
Efficient Online and Offline
Testing of Embedded DRAMs

Sybille Hellebrand, Hans-Joachim Wunderlich, Alexander A. Ivaniuk,

Yuri V. Klimets, and Vyacheslav N. Yarmolik

AbstractÐThis paper presents an integrated approach for both built-in online and offline testing of embedded DRAMs. It is based on a

new technique for output data compression which offers the same benefits as signature analysis during offline test, but also supports

efficient online consistency checking. The initial fault-free memory contents are compressed to a reference characteristic and

compared to test characteristics periodically. The reference characteristic depends on the memory contents, but unlike similar

characteristics based on signature analysis, it can be easily updated concurrently with WRITE operations. This way, changes in

memory do not require a time consuming recomputation. The respective test characteristics can be efficiently computed during the

periodic refresh operations of the dynamic RAM. Experiments show that the proposed technique significantly reduces the time

between the occurrence of an error and its detection (error detection latency). Compared to error detecting codes (EDC) it also

achieves a significantly higher error coverage at lower hardware costs. Therefore, it perfectly complements standard online checking

approaches relying on EDC, where the concurrent detection of certain types of errors is guaranteed, but only during READ operations

accessing the erroneous data.

Index TermsÐEmbedded memories, systems-on-a-chip, online checking, BIST.

1 INTRODUCTION

PRESENT day systems-on-a-chip integrate a variety of
different components, like processor cores, RAMs,

ROMs and user-defined logic on a single chip. Growing
integration densities have made it feasible to embed
dynamic RAM cores of considerable sizes [25]. Embedded
DRAMs offer a large degree of architectural freedom
concerning the memory size and organization. Therefore,
they are of particular interest for applications where high
interface bandwidths have to be achieved, as, for example,
in network switching. On the other hand, due the limited
external access, testing embedded DRAMs is an even more
challenging problem than testing monolithic DRAM chips.
Here, a number of built-in self-test approaches which have
been proposed in the literature can help to develop
solutions [1], [2], [4], [5], [6], [7], [8], [10], [14], [15], [16],
[18], [19], [21], [23], [28]. A typical BIST architecture is
shown in Fig. 1.

The test pattern generator, for example, an LFSR or a

counter, activates a sequence of addresses and, depending on

the type of test, the test control unit initiates one or several

operations on the respective memory cells. The resulting

output data stream is fed into the data compressor, the final

state of which provides a characteristic CTEST . This is
compared to a predetermined reference characteristic CREF ,
and differences between both characteristics indicate the
presence of faults. With increasing memory densities, the
relative area for the BIST resources becomes negligible.

To deal with soft errors during system operation, adding
standard online checking capabilities based on error
detecting codes (EDC) is the first step also for embedded
DRAMs [22]. Depending on the specific code, the detection
of certain types of errors can be guaranteed. But, since error
detection is only possible during READ operations, the time
between the occurrence of an error and its detection,
referred to as error detection latency, may be very high.
For some applications with high reliability requirements,
e.g., in telecommunication switching, it is not acceptable to
detect erroneous data only at the moment when the data are
explicitly needed [3]. In contrast, errors should be detected
as early as possible to allow for recovery before the data are
requested by the system. Furthermore, EDCs have to
increase the number of check bits to reduce the probability
of masking multiple errors, which results in a high
hardware overhead.

As a low-cost alternative, the BIST architecture of Fig. 1
can be reused for online consistency checking as follows:
The pattern generator cycles through all possible addresses
once and, at each address, the memory contents are read
out and fed into the data compressor. This way a reference
characteristic CREF is ªlearnedº and can be periodically
compared to a test characteristic CTEST computed in the
same way as CREF , but concurrently with the memory
operation. There is no hardware overhead for storing check
bits and the probability of error masking only depends on
the properties of the data compressor. A 32-bit signature
analyzer, for example, keeps the probability of masking

 1

. S. Hellebrand is with the Institute of Computer Science, University of
Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
E-mail: sybille.hellebrand@uibk.ac.at.

. H.-J. Wunderlich is with the Division of Computer Architecture,
University of Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany.
E-mail: wu@informatik.uni-stuttgart.de.

