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Streaming BDD Manipulation

Shin-ichi Minato, Member, IEEE

Abstract—Binary Decision Diagrams (BDDs) are now commonly used for handling Boolean functions because of their excellent
efficiency in terms of time and space. However, the conventional BDD manipulation algorithm is strongly based on the hash table
technique, so it always encounters the memory overflow problem when handling large-scale BDD data. This paper proposes a new
streaming BDD manipulation method that never causes memory overflow or swap out. This method allows us to handle very large-
scale BDD stream data beyond the memory limitation. Our method can be characterized as follows: 1) it gives a continuous tradeoff
curve between memory usage and stream data length, 2) valid solutions for a partial Boolean space can be obtained if we break the
process before finishing, and 3) easily accelerated by pipelined multiprocessing. An experimental result demonstrates that we can
succeed in finding a number of solutions to a SAT problem using commodity PC with a 64 MB memory, where as the conventional
BDD manipulator would have required a 100GB memory. BDD manipulation has been considered as an intensively memory-
consuming procedure, but now we can also utilize the hard disk and network resources as well. The method leads to a new approach

to BDD manipulation.

Index Terms—BDD, binary decision diagram, VLS| CAD, logic design, verification, testing, data structure, algorithm, combinatorial

problem.

1 INTRODUCTION

BOOLEAN function manipulation is one of the most
important techniques in digital system design and
testing. Binary Decision Diagrams (BDDs) [4] are now
commonly used for handling Boolean functions because of
their superior efficiency in terms of time and space. A
number of BDD packages (e.g., [3], [15], [23], [11], [22], [7])
have been implemented and successfully applied to many
real-life problems.

In conventional BDD packages, BDD data are held in
main memory. When logic operations are performed
repeatedly, the size of the BDDs may dramatically increase
leading to the failure (or a significant slow down) of the
computation due to memory overflow. In general, we
cannot know the peak BDD size beforehand, so memory
overflow is a serious problem. This is a common drawback
of BDD-based applications.

The cause of memory overflow is that BDD manipulation
is strongly based on the hash table technique to ensure the
uniqueness of each BDD node. The hash table is well
supported by the random access memory and, thus,
performance becomes impractical when the memory
capacity is insufficient.

This paper proposes a new BDD manipulation method
for processing a large number of BDD nodes beyond the
hash table size. It never causes memory overflow or swap
out. BDD data are accessed through the I/O stream ports.
We use the main memory only as a temporary working
space, where as the conventional method constructs the
whole BDD data in main memory.
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E-mail: minato@ieee.org
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Some existing BDD packages (e.g., [23]) also have a
function to store (and reload) the internal BDD data as a
sequential file on a hard disk however, the size of the
BDD data file is bounded by the main memory capacity.
Our new method can handle and compute large-scale BDD
data beyond the memory limitation up to the hard disk
capacity, or even more than the hard disk limit through the
direct connection of networked processors.

Our method can be characterized as follows: 1) it gives a
continuous tradeoff curve between memory usage and
stream data length, 2) valid solutions for a partial Boolean
space can be obtained if we break the process before finishing,
and 3) easily accelerated by pipelined multiprocessing.

This paper is organized as follows: First, we review the
conventional BDD manipulation method in Section 2. We
then describe our new BDD manipulation method in
Section 3. We present implementation issues and experi-
mental results in Section 4. Finally, we describe related
works and concluding remarks in Section 5 and 6.

2 CONVENTIONAL BDD MANIPULATION

Here, we briefly review the conventional BDD manipula-
tion algorithm. BDDs are a graph representation of Boolean
functions, as shown in Fig. 1a. This data structure is a
reduced form of the binary decision tree, shown in Fig. 1b,
where the 0- and 1-terminal nodes represent the output
value {0,1} decided by input assignments {0,1}". The
following reduction rules [4] give a canonical form of BDD
to a Boolean function under a fixed variable ordering.

e Delete all redundant nodes whose two edges point
to the same node. (Fig. 2a)
e Share all equivalent subgraphs. (Fig. 2b)

0018-9340/02/$17.00 © 2002 IEEE
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Fig. 1. BDDs for F' = ab + ¢.(a) BDD. (b) Binary decision tree.

Most practical BDD packages follow the above reduction
rules.!

