of P. Since P satisfies the condition

of Definition 13 so must P’. =]

* Theorem 6 says that adding a TSC checker to any output
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(a) Interconnection graph for the system shown in Fig. 8; dashed

lines indicate added checkers. (b) The system’s propagation graph.

node in a partial valid propagating path from Oj yields a
complete valid propagating path from 0}

To optimally place checkers, we find every output node that
does not have a valid propagating path satisfying Theorem 4.
We then find all partial valid propagating paths, P, that begin
at such an output node and that satisfy the condition of The-
orem 4. That is, for every E-path, Q, with respect to P, N, <
E,. Adding a checker to any of the output nodes in P yields a
valid propagating path (Theorem 6) that also satisfies the
condition of Theorem 4. Hence, for each output node 0;3
needing a valid propagating path we form a list L;; containing
all the output nodes in partial valid propagating paths from
0! and which satisfy the N, < E¢ condition. Then, we find a
set of output nodes that covers all the L;; lists. That is, the
covering set contains at least one output node appearing in each
list. Putting a checker at each output node in such a covering
set satisfies Theorem 4 for the system, and finding a minimal
covering set yields a minimum number of added checkers.

Example 5: Consider the system with the interconnection
graph shown in Fig. 5. Output O3 has the valid propagating
path (03 It Ot I§ Of I3) and the path satisfies Theorem 4.
Hence, no checker needs to be added to detect errors origi-
nating at O%. On the other hand, Of has no valid propagating
path. It does have the partial valid propagating (0{ I3 03 I3).
Then, the list of possible nodes for attaching a checker to detect
errors originating at O is Lo; = 09, 03.

Similarly, the other lists L;; that need to be covered are
Lll = 0%’ 0?
L21 = 0%’ 0:2;

Ly = 03, 03
Ly =03
Lsi = 0}

A minimal cover is {03, O3} so adding two TSC checkers to
output nodes O3 and O3 makes the system fault secure (The-
orem 4) and TSC provided the self-testing and sufficiently
exercized conditions are met (Theorem 5).

It is interesting to note that nowhere in the cycle (O} I3 0})
is a TSC checker added. This is contrary to checker placement
guidelines proposed in [23]. O

C. Data Contamination Analysis

Since the system interconnection graph models the propa-
gation of errors, we can also use it to determine which sub-
systems may contain “contaminated” data, i.e., have received
erroneous inputs. There are several data contamination
analysis problems one could consider, and we choose one that
is typical.

Say a noncode word has been detected at a system output,
the system has been halted, and by using systems diagnosis
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Fig. 13.

841

The interconnection graph for the system of Fig. 5(a), with

checkers added.

techniques (possibly including checker information) subsystem
S; is determined to be faulty. Then one might want to know
what other subsystems have received erroneous mputs arid are
contaminated.

Say sink signal sets I7, I7, -, I7 all contamed noncode
words when the system was halted, i.e., these noncode words
signaled the fault. Then, we find the valid propagating path
P from S; toany of I, I7, - -, I with the least V,. This is the
longest time errors could have to propagate from S;. Then by
using the 8’s, any subsystem that could have received an error
input can then be determined.

. Example 6: Consider the system modeled in Fig. 13 (This
is the system of Fig. 5 with added checkers). Say a noncode
word at the checker output feeding I3 signals a fault. The
system is stopped and Sy is diagnosed as faulty. P = o' 03
I3 09 I?) is the only valid propagating path connecting 09 and
I7,and N, = 1. This means errors could have propagated for
dt most one clock period following the first error at the output
of S¢. This means S, S,, S3 and S4 could have become con-
taminated since errors can propagate to them in one clock
period. (=]

D. Fault Diagnosis

 As alluded to in the previous section, noncode outputs can
provide some diagnostic information, i.e., which subsystem is
faulty. Using noncode outputs alone, however, usually leads
to poor diagnostic resolution if the system is designed with only
fault detection in mind. Nevertheless, they can be used to
provide some useful diagnostic information that may increase
the overall resolution when used with other diagnostic tech-
niques. The following example indicates a way to extract di-
agnostic information from the system interconnéction
graph.

Example 7: Agam consider the system of Fig. 13. Say a
noncode output is received at I3 as the first error indication.
By simply tracing paths to see what subsystems are on paths
to I3, we narrow down potentially faulty subsystems to S, S1,
S, 83,85, and Sg. However, a noncode output from O would

reach I3 before I3. Similarly a noncode output from O would
reach I3 before I3. Therefore S can be ruled out as the faulty
subsystem. S, can also be ruled out since any noncode outputs
would reach I7 before I3. Therefore, only subsystems S}, S,
Ss and Sg are potentially faulty.

