
Fast Asynchronous Uniform Consensus
in Real-Time Distributed Systems

Jean-François Hermant and Gérard Le Lann, Member, IEEE Computer Society

Abstract—We investigate whether asynchronous computational models and asynchronous algorithms can be considered for

designing real-time distributed fault-tolerant systems. A priori, the lack of bounded finite delays is antagonistic with timeliness

requirements. We show how to circumvent this apparent contradiction, via the principle of “late binding” of a solution to some (partially)

synchronous model. This principle is shown to maximize the coverage of demonstrated safety, liveness, and timeliness properties.

These general results are illustrated with the Uniform Consensus (UC) and the Real-Time UC problems, assuming processor crashes

and reliable communications, considering asynchronous solutions based upon Unreliable Failure Detectors. We introduce the concept

of Fast Failure Detectors and we show that the problem of building Strong or Perfect Fast Failure Detectors in real systems can be

stated as a distributed message scheduling problem. A generic solution to this problem is given, illustrated considering deterministic

Ethernets. In passing, it is shown that, with our construction of Unreliable Failure Detectors, asynchronous algorithms that solve UC

have a worst-case termination lower bound that matches the optimal synchronous lower bound, that is, ðtþ 1ÞD, where t is the

maximum number of processors that may crash and D is the maximum interprocess message delay. Finally, we introduce FastUC, a

novel solution to UC, that is based upon Fast Failure Detectors. FastUC has a worst-case termination time that is sublinear in tD. For

most practical cases and common values of t, FastUC terminates in D, making it a worst-case time optimal solution to Real-Time UC.

Index Terms—Asynchronous computational models, partially synchronous computational models, coverage, uniform consensus, real-

time distributed fault-tolerant computing, safety, liveness, timeliness, unreliable failure detectors, schedulability analysis.

æ

1 INTRODUCTION

MANY real computer-based applications raise combined
distributed, real-time, dependable computing issues,

even if not explicitly stated as such in application semantics.
Therefore, algorithms that solve distributed fault-tolerant
computing problems and scheduling problems altogether
are central to the design and development of provably
correct systems supporting such applications. Without fast
algorithms, many time-constrained fault-tolerant services
that are mandatory with such applications cannot be
contemplated. Examples are consensus, atomic broadcast,
leader election, group membership, system reconfiguration,
mission (re)planning, online (re)validation or verification,
distributed scheduling, replicated data consistency, distrib-
uted coordination.

In the presence of processor crashes and reliable
communications—our assumptions throughout this paper
—a well-known optimal worst-case termination time for
such services as consensus or atomic broadcast in synchro-
nous models is ðtþ 1ÞD, where t is the maximum number
of processors that may crash and D is the maximum
interprocess message delay. The ðtþ 1Þ-rounds lower bound
was first proven for Byzantine failures [6] and was later
extended to crash failures. In systems where safety is of
particular concern, postulated bound t should not be
violated at runtime. Consequently, “high” values of t must
be considered. Moreover, in real systems, many processes

contribute to network and processor “loads,” which may

result into “high” values of D. Therefore, worst-case

termination times may be too high, which hinders the use

of existing solutions in real systems.
In this paper, we introduce the concept of Fast Failure

Detectors, which builds upon Unreliable Failure Detectors

[1], denoted FDs. With Fast FDs, worst-case failure

detection times may be (very) small compared to D, which

permits designing algorithms that have worst-case termina-

tion times sublinear in tD. We introduce such an algorithm,

referred to as FastUC, that solves the uniform consensus

problem—denoted UC. FastUC is worst-case time optimal.

Under some (realistic) conditions, FastUC terminates in

exactly D, the absolute worst-case lower bound.
In order to establish these new results, we have departed

from approaches that are traditional in the area of real-time

computing, namely, assuming timed semantics or some

(partially) synchronous computational model for designing

a solution. We discuss merits and drawbacks of various

models regarding coverage and performance. Two basic

observations underlie our work. First, the coverage1 of

runtime correctness is highest with asynchronous solutions.

Second, the coverage of timeliness properties is “modest,”

necessarily (much) smaller than the coverage of safety or

liveness properties. This leads to the principle of “late

binding” designs to some (partially) synchronous model.

With this principle, the apparent contradiction between

1) retaining asynchronous solutions when designing real-

time systems and 2) the need to consider some (partially)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 8, AUGUST 2002 931

. The authors are with INRIA, Domaine de Voluceau, B.P. 105, 78153 Le
Chesnay Cedex, France.
E-mail: {Jean-Francois.Hermant, Gerard.Le_Lann}@inria.fr.

Manuscript received 14 Apr. 2001; revised 2 Jan. 2002; accepted 1 Feb. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 115805.

1. The coverage of an assertion is the probability or the likelihood that
this assertion holds true.

0018-9340/02/$17.00 ß 2002 IEEE

synchronous model to conduct schedulability analyses,
vanishes.

Our results permit us to conclude that, for the class of
problems considered, real-time distributed systems built
out of asynchronous solutions are “safer” and more efficient
than systems based upon (partially) synchronous solutions,
contrary to intuition or belief.

In Section 2, we examine coverage and efficiency issues
related to computational models and we present the “late
binding” principle. A generic architectural model of
systems under consideration is given in Section 3. In
Section 4, we introduce the Real-Time UC problem. In
Section 5, we introduce Fast FDs and show that the
implementation of (Strong or Perfect) FDs or Fast FDs can
be stated as a generic distributed message scheduling
problem, which we solve. In passing, we show how to
match the ðtþ 1Þ-rounds lower bound with asynchronous
algorithms. A numerical illustration of these results is given
in Section 6, considering deterministic Ethernets. In
Section 7, we introduce FastUC, a worst-case time optimal
algorithm for Real-Time UC.

2 ON COMPUTATIONAL MODELS

Let hXi be the specification of some problem in computer
science, ½�� be the specification of a design solution, and
Proofs be the set of demonstrations proving that ½�� solves
hXi under some design assumptions. For our purposes, it
suffices to consider that a design solution consists of a set of
(virtual or physical) modules, structured after some
architecture and equipped with a set of algorithms. We
restrict our scope of attention to deterministic algorithms.
Let S denote a physical system that implements ½��.

In order to specify some real problem X, one must
specify the (future) operational environment of S as
accurately as possible. This is achieved via subset hm:Xi
of hXi, which states which models (problem assumptions) are
considered, such as, e.g., an arrival model for an event
(“load” model), a failure model for a processing module.
Actually, hm:Xi specifies the adversary of S. Given that an
adversary must be an accurate modeling of some reality, an
adversary cannot be “simplified.”2 ½�� should be such that
the specification of desired properties, denoted hp:Xi,
cannot be violated as long as 1) the adversary behaves as
specified and 2) design assumptions are not violated. Proper-
ties of interest are safety, liveness, and timeliness (“real-
time”), denoted SafeP, LiveP, and TimeP, respectively.

When conducting theoretical work, any computational
model may be considered. Theoretical works are essential in
that they permit establishing optimality and/or impossi-
bility results. However, when considering real systems, that
is, when issues raised with implementing a model must be
addressed, then the choice of a model is constrained by a
number of requirements. Let Mð�Þ stand for a model
considered at design time and CðaÞ denote the highest
achievable coverage of assertion a. Computational models
range from pure synchronous—denoted Sync, to pure

asynchronous—denoted pure Async, characterized by their
intrinsic timing assumptions [21]. Most often, systems are
structured after a number of levels of abstraction or
implementation. Consider, in ½�� and Proofs, variables that
represent durations of computational or communication
steps, for every level of interest. As defined in [4], pure
synchrony means that every such variable is assumed to
have an upper bound and these upper bounds are known at
design time, while pure asynchrony means that no upper
bound is assumed for any of these variables. Hence,
CðMð�ÞÞ is the highest achievable probability or likelihood
that none of those timings postulated via Mð�Þ can be
violated at runtime.

2.1 Computational Model Coverage Issues

In caseX is some real problem, hXialso specifies covðhp:XiÞ, a
lower bound set for the coverage of hp:Xi under hm:Xi.
Hence, for a correct design to be an acceptable solution, it
must be that Cðdesign assumptionsÞ > covðhp:XiÞ. One
essential ingredient of design assumptions isMð�Þ. It follows
that the choice of Mð�Þ must meet the following coverage
requirements:

. (R1) CðMð�ÞÞ can be accurately computed or
estimated,

. (R2) CðMð�ÞÞ > covðhp:XiÞ.
A nonexisting assumption cannot be violated. Therefore,

coverage issues involved with (R1) and (R2) do not arise
with the pure Async model. Unfortunately, many problems
of interest do not have deterministic solutions in this model
[7]. This has motivated work directed at “augmenting” this
model with some semantics so as to circumvent impossi-
bility results. One can identify two classes of “added
semantics,” namely, timed semantics and time-free seman-
tics. FDs [1] are an example of time-free semantics. Models
that match the pure Async model augmented with timed
semantics are known under the name of partially synchro-
nous models—denoted ParSync, where some modules, or
some levels, are assumed to match pure synchrony
assumptions, whereas others match pure asynchrony
assumptions [3], [4]. In the Sync model, every module or
level matches pure synchrony assumptions. Sync being an
extreme instance of ParSync models, every result estab-
lished for ParSync models applies to Sync a fortiori. Models
that match the pure Async model augmented with time-free
semantics will be referred to as asynchronous models—
denoted Async.

