IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.2, FEBRUARY 2003

209

Fault-Tolerant Mobile Agent Execution

Stefan Pleisch and André Schiper, Member, IEEE

Abstract—Mobile agents have attracted considerable interest in recent years. In the context of mobile agents, fault tolerance is crucial
to enable the integration of mobile agent technology into today’s business applications. This article identifies two important properties
for fault-tolerant mobile agent execution: nonblocking and exactly-once. Nonblocking ensures that the agent execution can proceed
despite a single failure of the agent or the machine, for instance. Replication is the generally adopted mechanism to prevent blocking,
but may lead to multiple executions of the agent (i.e., a violation of the exactly-once property), which is undesirable with operations that
have side effects. Hence, we propose that fault-tolerant mobile agent execution be modeled as a sequence of agreement problems.
Our approach is nonblocking and ensures exactly-once execution. FATOMAS, our prototype fault-tolerant mobile agent system,
implements our approach. Its performance evaluation illustrates the overhead of the replication mechanisms.

Index Terms—Mobile agents, fault tolerance, nonblocking execution, exactly-once execution, agreement problem.

1 INTRODUCTION

IN recent years, the field of mobile agents, i.e., programs
that act autonomously and travel through a network of
heterogeneous machines, has attracted considerable atten-
tion. Mobile agent technology has been considered for a
variety of applications [7], [8], [16] such as systems and
network management [4], [14], mobile computing [28],
information retrieval [29], and e-commerce [17]. However,
before mobile agent technology can appear at the core of
tomorrow’s business applications, reliability mechanisms,
among other things, need to be established for mobile
agents. Of these reliability mechanisms, fault tolerance is a
mechanism of considerable importance.

Any software or hardware component in a distributed
system may be subject to failures. A single failing
component (e.g., agent or machine) may prevent the agent
from proceeding with its execution. Worse yet, the current
state of the agent and even its code may be lost. Assume, for
instance, that an agent has bought a book at a virtual book
shop and currently executes on the server of a clothing
shop, which fails by crashing. The agent execution thus
cannot proceed because the agent has failed with the
machine; the agent execution is blocked. In the absence of
recovery mechanisms such as logging, even the information
about the acquired book is lost. The agent owner, i.e., the
person or application that has configured the agent, finds
that its agent has not returned yet. In an asynchronous
system such as the Internet, it is impossible to detect
correctly whether the agent has failed or whether it is
merely slow [10]. Indeed, no boundaries exist on relative
processor speed and communication time in an asynchro-
nous system. Consequently, the agent owner cannot

e S. Pleisch is with IBM Research, Zurich Research Laboratory, CH-8803
Riischlikon, Switzerland. E-mail: pstefan@acm.org.

e A. Schiper is with the Distributed Systems Laboratory, Swiss Federal
Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland.
E-mail: Andre_Schiper@epfl.ch.

Manuscript received 1 Feb. 2002; revised 7 Sept. 2002; accepted 20 Sept. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 117439.

0018-9340/03/$17.00 © 2003 IEEE

<+

determine whether the agent has failed or is delayed by
slow processors or communication links.

Replication prevents blocking, but may lead to multiple
executions of the agent, i.e., to a violation of the exactly-
once execution property. Although multiple executions of
the agent are allowed in the context of idempotent
operations, they are undesirable with nonidempotent
operations. Assume, for instance, that a failed agent replica
has withdrawn money from a bank account. Although the
bank account may still reflect the money withdrawal, the
money itself is lost. Executing a second agent replica results
in two money withdrawals, which is clearly undesirable to
the agent owner. In contrast, reading the balance of a bank
account is an idempotent operation: It can be executed
multiple times without influencing the state of the bank
account or the state of the agent (provided that the balance
has not changed in the meantime).

