
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 10, OCTOBER 1987

Correspondence

On the Complexity of Table Lookup for Iterative Division

BEHROOZ PARHAMI

Abstract-We show that except for a few special cases allowing smaller
tables, the lookup table used for achieving k digits of convergence after
the initial multiplication (or for obtaining the approximate reciprocal of
the divisor with k - 1 digits of accuracy) in iterative division methods
must have at least (r - l)rk words of k + I digits, r being the number
representation base. In the important special case of r = 2 with k - 5, a
2k*word table with k-bit entries can be used, since the initial digit is always
1. It is also shown that a table of this optimal size can always be
constructed. The special cases corresponding to r = 3 with k = 1, and r
= 2 with k c 4, allow smaller tables than the general case and are thus
handled separately.

Index Terms-Arithmetic algorithms, computer arithmetic, division
algorithm, iterative division, quadratic convergence, reciprocal approxi-
mation, table lookup.

I. INTRODUCTION
Iterative division methods, used in high-speed computers, yield

the quotient of two b-digit fractions (values less than 1) in 0(log b)
multiplication steps [1]-[9]. This can be much faster than the 0(b)
addition steps of algorithms which obtain the quotient one digit at a
time, provided that an extremely fast multiplier (preferably pipelined
to handle two multiplications concurrently) is available.

Iterative division algorithms have been known for at least 35 years
[9]. The table lookup enhancement method for such algorithms has
been in practical use for about two decades [1]. While some sort of
validation and optimization must have accompanied each of the many
actual implementations, no general discussion of the required table
size appears in the literature. Waser and Flynn [8, pp. 195-1961
analyze the ROM table size for r = 2. But even in this special case,
no prior proof of optimality is known to the author.
Given two base-r fractions d and z, with z normalized (i.e., z >-

1/r) and d < z, the quotient d/z can be computed by repeated
multiplications as

d/z=daoa,a2 ... af,

provided that the ai's are chosen such that

(1)

follows. First, we rewrite (2) as

II -zao scrk.

Then, using (3), we find

1 -zaOaj= 1 -[1 -(1 -zao)][1 +(1 -zao)]=((-ZaO)2.
Thus,

Ii -zaoal <r-2k.

We obtain, by induction on j

1-zaoal . ajIr-2jk.
Given b-digit fractions, the number of required multiplications is 2f
+ 1 (the last multiplication, yielding za0a, a2 ... af, need not be
performed), where

f=rl0g2 (b/k)].
As an example, for b = 56 and k = 7, seven multiplications are
needed to complete our iterative division algorithm.

There are many practical variations on this basic algorithm, to
speed up the required operations for particular systems. For example,
working with a truncated value for zaoal aj-1, one obtains an
approximate value for aj from (3). This can speed up the subsequent
multiplication due to a reduction in the number of multiplier digits but
reduces the rate of convergence (e.g., [1]). With proper selection of
parameters, the net result may be a faster algorithm, given a certain
level of hardware complexity.

In this paper, we focus on the initial table lookup procedure to
obtain ao as a function of z. Thus, the details of the above-mentioned
variations are not relevant to our discussion.

H. THE LOOKUP TABLE

The selection of ao is based on several high-order digits of z. The
following theorem defines the lookup table needed for this purpose.

Theorem 1: For any normalized base-r fraction

Z=O.X1X2X3 * Xk+lXk+2 ... Xb,

there exists a number less than r, represented as

zaoa,a2 . af=1.0.

In practice, ao is selected as a function of z, using a lookup table, to
yield the initial product zao satisfying

-r-k C zao< +r -k, (2)

Then, in the jth step, aj is computed from

a. = 2 - za0al ... aj- l (3)

or some approximation thereof, based on truncated values.
With the exact value for a1, the proof that (1) holds proceeds as

Manuscript received September 6, 1985.
The author is with the School of Computer Science, Carleton University,

Ottawa, Ont., Canada KIS 5B6; on leave from Sharif University of
Technology, Tehran 14584, Iran.
IEEE Log Number 8713998.

aO=yOy1Y2Y3 ... Yk

and obtainable as a function of xl, x2, * *, xk+ 1, such that (2) holds.
In other words, for (2) to hold, a lookup table containing rk+1 words
of k + 1 base-r digits is sufficient. The lookup table size can actually
be (r - 1)rk, since xi * 0.