A model that can be implemented (and its correctness
proven) by postulating a limited set of “hardware” or “low”
level timings, referred to as residual timings—i.e., timings
that are considered to have a coverage arbitrarily close to 1
—will be referred to as a weak model.

Obviously, the higher the number of timing assumptions
and/or the higher the levels considered, the smaller the
resulting coverage and the more inaccurate the estimate of
that coverage. Consequently:

Cðweak AsyncÞ > CðAsyncÞ > Cðweak ParSyncÞ
> CðParSyncÞ > CðSyncÞ;

932 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 8, AUGUST 2002

2. Such “simplifications” underlie a number of approaches, notably
synchronous designs, valid only in the absence of waiting queue
phenomena. Obviously, such “simplifications” are illegal, for they amount
to falsifying real hXi.

and the likelihood of meeting (R1) and (R2) is highest with
weak Async models.

It follows trivially that Cðhp:XiÞ, the highest achievable
coverage of hp:Xi, decreases when moving from weak
Async models to the Sync model. Hence, the following
conclusions can be drawn:
MC1: For any level k, CðSafePk

AsyncÞ > CðSafePk
ParSyncÞ

and CðLivePk
AsyncÞ > CðLivePk

ParSyncÞ.
BestMð�Þ: Whenever X is not a real-time computing

problem, choosing a (weak) Async model maximizes
Cðhp:XiÞ.

Let us illustrate MC1 with SafeP. Many asynchronous
algorithms that preserve SafeP, regardless of hm:Xi being or
not being violated, have been published—see, e.g., ACM
PODC proceedings. It is also the case that asynchronous
algorithms may preserve SafeP despite violations of
“added” time-free semantics. Such algorithms are called
“indulgent” in [8]. An example with UC is the �S rotating
coordinator algorithm of [1], which preserves SafeP even if
�S semantics are violated. Consequently, for some
problems, SafeP hold true under no conditions with asyn-
chronous algorithms, not the case with (partially) synchro-
nous algorithms.

Then, the question: Why is it that ParSync models are
sometimes considered when SafeP and LiveP only must be
demonstrated?3 Before proceeding with the examination of
this question, let us recall what is implied with proving
TimeP (stricto sensu, needed only if X is a real-time
computing problem).

2.2 Real-Time Computing Issues

2.2.1 Facts

Any (proven) solution to a real-time computing problem X
comprises (see scheduling theory):

. some solution ½�� based upon scheduling algo-
rithms, such as, e.g., HPF, EDF [20] or more complex
schemes, traditionally designed in some ParSync
model,

. schedulability analyses valid for pair fhXi; ½��g,
under worst-case “load” and failure scenarios, con-
ducted considering some ParSync model, necessarily,

. computable analytical expressions of time bounds T
(matching those specified as per TimeP), such as,
e.g., termination deadlines, as well as feasibility
conditions—denoted FCs.

The ability to predict values of time bounds T before S is
turned on is an absolute requirement. Unfortunately, as is
well-known, schedulability analyses are quite involved (NP-
complete, most often), despite the fact that, in many instances,
they rest on simplified models of internal processor archi-
tectures, internal system architectures, external and internal
event arrivals (“loads”), processes, faulty behaviors. More-
over, in order to bring the inherent complexity of such
analyses down to some tractable level, approximations are
often resorted to. Although sound from a mathematical
viewpoint, such approximations add to the inaccuracy due to
considering simplified models of technology, of reality.
Therefore, most often, bounds T have a modest coverage.

2.2.2 The “Late Binding” Principle

Note that it is necessary to consider some ParSync model
only when the time has come to conduct schedulability
analyses. Let MðSÞ be the implementation model retained
for system S. That MðSÞ might be some ParSync model
does not imply that Mð�Þ has to be a ParSync model as
well. In fact, � may well be designed in some Async model,
even when X is a real-time computing problem.

The idea of deferring the consideration of some MðSÞ
until after having devised and proved some design � in
some Mð�Þ has been stated first in [16], echoed in [9] and
[12], and detailed in [17], under the name of “design
immersion” (in a computational model). This is equivalent
to the concept of “late binding” (of a design to some
computational model), a well-known concept in the field of
programming languages.

Let Pk stand for a level k property. According to this
principle, bounds Tk

Async are established only after
SafePk

Async and LivePk
Async have been proven, which is done

without assuming any bounds Tj
Async, j < k. This has

definite advantages (see below) that are inaccessible to
those approaches based upon “early binding” to a ParSync
model, where one must first establish bounds Tk

ParSync, prior
to proving SafePk

ParSync and LivePk
ParSync.

2.2.3 Conclusions

In any model, bounds Tk depend on SafePk and LivePk.
Indeed, Tk proofs rest on assuming some worst-case
execution time for every process under consideration, in
addition to assuming such properties as, e.g., absence of
process deadlocks. Hence:
T C: For any model , for any level k,

CðTkÞ < minfCðSafePkÞ;CðLivePkÞg.
T C reinforces the observation made previously, i.e.,

C(TimeP) is modest compared to C(SafeP) or C(LiveP).
From MC1, we trivially derive:

minfCðSafePk
ParSyncÞ;CðLivePk

ParSyncÞg
< minfCðSafePk

AsyncÞ;CðLivePk
AsyncÞg:

Compounding this with T C permits us to conclude:
MC2: For any level k, CðTk

AsyncÞ > CðTk
ParSyncÞ.

4

Consequently, BestMð�Þ can be generalized as follows:
BestMð�Þ: Choosing a (weak) Async model maximizes

C(SafeP), C(LiveP), and C(TimeP).

The only way to increase CðTk
ParSyncÞ consists of adding

“time margins” to bounds Tk
ParSync. Hence:

T CC: For any level k:

. either Tk
ParSync ¼ Tk

Async and CðTk
ParSyncÞ < CðTk

AsyncÞ,
. or CðTk

ParSyncÞ ¼ CðTk
AsyncÞ and Tk

ParSync > Tk
Async.

Obviously, “time margins” being added, partially syn-
chronous solutions are necessarily less efficient and/or
slower than asynchronous solutions for identical achieved
coverage of timeliness properties.

ConclusionsMC2 and BestMð�Þ are the foundations of
the “late binding” principle, which underlies our approach.

HERMANT AND LE LANN: FAST ASYNCHRONOUS UNIFORM CONSENSUS IN REAL-TIME DISTRIBUTED SYSTEMS 933

3. Again, theoretical works are not concerned with this question.
4. CðT1Þ being the highest achievable coverage, T1 being proven out of

residual timing assumptions.

2.3 Our Approach and Related Work

Under the “late binding” principle, Step 1 precedes Steps 2
and 3. Steps 2 and 3 may be concurrent.

Step 1) Given some hXi, select as Mð�Þ the most
appropriate weak Async model, specify � (selecting
asynchronous algorithms only) as well as, in case X is a
real-time computing problem, time-free predicates stating
activation conditions for schedulers. For example: “Service
waiting queue W whenever W is nonempty” or “Make local
scheduling decisions whenever distributed consensus has
been reached.” Prove SafeP and LiveP.

Step 2) Design a solution for implementing the time-free
semantics of Mð�Þ out of residual (timing) assumptions,
i.e., in a weak ParSync model. Provide FCs and time
bounds T proper to that solution (e.g., failure detection
latency).

Step 3) In case X is a real-time computing problem, or in
case one wants to predict some physical “performance”
figures regarding �, do “late binding” of � to some
ParSync model so as to establish FCs and time bounds T for
pair fhXi; ½��g.

Selection of a ParSync model for designing some solution
� amounts to “early bind” � to some synchrony assump-
tions, which suffers from the drawbacks discussed above.
Either timings are postulated (guessed) and then none of the
requirements (R1), (R2) can be met. Or, assumed timings are
demonstrated to hold as time bounds TParSync and then
conclusions MC2 and T CC apply. In order to prove that a
ParSync model is correctly implemented, one has to face those
difficulties raised with “high-level” schedulability analyses,
even ifX is not a real-time computing problem. Note that proving
implementation correctness for a weak ParSync model
involves “low-level” schedulability analyses.

The belief according to which contemplating some
ParSync design model results into “better performance” is
unfounded, as shown with conclusion T CC, in accordance
with observations made previously by many researchers.5

One may attempt to increase the coverage of ParSync
models by resorting to the (classical) idea of “enforcing”
timing assumptions at runtime—such attempts being
(implicit) acknowledgments of the well-foundedness of
MC1 and MC2. This idea, which underlies the Timed
Asynchronous Distributed System (TA) model [2] and the
Timely Computing Base (TCB) approach [24], is as follows:
Design � is supplemented with measure-compare-and-kill
algorithms that serve to 1) timestamp every significant state
transition (e.g., message departures and arrivals) with
current global or local time, 2) measure every actual delay
value, for every delay variable that appears in � or Proofs,
3) compare every measured delay with its postulated
bound. In case a “timing failure” occurs (a postulated
bound is violated), that failure is transformed into a
provoked abort, such as an omission failure (discard a late
incoming message) or a stop failure (crash a processor that
has received a late message).