In general, BDDs are constructed by a sequence of logic
operations, starting from trivial, single-node BDDs. The
binary operation algorithm [4] to generate BDD h for
operation (f o g) is based on the following expansion:

fog=1-(fu=0) °9w=0) + v (f=1) ° go=1)),

where v is the highest ordered variable in f and g. This
formula represents a new node with variable v and two
subgraphs generated by suboperations (f(,—g © g—0)) and
(fw=1) © gw=1))- Repeating this expansion recursively for all
the input variables eventually yields trivial operations (e.g.,
f-0=0,f® f=0,etc.), and the results are obtained. In this
recursive procedure, a number of equivalent suboperations
may appear. To avoid those redundant operations, the
following two techniques are used;

e Unique table: use a hash table to identify all existing
nodes, so as not to create duplicate nodes.

e Operation cache: a hash-based cache to store recent
suboperations and the results. If this cache hits,
further recursive calls are pruned.

Based on these techniques, the logic operation can be carried
out in a time almost linear to the number of BDD nodes. The
hash table operation is one of the keys to efficient BDD
manipulation.

A typical BDD package is implemented as a set of library
calls in C or C++. BDD nodes are basically defined as an array
of pointers or indices in the program. The package is linked
with application programs in the compilation process, and
the memory block for the BDD nodes is allocated at the run
time. When logic operations are performed repeatedly, the
size of the BDDs may dramatically increase leading to the
failure (or a significant slow down) of the computation due to
memory overflow. BDD manipulation is very efficient only if
memory size is sufficient.

The reason why BDDs must be handled in the main
memory is that BDD manipulation is supported by the hash
table technique to ensure the uniqueness of each BDD node.
The hash table is well supported by the characteristics of
random access memory, and thus, the performance be-
comes impractical when memory capacity is insufficient.

1. More exactly, this type of BDD is called Reduced Ordered BDD.
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Fig. 2. Reduction rules for BDDs. (a) Node deletion. (b) Node sharing.

Several ideas have been proposed to increase the
efficiency of memory use (e.g., [11], [22], [7]) and they offer
some improvement in terms of computation time and
memory requirement. On the other hand, there is endless
requirement for handling large-scale Boolean functions, and
a number of efforts have been devoted to manipulate huge
BDDs beyond the memory limit. Breadth-first algorithm [17]
is one solution to this problem. This algorithm horizontally
slices the BDD nodes for each input variable, and manip-
ulates them slice-by-slice. It reduces random accesses to the
hard disk. In addition, there is a hybrid method [26] that
uses breadth-first and depth-first manners to improve
performance. However, the breadth-first algorithm still
has a limitation in that at least one slice of the BDD nodes
must be stored in the same hash table to keep uniqueness.
When the “width of BDD” is too large, memory overflow
problem still occurs.

Some works distribute the BDD data over a multi-
processing platform. This approach includes the method of
partitioning BDDs by assigning {0,1} into a few top input
variables [8], the randomized BDD node distribution
method [24], and the horizontal BDD partition method
which groups the input variables [19], [13]. In these
methods, we can handle large-scale BDDs beyond the
memory limitation of a single machine; however, they still
need sufficient total memory to store all BDD nodes.

Consequently, the existing BDD packages all place some
limit on BDD node number according to the memory
available, and we cannot avoid memory overflow or swap
out problems.

3 STREAMING BDD MANIPULATION

In this section, we present a new algorithm of BDD
manipulation based on the streaming data model.

3.1 Streaming Data Model

First, we consider the bit-stream data of the truth tables for
Boolean functions, shown in Fig. 3. In this model, we can
compute a logic operation bit by bit serially using no
internal memory. However, the truth table representation

truth table
truth table L
[TTT T seml] CPU
-
truth table

Fig. 3. Streaming truth-table computation.
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Fig. 4. Streaming BDD computation.

always requires exponential data length for an n-input
function.

We then consider the streaming BDD data model, shown
in Fig. 4. The serial operation of a truth table means
scanning of Boolean space in a fixed order. This scanning
corresponds to a depth-first traversal of a BDD. If we
serialize the BDD structure data into a stream file with
depth-first traversal, we can compute a logic operation
using no internal memory.

3.2 Data Format

Here, we explain the basic idea of our BDD serialization
method. We represent each BDD node as a pair of
parentheses: ( 0-child 1-child ). For example, the
“nonshared” BDD shown in Fig. 5a is written as:

(((T1 TO)(T1 TO))((T1 TO)(T1 T1))),

where T0 and T1 are 0- and 1-terminal nodes, respectively.
The nesting parentheses represent the structure of the BDD.
This is just a depth-first traversal of BDD nodes when we
read this stream from left to right.