Although fault-tolerant mobile agent approaches exist,
we have found that current solutions are either complex
and thus difficult to prove correct [23], [3], make limiting
assumptions such as correct failure detection [15] or strict
timing constraints [20], or only release resources at the end
of the mobile agent execution [18], [26]. In this article, we
model fault-tolerant mobile agent execution as a sequence
of agreement problems. Our approach prevents blocking in
the mobile agent execution and ensures the exactly-once
execution property. We validate our approach with the
implementation of FATOMAS, a fault-tolerant mobile agent
system, and give important results of our performance
evaluation.

The rest of this article is structured as follows: Section 2
presents the model used throughout the article. In Section 3,
we identify the properties for fault-tolerant mobile agent
execution: nonblocking and exactly-once. The specification of
fault-tolerant mobile agent execution is presented in
Section 4. Section 5 identifies two building blocks that solve
the problem specified in the previous section. The prototype
implementation of our approach and a performance
evaluation are presented in Section 6. Our approach is also
applicable to agent replicas executing on machines that are
replicas among themselves (Section 7). Section 8 relates our

Published by the IEEE Computer Society

210
Stage S \ StageS, | StageS, | StageS,
Py ff o EPip e 20 (e
4) 4 - | .
Agent Agent
Source Destination

Fig. 1. Model of a mobile agent execution with four stages.

approach to existing work and, finally, Section 9 concludes
the article.

2 MobDEL

We assume an asynchronous distributed system, i.e., there
are no bounds on transmission delays of messages or on
relative process speeds. An example of an asynchronous
system is the Internet. Processes communicate via message
passing over a fully connected network.

2.1 Mobile Agent

A mobile agent executes on a sequence of machines, where
a place1 pi (0 <i<n) provides the logical execution
environment for the agent. Each place runs a set of services,
which together compose the state of the place. For
simplicity, we say that the agent “accesses the state of the
place,” although access occurs through a service running on
the place. Executing the agent at a place p; is called a stage S;
of the agent execution. We call the places where the first
and last stages of an agent execute (i.e., py and p,) the agent
source and destination, respectively. The sequence of places
between the agent source and destination (i.e., po, p1, - .., Pn)
is called the itinerary of a mobile agent. Whereas a static
itinerary is entirely defined at the agent source and does not
change during the agent execution, a dynamic itinerary is
subject to modifications by the agent itself.

Logically, a mobile agent executes in a sequence of stage
actions (see Fig. 1). Each stage action sa; consists of
potentially multiple operations opy,op;,.... Agent a; (0 <
i < n) at the corresponding stage S; represents the agent a
that has executed the stage actions on places p; (j < ¢) and
is about to execute on place p;. The execution of a; on place
p; results in a new internal state of the agent as well as
potentially a new state of the place (if the operations of an
agent have side effects, i.e., are nonidempotent). We denote
the resulting agent a;;;. Place p; forwards a;1 to p;41 (for
i< n).

2.2 Failures

Machines, places, or agents can fail and recover later. A
component that has failed but not yet recovered is called
down; otherwise, it is up. If it is eventually permanently up,
it is called good [2]. In this paper, we focus on crash failures
(i.e., processes prematurely halt). Benign and malicious
failures (i.e., Byzantine failures) are not discussed. A failing
place causes the failure of all agents running on it. Similarly,
a failing machine causes all places and agents on this
machine to fail as well. We do not consider deterministic,
repetitive programming errors (i.e., programming errors

1. Also called landing pad in [15] or agency in [26].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.2, FEBRUARY 2003

Stage S | StageS, StageS,
Stage S N =
N SO)

Gjo @>\ p,! @)\

RN
s @)

;' @J @

&

M

0
Agent Agent
Source M 1 M 2 M 3 Destination

Fig. 2. Agent execution with redundant places, where place p fails. The
redundant places (i.e., p; and p32) mask the place failure.

that occur on all agent replicas or places) in the code or the
place as relevant failures in this context.” Finally, a link
failure causes the loss of the messages or agents currently in
transmission on this link and may lead to network
partitioning. We assume that link failures (and network
partitions) are not permanent.