. A. Ivaniuk, Y. Klimets, and V.N. Yarmolik are with the Computer Systems
Department, Belararussian State University of Informatics and Radio-
electronic, P. Brovki 6, 220027 Minsk, Belarus.
E-mail: {ivaniuk, klimets}@bsuir.unibel.by, yarmolik@gw.bsuir.unibel.by.

arbitrary errors below 2ÿ32, which cannot be guaranteed by
an error detecting code with a feasible number of check bits.
However, to make this idea really working two problems
have to be solved first.

. The reference characteristic depends on the memory
contents and changes in memory also change the
reference characteristic. If, for example, a conven-
tional signature analyzer were used as output data
compressor, then the initial learning phase would
have to be repeated after every WRITE operation
[20]. Therefore, an alternative technique for output
data compression is required which allows for a fast
and simple update of the reference characteristic
concurrently with WRITE operations.

. To guarantee a low error detection latency, the test
characteristics have to be computed with a high
frequency, but the regular memory operation should
not be interrupted or disturbed by this process.

In order to analyze the second problem in more detail,
the basic logic structure of a dynamic RAM is recalled in the
sequel. To avoid data retention, dynamic RAMs refresh
data during READ/WRITE operations and during periodic
refresh operations. In a typical memory organization, as
shown in Fig. 2, the address is split into a row and a column
address, and READ/WRITE operations first transfer the
complete memory row indicated by the row address to the
refreshment register (activated by the row access strobe
RAS). The actual READ/WRITE operations are then
performed on the refreshment register (activated by the
column access strobe CAS) before its contents is written
back to memory.

While the circuit level implementation of this structure
may be distributed or scrambled and the refreshment
register may be substituted just by amplifiers, the essential
signals are available in most of the proprietary implementa-
tions and will be used in the rest of this paper.

The periodic refresh operations consist of transferring all
memory rows to the refreshment register and loading them
back to memory. Since the complete memory is scanned
during a periodic refresh operation, this phase naturally
offers itself for concurrently computing a test characteristic
CTEST as proposed above [12]. In contrast to more general
schemes for the concurrent testing of digital circuits, it is
guaranteed that all necessary test inputs actually appear
during a test phase [24]. However, in contrast to an offline
BIST implementation, it must be guaranteed that the
computation can be completed within the time slot
available for the periodic refresh operation. Furthermore,
the algorithms for refreshment and for consistency checking
should have a high degree of similarity to simplify control.
Consequently, a characteristic which can be built step by
step from row-characteristics is targeted. The time to

compute a row characteristic must not exceed the time to
refresh a row.

In this paper, a BIST architecture for embedded DRAMs

is proposed which also solves the problems stated above

and therefore provides a unique solution for both offline

manufacturing and maintenance test and online consistency

checking. It is based on the ªmodulo-2 address character-

isticº introduced in [26], which is self-adjusting, i.e., after

WRITE operations CREF can be adjusted in one step. Before

the necessary extensions for an efficient online computation

of this characteristic are described in Section 3, its basic

properties are briefly reviewed in Section 2. The complete

online and offline testable memory architecture is presented

in Section 4. As it will be shown in Section 2, for offline

BIST, this architecture provides the same quality as

conventional BIST schemes relying on signature analysis

for output data compression. To evaluate its capabilities

with respect to online consistency checking, experiments

have been performed relying both on random simulations

and on the simulation of real program data. The results

documented in Section 5 show that the proposed approach

combines a high error detection rate with a low error

detection latency.

2 SELF-ADJUSTING OUTPUT DATA COMPRESSION

2.1 Basic Principles and Facts

In this section, the basic principles and properties of the

modulo-2 address characteristic are briefly reviewed. As

2

Fig. 1. Typical BIST architecture for memories.

Fig. 2. Typical organization of a dynamic RAM.

shown in Fig. 3, the characteristic is obtained as the bit-wise

modulo-2 sum of all addresses pointing to ª1.º
The characteristic allows for implementing periodic

offline consistency checking in an efficient way because it

can be easily adjusted concurrently with changes in the

memory contents. In case of a WRITE operation at a

specific address a, the old reference characteristic Cold
REF is

updated to

Cnew
REF � Cold

REF � a � M a� �new�M a� �old
� �

;

where M�a� denotes the memory contents at address a.
For computing the complete characteristic, as well as

for updating it concurrently with WRITE operations, a

simple compressor circuit can be used which performs

bit-wise EXOR operations on the address lines controlled

by the data input. To calculate the initial characteristic

CREF or the test characteristic CTEST , a counter or an

LFSR has to generate all memory addresses. If the

memory operation starts after a reset to zero, CREF is

known to be zero and the initialization can be skipped.