V. SUMMARY AND CONCLUSIONS

It was the purpose of this paper to develop a formal model
for totally self-checking systems and to suggest some potential
applications. Totally self-checking systems were first formally
defined. This definition is rather straightforward, although the
self-testing part of the definition differs from what is cus-
tomarily used. Informally, it states that a sequential network
or system is self-testing if after the fault occurs and before fault
detection it is always in a state (normal or not) from which a
normal input sequence can potentially detect the fault. .

When totally self-checking systems are being studied the
propagation of errors, both code and noncode is of utmost
concern, so following the definition of the totally self-checking
property, other properties related to error propagation were
discussed. These essentially characterize the minimum time
an error needs to pass from an input to an output, and the
maximum time a noncode word takes to be passed from an
input to an output. These properties were defined by consid-
ering a single input signal set and a single output signal set,
while leaving all other input signal sets correct. In this way,
determination of the propagation parameters is simplified,
although “interference” that might take place due to multiple
errors is ignored. This difficulty was rectified, however, by
Theorems 1 and 2 which place a limit on the effects that
multiple input errors can have. Then the error propagation
characteristics of a subsystem were modeled by the propaga-
tion graph.

The propagation graph essentially models the local behavior
of individual subsystems that make up a system. Global be-
havior is modeled by connecting the propagation graphs of the
subsystems to form the system’s interconnection graph. Three
types of paths in a system were then defined and discussed. An
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N-path is one that can potentially propagate noncode words
to a system output. A B-path for a given N-path begins at the
same subsystem as the V-path and later reconverges with the
N-path. It may under certain circumstances block the prop-
agation along an N-path by introducing multiple errors at a
subsystem input. If an V-path is not blocked, it is said to be a
“valid propagating path.” An E-path is a path that can po-
tentially propagate an incorrect code word form a faulty
subsystem to a system output.

Sufficient conditions under which a system is totally self-
checking were given. The individual subsystems must each be
totally self-checking and “sufficiently exercised.” In addition,
from each subsystem output there must be a valid propagating
path that produces a noncode system output before any E-path
can produce an erroneous code output.

Applications of the system model were then discussed. The
first is verification of the totally self-checking property in a
system. A hierarchical approach was suggested, where one
begins with the propagation graphs of small subsystems, forms
the interconnectin graph, and verifies the large subsystem
interconnections to be totally self-checking. Then, a propa-
gation graph can be formed from the interconnection graph
of the large subsystem, and it can be combined with the
propagation graphs of other large subsystems to form the in-
terconnection graph of an even larger subsystem. This process
can continue until the entire system is modeled and verified
to be totally self-checking.

A second application discussed was the placement of check
circuits in order to assure the totally self-checking property
in a system. Finding a placement requiring a minimum number
of checkers was discussed although the model can also be used
as an aid to ad hoc methods or heuristics.

Finally, two other applications were briefly suggested. These
are data contamination analysis and diagnosis. Examples were
used as the principle means for demonstrating them, and their
study in a more formal way is currently under investigation.

APPENDIX

This appendix includes a more formal development of the
material in Section I1. The definition and theorem numbering
corresponds to that used earlier.

For a set of vectors V, V* represents the set of all finite se-
quences. A subsystem or system has input, output and state
spaces as defined in Section I1. The source model, R, is a subset
of 4* X B. The malfunctioning source, R is X* X B. The sink
model, 2 is C*. A system S performs the mapping S: X X Y
XF—>Z.

Definition 1: S is input-output consistent if

V (a,b) e R S(a,B,9) €.
Definition 2: S is fault secure if
VfeF V (a,b)eR S(a,b,f)=S(a,b, o)
orS(e, b, /) ¢ 3.

Definition 3: Let a; o a, represent the concatenation of two
sequences. S is self-testing if

VfeF V (a,¢) € Rsuchthat S(ay, b, f) = S(ay, b,
®)

J oy € A* such that (@ o ap, b) € R, and
S(ayoayb, f) ¢ .

Definition 4: Same as in Section II.

Let V = V| X V5 X, -+, X V, represent an n-tuple of
symbols, such as might be simultaneously applied to » input
signal sets or observed at n output signal sets. Then 7/ V* X
Y* — N (the nonnegative integers) is defined as

17(B, B’) = the first position (time) in signal set j
where 3 and 3 differ.