Proof: Let xix2x3 * * * Xk+ 1 denote the integer m in base r. The
fraction z being normalized, we have

rkcm<rk+l (4)

and

mr-(k+ l) z<(m + 1)r-(k+l). (5)
Let YOY1Y2 ... Yk denote the integer n in base r, obtainable as a
function of m:

n = g(m) = aork. (6)

0018-9340/87/1000-1233$01.00 © 1987 IEEE

1233

Authorized licensed use limited to: Univ of California-Santa Barbara. Downloaded on September 17, 2009 at 00:03 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 10, OCTOBER 1987

We obtain from (5) and (6)

mnr-(k+ l) zao< (m + l)nr-(2k+l)

Thus, for (2) to hold, we must have

1 -r-k<mnr-(2k+l)

(m + 1)nr-(2k+l) 1 +rk

In other words, n must be an integer solution of

rk+l(rk- 1)/rm nrnrk+l(rk+ l)/(m+ 1).

For (7) to yield some integer solution, we must have

rk+l(rk- I)/mcLrk+l(rk+ l)/(m+ 1)j.

TABLE I
THE LOOKUP TABLE FOR EXAMPLE 1

(7)

(8)
It is now sufficient to prove that (8) holds for all the values of m
satisfying (4).

Let q be the quotient and s c m be the remainder of dividing
rk+l(rk + 1) by m + 1. Thus,

rk+I(rk+ 1)-(m+ 1)q+s. (9)

Obtaining m from (9) and substituting in the left-hand side of (8), and
noting that the right-hand side of (8) is q, we obtain the following
condition:

(r = 10, k = 1)

0.x-X2 Yo Y1 0. x1x2 Yo * YI 0.xx2 Yo * YI

0.10 9.0 0.40 2.3 0.70 1.3
0.11 8.2 0.41 2.2 0.71 1.3
0.12 7.5 0.42 2.2 0.72 1.3
0.13 7.0 0.43 2.1 0.73 1.3
0.14 6.5 0.44 2.1 0.74 1.3
0.15 6.0 0.45 2.0 0.75 1.2
0.16 5.7 0.46 2.0 0.76 1.2
0.17 5.3 0.47 2.0 0.77 1.2
0.18 5.0 0.48 1.9 0.78 1.2
0.19 4.8 0.49 1.9 0.79 1.2

0.20 4.5 0.50 1.8 0.80 1.2
0.21 4.3 0.51 1.8 0.81 1.2
0.22 4.1 0.52 1.8 0.82 1.1
0.23 4.0 0.53 1.7 0.83 1.1
0.24 3.8 0.54 1.7 0.84 1.1
0.25 3.6 0.55 1.7 0.85 1.1
0.26 3.5 0.56 1.7 0.86 1.1
0.27 3.4 0.57 1.6 0.87 1.1
0.28 3.3 0.58 1.6 0.88 1.1
0.29 3.2 0.59 1.6 0.89 1.1

0.30 3.0 0.60 1.5 0.90 1.0
0.31 3.0 0.61 1.5 0.91 1.0
0.32 2.9 0.62 1.5 0.92 1.0
0.33 2.8 0.63 1.5 0.93 1.0
0.34 2.7 0.64 1.5 0.94 1.0
0.35 2.6 0.65 1.4 0.95 1.0
0.36 2.5 0.66 1.4 0.96 1.0
0.37 2.5 0.67 1.4 0.97 1.0
0.38 2.4 0.68 1.4 0.98 1.0
0.39 2.4 0.69 1.4 0.99 1.0

q+sc2rk+l. (10)

But, inequality (10) always holds, since

m+ I 2 rk+ 1

q =Lrk+l(rk+ l)/(m + 1)jc rk l

This concludes the proof.
Example 1: For r = 10 and k 1, taking from (7) the solution

n = g(m) = [rk+ l(rk 1)/m]= [900/ml,
we obtain a lookup table with 90 eight-bit words (Table I). D

III. PROOF OF OPTIMALITY
We now show that the table lookup procedure implied by Theorem

1 is optimal for r > 3, in the sense that neither the number of lookup
digits of z (i.e., xl, x2, xXk+ 1) nor the number of digits of ao =
Yo.Y1Y2 ... Yk can be reduced.