However, the “enforcement” of timing assumptions is
guaranteed only if every timing failure is always detected
and reacted to in due time, which implies proving that

processes which implement measure-compare-and-kill al-
gorithms are always scheduled appropriately at every level
where they are implemented, i.e., that their intrinsic
bounds T are met. This implies conducting schedulability
analyses accounting for the existence of these processes in
addition to other “regular” processes. From the above, it
follows that the best one can hope for is some coverage of
the assertion “timing assumptions are enforced,” which
coverage is poor with “high” level timing assumptions.
Consequently, this approach does help in increasing the
likelihood of meeting (R1) and (R2) with ParSync models.

Note in passing that, regarding TimeP, a TCB does not
provide better “guarantees” than can be expected from a
distributed real-time operating system.

TA being a ParSync model and TCB resting on a ParSync
model—in both cases, time bounds are assumed for (“high”
level) interprocess communication delays—the conclusions
arrived at in this section apply fully to TA and to TCB.
Drawbacks that result from “early binding” to a ParSync
model can be illustrated with some of the difficulties that
arise with TA or TCB.

Given that timings are “guessed,”6 it is impossible to
bound the density of aborts provoked by measure-compare-
and-kill algorithms. This is acknowledged in [2] and [24].
Consequently, algorithms that make use of variables that
depend on postulated bounds for failures (e.g., bound t for
consensus or atomic broadcast) cannot be considered, the
coverage of any a priori valuation of such variables being
unknown. Moreover, systems may turn mute arbitrarily
often, for arbitrarily long intervals, which is usually
considered unacceptable—recall covðhp:XiÞ.

Finally, the runtime penalty incurred with executing
these measure-compare-and-kill algorithms more or less
continuously cannot be ignored. Hence, FCs established
with TA or TCB can only be worse than those established
under the “late binding” approach, given that there is no
need to supplement asynchronous solutions with measure-
compare-and-kill algorithms.

Compounding this with conclusion T CC, it follows
trivially that TA or TCB lead to inefficient working
solutions.

A detailed examination of these issues can be found in [18].

3 ARCHITECTURAL MODEL

We illustrate our approach with the Real-Time UC problem,
denoted RTUC. Our Mð�Þ is the pure Async model
augmented with Strong FDs [1], denoted S-Async. For the
construction of Fast FDs, we also consider the pure Async
model augmented with Perfect FDs, denoted P-Async. In
such models, any solution to UC comprises a Distributed
Uniform Consensus algorithm, denoted DC, and an
FD construct. We derive our fast solutions to RTUC by
augmenting Fast FD constructs with some algorithm,
denoted �. Pair fFD;�g is referred to as a Failure
Management construct, denoted FM.

We consider a finite set � of processors, interconnected
by a network, referred to as Net. The nominal size of � is

934 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 8, AUGUST 2002

5. Excerpt from [21]: “It is impossible or inefficient to implement the
synchronous model in many types of distributed systems.”

6. With real-time systems, the idea of correcting erroneous guesses after
S has been turned on does not make sense.

n > 1. The model of a processor is given in Fig. 1. The
software/hardware architecture is modeled after a number
of levels, such as, e.g., the application software level, the
middleware level, the executive/operating system level,
various communication protocol levels, the input/output
(I/O) level. With existing systems, algorithms such as DC
belong to the middleware level, exceptionally to a lower
level. Messages handled by DC (resp., by FDs) are denoted
DC-messages (resp., FD-messages). Messages other than
FD-messages are referred to as ordinary messages. Let
COM denote the level of communication protocols where
one finds FD/FM constructs.

Let us model those waiting queues visited by outgoing
messages, from the application level down to the COM
level, as a single queue, denoted outQ, and those waiting
queues visited by outgoing messages, from the COM level
down to the I/O level, as a single queue, denoted outq. We
define inq and inQ similarly. Let ÿ (resp.,
) stand for an
upper bound on end-to-end delays for a DC-message (resp.,
an FD-message), measured at the COM level. Let D stand
for an upper bound on end-to-end delays for a DC-message,
measured at the DC level. Let Wqueue denote the maximum
sojourn time in queue for a DC-message. We have
D ¼WoutQ þ ÿþWinQ.

For the sake of clarity, our analyses rest on assuming that
a waiting queue is always serviced unless it is empty.
Extension of our results to the more realistic case where a
processor “does some work” before resuming servicing a
nonempty waiting queue is reasonably straightforward.

A correct modeling of reality leads to considering that a
processor servicing a message pending in a waiting queue
is not preempted. Consequently, we define variables woutQ,
woutq, winq, and winQ as the blocking factors corresponding to
the four waiting queues, respectively, that is the worst-case
times for servicing a message pending in each of these
waiting queues.7 Similarly, we define �m as the blocking
factor with Net, i.e., �m is the exact time needed for
transmitting the longest ordinary message over the physical
link between a processor and Net.

Assuming Net is idle and every visited waiting queue
empty, a message is transmitted in some finite time, which
is the lower bound of its processing and transmission
delays. Let
0 be a lower bound of COM level end-to-end
delays for an FD-message.

Whenever the transmission of a message first in outq is
attempted, Net contention may occur. Such contention
phenomena are handled via a multiaccess protocol (the
distributed medium case) or a scheduling algorithm
(internal to a Net node), which determines the ordering of
messages successfully inserted in Net by competing
I/O handlers. Let 	 stand for the worst-case time it takes
to fully resolve Net contention arising between n proces-
sors, each attempting to transmit an ordinary message
ranked first in outq. 	 includes delays involved with local
transmissions, between a processor and Net.

Whenever messages arrive “fast enough” at some
processor, possibly from different input links, waiting
queues inq and inQ build up. Consider some ordinary
message msg waiting in inq. Let k be the maximum

number of ordinary messages, generated by some
processor, that may be serviced prior to msg. Hence,
the worst-case rank of msg in inq is m ¼ k n and the
worst-case time it takes for servicing msg is equal to
mwinq. Given that many processes (e.g., application-level,
middleware-level) may generate messages having prio-
rities higher or deadlines shorter than those assigned to
msg, k may be high. Let � stand for the worst-case time
needed for transmitting a DC-message across Net,
measured at the I/O level (� includes time of delivery
into inq). For an ordinary message ranked rth in outq and
mth in inq, let us write ÿ0ðr;mÞ ¼ r	þ�þWinqðmÞ, with
WinqðmÞ ¼ mwinq.

Level COM is in charge of translating the destination
field of every outgoing message into one or many physical
addresses of processors. DC-messages and FD-messages
carry G in their destination field. These messages are
broadcast within some group of processors, denoted G,
logical address G. Throughout this paper, we consider that
G is set �.

Whenever appropriate, levels communicate through
shared data structures and signaling. In accordance with
[1], this is the case for DC and local FD, in which FD
updates a list denoted SL, to be read by DC. At any time,
SLðpÞ contains names of those processors that p’s FD
suspects (rightly, erroneously) of having failed. An
FD module consists of two processes, one denoted
inFD-proc, which maintains local list SL, another one
denoted outFD-proc, which broadcasts FD-messages at
regular intervals so as to “prove” that its processor has
not failed. Whenever outFD-proc is run, it deposits an
FD-message in outQ. Whenever an FD-message in inq is
serviced at level COM, inFD-proc is signaled.

The body of an FD-message is empty. With algorithm
FastUC, an FM-message carries some short data item in its
body field, which data is invariant for a given processor and

HERMANT AND LE LANN: FAST ASYNCHRONOUS UNIFORM CONSENSUS IN REAL-TIME DISTRIBUTED SYSTEMS 935

Fig. 1. Architectural model of a processor.

7. Blocking factor wqueue is included in Wqueue.

for a given run of DC (see Section 7). In order to implement the
reliable Net assumption w.r.t. FD-messages and
FM-messages, retransmission of a previously transmitted
but unacknowledged message—which is what TCP provides
—would be a useless and costly luxury. Hence, UDP or
any low level datagram protocol is appropriate for
transmitting FD-messages and FM-messages.8

4 THE REAL-TIME UNIFORM CONSENSUS PROBLEM

Every application-level service—denoted Sv—that needs
UC is assigned some system-wide unique identifier,
denoted idSv. Each time a process invokes UC on behalf of
Sv, it provides a system-wide unique identifier for that
invocation, denoted ID, such as, e.g., idSv, concatenated
with some local sequencer value or with that sequencer
value assigned to the last invocation of UC completed on
behalf of Sv. An invocation of UC triggers the execution of
algorithm DC.