We then set an identifier to each nonterminal node using
the syntax: ( 0-child 1-child ) : NodeID.

The same BDD is now described as:

(((T1 TO) : N1(T1 TO) : N2) : N3((T1 TO) :
N4(T1 T1) : N5) : N6) : N7.

Next, consider the conventional “shared” BDD shown in
Fig. 5b. If we traverse a shared subgraph repeatedly, the
stream data length will become exponential to the number
of input variables as is true for the “nonshared” BDD.
Duplicative traversal can be avoided in the following way:
if we find a node Nj, already visited, we do not traverse the

N1_¥

N3
N1 ~L N2

:
0]

T1 TO

(a) (b)

Fig. 5. Example of BDDs to be serialized. (a) Nonshared BDD. (b)
Shared BDD.
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subgraph but instead say “Refer to N,’s children.” Using

this compression method, the BDD stream is reduced to:

(((T1 TO) : N1 N1)(N1(T1 T1)) : N2) : N3.

In this way, we can serialize the structure of a BDD as
stream data whose length is linear to the original BDD data
size.

We have one more reduction rule. When the same
NodelD appears twice in succession in the BDD stream, we
simply suppress the second appearance. For example,
((T1 TO) : N1 N1) is reduced to ((T1TO) : N1). This corre-
sponds to the conventional BDD reduction rule to eliminate
BDD nodes whose 0- and 1l-edge point to the same
destination.

To produce such compressed BDD streams, we need a
hash table (called unique table) as well as a conventional
BDD package to identify all visited nodes. If the unique
table is working well (i.e., all the visited nodes can be stored
in the table), the BDD stream is just a serialized representa-
tion of the conventional BDD. The important difference is
seen when the capacity of the unique table was insufficient
due to memory limits. If some of the visited BDD nodes are
missing from the unique table, we may sometimes fail to
discover the second visit of the same node, and duplicative
traversals will appear in the stream data. This means a drop
in the data compression rate. Less memory will cause a
further drop in the compression rate. Note that, even if we
have absolutely no memory for the unique table, the
BDD data streams can be computed robustly. This is a
great difference from the conventional BDD packages,
which cannot continue the execution.

Fig. 6 shows the syntax of our data format in a BNF-like
description.” First, we declare the unique table size at the
top of the stream. A BDD stream must start with integer
MaxID to specify table size to the BDD manipulator. Each
BDD node is identified by an integer ID from 1 to MaxID.
We do not use symbols “N1,N2,...” for the nonterminal
nodes, but only numbers “1,2,...”. The 0-terminal node is
expressed by the special node ID “0”. As we use complement
edges, the 1-terminal is expressed as ~0, where “~” denotes
the inverter to the following node. The category Stor-
edNode expresses a BDD node already stored in the table,
and TempNode is a temporary node. A StoredNode
cannot include a TempNode in its children. A NodeID
must be referred to after its registration. If a pair of
parentheses encloses only one node, it indicates that the two
children are equivalent. In our format, we do not need an
explicit notation of the input variable for each node because
the context of the parentheses indicates the corresponding
variable.?

In Fig. 7, we illustrate some simple BDDs and their
stream representations. The examples contain complemen-
ted edges. Here, we set the unique table size at 1,024 and
this is declared at the top of the stream.

If the original BDD nodes do not exceed MaxID, the
BDD stream data uniquely represent Boolean functions

2. Here, we show a plain text format for easy debugging. A binary format
will be more compact.

3. Our implementation employs run-length compaction for successive
parentheses: e.g., “((((((” into “(6.”
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BDDstream ::= MaxID Node
| MaxID ’~’ Node

Node ::= StoredNode
| TempNode

StoredNode ::= NodelD
| >(’ StoredNode ’)’
| °(’ StoredNode StoredNode ’):’ NodeID
| >(’ StoredNode ’~’ StoredNode ’):’ NodeID

Templode ::= ?(?’ Node Node ’)’
| ?(’ Node =’ lNlode )’

MaxID ::= <non-negative integer>

NodeID = <non-negative integer>

Fig. 6. Syntax of BDD data format.
abce
1024 1024

(0 (0 (0 ~0):1):2):3

complement edge
O—»

Fig. 7. BDD streams for simple functions.

under fixed variable ordering. If the table size is insuffi-
cient, the stream data may yield different representations
for the same BDD. For example, Figs. 8, 9, and 10 show the
BDD stream data for the same function with different
MaxIDs: 24, 20, and 10, respectively. In the first case, the
node table is large enough to the complete depth first
traversal of the BDD.