The basic architecture of the complete memory with built-

in consistency checking is shown in Fig. 4.
In [26], it has been shown that relying on the modulo-2

address characteristic achieves the same quality as char-

acterizing the memory by conventional signature analysis:

1. All single errors are detectable and diagnosable. If
only single errors are assumed, the expression,
CREF � CTEST , provides the address of the faulty
memory cell.

However, in the basic scheme of Fig. 4, the
memory address �0; . . . ; 0� does not contribute to the
characteristic and therefore errors in this memory
location would not be detected. A simple work-
around to avoid this problem in a practical im-
plementation is to add an extra bit with a constant
ª1º to all memory addresses. Other solutions are
possible.

2. All double errors are detectable since, in this
case, CREF � CTEST corresponds to the sum of
two addresses ar and as, and ar 6� as implies
CREF � CTEST 6� 0.

3. Data compression based on the modulo-2 address
characteristic is equivalent to serial signature analy-
sis and the probability of aliasing errors is thus
estimated by 2ÿk, where k denotes the length of the
characteristic.

Property 3 is an immediate consequence of the following
observation.

Observation. Let '�X� 2 GF�2��X� be a primitive polynomial
of degree k, and let 'ÿ1 X� � :� Xk' 1

X

ÿ �
denote the reciprocal

polynomial. An LFSR with feedback polynomial 'ÿ1�X� and
initial state �1; 0; . . . ; 0� generates the same state transition
sequence (in reverse component order) as the LFSR with
feedback polynomial '�X� ªcountingº backward from
�0; . . . ; 0; 1�.

The example shown in Fig. 5 exploits this observation to
verify property 3 for a 7-bit RAM. A conventional BIST is
implemented using a 3-bit LFSR with primitive feedback
polynomial '�X� � 1�X �X3 as test pattern generator
and a serial signature analyzer with the reciprocal feedback
polynomial 'ÿ1�X� � 1�X2 �X3.

With an all-zero initial state, the signature register does
not change its contents before the first cell containing a ª1º
is addressed. The new contents is (1, 0, 0), and as the
remaining memory cells only contain ª0º entries, the
signature analyzer works like an autonomous LFSR with
initial state (1, 0, 0) for the rest of the test procedure. Since
'ÿ1�X� is the reciprocal of '�X�, this implies that the

 3

Fig. 3. Modulo-2 address characterisitic for bit-oriented RAMs.

Fig. 4. Consistency checking based on the modulo-2 address

characteristic.

Fig. 5. Correspondence between signature analysis and modulo-2

address characteristic.

signature analyzer basically behaves like the test pattern
generator counting backward from (0, 0, 1) (with reversed
component order), thus the final signature is (1, 1, 0) and
corresponds exactly to the address of the memory cell with
a ª1º entry.

If the RAM contains more than one nonzero entries, then
similarly the signature is obtained as modulo-2 sum of all
addresses (in reverse component order) corresponding to
memory cells with contents ª1.º

In general, the correspondence between the modulo-2
address characteristic and signature analysis is described by
the following theorem which was proven in [14], [27].

Theorem 1. Let M be a bit-oriented memory with m � 2k ÿ 1

cells, '�X� 2 GF�2��X� a primitive polynomial of degree k,

and let A1 � GF�2�k n f0g contain the memory addresses

pointing to ª1º entries. Furthermore, for a � �a0; . . . ; akÿ1� 2
GF�2�k let ar :� �akÿ1; . . . ; a0� denote the vector with

components in reverse order. Then, a BIST

. using a test pattern generator with feedback poly-
nomial '�X�,

. a serial signature analyzer with feedback polynomial
'ÿ1�X�,

. initial states �1; 0; . . . ; 0� and �0; . . . ; 0� for the test
pattern generator and the signature analyzer,
respectively,

. and a test length of m

is characterized by the fault-free signature S � �a2A1
ar.