Theorem 2: The lookup table implied by Theorem 1 is optimal for
r > 3; i.e., no smaller table can yield the values of ao satisfying (2)
for all the values of z.

Proof: We first show that the lookup table cannot have fewer,
i.e., (r - I)rkl, words. Letxx2x3 * X denote the integer m' in
base r. Then, following the steps in the proof of Theorem 1, with m'
substituted for m, inequality (7) becomes

rk(rk- Il)m' < ncrk(rk+ l)/(m' + 1). (I1

To complete this part of our proof, we must show that for some value
of m' in the admissible range rk- I < m' < rk, no integer n can
satisfy (11). Let m' - rkl. Substituting this value for m' in (11),
we obtain

r(rk - l) < n < rk(rk + 1)/(rk- i + 1)

which is easily transformed into

r(rk- 1) cn<c r(rk- 1) - r(rk- 2rk- I _-1)(rk- I + 1). (12)

Inequality (12) can yield a value for n only if

rk-2rk-1_ 1<0

This is impossible for r > 3. The fact that (12) does not even have a
noninteger solution indicates that a lookup table with fewer words
does not exist for any word size.
We next show that the word size of our lookup table cannot be

reduced to k digits. Let YoY1Y2 * Yk- l denote the integer n' in base
r, obtainable as a function of m. Then, following the steps in the
proof of Theorem 1, with n' substituted for n, inequality (8) becomes

rk(rk- l)/mm<Lrk(rk + l)/(m+)J. (13)

To complete this part of our proof, we must show that for some value
ofm satisfying (4), inequality (13) does not hold. Let m = rk+ - rk
- 1. Substituting this value for m in (13), we obtain

rk(rk- l)/(rk+I1 k- 1)<L(rk- 1 + 2)/(r- 1)j,
which, noting that rk - 1 is divisible by r - 1 and that 2 < r - 1 for
r > 3, can be changed into

(14)

Simplifying (14), we arrive at rk c 0, which is impossible. This
concludes our proof. O
Example 2: For r = 10 and k = 1, the lookup procedure cannot

be based solely on xl, nor can it yield single-digit values for ao as a
function of xl and x2. Let ao = h(xi). Then, if z - 0. Ix2x3x4 . .,
we must have h(1) 2 9 (in case x2 = x3 = x4 = * * ' = 0) and h(1)
c 5.5 (in case X2 = X3 = X4 = * = 9). Clearly, no such h exists.
Next, let ao = h' (xl, x2) be a single-digit integer. Then, if z =
0.89x3x4 * * we must have h'(8, 9) > 1 and h'(8, 9) < (1 +
10- 1)/z < 1.24. Clearly, no such h ' exists. D

IV. THE Two SPECIAL CASES
Base-2 and base-3 numbers were excepted in the proof of Theorem

2. The reason is that we encounter some irregularities for r = 2 and r
= 3. Thus, we handle these special cases by Theorems 3 and 4,
respectively.

Theorem 3: For r = 2, the lookup table implied by Theorem 1
(with the high-order digits removed to obtain k-digit table entries) is

1234

rk(rl 1)1(rk + I -rk- 1)--(rk- 1)1(r- 1).

Authorized licensed use limited to: Univ of California-Santa Barbara. Downloaded on September 17, 2009 at 00:03 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 10, OCTOBER 1987

optimal for k >- 5. For k c 4, either the table size can be cut in half
or its word size can be reduced by one bit (sometimes both) to obtain
a smaller lookup table.