Due to space limitations, we omit a detailed presentation
of hm:RTUCi. For our purposes, it suffices to know that, in
addition to the architectural model given in Section 3, we
consider those assumptions originally set for defining UC,
i.e., 1) each time a process participates in a run of DC, it
proposes some initial value, 2) processors may fail by
stopping (correct behavior or permanent silence), 3) Net is
reliable (Net does not partition, messages are not lost).
Variable t stands for an upper bound on the number of
processor failures that may be experienced during any run
of DC (0 < t < n). A process mapped onto a processor that
fails is called an incorrect process (correct otherwise).

hp:RTUCi: (For every DC run, from time 0)

. SafeP:

- Uniform integrity: Every process (correct or
incorrect) decides at most once.

- Uniform agreement: No two processes (correct
or incorrect) decide differently.

- Uniform validity: If a process decides value v,
then v was proposed initially by some process
(correct or incorrect).

. TimeP: If a process decides, it does so within at most
L time units after having invoked UC.9

In hRTUCi, TimeP replaces LiveP—every correct process
eventually decides some value—that appears in classical
hUCi [1].

S-Async is our design model. Note that Eventually
Strong FDs (�S) cannot be considered, given that TimeP
should hold from time 0.

Following our approach, first, we ensure SafeP by
selecting some convenient asynchronous DC algorithm,
such as, e.g., the Rotating Coordinator algorithm [1] or a
sequential algorithm originally introduced under the name

of Simple S in [13], generalized in [22]. In the sequel, this
algorithm is referred to as Seq (see MiniSeq in Section 7).
Second, we show how to implement Strong FDs. Third,
we prove TimeP. For our purposes, it is not necessary to
address those schedulability issues raised with expressing
L. In addition to requiring a complete presentation of
hm:RTUCi, this would be out of the scope of this paper.
We simply need to show how to minimize ZðDCÞ, the
worst-case termination time of selected algorithm DC so
as to obtain the best achievable FCs—those closest to
necessary and sufficient FCs. Fast FDs are necessary to
attain that goal.

5 HOW TO CONSTRUCT FAST FAILURE DETECTORS

TrustFD is the problem of how to correctly instantiate the
semantics of Perfect or Strong FDs in a (weak) ParSync model.
Only some low-level modules, sitting at the COM level and
below, are concerned with the construction of FDs.

An FD is Strong (resp., Perfect) if it satisfies strong
completeness and weak (resp., strong) accuracy. Weak
accuracy states that some correct processor is never
suspected. Let s (s > 0) be the smallest number of “stable”
processors, a “stable” processor never being suspected
unless it fails. Strong accuracy states that no processor is
suspected before it fails. Strong completeness states that,
eventually, every processor that fails is permanently
suspected by every correct processor [1]. In fact, we are
interested in strengthening strong completeness, as follows:
Every processor that fails is permanently suspected by
every correct processor in some bounded finite time. Let d
stand for the worst-case time needed to detect a processor
failure, counted from the time of actual failure occurrence.
We want such semantics to hold true from time 0. It turns
out that this problem can be specified as the following COM
level generic distributed message scheduling problem.

5.1 The TrustFD Problem

hm:TrustFDi:

. Set � of n processors, acting as sources of messages,
exchanged via some network Net. There are two
types of messages: FD-messages and ordinary
messages (e.g., application, system, DC-messages).

. An ordinary message is initially deposited (by DC)
in outQ, moved to outq after being serviced in outQ,
transmitted across Net after being serviced in outq,
deposited in inq, then moved to inQ after being
serviced in inq, and delivered to DC after being
serviced in inQ.

. An FD-message is initially deposited (by outFD-proc)
in outQ, moved to outq after being serviced in outQ,
transmitted across Net after being serviced in outq,
deposited in inq, then delivered to inFD-proc after
being serviced in inq.

. Message arrival models: periodic generation of
FD-messages (by every outFD-proc), period � ;
arbitrary arrivals for ordinary messages.

. Every processor is equipped with a “good” clock
(see further). Every inFD-proc is equipped with a
number of timers. Processor j’s inFD-proc uses a

936 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 8, AUGUST 2002

8. In systems built out of standard protocol stacks, COM can be the UDP
or TCP level. In systems built out of customized hardware/firmware, COM
can be the data link level, the case with, e.g., spaceborne systems or defense
systems.

9. L includes those latencies due to the fact that a processor schedules
and runs processes other than those which invoke UC, as well as services
other than DC.

timer, denoted Ti;j, to monitor processor i. More or
less periodically, every timer is reassigned some
finite value. If Ti;j awakes, inFD-proc(j) declares “i
suspected” by adding i to SLðjÞ. Let Vi;j be the
infinite set of consecutive values assigned to Ti;j.

. Processors may fail by stopping (up to t), Net is
reliable.

hp:TrustFDi:

. TimeP: 8i, 8j, time values in set Vi;j are such that:

- strong completeness and weak accuracy hold
from time 0 (Strong FDs),

- strong completeness and strong accuracy hold
from time 0 (Perfect FDs).

Given TimeP, there must be an upper bound on the time
interval that may elapse between any two consecutive
generations of an FD-message by any given processor. This
is encapsulated in the assumption that FD-messages are
generated periodically.10

“Good” clocks are clocks that have a drift which is
negligible relative to some physical time referential. Any
two “good” clocks measure the actual duration of any given
“short” time interval identically. We do not need synchro-
nized clocks. Note that timers cannot be set to values that
“look good” (offline), or that are “tuned appropriately”
while a system is running. One must demonstrate, prior to
fielding a system, that timers will be set to online computed
values such that TimeP holds.

Some processor and Net capacity is used up by the
processing and the transmission of FD-messages. Let � be
the worst-case overhead induced by FD-messages.

TimeP is proven if and only if one establishes analytical
(computable) expressions of d and
, which amounts to
solving a distributed message scheduling problem.

5.2 The FastFD Problem and How to Solve It

The FastFD problem is TrustFD, with hp:TrustFDi strength-
ened as follows:

8i, 8j, values in set Vi;j are lower bounds, for any given �.

FastFD is solved by showing how to establish a tight
upper bound d for some given �, which implies first
showing how to establish a tight upper bound
. Note that
previous results related to FD implementation issues (e.g.,
[1], [15]) are not directed at solving FastFD.

5.2.1 How to Establish Tight

Under worst-case processor and Net “loads,” waiting
queues build up and Net contention arises for transmitting
concurrent FD-messages and ordinary messages on the one
hand, concurrent FD-messages on the other hand. Fast
failure detection is achievable only if upper bounds for
FD-messages’ sojourn times in waiting queues and Net
nodes are optimal, the case whenever FD-messages are
serviced prior to ordinary messages. This can be enforced
by resorting to classical priority-driven, or deadline-driven,

scheduling algorithms that implement the well-known
head-of-the-line policy. Consequently, we retain the follow-
ing SW algorithm:
SW: In every visited waiting queue, an FD-message is

always deposited ahead of ordinary messages and serviced
prior to any ordinary message.

In order to resolve interprocessor competition optimally,
processors may be assigned priorities or messages may be
assigned different relative deadlines. Priorities or deadlines
being fixed, they define a total order over any set of
FD-messages whenever contention develops. Any such
assignment is equivalent to assigning indices 1; . . . ; n over
set �, one index per processor. Moreover, whenever possible,
preemption (of a broadcast medium, of a Net node) should be
exercised, to the benefit of FD-messages, for it is known that
preemption may be needed to achieve optimality. Therefore,
we retain the following SN algorithm:
SN : Net resources are allocated to FD-messages, prior to

ordinary messages; in case of interprocessor competition for
transmitting FD-messages, FD-messages are serviced in
increasing index order.11

Let ðxÞ stand for the worst-case time it takes for
x processors to preempt Net locally and to fully resolve
Net contention involving x FD-messages and 0ðx0Þ stand
for the worst-case time it takes for a processor to fully
service a set of x incoming FD-messages, both measured
at the COM level (x0 is a function of x). Let � be the
smallest FD-message interarrival delay. Bound x0 is the
maximum number of FD-messages (out of x) that are not
serviced at the time the last incoming FD-message is
deposited into inq. Given SW, x0 ¼ 1 if � � winq, x0 ¼
dx ð1ÿ �winqÞe if � < winq, and 0ðx0Þ ¼ x0 winq.

Bound ðxÞ is determined by algorithms SW and SN
and bound 0ðx0Þ is determined by algorithm SW. Hence,
 ðxÞ and 0ðx0Þ are tight [14], [20], [23]. Let � stand for the
worst-case time needed for transmitting an FD-message
across Net, measured at the I/O level, including the time
needed for delivery into inq. A tight bound � can be
computed, considering that optimal schedulers (proper to
Net) service FD-messages prior to DC-messages [5], [25].