If the sequences 8 and 3’ € V* do not differ in the signal
set j then 1£(0, B) = .

For a given set of code spaces W; = V;, we define tf’ YV* —
N as t1¥(B) = the first position in signal set j of § that contains
a noncode word. If 3 contains only code words in signal set j,
then t(B) = .

Definition 5: For input signal set i and output signal set j,
the minimum response time, 0;;, is the minimum tf (S(e, b,
), S(c, b, ) — tE(a, o) over all (@, b) € R and («, b)
€ RM for which t£(a, @’) = © when k # i.

Definition 6: The pair of input and output signal sets 7, j is
noncode transmitting if

17(Sa’, b, ¢)) = t5(S(e, b, ¢), S(e, b, ¢))
for all (o, b) € R, (o, b) € RM such that
ti(a, o) = t¥(«’) and
t8(a, ') = © when k # i.

The maximum noncode transmission time, Tj;, is the
maximum 1Y (S(«, b, $)) — t¥ (e, &’) over all o, o satisfying
the above condition.

Theorem I: For a system S with two input signal sets, i and
k, and output signal set, j, let {(a, b} € R and (a’/,b) € RM.
Then t£(S(e, b, $), S(c, b, $)) = min (1£(a, &) + 8, 15 (e,
a’) + (Skj).

Proof: Consider (a”, b) € RM where o” is identical to
« in signal set i and identical to o in signal set j; that is, ¢ £(a”,
) = tf(e, '), and t5(a”, &) = w; t5(a, ) = tF(a, ),
and t£(a, a”) = . Now, t§{(S(c/, b, $), S(a”, b, ¢)) = tE(a”,
o) + 0 and 15(S(a, b, ¢), S(a”, b, )) = t5(a, a”) + 8 by
Definition 5. This means that S(¢, b, ¢) and S(«”, b, ¢) differ
no sooner than t£(a’, «”) + 8;; and S(a, b, ¢) and S(a”, b,
¢) differ no sooner than 1% («, «”) + 6. Then it follows that
S(a, b, ¢) and S(, b, ¢) can differ no sooner than the mini-
mum of £ (a”, &) + 8y and t¥(a, @”) + 8. Or, in other
words, t£(S(a, b, ¢), S(, b, ¢)) = min (tE(a”, &) + Sy,
t5(a, a”) + 6ji) from the definition of ¢£. Then, since t£(a”,
) = tf(a, &) and 15 (e, @”) = t¥(a, a’) we have

ti(s(e, b, ¢), S(, b, ¢)) = min (1 (a, &)
+ 0ix, tJE(Ol, o) + 6jk)- o

Theorem 2: Let the pair of input and output signal sets, i,
J be noncode transmitting. Then
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1Y (S, b, ) = t5(S(er, b, ¢), S(', b, $))
for any («, b) € R, (o, b) € RM such that
a) 1f(a, &) = 1V (a')
b) 1f(a, &) + 0k > tF(a, &) + Tj when k 5 i.

Proof: Consider {(a”,b) € RM where «” is identical to
o/ in signal set i and identical to « in all the other signal sets.

By Definitions 5 and 6 and the fact that tf(a, @”) = t¥(a,

o)
17(S(e”, b, ¢)) = 15(S(a, b, $), S(a”, b, §)
< IF(OZ, a’) + T[j.

From tl:e generalization of Theorem 1
17 (S, b, ¢), S(a”, b, $)) = min (1§ (e, ') + &y;).
ks<i

By condition b) of the theorem
ti(a, o) + 6 > tF(a, o) + Ty for all k 5 1,

including the one with minimum ¢£ (o, o) + Okj.
Combining the above equations and inequalities

17 (S(, b, ¢), S(a”, b, $)) > 15(S(e, b, $), S(”, b, ¢))
=1)(S(a”, b, 9)).
This implies that S(¢, b, ¢) and S(«”, b, ¢) are identical
at tf' S(a”, b, ¢p)) so S(c, b, p) must be noncode at that time.