Proof: Let m' = 2k-I + 1 in the proof of Theorem 2. Then,
we can write (11) as

2k(2k-1)/(2k-1 + 1)CnC 2k(2k +1)/(2k-1 + 2). (15)

Tedious, but straightforward, manipulation transforms (15) into

6/(2k 1+ 1)<n+6-2k+lc 12/(2k-1+2) (16)

The left-hand side of (16) is always greater than zero and the right-
hand side is less than 1 for k 2 5. Thus, the middle part, which is an
integer, cannot lie between these two values. Table II, which shows
the values of ao for k ' 4, completes the first part of our proof. Here,
Zk = m'/2k is the k-bit truncated version of z.

Next, let m = 21k+I - 6 in the proof of Theorem 2. Then, we
write (13) as

(17)2k(2k-1)/(2k+l1-6) c L2k(2 k + 1)/(2k+l - 5)j.
Once again, straightforward manipulation converts (17) to

6/(2k+l - 6)< [3/4 + 35/(2k+ 3-20)]. (18)

For k 2 5, the left-hand side of (18) is greater than zero, while its
right-hand side is zero. Thus, inequality (18), and hence inequality
(13), does not hold for k > 5. As a result, ao cannot have less than k
+ 1 bits. However, the high-order bit of ao is always equal to 1.
Thus, the lookup table for r = 2 and k 2 5 consists of 2k words of
length k.

Table III, which shows the values of a shorter ao for k c 4,
completes our proof. Here, Zk+1 = m/2k+1 is the (k + 1)-digit
truncated version of z. Note that for k c 3, the table size and the
number of bits in ao can be reduced at the same time. This is true
since yk is zero in Table II and a' is independent of Xk+ 1 in Table Ill
for k ' 3. For k = 4, either the table size or the number of bits in ao
can be reduced, with the former option yielding a smaller table (40
total bits compared to 64 bits). O

Theorem 4: For r = 3, the lookup table implied by Theorem 1 is
optimal for k 2 2. For k = 1, the table size can be reduced by a
factor of 3 and its word size reduced by one digit.

Proof: Let m' = 3 k-l in the proof of Theorem 2. Then, we can
write (11) as

(19)

TABLE II
A SET OF LOOKUP TABLES FOR r = 2 AND k . 4

k Zk a0

1 0.1 1.0

2 0.10 1.10
2 0.11 1.00

3 0.100 1.110
3 0.101 1.100
3 0.110 1.010
3 0.111 1.000

4 0.1000 1.1110
4 0.1001 1.1011
4 0.1010 1.1000
4 0.1011 1.0110
4 0.1100 1.0100
4 0.1101 1.0011
4 0.1110 1.0010
4 0.1111 1.0000

TABLE III
ANOTHER SET OF LOOKUP TABLES FOR r = 2 AND k c 4

k Zk +1 a0o

1 0.10 1.
1 0.11 1.

2 0.100 1.1
2 0.101 1.1
2 0.110 1.0
2 0.111 1.0

3 0.1000 1.11
3 0.1001 1.11
3 0.1010 1.10
3 0.1011 1.10
3 0.1100 1.01
3 0.1101 1.01
3 0.1110 1.00
3 0.1111 1.00

4 0.10000 1.111
4 0.10001 1.111
4 0.10010 1.110
4 0.10011 1.101
4 0.10100 1.100
4 0.10101 1.100
4 0.10110 1.011
4 0.10111 1.011
4 0.11000 1.010
4 0.11001 1.010
4 0.11010 1.010
4 0.11011 1.001
4 0.11100 1.001
4 0.11101 1.001
4 0.11110 1.000
4 0.11111 1.0003S(3t r1)/3p-ai ns3r(3m 1)/(3into

Straightforward manipulation transforms (19) into

Osn_- 3(3k- 1) 6/(3k -1+ 1)-3. (20)

For k 2 2, the right-hand side of (20) becomes negative, leading to a
contradiction. Noting that for k = 1, the values of ao = 2.0 and a0 =
1.0 can be selected for xl = 1 and xl = 2, respectively, completes
the first part of our proof.