The theorem remains true when the number of memory
cells is m < 2k ÿ 1, and the initial state of the test pattern
generator is selected, such that the final state is �0; . . . ; 0; 1�.
This implies that, for any memory BIST based on the
modulo-2 address characteristic, there exists an equivalent
BIST configuration based on signature analysis with a
primitive feedback polynomial and, consequently, the same
test quality is guaranteed.

In contrast to conventional signature analysis, however,
changes in memory do not require the time-consuming
recomputation of CREF . As shown above, adjusting the
characteristic is simply achieved by

Cnew
REF � Cold

REF � a � M a� �new�M a� �old
� �

:

For an efficient implementation, the comparison of the
old and new memory contents is the crucial point, and extra
READ operations to get the old contents should be avoided.
In dynamic RAMs, the old memory contents is transferred
to the refreshment register anyway, before it is overwritten.
The memory architecture described in detail in Section 4
exploits this fact to integrate online consistency checking
without extra READ operations or performance losses.

Since the only differences between the checking proce-
dure described above and common built-in self test
procedures are given by the complexity of the memory
operations applied to each cell and the number of runs
through the memory [11], [19], the proposed technique for
output data compression can, of course, be used also during
manufacturing and maintenance test.

2.2 Extension to Word-Oriented RAMs

The scheme for output data compression introduced in the
previous section can easily be applied to word-oriented
RAMs [26] as illustrated in Fig. 6.

For this purpose, the word-oriented RAM is considered
as bit-oriented memory with addresses of the form �aw; ab�,
where aw denotes the word address and ab the bit position
within the word. The memory can then be modeled as a
two-dimensional array M�1 . . .m; 0 . . .n� of bits with ad-
dress space A � f1; . . . ;mg � f0; . . . ; ng and ª1º-space
A1 :� f�aw; ab� 2 AjM�aw; ab� � 00100. The reference character-
istic CREF for the initial correct memory contents is
determined as

CREF � �
aw;ab� �2A1

aw; ab� �;

where the modulo-2 sum of address pairs is defined by

�aw; ab� � �a0w; a0b� � �aw � a0w; ab � a0b�:

3 ONLINE CONSISTENCY CHECKING

The basic technique described in Section 2 is not efficient
enough to be applied during a periodic refresh operation
because it steps through the memory bit by bit. Instead, a
data compressor is required which is able to compute the
partial characteristic corresponding to one row in one step.
As illustrated in Fig. 7, the memory addresses are split into
row and column addresses a � �ar; ac�. In the case of word-
oriented memories, a column address can simply be
considered as a vector of bit addresses, which does not
change anything in the proposed techniques. For the sake of
clarity, only the bit-oriented case is therefore considered in
the sequel. If A1�r� :� facjM�ar; ac� � 1g denotes the set of
all column addresses pointing to a ª1º in row r, then the
compressor must be able to determine

Cr � �
ac2A1 r� �

ar; ac� �

in one step. The complete characteristic is then obtained
step by step as

CTEST � �
0�ar<mÿ1

Cr � �
0�ar<mÿ1

�
ac2A1 r� �

ar; ac� �;

where m denotes the number of rows.
The basic principle of such a generalized compressor is

shown in Fig. 8.
The row characteristic

4

Fig. 6. Bit-oriented representation of a word-oriented RAM.

Cr � �
ac2A1�r�

ar; ac� � � �
ac2A1 r� �

ar; �
ac2A1 r� �

ac

� �
has either ar or 0 as its first component, depending on the

parity of the memory row. For n columns, the second

component is represented by a binary l-bit vector,

l � log2 nd e. It is obtained by bit-wise EXOR-operations

�
ac2A1 r� �

ac � �
ac2A1 r� �

a0
c ; . . . ; �

ac2A1 r� �
alÿ1
c

� �
with aic denoting the ith component of ac, 0 � i < l. As only

bit-addresses with aic � 1 can contribute to the ith sum and

they only contribute the ith sum when the memory contains

a ª1,º it is sufficient to implement functions Fi which count

(modulo 2) the number of ones at all the addresses with

aic � 1. The second component of Cr is then derived as

�
ac2A1 r� �

ac � F0; . . . ; Flÿ1� �:

In the example of Fig. 8, the Function F0 counts (modulo 2),

the number of ones at bit position zero which can contribute

to the characteristic, and F1 does the same for bit position

one. The parity function decides whether the row address

contributes to the characteristic or not.
It can be easily verified that the EXOR tree, for implement-

ing the parity check and the functionsF0; . . . ; Flÿ1, requires at

most

X
1�j�l

2j ÿ 1
ÿ � � 2l�1 ÿ 2ÿ l � 2nÿ 2ÿ l

2-input EXOR-gates. Overall, the output data compressor of
Fig. 8 can be implemented using log2 md e � l flip-flops,
log2 md e � l� 2nÿ 2ÿ l � log2 md e � 2nÿ 2 EXOR-gates,

and 1 AND-gate.
The time required to compute a row characteristic Cr is

mainly determined by the depth of the AND/EXOR
network between the refreshment register and the register
containing the address characteristic. Using only 2-input
gates, there are lÿ 2 levels in the EXOR tree for the parity
check and the functions F0; . . . ; Flÿ1. The depth of the
network is lÿ 1 in this case, it can be further reduced if
gates with more than two inputs are employed.

Assuming a 1; 024� 1; 024 bit dynamic memory, the data
compressor can be, for example, implemented with 20 flip-
flops, 2,056 2-input EXOR gates, and one AND gate. The
delay through the AND/EXOR network corresponds to
9 � d, where d is the delay of one EXOR gate. If, furthermore,
a row access time of 100 ns is assumed, then a gate delay
d < 100=9 � 11 ns is sufficient enough to compute the row
characteristic concurrently with the refreshment of the row
and the complete characteristic CTEST within the time slot
for a periodic refresh operation [17].

4 THE COMPLETE MEMORY ARCHITECTURE

This section briefly sketches the complete architecture of an
embedded DRAM with BIST and error detecting refresh-
ment. The core of the logic structure, shown in Fig. 9, is the
generalized data compressor described in Section 3, which
is used for both offline BIST and online consistency
checking.

During online consistency checking, in case of a WRITE
operation, CREF has to be updated when the old and new
memory contents differ. Rewriting the corresponding
formula

Cnew
REF � Cold

REF � a � M a� �new�M a� �old
� �

to

Cnew
REF � Cold

REF � a �M a� �old� a �M a� �new ���
provides a very simple and efficient architecture for
DRAMs with BIST and error detecting refreshment.

If the memory operation does not start with a reset
�CREF � 0�, a row counter, which cycles through all states,
is sufficient to determine the initial characteristic. CREF can
be computed from the row characteristics as described
above. During normal memory operation, WRITE requests

 5

Fig. 7. Row-wise computation of the modulo-2 address characteristic.

Fig. 8. Data compressor for the fast computation of row characteristics.

initiate a concurrent update of CREF . In the first phase, the
old contents of the memory row are transferred to the
refreshment register and fed into the data compressor. In
the second phase, the actual WRITE operation is performed

on the refreshment register which is again fed into the data
compressor, thus adjusting CREF according to (*). Finally,
during periodic refresh operations, the row counter
enumerates all row addresses. Each row is transferred to
the refreshment register and fed into the data compressor,

which computes CTEST as described in detail above. If a
WRITE occurs at address a � �ar; ac� during the periodic
refresh operation, then CREF must be updated as described
above. Concerning CTEST , the control unit has to distin-
guish between two cases:

. If the refresh procedure is interrupted at a row-
address a�r > ar, then CTEST has to be adjusted, too,
because the row characteristic for ar has already
been added to CTEST before the WRITE operation at
a � �ar; ac�.

. If the refresh procedure is interrupted at a row-
address a�r < ar, then the row characteristic for ar has
not yet been added to CTEST , and there is no need to
adjust CTEST .