Table overflow occurs in the last two cases. Our traversal
method allows for the recycle of a “orphan” node ID, which
is not referred from other nodes. In the figures, a node label
enclosed by parentheses indicates a temporary label assign-
ment that has been reused for another node. The reader will
easily understand the traversal mechanism by preparing as
many numbered tokens as MaxID, and putting them on the
BDD nodes in the figure. For example, when MaxID= 20,
the tokens N1 to N20 are labeled and stored in the table

(((0 ~0):1 ~0):2 ~0):3

1024
((0 (0 ~0):1):2 (1 ~0):3):4

normally, but we have no token for the 21st node. We then
take back token N20 at the orphan node and reuse it for the
21st node. Consequently, node N16 newly becomes or-
phaned, so we reuse it the next time around. In our
implementation, we prepare a recycle queue to store orphan
nodes and pick up the nodes in LRU manner.

If one node label is reused, we must not store its parent
node in the unique table because information would be
partly lost. We call such a node TempNode to distinguish it
from StoredNode. When the unique table size is smaller
again, node recycling occurs more frequently, more
TempNodes are produced, and the output data grows
longer. This method gives a continuous tradeoff between
memory usage and streaming data compression rate.

The choice of the orphan nodes is another technical point
for efficient memory use. If we can foresee the future
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(CCCCC0(0(070):1):2):3(2(170):4):5):6(5(470):7)
:8):9(8(770):10):11):12(11(107(0 3):13):14):15)
:16(15(147 (13 6):17):18):19):20(19(187 (17 9):21)

122):23):24.
complement edge
oO—»
T0
Fig. 8. BDD stream for “9sym” (with large enough table).
9sym
20

complement edge
oO—»

Fig. 9. BDD stream for “9sym” (table size = 20).

BDD traversal, the best method is to reuse nodes that will not
be referred to again by the others. However, our streaming
manipulation cannot predict future information, so we use
LRU policy. Anyway, when the node recycle order is fixed to
a deterministic manner, our BDD stream format can uniquely

represent the BDD structure under the same MaxID.

(CCCCCo(0(0~0):1):2):3(2(170):4):5):6(5(4"0):7)
:8):9(8(770):10):11):12(11(107(0 3):13):14):15)
:16(15(147(13 6):17):18):19):20(19(187 (17 9):20)
:16):12).

3.3 Logic Operation

Fig. 11 shows the internal structure of our implementation
for binary logic operation. It has two temporary BDD tables
for the input parts and one for the output part. The table
size of each input part is automatically decided to see the
top of the data stream (i.e., MaxID). The unique table size of
the output part is set by hand (specified by a command
parameter).
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9sym

10

complement edge
oO—>»

Fig. 10. BDD stream for “9sym” (table size = 10).

479

(CCCC0(0(070):1):2):3(2(170):4):5):6(5(470):7)
:8):9(8(770):10):9)(9(107(0 3):6):9))(((8 10):9
(1076):9)(97(6(3 5):8):9)))(((((5 7):10(770):9)
:6(97(0 3):8):6)(67(8(3 5):10):6))(((878):6(8
10):6) " (6(10(5 7):9):6)))).

. 1 |Inputpart
‘ Output part M‘ BDD qum I0puL
?utpm_ BDD table Stk dor table stream
stream (hash function) M I
(recycle queue) nput
stream

Operation

cache

Fig. 11. Internal structure of the program.

The output part has a hash-based unique table and a
recycle node queue to control memory usage. The input
part does not need such a memory management system and
simply forms BDD nodes on the table according to the input
stream data. At first, we start parsing the input stream data
and storing the BDD structure in the internal table. When
the same node ID reappears in the stream, we suspend
parsing and switch the traversal to the internal table. After
traversal of the subgraph in the table, we resume parsing of
the stream data.