Next, let m- 3k+1 - 4 in the proof of Theorem 2. Then, we
write (13) as

3k(3k_ 1)/(3k+ 1 4)-<Pk(3k+ 1)/(3k+ 1_ 3)2 -(21)

Subtracting 3k-1 from both sides of (21), we obtain after some
manipulation

1/9+ 4/(3 k+3-36) <L2/3 + 2/(3 k+1 - 3)j. (22)

For k > 2, the left-hand side of (22) is greater than zero, while its
right-hand side is zero. Thus, inequality (22), and hence (13), does
not hold for k 2 2. Noting that the values of ao, given in the first part
of the proof for k = 1, are actually single-digit integers completes
our proof. -I

V. CONCLUSION
Except for a few special cases handled by Theorems 3 and 4,

Theorems 1 and 2 show that a lookup table with (r - 1)rk words of k
+ 1 base-r digits is necessary and sufficient for the iterative division
algorithm, if k digits of convergence are to be achieved with the
initial multiplication. Theorem 1 also provides a method for
constructing the lookup table, as illustrated by Example 1. In general,
n can be selected as

n=Frk+l(rk- 1)/mi (23)

from (7). Considering the definitions of z and ao in the statement of
Theorem 1 and denoting the (k + 1)-digit truncated value of z by
Zk+ 1, we can transform (23) into

aO= F(rk 1)/Zk±ll/rk. (24)

Equation (24) can be used to construct lookup tables for iterative
division. Lookup tables for the special cases of r = 3 with k = 1 and
r = 2 with k c 4 have been provided in this paper as constructive
proofs for parts of Theorems 3 and 4.
The results presented here are also valid for division with

reciprocal approximation. To see this, we show that ao is actually an

1235

Authorized licensed use limited to: Univ of California-Santa Barbara. Downloaded on September 17, 2009 at 00:03 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 10, OCTOBER 1987

approximation of l/z with k - 1 digits of accuracy. Let

ao= l/z+e,

where e is the absolute error of the initial reciprocal approximation.
Then, zao = 1 + ze, and (2) can be written as

lzeIIrk. (25)

The fraction z being normalized, we have z- I r. Thus, we obtain
from (25)

r(k- 1)
lel <r-k)

That is to say, as an approximation of lI/z, ao is accurate to k - I
digits (Yo.Y1Y2Y3 ... Yk-2, with Yk-I and Yk possibly being in
error). Thus, to obtain the reciprocal of z with k - 1 digits,of
accuracy, a lookup table with (r - l)rk words of k + 1 base-r digits
is needed in most cases.

ACKNOWLEDGMENT

The research reported in this paper was carried out while the
author was with Sharif University of Technology, Tehran 14584,
Iran. The author gratefully acknowledges the contribution of referee
B for bringing reference [8] to his attention.

REFERENCES
[1] S. F. Anderson et al., "The IBM System/360 Model 91: Floating point

execution unit," IBM J. Res. Devel., vol. 11, pp. 34-53, Jan. 1967.
[2] D. Ferrari, "A division method using a parallel multiplier," IEEE

Trans. Comput., vol. EC-16, pp. 224-226, Apr. 1967.
[3] M. J. Flynn, "On division by functional iteration," IEEE Trans.

Comput., vol. C-19, pp. 702-706, Aug. 1970.
[4] R. Z. Goldschmidt, "Applications of division by convergence," M.S.

thesis, Massachusetts Instit. Technol.,- Cambridge, MA, June 1964.
[5] J. B. Gosling, Design of Arithmetic Units for Digital Computers.

London, England: Macmillan, 1980.
[61 K. Hwang, Computer Arithmetic: Principles, Architecture, and

Design. New York: Wiley, 1979.
[7] E. V. Krishnamurthy, "On optimal iterative schemes for high speed

division," IEEE Trans. Comput., vol. C-19, pp. 227-231, Mar.
1970.

[8] S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital
Systems Designers. New York: Holt, Rinehart, and Winston, 1982.

[9] M. V. Wilkes et al., Preparation of Programs for an Electronic
Digital Computer. Reading, MA: Addison-Wesley, 1951.