Consequently, for an FD-message generated by that
processor assigned index x, tight bound
ðxÞ is as follows:

ðxÞ ¼ woutQ þ woutq þ �m þ ðxÞ þ �þ x0 winq:

By choosing x :¼ s, processors assigned indices 1; . . . ; x
are stable processors. Hence, one solves FastFD in the
S-Async (resp., P-Async) model by establishing an analy-
tical expression of
ðsÞ (resp.,
ðnÞ). Worst-case FD over-
head is � ¼ ð ðxÞ þ xwinqÞ=� . Given that � is set to some
imposed (acceptable) value a priori, a lower bound for � is
� ¼ ð�Þ=�, where ð�Þ ¼ ðxÞ þ xwinq. Typically, �� 1.
Note that � may be smaller in fact in the case of real-time
systems that make use of synchronized clocks. Receiving a
clock synchronization message issued by some processor p
is equivalent to receiving an FD-message from p.

Given that ðxÞ is tight, the lower bound of � is tight as
well for any given �. In order to construct Fast FDs, � should
be set equal to its lower bound.

HERMANT AND LE LANN: FAST ASYNCHRONOUS UNIFORM CONSENSUS IN REAL-TIME DISTRIBUTED SYSTEMS 937

10. It is likely that assuming no such bound as � , directly or indirectly,
would lead to an impossibility. Stricto sensu, � is a partial solution to a time-
free specification of TrustFD (no timers, no “good” clocks assumption, no �),
not presented in this paper. 11. A nonoptimal rule consists of using process names as indices.

5.2.2 How to Establish Tight d

This issue is solved by showing that values used by FD

timers are tight. Our algorithmic solution—denoted RTV,

for Reset Timer Value—performs online calculations of

those consecutive, time-dependent, values assigned to

timers, in chronological order.
Every processor in � runs algorithm RTV. Let vi;jðkÞ be

the value assigned to Ti;j at the kth iteration of RTV. For

the sake of simplicity, let us assume � >
ðxÞ ÿ
0. If

� �
ðxÞ ÿ
0, then every FD-message must carry a se-

quence number, incremented at every round of FD-message

broadcast by the sending out-FD proc, and sequence

numbers must be part of algorithm RTV.
Consider any two processors p and q. When q’s

inFD-proc receives the first FD-message sent by p, Tp;q is

set to value vp;qð1Þ ¼ � þ
 ÿ
0. Implicitly, this is equivalent

to assuming that this first message has traveled in
0 time

units exactly. This may lead to computing too high a value

for vp;qð1Þ, but any other assumption may be invalid. Upon

the arrival of the kth FD-message generated by p, q’s

inFD-proc computes vp;qðkÞ as follows:

. Nonlearning RTV:

vp;qðkÞ ¼ current value of Tp;q þ �:

. Learning RTV:

vp;qðkÞ ¼ min current value of Tp;q;
 ÿ
0

� 	
þ �:

Optimal timer values are obtained with the latter

scheme.12 The chronologically ordered vp;qð:Þ are those

consecutive values that constitute set Vp;q. Rather than

traveling in
0 time units, a first FD-message may travel in

 time units. Therefore: d ¼ � þ 2
 ÿ
0.
The “good clocks” hypothesis amounts to assuming that

the physical drift of a correct clock is negligible over

intervals at most equal to d. For any given �, � and d in the

S-Async model are smaller than in the P-Async model.

Given that � and
 are tight, d is tight as well.
Furthermore, Cð
Þ and CðdÞ should be high, given that

our construction of Fast FDs rests on proving “low” level

time bounds, out of “low” level timing assumptions. The

lower the level of COM is, the weaker the ParSync model

considered for constructing Fast FDs is and the higher Cð
Þ
and CðdÞ are (see Section 2).

One may consider addressing the TrustFD problem or

the FastFD problem by providing oneself with two

separate networks, one being exclusively reserved for

“selected” processors and/or FD-messages. At first sight,

this approach looks simpler, albeit more costly. However,

one must still address those scheduling issues examined in

this paper, namely, how to service x competing sources that

transmit FD-messages (as well as DC-messages and other

messages, possibly) so as to establish (tight) bounds
, � ,

and d.

5.3 Conclusions

5.3.1 D versus d

Trivially, given algorithms SW, SN , and RTV,
 � ÿ0ðr;mÞ,
hence d < D. In real systems, under worst-case conditions,
i.e., when waiting queues build up at various levels of
abstraction or implementation, one may even have d� D.

The formula given for ÿ0ðr;mÞ in Section 3 does not

include delays due to FD-messages. Consider levels up to

level COM. Every � , up to ð�Þ time units are used up (end-

to-end) by FD-messages. Accounting for FDs, the actual

bound is ÿðr;mÞ ¼ ÿ0ðr;mÞ þ dÿ
0ðr;mÞ
�ÿ ð�Þe ð�Þ. Knowing that

ÿ0ðr;mÞð1þ ð�Þ
� ÿ ð�ÞÞ � ÿðr;mÞ

< ÿ0ðr;mÞð1þ ð�Þ
� ÿ ð�ÞÞ þ ð�Þ

and recalling that ð�Þ � ÿ0ðr;mÞ, we can write:

ÿðr;mÞ ¼ ÿ0ðr;mÞ=ð1ÿ �Þ and D ¼WoutQ þ ÿðr;mÞ þWinQ:

Recall that our analyses rest on assuming that a waiting
queue is always serviced unless it is empty, which favors D
to a greater extent than d. Numerical illustrations are given
in Section 6.

5.3.2 How to Match the tþ 1 Rounds Lower Bound in

the S-Async Model

Ranking of processors according to their indices is decided
upon a priori. Under worst-case conditions, FD-messages
generated by stable processors are always transmitted prior
to FD-messages generated by processors assigned indices
sþ 1; . . . ; n, referred to as “unstable.” Given algorithm RTV,
a correct unstable processor may be erroneously suspected
under worst-case conditions. Therefore, it is useless to let an
unstable processor send out FD-messages (only its
inFD-proc should be active), hence the idea of splitting set
� into two groups, one that comprises stable processors
only, which group is called the active group, another one
comprising unstable processors only, called the silent

group.
DC-messages and FD-messages are broadcast within

group G (defined in Section 3) by stable processors only.
Processors in the silent group receive DC-messages gener-
ated by the active group, but they do not broadcast any. The
silent group implements pure asynchronous semantics.
Given that at most t processors may fail, it suffices to set s to
value tþ 1 for implementing the semantics of the S-Async
model in set �. Actually, an active group implements the
semantics of Perfect FDs.

The worst-case lower bound for round-based algorithms
that solve UC in the S-Async model is nÿ sþ 1 rounds.
This bound may be significantly greater than tþ 1. With our
construction of Strong FDs, there is at least one stable and
correct processor in the active group. Hence, if we run
algorithm Seq in the active group, it follows that Seq

terminates in exactly tþ 1 rounds.
This suffices to demonstrate that state-of-the-art asyn-

chronous solutions can be as efficient as state-of-the-art
synchronous solutions regarding (logical) time complexity.

938 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 8, AUGUST 2002

12. Performance analyses presented in the sequel are conducted for
worst cases, i.e., assuming a nonlearning RTV.

However, with real-time systems, physical time bounds
matter and logical time complexity should not be equated to
physical time bounds. An algorithm that terminates in
R rounds may be slower than another algorithm that
terminates in R0 rounds, R0 > R. This is demonstrated in
[18], where synchronous consensus algorithms—denoted F
—that terminate in tþ 1 rounds, are compared to FairSeq, a
“fair” extension of Seq, that terminates in tþ 2 rounds.
Indeed, whenever n > tþ 1, processor(s) in the silent group
cannot propose some initial value. In order to alleviate
unfairness, one extra round is added to Seq, during which
every processor in the silent group broadcasts its initial
value within the active group. We establish under which
condition FairSeq’s worst-case termination time is smaller
than F ’s worst-case termination time. We show that this
condition is met most often with real systems.

This result demonstrates that state-of-the-art asynchro-
nous solutions may exhibit timeliness properties and FCs
that are better than those achieved with state-of-the-art
synchronous solutions.

Some synchronous version of FairSeq can be imagined.
Our demonstration still holds, for the reasons given in
conclusion TCC (Section 2).

6 ILLUSTRATION WITH ETHERNETS

Let us illustrate these generic results with Ethernet-like
networks. In this section, COM is the ISO/OSI data link
level. With Ethernets, � ¼ 0 (ðxÞ includes local physical
transmission delays and there is no additional transmission
delay). Hence,
ðxÞ ¼ woutQ þ woutq þ �m þ ðxÞ þ x0 winq.

Being concerned with real-time systems, we must
consider a deterministic variant of the original Ethernet
CSMA-CD protocol. This variant, called CSMA/DCR
(Carrier Sense Multi Access/Deterministic Collision Reso-
lution), which is based on deterministic balanced m-ary tree
searches [19], has been implemented in COTS products.13

6.1 CSMA/DCR

Broadcast media are physically characterized by a channel
slot time, denoted �. Sources of messages are processors.
Channel sharing between sources works à la CSMA-CD
whenever there is no unresolved collision pending. When a
collision is detected (and there is no previous collision
pending), sources initiate a deterministic balanced m-ary
tree search collectively. To this end, every source is assigned
some unique index. For this illustration, it suffices to
consider exactly one index per source. A tree search
proceeds from left to right, searching for subtrees that
either are empty or contain exactly one active leaf. A leaf is
active if its index is that of a source which has a message
pending. Obviously, during a tree search, a message
submitted by a source assigned index i is transmitted prior
to messages submitted by sources assigned indices greater
than i. A tree search is time bounded, which permits
computing ðxÞ.