3 OVERVIEW

3.1 The Problem of Blocking

The failure of a component (i.e., agent, place, machine, or
communication link) can lead to blocking in the mobile
agent execution. Assume, for instance, that place p; fails
while executing as (see Fig. 1). While py is down, the
execution of the mobile agent cannot proceed, ie., it is
blocked. Blocking occurs if a single failure prevents the
execution from proceeding. In contrast, an execution is
nonblocking if it can proceed despite a single failure. The
blocked mobile agent execution can only continue when the
failed component recovers. This requires that a recovery
mechanism be in place, which allows the failed component
to be recovered. If no recovery mechanism exists, then the
agent’s state and, potentially, even its code may be lost. In
the following, we assume that such a recovery mechanism
exists (e.g., based on logging [13]).

3.2 Introducing Replication

Replication prevents blocking. Instead of sending the agent
to one place at the next stage, agent replicas are sent to a set
M; of places p?,p},... (see Fig. 2). We denote by a] the
agent replica of a; executing on place p!, but will omit the
superscripted index if the meaning is clear from the context.
Although a place may crash (ie., pg in Fig. 2), the agent
execution does not block. Indeed, p) can take over the
execution of a; and thus prevent blocking. Note that the
execution at stages Sy and 5, is not replicated as the agent is
under the control of the user. Moreover, the agent is only
configured at the agent source and presents the results to
the agent owner at the agent destination. Hence, replication
is not needed at these stages.

Despite agent replication, network partitions can still
prevent the progress of the agent. Indeed, if the network is
partitioned such that all places currently executing the
agent at stage S; are in one partition and the places of stage
Sit1 are in another partition, the agent cannot proceed with

2. Johansen et al. [15] introduce a so-called rally point. On detection of a
catastrophic failure, the agent is sent to the rally point, where the agent
owner can debug it.

PLEISCH AND SCHIPER: FAULT-TOLERANT MOBILE AGENT EXECUTION

its execution. Generally (especially in the Internet), multiple
routing paths are possible for a message to arrive at its
destination. Therefore, a link failure may not always lead to
network partitioning. In the following, we assume that a
single link failure merely partitions one place from the rest
of the network. Clearly, this is a simplification, but it allows
us to define blocking concisely (see Section 3.1). Indeed, in
the approach presented in this article, progress in the agent
execution is possible in a network partition that contains a
majority of places. If no such partition exists, the execution
is temporally interrupted until a majority partition is
established again. Moreover, catastrophic failures may still
cause the loss of the entire agent. A failure of all places in
M, (see Fig. 2), for instance, is such a catastrophic failure
(assuming no recovery mechanism is in place). As no copy
of ay is available any more, the agent a; is lost and,
obviously, the agent execution can no longer proceed. In
other words, replication does not solve all problems. The
definition of nonblocking merely addresses single failures
per stage as they cover most of the failures that occur in a
realistic environment.

In the next section, we classify the places in M; into iso-
places and hetero-places according to their properties.

3.3 Place Properties

In Section 3.2, we have introduced replication as a way to
overcome the problem of blocking in a mobile agent
execution. Replication occurs on the agent level: The agent
replicas execute on different places p] € M; at a stage S;
(see Fig. 2). Depending on the relationship among these
places, we distinguish between two classes of places: iso-
places and hetero-places.

3.3.1 Iso-Places

Iso-places correspond to the traditional case of server
replication: The set M; consists of replica places, where
all places reflect the same state. For instance, all places are
provided by airline X and provide a ticket reservation
system: Modifications to one place are visible to the others
as well. Within the class of iso-places, we can further
distinguish between places p/ where 1) the modifications
are propagated by the places themselves or 2) where
consistency is ensured by the agent replicas. In 1), the places
are called replicated iso-places, whereas the places in 2) are
called independent iso-places.> Executing a replicated agent
on replicated iso-places leads to two levels of replication:
server replication in the places and client replication on the
agent level. The replication mechanisms can thereby be
different at the two levels. Note that executing the mobile
agent a; on two replicated iso-places in M; at stage S;
causes all iso-places in M, to reflect the modifications
twice.* Actually, the case of replicated iso-places is similar
to a replicated client invoking a replicated server in
traditional distributed systems. Indeed, the agent replicas

3. In [21], replicated iso-places are called nonintegrated iso-places,
whereas independent iso-places are called integrated iso-places.