Finite Field Fault-Tolerant Digital Filtering Architectures

G. ROBERT REDINBO

Abstract-Digital filtering architectures that simultaneously offer
advantages for VLSI fabrication and contain distributed error control are

presented. Such structures require parallelism as well as inherent error-

control capabilities because VLSI implementations are susceptible to
temporary and intermittent hardware errors. The filtering convolution
operation is similar to the formation of cyclicerror-correcting codes so

that fault-tolerant systems employing finite field arithmetic may be
designed containing such codes imbedded directly in the architecture. The
interconnection of such systems produces a fault-tolerant system. In

Manuscript received October 16, 1984; revised September 24, 1985 and
March 25, 1986. This work was supported in part by AFOSR Grant 80-153
and by NSF Grant DMC-19843.

The author is with the Departrnent of Electrical and Computer Engineering/
Computer Science, University of California, Davis, CA 95616.
IEEE Log Number 8715309.

addition, the subsystems possess a common design structure which is
easily customized to the particular field required, an attractive feature for
yield enhancement. Straightforward realizations depending on parallel
algebraic decompositions are studied, introducing the locations for fault
tolerance and the role of cyclic codes.

Index Terms-Chinese Remainder Theorem, cyclic codes, digital
filtering, error-correcting codes, fault-tolerant computing, finite fields,
residue arithmetic, VLSI.

INTRODUCTION

The modern trend in digital electronics dictates that systems should
be constructed from modular subsystems which are in turn easily
replicated for fabrication in very large scale integration (VLSI)
technology. Previous work has shown how digital filtering systems
can be designed for wafer scale integration (WSI) by using many
parallel sections, each employing small finite fields [1]. However, at
the same time problems of testing and error control become more
difficult while yield appears as a limiting factor. Wafer scale
integrated VLSI digital filtering systems require concurrent testing
and error-control subsystems distributed throughout their architec-
tures.
A new major source of errors is called soft errors. They are

internal momentary errors random in both time and space, character-
ized by their short duration and infrequent random nature. Soft errors
may arise from several sources such as electric field distortions
caused by atomic particle injection or random parameter variations
due to circuit processing tolerances. Nevertheless, a soft error acts
temporarily just as an intermittent fault, but its source cannot be
traced toany permanent defect in the electronic structure or design.
Classical testing and fault-tolerant approaches are inadequate in
coping with soft errors, and future complex VLSI systems must
devote a portion of the increased system architectural capability to
internal distributed error control to enhance overall system perform-
ance. In addition, these same error-control features increase the yield
of complete systems by providing full external system performance
even though internal electronic devices are not functioning properly.
A new approach for fault tolerance involves cyclic codes which can

be imbedded in a distributed fashion throughout the architectures,
greatly increasing the overall reliability. These architectures take full
advantage of VLSI capabilities while still allowing powerful error-
control features to be built directly into all the parts of the system
because the inherent algebraic structures of error-correcting codes,
over general finite fields, match the fundamental operation in
filtering, convolution. Special structures associated with cyclic codes
called minimal ideals have very important algebraic properties not
only affording implicit error protection but leading to fast maximally
parallel implementation algorithms [2].

Digital filtering operations, after the proper sampling, scaling,
rounding, and sequence segmentation are viewed as being performed
over a ring of integers modulo M where M is a large positive integer
[l]-[4]. Furthermore, it is possible to decompose the implementation
into many parallel realizations by using residue number system
techniques [5], [6]. When the modulus Mis a product of only distinct
primes, the parallel decomposition results in subsections operating
with finite field arithmetic [7] where in this case the integer Mhas the
following form.

M=p1P2 ..Pss
This situation is depicted in Fig. 1, where each parallel subsection
operates over the distinct finite fields denoted by. GF(p1), i = 1, 2,**, s. The arithmetic decomposition and recombination operations
shown, respectively, at the input and output in Fig.1 are a result of
the Chinese Remainder Theorem [8], [9].

There are known techniques[10]-[15] for protecting the arithmetic
reconstruction shown at the output in Fig. 1. However, the major

0018-9340/87/1000-1236$01.00 © 1987 IEEE

1236

Authorized licensed use limited to: Univ of California-Santa Barbara. Downloaded on September 17, 2009 at 00:03 from IEEE Xplore. Restrictions apply.