The main part applies the logic operation to each pair of
corresponding BDD nodes of the two input parts, and sends
the result to the output part. As is done in the conventional
BDD manipulation, we skip redundant suboperations by
using an operation cache. This enables us to compute a logic

operation in a time almost linear to the I/O data length.
We describe the pseudocodes of the conventional logic
operation algorithm (Fig. 12) and our streaming algorithm
(Fig. 13) below. For conciseness, here we omit the detailed
codes used to arrange the parentheses and NodelDs in the

output stream. In the streaming version, “get_child” and

“def_node” routines correspond to the input part functions.

bdd_op(op, F,G)
{ i (Lerminal case(op, F.G)) R — result ;
clse if (operation cache hit(op, F, 7)) R — result ;
clse
{ let « be the top variable of I, (7 ;
Fo — get_child(F,z,0) ; Gy «— get_child(G,z,0) ;
Ry — bdd_op(op, Fy,Gy) ;
Fi — get_child(F,z, 1) ; Gy « get_child(G,z, 1) ;
Ry — bdd_op(op, F1.G1) ;
if (Rp equals Ry) R+ Ry ;
else
{ IR — find or add in the BDDtable(z, I%y, I21) ;
insert in the operation cache((op, F, (i), R) ;
}
}

return R ;

Fig. 12. Conventional logic operation algorithm.
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bdd_op(op, F, G)
{ if (terminal case(op, F, G)) R < result ;

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.5, MAY 2002

else if (operation cache hit(op, F, G)) R < result ;

else
{ let & be the top variable of F,G ;

Fy — get_child(F, z,0) ; Gy «+ get_child(G,z,0) ;

Rg « bdd_op(op, Fy, Go) ;

Fy — get_child(F, 2, 1) ; Gy «— get_child(G,=z,1) ;

Ry — bdd_op(op, F1,G1) ;

defnode((x, Fy, Fy), F) ; def_node((x, Gy, G1),G) ;
if (Ry or Ry is TempNode) { R «— Templode ; print “(Ry R1)” ; }

else if (Rp equals Ry) R — Ry ;
else

{ R — find or add in the output_BDDtable(z, Ry, R1} ;
if (Rg has been TempHode due to overwriting) { R < TempNode ; print “(Rg R1)” ; }
if (R is newly registered in the output.BDDtable) print “(Ry Ry): R ;
insert in the operation cache((op, F, ), R) ;

}
}
return R ;

}

get_child( 7, z,v)
{ if (x is not the top variable of F') return I ;

else if( F is already in the input_BDDtable(z, Fiy, F})) return F, ;
else read from the stream input for F;, and return it;

}

def_node((x, Fy, I1), F)

{ if(Fy, F1 and F is given from the stream input) insert in the input_BDDtable((z, Fy, F1), F') ;

1

Fig. 13. Streaming logic operation algorithm.

The statements for checking “output_BDDtable” and print-
ing the result data belong to the output part.

In the streaming algorithm, we must consider the
following case: When creating a new node, one of its child
node data might have been invalid since it was overwritten
due to node reuse. To detect such a case, we attach a time-
stamp to each node, and if the stamp has changed, we
produce TempNode instead of StoredNode.

We also check the redundancy of the operation result.
We print out the node data only in two cases:

e The node is a Tempnode.
e The node is newly registered in the output_BDD-
table.

In this way, we can print out the NodeIDs in the same manner
(depth-first traversal of a BDD) as shown in Section 3.2. For
example, we sometimes see the case in which the two input
streams represent complicated Boolean functions but the
binary operation result always becomes zero. In this case, we
do not produce “((((0 0)(0 0))((00)(00))...” since no new
nodes are registered in the output_NodeTable in the
operation, instead, we just print “0” upon finishing the logic
operation.

Here, we have discussed on binary logic operations, but
the algorithm is easily extended to support ternary (3-input)
operations by adding one more input part (using not only F'

and G, but also, H in Fig. 13). In many cases, the use of
ternary operations reduces computation time compared to a
cascade of binary operations, although we need additional
memory space for the extra input part. Four and more input
operations are also possible in the same manner.

4 |MPLEMENTATION AND EXPERIMENTAL RESULTS

We implemented a logic operation program to manipulate
BDD streams in a UNIX environment. The program, named
BDDstrm, occupies about 2,000 lines of C code. At first, we
write some trivial BDD stream files, and then repeatedly
execute BDDstrm to construct the objective BDD streams. In
the UNIX environment, we can conveniently use the pipe
connection of two or more processes in a command line. For
example, the sequence of logic operations “(filel and
file2) or file3” can be computed in the following
command lines:

% BDDstrm AND filel file2 > tmpfile
% BDDstrm OR tmpfile file3

The same operation can be done by using a pipe
connection as:

% BDDstrm AND filel file2 | BDDstrm OR file3
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don’t care set

-«— BDD stream / (incompleted part) .
| 'l ]
(top) (break point) (end)

Fig. 14. Incomplete BDD stream and don'‘t care set.