Furthermore, S(c, b, ¢) and S(«, b, ) must be identical prior
to that time. This implies that

17(S(e, b, 9)) = 17(S(, b, $), S(e, b, $)). o

Definition 7: The pair of input and output signal sets i, j is
strongly noncode transmitting if it is noncode transmitting,
and for all (&, b) € R™

Mo’y 2 NS, b, §)) — T

Theorem 3: Let the pair of input and output signal sets i,
J be strongly noncode transmitting. Then

NS, b, 9)) = t5(S(a, b, ¢), S(c, b, B)).
for any («, b) € R, (’, b) € RM such that

a) tf(a, &) =1} ()
b) t§(a, &) + 6 = tF (e, &) + Ty when k # i.

Proof: The proof is similar to the proof of Theorem 2. A
difference is that

ti(a, o) + 8 2 tF(a, ') + Ty forall k + i.
Since t£(a, ') = t¥ (), the strongly noncode transmitting
property implies that
t5(a, o) + Ty 2 tM(S(, b, $)).

Combining (1) and (2) from the proof of Theorem 2 and the
two inequalities above, we have

17 (S(, b, ¢), S(a”, b, $)) Z 1§(S(a, b, $), S(”, b, $))
2 17(S(e/, b, ¢)).
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When 15(S (0, b, ¢), S(a”, b, ¢)) > tE(S(e, b, ¢), S(a”,

b, ¢)) then the argument used in Theorem 2 suffices. This only
leaves the case where

t7(S(e, b, 9), S(a”, b, ¢)) = 15(S(ex, b, $), S(a”, b, $))

2 1(S(«, b, 9)).
Here, S(«/, b, ¢) and S(a, b, $) must be identical up until

t5(S(a, b, $), S(a”, b, $)). Hence
15(S(e, b, 9), S(, b, 9)) 2 t5(S(c, b, ¢), S(a”, b, ¢))

1Y (S(«, b, 3)).
Then it follows that
t5(S(a, b, 9), S(, b, 9)) = ¥ (S(«, b, $))

because S(«, b, ¢) is never noncode (consistency). m}

REFERENCES

[1] F.F.Sellers, M. Y. Hsiao, and L. W. Bearnson, Error Detecting Logic
for Digital Computers. New York: McGraw-Hill, 1968.

[2] W.C. Carter, and P. R. Schneider, “Design of dynamically checked
computers,” IFIP 68, vol. 2, Edinburg, Scotland, pp. 878-883, Aug.
1968.

[3] D. A. Anderson, “Design of self-checking digital networks using coding
techniques,” Coord. Sci. Lab., Tech. Rep. R-527, Univ. Illinois, Urbana,
Sept. 1971. '

[4] J. E.Smith and G. Metze, “Strongly fault secure logic networks,” IEEE
Trans. Comput., vol. C-27, pp. 491-499, June 1978.

[5] D.C.Koand M. A. Breuer, “The design of self-checking multi-output
combinational circuits,” in Proc. Nat. Comput. Conf., 1977, pp.
711-721.

[6] M. Diaz, P. Azema, and J. M. Ayache, “Unified design of self-checking
and fail-safe combinational circuits and sequential machines,” IEEE
Trans. Comput., vol. C-28, pp. 276-281, Mar. 1979.

[7] F. Ozguner, “Design of totally self-checking asychronous and syn-
chronous sequential machines,” in Proc. 7th Int. Symp. Fault-Tolerant
Comput., June, 1977, pp. 124-129.

[8] R. David and P. Thevenod/Fosse, “Design of totally self-checking
asynchronous modular circuits,” J. Des. Automat. Fault-Tolerant
Comput., vol. 2, pp. 271-287, Oct. 1978.

[9] D. A. Anderson and G. Metze, “Design of totally self-checking check
circuits for m-out-of-n codes,” IEEE Trans. Comput., vol. C-22, pp.
263-269, Mar. 1973.

[10] J. E. Smith, “The design of totally self-checking check circuits for a class
of unordered codes,” J. Des. Automat. Fault-Tolerant Comput., vol.
1, pp. 321-342, Oct. 1977.

[11] M. J. Ashjaee and S. M. Reddy, “On totally self-checking checkers for

separable codes,” IEEE Trans. Comput., vol. C-26, pp. 737-744, Aug.

1977.

M. A. Marouf and A. D. Friedman, “Efficient design of self-checking

checkers for any m-out-of-n code,” IEEE Trans. Comput.,vol. C-27,

pp. 482-490, June 1978.

R. M. Sedmak, and H. L. Liebergot, “Fault-tolerance of a general

purpose computer implemented by very large scale integration,” in Proc.

8th Int. Symp. Fault-Tolerant Comput., June 1978, pp. 137-141.