Consider x sources, each attempting to transmit a
pending message (rank 1 in outq). Let �ðxÞ be the time

needed to physically transmit these x messages locally, in
the absence of contention. Consider now that these x sources
“collide.” Let �lx be the maximum number of steps needed
to search x leaves in an m-ary tree of l leaves. In [10] and
[11], one shows:

�lx ¼
m logm m x

2b cð Þd e ÿ 1

mÿ 1
þm x

2

j k
logm

l

m x
2

� � !$ %
ÿ xÿm x

2

j k� �
; x 2 f2; . . . ; lg:

This formula applies for any assignment of x indices
over l sources (general assignment). A tighter bound—
denoted �lx—holds when those x sources that collide own
indices 1; 2; . . .x (optimal assignment). The closed-form
expression of � is as follows:

�lx ¼ 1þm logmðlÞ þ
XlogmðlÞ
i¼1

xÿ 2

mi

� � !
ÿ x; x 2 f2; . . . ; lg:

Therefore, depending whether index assignment is general
or optimal, the worst-case delay involved with resolving a
collision fully is �ðxÞ þ �lx � or �ðxÞ þ �lx �, respectively.

CSMA/DCR has been designed to be fault-tolerant. This
protocol may be defeated whenever sources get out of
synchrony, which is revealed by detecting a collision on
some tree leaf. Whenever this occurs, a channel jamming
sequence of duration at least equal to logmðlÞ� is generated
by the sources. Message transmissions are resumed when
the channel returns to idle. We now show how these
CSMA/DCR features can be applied to our generic
solution.

6.2 Bounds
 and d

Under worst-case conditions, the channel is jammed during
logmðlÞ �, to indicate that an on-going tree search performed
for ordinary messages must be stopped, in order to transmit
FD-messages. The channel is preempted without aborting
any ordinary message (the blocking factor is �m). After such
a sequence has been generated, only FD-messages are
transmitted, if so desired (our choice, for this illustration).
Processors get synchronized via the jamming sequence and
FD-messages are transmitted during the same tree search.
Tree search for ordinary messages is resumed from its
preemption state when the channel returns to idle. Given
that an FD-message is empty, its physical transmission
delay is that of a message of minimum duration, i.e., slot
time �. Therefore, �ðxÞ ¼ x�. Depending on whether index
assignment is general or optimal, ðxÞ writes þðxÞ or
 ÿðxÞ, respectively, as follows:

 þðxÞ ¼ logmðlÞ þ xþ �lx
ÿ �

� and

 ÿðxÞ ¼ logmðlÞ þ xþ �lx
ÿ �

�:

The smallest FD-message interarrival delay � (Section 5)

is �. Hence, x0 ¼ dx ð1ÿ �winqÞe if � < winq, x0 ¼ 1 if

� � winq. Tight bound
 for the xth FD-message is:

þðxÞ ¼ woutQ þ woutq þ �m þ þðxÞ þ x0 winq or

ÿðxÞ ¼ woutQ þ woutq þ �m þ ÿðxÞ þ x0 winq:

HERMANT AND LE LANN: FAST ASYNCHRONOUS UNIFORM CONSENSUS IN REAL-TIME DISTRIBUTED SYSTEMS 939

13. CSMA/DCR networks are used in, e.g., the launchpad of Ariane, the
European satellite launcher, defense shipborne systems, and factories.

T h e s h o r t e s t F D - m e s s a g e d u r a t i o n i s

0 ¼ woutQ þ woutq þ �þ winq. Recall that tight bound d is

d ¼ � þ 2
 ÿ
0.

6.3 Numerical Examples

Let us consider 10 MBit/s Ethernets.14 Let us consider that

the size of the longest ordinary message (I/O level framing)

is 10,000 bits, i.e., �m ¼ 1ms. Let us pick up 250 �s for each

of the blocking factors woutQ, woutq, and winq. Hence,
0 ¼
801:2�s and
ðxÞ ¼ 1:5þ ðxÞ þ 0:25x0 (in ms), with

x0 ¼ d0:7952xe. Results shown below are rounded up to a

precision of 10 �s. Let us consider quaternary trees (m ¼ 4)

and choose t ¼ 5.
Let FFDs stand for Fast FDs. With Strong FFDs,

x ¼ s ¼ 6, while x ¼ n with Perfect FFDs. Subscript A

(resp., PA) stands for the S-Async (resp., P-Async) model.

We get the following results (see also Fig. 2).

. Case #1: n ¼ l ¼ 16

- Perfect FFDs: x0 ¼ 13, PA ¼ 1:18 �s, hence

PA ¼ 5:93 ms.

- Strong FFDs: x0 ¼ 5, þA ¼ 0:97 ms, and
 ÿA ¼ 0:77 ms. H e n c e ,
þA ¼ 3:72 ms a n d

ÿA ¼ 3:52 ms.

. Case #2: n ¼ l ¼ 1; 024

- Perfect FFDs: x0 ¼ 815, PA ¼ 70:14 ms, hence

PA ¼ 275:39 ms.

- Strong FFDs: x0 ¼ 5, þA ¼ 2:97 ms, and
 ÿA ¼ 1:54 ms. H e n c e ,
þA ¼ 5:72 ms a n d

ÿA ¼ 4:29 ms.

For a fair comparison between Perfect and Strong FFDs,

we should consider the same worst-case overhead � in both

cases. Let us pick up � ¼ ðxÞþxwinq
� ¼ 5%, that is � ¼

20 ð ðxÞ þ 0:25xÞ (in ms).

. Case #1: n ¼ 16

- P e r f e c t F F D s : �PA ¼ 103:55 ms a n d
dPA ¼ 114:61 ms.

- Strong FFDs: �þA ¼ 49:46 ms and �ÿA ¼ 45:36 ms.
Hence, dþA ¼ 56:10 ms and dÿA ¼ 51:59 ms.

. Case #2: n ¼ 1; 024

- P e r f e c t F F D s : �PA ¼ 6:52288 s a n d
dPA ¼ 7:07287 s.

- Strong FFDs: �þA ¼ 89:39 ms and �ÿA ¼ 60:72 ms.
Hence, dþA ¼ 100:03 ms and dÿA ¼ 68:49 ms.

S-Async being our design model, let us focus on
performance figures achieved with Strong FFDs. Consider
ÿðr;mÞ, pick up k ¼ 5 (i.e., m ¼ 5n), r ¼ 5, and the same
numerical values as above. With Ethernets, � ¼ 0 (same
reasons as for � ¼ 0). With CSMA-DCR and quaternary
tree search, 	ð16Þ ¼ 5� 0:0512þ 16� 1ms ¼ 16:26ms and
	ð1024Þ ¼ 341� 0:0512þ 1024� 1ms ¼ 1:04146 s. Hence,
ÿ ¼ 106:61 ms for n ¼ 16 and ÿ ¼ 6:82873 s for n ¼ 1; 024.
As n ranges from 16 to 1,024, ratio ÿ=
þA ranges approxi-
mately from 29 to 1,194 and ratio ÿ=
ÿA ranges approxi-
mately from 30 to 1,593.

Let us pick up WoutQ ¼WinQ ¼ 150 ms (worst-case
bounds). For n ¼ 6, one finds D ¼ 406:61 ms. For
n ¼ 1; 024, one finds D ¼ 7:12873 s. As n ranges from 16
to 1,024, ratio D=dþA ranges approximately from 7 to 71 and
ratio D=dÿA ranges approximately from 8 to 104.

We observe that a small dA is achievable at the expense of
some marginal processing and communication overhead.
Ratio D=d illustrates the merits of Strong Fast FDs.

Recall that our analyses rest on assuming that a waiting
queue is always serviced unless it is empty. Consequently,
numerical values computed for d are more realistic than
those computed for ÿ and D, which are optimistic values.
Such results lead to the possibility of devising Fast UC
solutions (see Section 7).

Similar results can be established, considering other
types of networks (e.g., store-and-forward, irregular
meshed networks) and other deterministic multiaccess or/
and communication protocols, as well as faster links.

7 A NOVEL SOLUTION FOR FAST UNIFORM

CONSENSUS

Let us now examine TimeP (see hRTUCi). Our objective is to
minimize ZðDCÞ, the worst-case time for achieving UC, DC
being “immersed” in some ParSync model. Let us consider
that delays involved with computations in a DC round are
negligible compared to D. Hence, D is the worst-case
termination time of a round. A round may in fact terminate
as soon as some processor failure is detected. Such a round is
referred to as a mini-round. De facto, variable d is a tight
upper bound on mini-round durations. As for rounds, we
consider that delays induced by computation steps in a mini-
round are negligible, compared to d.