By using a pipe connection, we do not have to store the
tmpfile in a hard disk; however, we need more memory
space for the two BDDstrm processes.

BDDstrm has an option to limit the output data length.
The program automatically stops at the specified limit to
prevent hard disk overflow. In this case, or whenever we hit
the break key before finishing, we can get an incomplete
output stream data on a partial Boolean space. As shown in
Fig. 14, the incomplete part can be regarded as the don’t care
set of the Boolean function. In our system, the incomplete
BDD stream can be used as the input for the next logic
operation. This is a great advantage of our streaming
method. In addition, our program reports the ratio (%) of
the care set and don’t care set in the Boolean space.

As the interface to conventional BDD-based applications,
we implemented an additional function in our (conven-
tional) BDD package to print out BDD stream files by
traversing in-memory BDDs. It was useful for developing,
debugging, and evaluating our BDDstrm program. This file
interface allows our streaming manipulator can utilize the
results of various BDD-based program libraries.

4.1 Basic Performances
Here, we summarize the basic performance of BDDstrm.

e Memory requirement:

- 12 Byte/node for each input BDD table.
- 31 Byte/node for the output BDD table.
- (about a million BDD nodes occupy a 64MB
memory.)
e Streaming data length:

- 5to 15 Byte/node.
- (about a million BDD nodes occupy a 10MB file)
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e Computation performance (I/O throughput):

- 03 to 0.5 MB/sec .
- (about a million BDD nodes in 30 sec.)
- on a Celeron 300A, 64MB, FreeBSD 2.6.

In terms of computation performance, our streaming
method would be a few or about ten times slower than
conventional BDD manipulation. This is due to the over-
head of serialized manipulation. We consider that this is a
reasonable trade off to be able to handle very large-scale
data beyond main memory limits.

4.2 Tradeoff: Memory versus Data Length

As discussed in Section 3, the length of the BDD stream will
increase when the unique table size is insufficient. To show
the tradeoff curve of the data length for the table size
shortage, we conducted the following experiment. First, we
provide a unique table of sufficient size and counted the
number of BDD nodes written in the output data. We then
gradually decreased the table size to observe the growth in
output data.

The results are shown in Fig. 15. “adder10” and “mult10”
are a 10 bit adder and multiplier. “8queens” is the solution
function of the 8-Queens problem. The other functions were
chosen from MCNC’91 benchmark set. Since our program
handles only single-output functions, we picked up the
most (likely) complicated primary output in the circuit. In
the memory sufficiency notation, 100 percent ratio means
just enough to support the original BDD.

In this experiment, we can see that the tradeoff curve
depends on the function. For example, “multl0,”
“8queens,” and “cm150a” are not so sensitive to memory
shortage up to 10 percent or less. This means that we can
efficiently handle BDDs that are more than ten times the
memory capacity. On the other hand, “parity,” “c432,” and
“too_large” are very sensitive.

Here, we consider which types of BDDs are sensitive to
the memory shortage. For example, the n-input multiplier
function requires an exponential number of BDD nodes.
This means that most of the graph forms a binary tree
structure, and most of the BDD nodes are referred to only
once. In this case, the reuse of orphan nodes has no
significant effect on the stream length, so we need only
O(n) size of memories to traverse O(2") BDD nodes.

A very sensitive example is presented in Fig. 16. In this
case, we have a number of irrelevant input variables on the
top of the BDD. Our streaming method can eliminate the
redundant nodes only if all descendant nodes are stored in
the unique table (i.e., they are StoredNode). When the
memory shortage occurs, the top node becomes a Temp-
Node, so an exponential number of the redundant nodes
suddenly reappear. Notice that this explosion does not
occur with the different variable order shown in Fig. 17. We
can see that variable ordering is important not only for the
original BDD size, but also for the sensitivity to memory
shortage.

We should emphasize that the conventional BDD
manipulation is always taxed by the memory overflow
problem even if the memory sufficiency ratio is 99 percent.
A great feature of our method is that it gives a continuous
tradeoff between memory usage and streaming data
compression rate.
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Fig. 16. A case very sensitive to memory shortage.

4.3 Experiment for Solving a SAT Problem

Many problems in LSI CAD, Al and other fields of
Computer Science can be formulated as a combinatorial
problem to satisfy a set of Boolean constraints. For instance,
graph coloring, the minimum flow, unate and binate
covering are popular examples. SAT-based design verifica-
tion/validation has also become a hot topic [21], [2], [16],
[25] in recent years.