Since the row counter is required anyway to implement the

periodic refreshment, the hardware overhead is mainly

determined by the data compressor, the registers for CTEST

andCREF , and the comparator (shaded blocks in Fig. 9). With

the figures given above, this is negligible compared to the

overall area of the memory. Compared to EDCs, the fault

detection latency is reduced. With respect to the expected

fault coverage in relation to the hardware cost, a comparison

to EDC provides the following observation: Considering

arbitrary multiple faults, the fault coverage of EDCs increases

with 1ÿ 2nÿ1
2n�kÿ1

for k additional columns added to the memory

while the area overhead increases with O�k �m�, where m is

the number of rows and n is the number of columns. The

additional hardware for the proposed approach increases

only with O�log2m� 2n�, but obtains a fault coverage of

1ÿ 2ÿ log2 mÿlog2 n, where n is the number of columns and m

denotes again the number of rows of the memory. The

presented approach is thus superior to EDCs in terms of fault

coverage, fault latency, and area overhead, but it does not

provide complete concurrency, like EDCs, as errors may also

occur in the short phase between signature checking and data

access, which will be detected only in the next checking phase.
Concerning the memory performance, the combined

online and offline detection scheme based on the
modulo-2-address characteristic does not increase access
times since all test operations are performed concur-
rently with the refresh operations or when the memory
is offline. Similarly, as for a standard memory BIST, the
test hardware is not in the data path for the regular
memory operation. Furthermore, in contrast to schemes
relying on error detecting/correcting codes, the memory
contents is unchanged and the time penalty for calculat-
ing the check information during a memory access is
avoided. A slight performance impact may be due to
the increased load being driven by the refreshment
register. If this results in an actual performance loss, it
depends on the implementation and an exact evaluation
goes beyond the scope of this paper.

5 EXPERIMENTAL EVALUATION

To evaluate the proposed scheme with respect to its
capabilities for online error detection, it was compared to
a standard online checking approach relying on parity
codes. As pointed out earlier, in the standard approach,
errors can only be detected during READ operations. But,
on the other hand, if only single errors in memory words or
rows are considered, then adding a simple parity bit to each

6

Fig. 9. Complete architecture for a DRAM with error detecting refreshment.

word or row already guarantees complete error detection,
which, of course, is paid by a high hardware overhead. For
the new scheme, a lower detection latency is expected on
average; however, erroneous data may be reused before the
error is detected. To characterize both methods more
precisely, random simulations have been performed as well
as simulations of the memory traffic for a set of benchmark
programs. In all experiments, the following technology
features were assumed for the DRAM [17]:

. Average access time for READ/WRITE operations:
200 ns.

. Refresh Period (time between two periodic refresh
operations): 16 ms.

. Refresh time: m � 100 ns (m denotes the number of
rows in the memory array, and 100 ns is the row
access time).

Concerning the error model, it was assumed that hard
errors were detected during manufacturing test and that
only soft errors had to be considered. The investigations
focused on ªsingle event upsetsº (SEUs) [9].

The first series of experiments was dedicated to random
simulations according to the following setup:

. Sequences of 1 M to 5 M random operations at
random addresses were simulated. The probability
for both READ and WRITE operations was set to 0.5
and addresses were assumed to be uniformly
distributed, too.

. DRAMs with a capacity from 1 Mbit to 4 Mbit were
considered. For all experiments, a square organiza-
tion of the DRAM was assumed, i.e., the number of
rows varied from 1 K to 2 K.

. Single errors were injected at random time steps and
at random addresses according to the uniform
distribution.

For each combination of the parameters (length of the
sequence, capacity of the memory), 100 simulations were
performed with varying seeds for the random processes.
The results showed the same basic trends for all memory
sizes. Therefore, only the average detection latency and the
fault detection probability for the 4 Mbit DRAM are
reported in Figs. 10 and 11.

Concerning the detection latency, the following trends
could be observed:

. On the average, an error is detected after 50 percent
of a refresh period so that the average error detection
latency for the proposed technique is around 8 ms.

. The error detection latency for the standard ap-
proach relying on parity codes is considerably
higher and increases with the length of the random
sequences. In the best case, it is about 6 times higher
than for error detecting refreshment and in the worst
case about 40 times.

With respect to the fault coverage, the proposed
technique achieved a fault coverage close to 100 percent
in all experiments. Only in rare cases were errors masked by
WRITE operations before the next periodic refresh opera-
tion. In contrast, the fault coverage for the standard
approach increases with the length of the random
sequences, but never exceeds 60 percent. In the worst case,
it is even below 10 percent. For EDCs, the errors remained
undetected because the corresponding data were not
requested by the random sequence, and all test sequences
still provided the correct results. However, it should be
noted that the correct results could only be guaranteed
because the simulations were restricted to single errors, and
because in the case of EDCs each memory location was
assumed to have its own parity bit. For the considered bit-
oriented memories, this already implied that the memory
area was twice as large as for the original memory. In the
general case, when also multiple errors are considered, a
complete error detection can no longer be guaranteed for
EDCs.