Fast Uniform Consensus derives from the idea of
replacing rounds with mini-rounds, whenever feasible.
Consider Seq. Under worst-case failure scenarios,
ZðSeqÞ ¼ Dþ t dþ
. However, worst-case values of
ZðSeqÞ are obtained with “lucky” runs (no failures), in
which case ZðSeqÞ ¼ ðtþ 1ÞD.

940 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 8, AUGUST 2002

Fig. 2.
þA (upper) and
ÿA (lower), with l-leaf balanced quaternary trees,

16 � l � 1; 024, tþ 1 � l � 1; 024, t ¼ 5.

14. According to the ISO/OSI standard, greatest values are 1,024 for n,
51:2�s for �.

With Fast FDs, it is possible to speed up the execution of

DC algorithms, irrespective of failure occurrence patterns.15

The solution presented in this paper rests on 1) “augmenting”

a Fast FD construct with a failure management (FM)

construct, 2) taking advantage of the inherent parallelism

between DC and FD/FM. Actually, this approach is similar to

that followed for constructing synchronized clocks, where

“high” level processes are provided with a global time service

(FM in our case), implemented at some “low” level.

7.1 Fast Uniform Consensus

Given that, with RTUC, worst-cases matter, let us present a

non-early-deciding/stopping solution, referred to as

FastUC (see Fig. 3). FastUC comprises 1) a DC algorithm,

called SRC (Single Round Consensus), 2) an FM construct

{Fast FD, MiniSeq}. Let us present FastUC informally.

7.1.1 SRC

SRC consists of having every active processor broadcast its

DC-message, carrying some proposed value, denoted prop,

tagged with some unique identifier ID (see Section 4), with

G in its destination field. Whenever a DC-message is

processed at the COM level, address G is decoded, in which

case the local FM module is signaled, with ID as a

parameter. Upon receiving that signal, the FM module

starts running MiniSeqðIDÞ, which results in having an FM-

message deposited in outQ, behind the ID-matching DC-

message.
Algorithms SW and SN (Section 5) are used to process

FM-messages. However, the scheduling of FM-messages

should obey the following ordering constraint:
Within outq, the scheduling of a DC-message and an

FM-message carrying the same ID should preserve their

initial relative ordering.
Therefore, the following local precedence (�) property

holds for any run of FastUC:
(P): completion of a DC-message broadcast � start of an

FM-message broadcast.
Incoming DC-messages are recorded, until conditions

(TC1) and (TC2) are met—see below. The message complex-

ity of SRC is ðtþ 1Þn.

7.1.2 MiniSeq

MiniSeq is derived from Seq. With Seq, value is any type of

proposition. With MiniSeq, value is pair fk; IDg, where k is

a processor’s index and ID is a unique identifier of some

HERMANT AND LE LANN: FAST ASYNCHRONOUS UNIFORM CONSENSUS IN REAL-TIME DISTRIBUTED SYSTEMS 941

Fig. 3. Algorithms SRC and MiniSeq for processor pk, assigned index k, k 2 f1; . . . ; ng.

15. Ongoing work shows how to achieve such bounds as Z ¼ Dþ t dþ
,
in synchronous models, even when no failures occur, using Fast FDs.

SRC run. In other words, for any given ID, consensus values
are processor indices (variable est).
MiniSeq consists of having active processors take turns

according to their respective indices. An active processor
broadcasts its FM-message only once. FD-messages keep
being generated while MiniSeq is running. Processor pk,
assigned index k, monitors processors pj, assigned indices j,
j 2 f1; . . . ; kÿ 1g. Processor pk broadcasts some value estk if
and only if it is not waiting for some processor pj. The wait
for processor pj is over for pk whenever either pj appears on
SLðkÞ or estÿfrompj is received by pk. Processors in the
silent group perform the “wait until” part of MiniSeq.
Every processor terminates with win = most “recent”
estÿfrompi received, i being the highest index seen.
MiniSeqðIDÞ r u n s w h i l e m a t c h i n g I D - t a g g e d

DC-messages travel across Net, sojourn in inq, then in
inQ, before being delivered at the DC level. When MiniSeq

terminates, one processor is elected as “the winner,”
denoted win. The content of its DC-message is denoted
propwin. SRC terminates whenever the following termina-
tion conditions (TC1) and (TC2) are met:
win is known (TC1) and propwin has been delivered

(TC2).
It may be useful to provide FM constructs with an

“overdrive” option. If “overdrive” is off, FD-messages are
broadcast every � . If “overdrive” is on, then, while MiniSeq

is run, FD-messages are broadcast at some period smaller
than � . This permits finetuning runs of MiniSeq—so as to
achieve UC in exactly D (see further)—without having to
incur any excessive permanent processing and communica-
tion overhead with FD-messages. Due to space limitations,
the detailed specification of this option is omitted.

7.2 Proof Overview and Performance

Proofs that Seq—hence MiniSeq—solves UC in the S-Async
model can be found in [22]. Let i be the elected index
(win ¼ i). This implies that pi’s FM module has broadcast,
at least partially, an FM-message that carries i. Given P, it
follows that propi has necessarily been fully broadcast by
processor pi when SRC was run. This, in conjunction with
the reliable Net assumption, suffices to demonstrate that
propi is eventually received by every correct processor.
Hence, FastUC solves UC.

Let us now examine ZðFastUCÞ, the worst-case termina-

tion time of FastUC. Bounds ðxÞ and 0ðx0Þ are valid for

x FD-messages. FM-messages are broadcast sequentially,

one every � . Therefore, new bounds of interest are ðxþ 1Þ,
 0ðx00Þ ¼ x00 winq, with x00 ¼ 1 if � � winq, x00 ¼ dðxþ 1Þ ð1ÿ
�
winq
Þe if � < winq, �

00 ¼ ð ðxþ 1Þ þ ðxþ 1ÞwinqÞ=� . Bounds
00

and d00 are computed accordingly.
With most common multiaccess protocols or scheduling

algorithms, if � is acceptable, then so is �00.
The worst-case time for meeting (TC2) with SRC is D ¼

WoutQ þ ÿðr;mÞ þWinQ (see Section 5). Let us define � as
�þWinq þWinQ and let us write � ¼ ’D, 0 < ’ < 1. Most
often, with real systems and general networks, ’ � 1=2. Of
course, contrary to FD/FM related bounds (see above),
bounds � and D are those computed ignoring the overhead
due to FM-messages.

After relative time WoutQ þWoutq ¼ ð1ÿ ’ÞD at the
latest, every correct processor runs MiniSeq, which then
terminates in no more than ðtþ 1Þ
00 with “lucky runs” (no
failures),16 in no more than t d00 þ
00 (trivial) under worst-
case failure scenarios, which is the worst-case time for
meeting (TC1). Therefore:

ZðFastUCÞ ¼ maxfD;Dÿ �þ t d00 þ
00g:

FastUC appears to be the first UC algorithm that ensures a
worst-case termination time sublinear in tD. Optimality is
achieved with FastUC under the following condition:

ð1RÞ FastUC terminates in no more than 1 ðSRCÞ round

duration() t d00 þ
00 � �:

Equivalently:

� � ð�ÿ
00Þ=tÿ ð2
00 ÿ
0Þ or t � ð�ÿ
00Þ=d00b c:

Due to space limitations, a detailed analysis of this
constraint is omitted. In order to show that ð1RÞ can be met
with real systems and common values of t, let us reuse the
numerical illustrations given end of Section 6, computed for
n ¼ 16 and s ¼ 6 (t ¼ 5).
D was found to be 406.61 ms and ’ ¼ 0:431. Hence,

� ¼ 175:25ms. Note that we keep considering � ¼ 0, which
is not representative of general networks and which does
not help in meeting ð1RÞ. Given that
00 is not much higher
than
, let us pick up, for
00, the average of those values
computed for the general and the optimal index assign-
ments, that is,
00 ¼ 3:62 ms. Similarly, for � , we consider the
average value, that is, � ¼ 47:41ms. Consequently,
d00 ¼ 53:85ms. We can now conclude:

ð1RÞ is met if t � 3:

Observe that the numerical values considered for
00 and
� have been established for t ¼ 5. In other words, these
values are “pessimistic.” It follows that the result t � 3
holds a fortiori.

This numerical illustration shows that ð1RÞ can be met
with values of t commonly considered. Whenever this is the
case, FastUC achieves UC in no more than D, which is the
absolute lower bound. Hence, FastUC is an optimal
solution for RTUC.

That UC may be achieved at almost no extra “time cost”
in some circumstances should be a result of interest to many
designers of real-time distributed systems.

Any synchronous UC algorithm has a worst-case
termination time at least equal to 2D (unless it would rest
on Fast FDs). It follows that any such algorithm is easily
outperformed by FastUC, yet another example of the
particular relevance of FDs regarding real-time distributed
systems.