A lot of SAT procedures have been studied for many
years, e.g., Davis-Putnam backtrack search [21], [16],
heuristic local search [20], 0-1 linear programming [9], and
BDD-based method. The BDD-based SAT procedure is a
good instance of computing very large-scale BDDs, so we
show here the effect of our streaming manipulation.

Several works (e.g., [12], [14], [18], [10]) have solved SAT
problems using conventional BDD manipulation. Those
methods first generate BDDs for the respective Boolean
constraints, and then try to compute conjunction (AND
operation) of all the BDDs. The final BDD represents the set of
solutions that satisfy all the constraints. Unfortunately, large-
scale problems often fail due to memory overflow.

2" TempNodes

We implemented a SAT-problem solver based on the
streaming BDD manipulation. As shown in Fig. 18, we
prepared a BDD stream file for each constraint, and
compute the conjunction by a cascade of streaming BDD
operations. In this system, an intermediate BDD stream
represents the “candidates” of solutions satisfying the
constraints processed in the upper stream. In other words,
each processor filters the candidates by a constraint and,
finally, the solutions are extracted.

In this system, some processors may produce duplicated
nodes when memory is insufficient, however, those redun-
dant nodes can be eliminated in the lower stream if the final
result of BDD is simple. For example, if the problem is
completely unsatisfiable, the simple result “0” is produced
from the final processor after all data have been processed. In
other words, when the first BDD node appears at the final
output, we immediately know it is satisfiable. For a
complicated problem, the intermediate streams may grow
extremely long, and we cannot know when it will be
completed. If we break the process before finishing, the
incomplete output data contains a partial set of solutions. This
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Fig. 17. Variable reordering to avoid the problem.

is a great difference from the conventional BDD manipula-
tion, which gives no solutions when interrupted.

To evaluate the effect of our streaming manipulation, we
solved several N-Queens problems, as shown in Table 1. An
N-Queens problem has N? places on the chess-board, so we
prepared N? Boolean variables and N? constraints to
specify the problem. We then computed the conjunction
of all Boolean constraints. The column “Prev.” shows the
CPU time needed to solve the same problems using
conventional BDD manipulation. They are a few times
faster than our streaming method for small N’s, but for
N > 12, they cannot find any solution due to memory
overflow. On the other hand, our streaming method
succeeded in generating all solutions up to 14-Queens.

We next conducted the same operations under the
limited length of intermediate BDD streams (up to 10 MB
and 1 MB). The column “#Sol.” shows the number of
solutions included in the final BDD stream. This result
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shows that we could compute a partial set of solutions for
larger values of N in a feasible computation time, using
commodity PC with 64 MB memory. This is a great
advantage of our method; the conventional BDD manipula-
tion would have required as much as 100GB of memory to
execute the same operations.

In recent years, Davis-Putnam backtrack procedures
have shown a remarkable improvement [16], [25], and
reports show that backtracking is much faster than the
BDD-based method for most SAT benchmarks. The N-
Queens problem falls into the same category. However, the
backtracking method is optimized for the problems
specified in CNF representation. BDD-based method can
solve more general logic expressions (i.e., any combina-
tional logic expression), and it reduces the effort needed to
formulate a given problem. The BDD-based method will be
useful as an alternative or substitute for contemporary
backtracking SAT checkers.

4.4 Pipelined Multiprocessing

If we use a single processor, we have to store an
intermediate BDD stream into a hard disk at each logic
operation, and read it at the next stage of operation. Using
multiple networked PCs, we can deploy the logic opera-
tions across a number of PCs and concurrently execute
them simply by connecting I/O ports without using any
hard disk. In this way, computation can greatly be
accelerated by increasing the number of PCs. The experi-
mental results are shown in Table 2. Existing parallel BDD
packages [24], [19], [13] required random data accesses
between the networked processors, which is a serious
bottleneck for computation. Our streaming method uses
only serial data access, so remarkable acceleration is

TABLE 1
Experimental Results for N-Queens Problem

N | #Var Prev. Our method(Unlimited stream length) (Limit:10MB) (Limit:1MB)