Since for real application programs a uniform distribu-
tion of READ/WRITE accesses cannot be expected, a
second series of experiments was carried out for the
benchmark programs SPICE, TeX, and the GNU C-compiler
GCC. The memory traces were produced by the cache
simulator DINERO for the DLX processor [13]. The
technology data for the RAM and the mechanism for fault
injection were the same as for the random simulations. The
results with respect to error detection latency and fault
coverage are presented in Tables 1 and 2.

For error detecting refreshments, similar results are
observed as described for the random experiments. For
the standard approach based on parity codes, however,
considerably higher latencies and lower fault coverages are

 7

Fig. 10. Average error detection latency for a 4 Mbit DRAM.

Fig. 11. Average detection probability for a 4 Mbit DRAM.

obtained. This is due to the fact that in the benchmark
programs the number of READ operations is considerably
lower than in the random experiments, and errors are
detected only during READ operations. With the new
approach, errors in unused data were detected, too.

Considering both random and benchmark experiments,
the results show that error detecting refreshment and
standard online checking complement each other in an
ideal way. On the average, error detecting refreshment
provides a low error detection latency and only a few errors
escape. This supports an early activation of low-cost
recovery schemes. If the concurrent detection of certain
types of errors has to be guaranteed, this can still be
achieved by using appropriate EDCs. However, in general,
the trade-off between cost and fault coverage is much better
for the presented technique.

6 CONCLUSIONS

A new technique for online consistency checking of
embedded DRAMs, error detecting refreshment, has been
presented. It is based on the modulo-2 address character-
istic, which can be computed efficiently within the time
slots reserved for a periodic refresh operation. At little extra
hardware cost, the technique guarantees low error detection
latencies and high error coverages. Depending on the
reliability standards to be achieved, it can complement or
replace conventional online checking schemes based on
error detecting codes, where the concurrent detection of
certain types of errors is guaranteed, but high detection
latencies and high hardware overhead must be expected.

REFERENCES

[1] V.C. Alves, M. Nicolaidis, P. Lestrat, and B. Courtois, ªBuilt-in
Self-Test for Multi-Port RAMs,º Proc. IEEE Int'l Conf. Computer-
Aided Design (ICCAD-91), pp. 248-251, Nov. 1991.

[2] S. Barbagallo, F. Corno, P. Prinetto, and M. Sonza Reorda, ªTesting
a Switching Memory in a Telecommunication System,º Proc. IEEE
Int'l Test Conf. pp. 947-953, Oct. 1995.

[3] S. Barbagallo, D. Medina, F. Corno, P. Prinetto, and M. Sonza
Reorda, ªIntegrating Online and Offline Testing of a Switching
Memory,º IEEE Design & Test of Computers, vol. 15, no. 1, pp. 63-
70, Jan.-Mar. 1998.

[4] P.H. Bardell, W.H. McAnney, and J. Savir, ªBuilt-In Test for
VLSI,º Pseudorandom Techniques, New York: John Wiley & Sons,
1987.

[5] H. Cheung and S.K. Gupta, ªA BIST Methodology for Compre-
hensive Testing of RAM with Reduced Heat Dissipation,º Proc.
IEEE Int'l Test Conf., pp. 386-395, Oct. 1996.

[6] B. Cockburn and Y.-F.N. Sat, ªSynthesized Transparent BIST for
Detecting Scrambled Pattern-Sensitive Faults in RAMs,º Proc.
IEEE Int'l Test Conf., pp. 23-32, Oct. 1995.

[7] D.A. Fuentes and B. Courtois, ªRandom Pattern Testing versus
Deterministic Testing of RAMs,º IEEE Trans. Computers, vol. 38,
no. 5, pp. 637-650, May 1989.

[8] R. Dekker, F. Beenker, and L. Thijssen, ªRealistic Built-In Self-Test
for Static RAMs,º IEEE Design & Test of Computers, vol. 6, no. 1,
pp. 26-34, Feb. 1989.