8 CONCLUSIONS

We have examined the merits and drawbacks that result
from adopting a particular computational model, from
synchronous to asynchronous ones, for designing solutions

942 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 8, AUGUST 2002

16. As can be seen, an early-deciding version of MiniSeq would achieve
impressively small termination times.

intended for real-time or non-real-time distributed fault-

tolerant computing problems. The principle of “late bind-

ing” asynchronous solutions to some (partially) synchro-

nous model has been presented. We have shown that this

principle permits 1) circumventing the apparent contra-

diction between asynchrony and the need to consider some

(partially) synchronous model for conducting schedulabil-

ity analyses, 2) maximizing the coverage of demonstrated

safety, liveness, and timeliness properties.
This general principle has been illustrated with the

introduction of Fast Failure Detectors, a refinement of

classical Unreliable Failure Detectors, as well as with the

introduction of FastUC, a worst-case time optimal algorithm

that solves the uniform consensus problem. These new

results, as well as their extension to more general failure

models (e.g., unreliable communications), may pave the

way for new generations of real-time distributed systems

that would use asynchronous algorithms designed to solve

problems in fault-tolerant distributed computing.
Most problems that lie in the intersection of the

Distributed Algorithms and the Real-Time Scheduling

theories are open. New algorithmic solutions, new optim-

ality results, will be established in the future. Hopefully,

this paper is a contribution to advancing the state-of-the-art

in this dual area.

9 GLOSSARY

n: number of processors, n > 1.
t: maximum number of processor failures that may occur

while running an instance of DC, 0 < t < n.
s: smallest number of stable/active processors, 0 < s � n.

: upper bound of COM level end-to-end delays for

FD-messages.

0: lower bound of COM level end-to-end delays for

FD-messages.
�: maximum processing and communication overhead

caused by FD-messages.
� : FD-message broadcasting period.
d: upper bound on processor failure detection latencies =

upper bound on mini-round durations.
ÿ: upper bound of COM level end-to-end delays for

DC-messages.
D: upper bound of DC level end-to-end delays for

DC-messages = upper bound on round durations.
Z: upper bound on execution delays of a DC algorithm.

REFERENCES

[1] T.D. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems,” J. ACM, vol. 43, no. 2, pp. 225-267,
Mar. 1996. (A preliminary version appeared in Proc. 10th ACM
Symp. Principles of Distributed Computing, pp. 325-340, 1991).

[2] F. Cristian and C. Fetzer, “The Timed Asynchronous Distributed
System Model,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
no. 6, pp. 642-657, June 1999.

[3] D. Dolev, C. Dwork, and L. Stockmeyer, “On the Minimal
Synchronism Needed for Distributed Consensus,” J. ACM,
vol. 34, no. 1, pp. 77-97, Jan. 1987.

[4] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
Presence of Partial Synchrony,” J. ACM, vol. 35, no. 2, pp. 288-323,
Apr. 1988.

[5] D. Ferrari and D.C. Verma, “A Scheme for Real-Time Channel
Establishment in Wide-Area Networks,” IEEE J. Selected Areas in
Comm., vol. 8, no. 3, pp. 368-379, Apr. 1990.

[6] M.J. Fischer and N.A. Lynch, “A Lower Bound for the Time to
Assure Interactive Consistency,” Information Processing Letters,
vol. 14, pp. 183-186, June 1982.

[7] M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,” J. ACM, vol. 32,
no. 2, pp. 374-382, Apr. 1985.

[8] R. Guerraoui, “Indulgent Algorithms,” Proc. 19th ACM Symp.
Principles of Distributed Computing, pp. 289-297, July 2000.

[9] R. Guerraoui and A. Schiper, “Consensus: the Big Misunderstand-
ing,” Proc. Sixth IEEE Workshop Future Trends of Distributed
Computing Systems, pp. 183-188, Oct. 1997.

[10] J.-F. Hermant and G. Le Lann, “A Protocol and Correctness Proofs
for Real-Time High-Performance Broadcast Networks,” Proc. IEEE
Int’l Conf. Distributed Computing Systems, pp. 360-369, May 1998.

[11] J.-F. Hermant, “Quelques Problèmes et Solutions en Ordonnance-
ment Temps Réel pour Systèmes Répartis,” PhD thesis, Paris-VI-
Pierre-et-Marie-Curie Univ., Sept. 1999.

[12] M. Hurfin and M. Raynal, “Asynchronous Protocols to Meet Real-
Time Constraints: Is It Really Sensible? How to Proceed?” Proc.
IEEE Int’l Symp. Object-Oriented Real-Time Distributed Computing,
pp. 290-297, Apr. 1998.

[13] Algorithm derived independently in 1997 by P. Jayanti and S.
Toueg, and by B. Charron-Bost (S. Toueg, private comm., 1999).

[14] J.F. Kurose, M. Schwartz, and Y. Yemini, “Multiple-Access
Protocols and Time-Constrained Communication,” ACM Comput-
ing Surveys, vol. 16, no. 1, pp. 43-70, Mar. 1984.

[15] M. Larrea, S. Arévalo, and A. Fernández, “Efficient Algorithms to
Implement Unreliable Failure Detectors in Partially Synchronous
Systems,” Proc. 13th Int’l Symp. Distributed Computing, pp. 34-48,
Sept. 1999.

[16] G. Le Lann, “On Real-Time and Non Real-Time Distributed
Computing,” Proc. Ninth Int’l Workshop Distributed Algorithms,
invited paper, Lecture Notes in Computer Science, vol. 972, pp. 51-70,
Springer-Verlag, Sept. 1995.

[17] G. Le Lann, “Proof-Based System Engineering and Embedded
Systems,” Proc. European School on Embedded Systems, invited
paper, Lecture Notes in Computer Science, vol. 1494, pp. 208-248,
Springer-Verlag, Nov. 1996.

[18] G. Le Lann, “Is ’Asynchronous Real-Time’ an Oxymoron?” 15th
Int’l Symp. Distributed Computing, invited talk, Oct. 2001, INRIA
Research Report, to appear.

[19] G. Le Lann and P. Rolin, “Process and Device for the Transmission
of Messages between Different Stations through a Local Distribu-
tion Network,” US Patent Number 4,847,835, July 1989, French
Patent Number 84-16957, Nov. 1984.

[20] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, Jan. 1973.

[21] N.A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.
[22] A. Mostefaoui and M. Raynal, “Consensus Based on Failure

Detectors with a Perpetual Weak Accuracy Property,” Proc. IEEE
Int’l Parallel and Distributed Processing Symp., pp. 514-519, May
2000.

[23] K. Tindell, A. Burns, and A.J. Wellings, “Analysis of Hard Real-
Time Communications,” J. Real-Time Systems, vol. 9, no. 1, pp. 147-
171, Sept. 1995.

[24] P. Verissimo, A. Casimiro, and C. Fetzer, “The Timely Computing
Base: Timely Actions in the Presence of Uncertain Timeliness,”
Proc. IEEE Int’l Conf. Distributed Systems and Networks, pp. 533-542,
July 2000.

[25] H. Zhang, “Service Disciplines for Guaranteed Performance
Service in Packet-Switching Networks,” Proc. IEEE, vol. 83,
no. 10, pp. 1374-1399, Oct. 1995.

HERMANT AND LE LANN: FAST ASYNCHRONOUS UNIFORM CONSENSUS IN REAL-TIME DISTRIBUTED SYSTEMS 943

Jean-François Hermant received the PhD
degree in computer science from the University
of Paris VI in 1999, a “DEA” (French post-
graduate degree) in electronics from the Uni-
versity of Paris XI in 1994, and an engineer
degree from ESIGETEL (French graduate
school in Computer Science and Telecommu-
nications) in 1994. He joined INRIA (the French
National Institute for Research in Computer
Science and Control), Rocquencourt, in 1995,

as a research associate. He spent one year at the �EEcole Polytechnique,
Palaiseau, in 1998, as a scientist in the Laboratory of Computer
Science. In 2001, he joined the University of Virginia for one year, as a
visiting research associate in the Department of Computer Science. His
primary areas of interest are real-time, distributed, and fault-tolerant
systems, as well as computer networks.

Gérard Le Lann holds the MS degree in applied
mathematics from the University of Toulouse,
the engineer degree in computer science from
ENSEEIHT, Toulouse, and the PhD degree in
computer science from the University of Rennes.
Since 1969, he has successively joined CERN
(the European Research Center for Nuclear
Physics, Switzerland), the Cyclades Project
(French Ministry of Industry), inspired by the
US Arpanet Project, and Stanford University,

where he was involved in the design of what became known as the TCP/
IP protocol. He joined INRIA (the French National Institute for Research
in Computer Science and Control), Rocquencourt, in 1978, as a
research director. Since 1977, when he published one of the early
papers in distributed computing, he has been active in the areas of
networking and real-time, distributed, fault-tolerant computing. His
current research interests concern theoretical and practical aspects of
asynchronous real-time distributed dependable computing and proof-
based system engineering. He is a member of the IEEE Computer
Society

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

944 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 8, AUGUST 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