CPU(s) | Peak Node | Final Node #Sol. CPU(s) | #Sol. CPU | #Sol. | CPU
8 641 11.3 1,928 2,450 92 331 92 331 92 | 33.1
9 81 22.6 15,389 9,556 352 50.6 352 50.6 352 | 50.6
10 100 37.2 76,882 25,944 724 85.7 724 85.7 724 | 85.7
11 121 97.2 331,331 94.821 2,680 278.9 | 2,680 278.9 | 513* | 161.3
12 144 395.1 1,503,336 435,169 | 14,200 1.214.8 | 9.085* 971.6 | 349% | 218.3
13 169 | MemOut 9,225,382 2,213,507 | 73,712 7.857.7 | 4,892*% | 1,511.3 | 210* | 282.8
14 196 | MemOut | 51,638,490 | 12,884,133 | 365,596 | 59.479.7 | 2,354* | 1,968.8 | 126* | 363.9
15 225 | MemOut - - - | TimeOut | 2,189*% | 2,551.1 91* | 449.3
16 256 | MemOut, - - - | TimeOut | 1,307* | 3,038.2 46% | 317.5
17 289 | MemOut - - - | TimeOut 996* | 3,598.1 25* | 651.2

(*: Not complete set of solutions.)

(Ultra SPARC 30, 128MB Meam, 2.5GB free HD, SunOS 5.6. Time out:24h)
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TABLE 2
Pipelined Multiprocessing

Solving 14-Queens

PCs | Elapse(s) Ratio
1 72.991 1.00

5 14,716 4.96
10 9,652 7.56
25 5,414 13.48
50 3,996 18.27
100 2,547 28.66

(Each PC: Celeron 300A
64MB Mem, 1GB free HD,
FreeBSD 2.6, 100BaseT LAN)

achieved. In our implementation, we do not need a shared
memory system or special hardware for parallel computing.
The program uses only the remote shell command set,
which is commonly supported in UNIX machines. We
simply connected the processes through TCP/IP sockets in
a 100BaseT ether network.

5 RELATED WORKS

Our method is deeply related to the universal data
compression theory. Most file compression programs (e.g.,
“compress,” “zip,” etc.) are based on Ziv-Lempel compression
[27], which was presented twenty years ago. This algorithm
stores recent data in an internal table, and if the same
substring appears more than once, outputs only the address
of the substring stored in the table, instead of printing the
substring. There are a lot of variations [1] of this method for
the partitioning of substrings and the implementation of
dictionaries. There are many intensive theoretical works in
this field.

Our streaming BDD manipulation can also be regarded as
a kind of data compression method based on BDD reduction
rules. A great difference is that our BDD stream data can be
processed without decompression, while most existing
compression formats have to be decompressed before
applying any meaningful operation. It will be interesting to
discuss the connection between BDD techniques and data
compression theory.

6 CONCLUSION

We proposed a new streaming BDD manipulation method
that never causes memory overflow or swap out. This
method allows us to read very large-scale BDD stream data
beyond the memory limits, and the output BDD streams are
concurrently produced as the input streams are read. The
features of our streaming method are 1) it gives a
continuous tradeoff between memory usage and stream
data length, 2) a valid partial result can be obtained before
completing the entire process, and 3) easily accelerated by
pipelined multiprocessing.
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Experimental results show that our new method is
especially useful for the cases where conventional BDD
packages are ineffective. For example, we succeeded in
finding a number of solutions to a SAT problem using a
commodity PC with 64 MB memory, where as the
conventional BDD manipulator would have required a
100GB memory to solve the same problem.

BDD manipulation has been considered to be very
memory-consuming procedure; and, it will be hard to get
10GB or 100GB monolithic memory blocks in the near
future. The streaming method enables us to utilize disk
storage and networked resources as well. The method leads
to a new approach to BDD manipulation.

Currently, our streaming method has the following
limitations.

e Variable order cannot be changed dynamically.
e Quantification operation (e.g., f. & f) cannot be
performed in a simple pipelined process.

On the first point, dynamic variable ordering is sometimes
very powerful as a way to reduce BDD size. Unfortunately,
our streaming method cannot change the parsing order of
Boolean space during the process. It appears to be possible
to apply variable reordering to a sample BDD in memory,
and then retry the streaming operations for the whole
function from the beginning.

On the second point, the quantification operation
requires folding of a BDD stream. This operation is hard
for streaming computation to perform without unlimited
random access memories. In other words, our streaming
method cannot be directly applied to the symbolic model
checking [5] which requires quantification operations.
However, the SAT-based design verification/validation
method has become a hot topic in recent years [21], [2],
[16], [25], and there will be many applications that do not
need quantification.

Last, another interesting future work is to consider
streaming manipulation for some extended BDDs, such as
MTBDD:s [6], EVBDDs [9], etc.
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