[9] I.D.A. Dornier Science Data Store, Crouzet, Document No. LSDS-
FR-1000-DS, pp. 95-97, 1998.

[10] A.J. Van de Goor, Testing Semiconductor Memories, Theory and
Practice. Chichester: John Wiley & Sons, 1991.

[11] A.J. Van de Goor, ªUsing March Tests to Test SRAMs,º IEEE
Design & Test of Computers, vol. 10, no. 1, pp. 8-14, Mar. 1993.

[12] S. Hellebrand, H.-J. Wunderlich, A. Ivaniuk, Y. Klimets, and V.N.
Yarmolik, ªError Detecting Refreshment for Embedded DRAMs,º
Proc. 17th VLSI Test Symp., 1999.

[13] J.L. Hennessy and D.A. Patterson, Computer ArchitectureÐA
Quantitative Approach. San Mateo, Calif.: Morgan Kaufmann, 1990.

[14] O. Kebichi, M. Nicolaidis, and V.N. Yarmolik, ªExact Aliasing
Computation for RAM BIST,º Proc. IEEE Int'l Test Conf., pp. 13-22,
1991.

[15] K. Kinoshita and K.K. Saluja, ªBuilt-In Testing of Memory Using
an On-Chip Compact Testing Scheme,º IEEE Trans. Computers,
vol. 35, no. 10, pp. 862-870, Oct. 1986.

[16] K.T. Le and K.K. Saluja, ªA Novel Approach for Testing Memories
Using a Built-In Self-Testing Technique,º Proc. IEEE Int'l Test
Conf., pp. 830-839, 1996.

[17] DRAM Data Book. Micron Technology Inc., 1998.
[18] B. Nadeau-Dostie, A. Silburt, and V.K. Agarwal, ªSerial Interfa-

cing for Embedded-Memory Testing,º IEEE Design & Test of
Computers, vol. 7, no. 2, pp. 52-64, Apr. 1990.

[19] M. Nicolaidis, ªTransparent BIST for RAMs,º Proc. IEEE Int'l Test
Conf., pp. 598-607, Oct. 1992.

[20] P. Olivo and M. Dalpasso, ªSelf-Learning Signature Analysis for
Non-Volatile Memory Testing,º Proc. IEEE Int'l Test Conf., pp. 303-
308. Oct. 1996.

[21] I.M. Ratiu and H.B. Bakoglu, ªPseudo-Random Built-In Self-Test
Methodology and Implementation for the IBM RISC System/6000
Processor,º IBM J. Research and Development, vol. 34, no. 1, pp. 78-
84, 1990.

[22] T.R.N. Rao and E. Fujiwara, Error-Control Coding for Computer
Systems. Englewood Cliffs, N.J.: Prentice Hall Inc., 1989.

[23] N. Sakashita et al., ªA Built-in Self-Test Circuit with Timing
Margin Test Function in a 1Gbit Synchronous DRAM,º Proc. IEEE
Int'l Test Conf., pp. 319-324, 1996.

[24] K.K. Saluja, R. Sharma, and C.R. Kime, ªA Concurrent Testing
Technique for Digital Circuits,º IEEE Trans. Computer-Aided Design
of Circuits and Systems, vol. 7, no. 12, pp. 1250-1260, Dec. 1988.

[25] N. Wehn and S. Hein, ªEmbedded DRAM Architectural Trade-
Offs,º Proc. Design, Automation and Test in Europe Conf. (DATE 98),
pp. 704-708, 1998.

[26] V.N. Yarmolik, S. Hellebrand, and H.-J. Wunderlich, ªSelf-
Adjusting Output Data Compression: An Efficient BIST Technique
for RAMs,º Proc. Design, Automation and Test in Europe Conf.
(DATE '98), pp. 173-179, 1998.

8

TABLE 1
Error Detection Latency for the

Benchmark Programs SPICE, TeX, and GCC

TABLE 2
Error Coverage for the

Benchmark Programs SPICE, TeX, and GCC

[27] V.N. Yarmolik, ªAnalysis of Signature Testability of Digital
Circuits,º Automation and Remote Control, pp. 1437-1443, Mar. 1990.

[28] Y. You and J.P. Hayes, ªA Self-Testing Dynamic RAM Chip,º IEEE
JSSC, pp. 428-435, Feb. 1985.

9