[14] Y. Crouzet and C. Landrault, “Design of self-checking MOS-LSI cir-
cuits, application to a four-bit microprocessor,” in Proc. 9th Int. Symp.
Fault-Tolerant Comput., June 1979, pp. 189-192.

[15] D. A.Rennels, “Architectures for fault-tolerant spacecraft computers,”
Proc. IEEE, vol. 66, pp. 1255-1268, Oct. 1978.

[16] Proc. 2nd Symp. Large Scale Dig. Calculat. Mach. in Annals of the
Computation Laboratory XXVI. Cambridge, MA: Harvard Univ.
Press, 1949.

[17] J. P. Eckert et al., “The UNIVAC system,” in Proc. AIEE-IRE Conf.,

1961, pp. 6-16.

W. C. Carter et al., “Design of serviceability features for the IBM

system/360,” IBM J. Res. Develop., vol. 8, pp. 115-126, Apr. 1964.

[19] J. L. Fox, “Availability design of system 370 model 168 multiprocessor,”
in Proc. 3rd USA-Japan Comput. Conf., 1975.

[20] W.N. Toy, “Fault-tolerant design of local ESS processors,” Proc. IEEE,
vol. 66, pp. 1126-1145, Oct. 1978.

[12]

(13]

[18]



844 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 9, SEPTEMBER 1983

[21] M. Diazand J. M. DeSouza, “Design of self-checking microprogrammed
controls,” in Proc. 5th Int. Symp. Fault-Tolerant Comput., June 1965,
pp. 137-142.

[22] R. W. Cook et al., “Design of a self-checking microprogram control,”
IEEE Trans. Comput., vol. C-22, pp. 255-262, Mar. 1973.

[23] J. Wakerly, Error Detecting Codes, Self-Checking Circuits, and Ap-
plications. New York: North-Holland, 1978.

[24] D. Ho, “Design of totally self-checking digital systems,” Coord. Sci.
Lab., Tech. Rep. R-723, Univ. Illinois, Oct. 1975.

[25] M. J. Ashjaee, “Totally self-checking check circuits for separable codes,”
Ph.D. dissertation, Univ. Iowa, July 1976.

[26] G. Maki, “A self-checking microprocessor design,” J. Des. Automat.
Fault-Tolerant Comput., vol. 2, pp. 15-27, Jan. 1978.

[27] W.C. Carter et al., “Cost effectiveness of self-checking computer de-
sign,” in Proc. 7th Int. Symp. Fault-Tolerant Comput., June 1977, pp.
117-123.

[28] J. E. Smith, “The design of totally self-checking combinational circuits,”
Coord. Sci. Lab., Tech. Rep. R-737, Univ. Illinois, Urbana, Aug.
1976.

[29] A. M. Usas, “A totally self-checker design for the detection of errors
in periodic signals,” IEEE Trans. Comput., vol. C-24, pp. 483-488, May
1975.

[30] J. E.Smithand P. L. Lam, “A model for totally self-checking systems,”
Dep. Elect. Comput. Eng., Tech. Rep. ECE-80-5, Univ. Wisconsin-
Madison, Mar. 1980.

James E. Smith (S’74-M’76) received the B.S. degree in electrical engineering
and computer science and the M.S. and Ph.D. degrees in computer science
from the University of Illinois, Urbana-Champaign, in 1972, 1974, and 1976,
respectively.

From 1972 to 1976 he was a Research Assistant
at the Coordinated Science Laboratory, Universi-
ty of Illinois. In 1976 he joined the faculty of the
Department of Electrical and Computer Engi-
neering, University of Wisconsin-Madison, where
he is an Associate Professor. He spent the summer
of 1978 at the IBM T. J. Watson Research Center,
Yorktown Heights, NY. From September 1979 to
June 1981 he took a leave of absence from his posi-
tion at the University of Wisconsin to work for the
Control Data Corporation at Arden Hills, MN. His
current research interests are in high performance computer architectures
and fault-tolerant computing.

Dr. Smith is a member of the Association for Computing Machinery and
Sigma Xi.

Paklin Lam was born August 20, 1953 in Hong Kong. He received the B.S.
degree in electrical engineering from the National Taiwan University, Taipei,
Taiwan in 1975. From September 1976 to December 1977 he attended the
University of Wisconsin-Madison where he received the M.S. degree in
electrical engineering. In January 1978 he returned to Taiwan to take an in-
dustrial position.