4. Unless a mechanism (e.g., transaction IDs) is provided that prevents
iso-places from executing the same operation twice. See Section 7 for a
discussion of multiple executions of mobile agents in the context of iso-
places.

211

correspond to a replicated client, whereas the replicated iso-
places take the role of a replicated server.

In contrast, independent iso-places do not run any
replication mechanism; rather, the agent replicas are exe-
cuted on all independent iso-places in order to ensure that the
independent iso-places are always in a consistent state.

3.3.2 Hetero-Places

Hetero-places are not replicas; rather, they correspond to a
set M, of places, of which all provide a similar service such
as selling airline tickets from Zurich to New York.
However, the places are provided by different airlines,
e.g., airlines X, Y, and Z.

Finally, hetero-places with witnesses® are a general-
ization of hetero-places. Whereas hetero-places all provide
the particular service (i.e., airline tickets from Zurich to
New York), in hetero-places with witnesses, only a subset of
the places provides the service. The others (i.e., the
witnesses), although they can execute the agent replica,
do not provide an airline ticket service to the agent replica
and, thus, the service request of the agent replica fails on
those places. The goal of witnesses is to help decide
whether the execution on another (nonwitness) place has
been successful. Witnesses allow the agent to be replicated,
i.e., to ensure that the agent is not lost and proceeds with
the execution. Assume, for instance, that M; consists of a
place of airline X and two witnesses. If airline X’s place
fails or is suspected, then the agent executes on a witness.
The agent can then move to M, that consists of a place of
airline Y and two witnesses and can attempt to acquire a
flight ticket from airline Y. Clearly, executing the agent on
the witness could also cause the agent to decide to return
immediately to its owner and no longer proceed with its
execution.

In the following, we consider only hetero-places (and
hetero-places with witnesses). The case of iso-places is
discussed in Section 7.

3.4 Replication and the Exactly-Once Property
Replication allows us to prevent blocking. However, it can
also lead to a violation of the exactly-once execution
property. Indeed, the exactly-once property and nonblock-
ing are closely related. Assume, for instance, that place p!
fails after having partially executed agent a; (see Fig. 3).
After some time, p! detects the failure of p) and takes over
the execution of a;: The agent a; has now (partially)
executed multiple times. Consequently, upon recovery,
place p! needs to undo the modifications performed by
agent a;. The same issues arise if only an agent replica fails,
but not the place. In this case, modifications by the failed
agent to the place state survive. As the agent is then
executed on place p}, modifications are applied twice (to p!
and p}). Replication of the agent thus leads to a violation of
the exactly-once execution property of mobile agents.
Consequently, the replication protocol of agents has to
undo the modifications of a; to the place p).

Another source for the violation of the exactly-once
execution property is unreliable failure detection. Indeed, in
an asynchronous system such as the Internet, no boundaries

5. Also called exception nodes in [27].

212

Stage S ,

Stage S |

Fig. 3. Disagreeing stage agents potentially lead to a violation of the
exactly-once property.

exist on communication delays or on relative process
speeds. Hence, it is impossible to detect failures reliably
[10]. Assume, for instance, that p! suspects p! has failed,
when, in fact, p? has not (see Fig. 3). This may lead to two
agents a;;, and a} ,, which are potentially sent to different
places for the next stages. Clearly, this is a violation of the
exactly-once execution property.

In summary, a violation of the exactly-once execution
property can occur 1) in the agent replicas and 2) at the
places (or, rather, the services running on the places).
Clearly, both instances are related in that a violation of the
exactly-once execution property at the places is a conse-
quence of multiple executions of the agent (e.g., a; on p? and
a; on p}).

3.5 Undoing Agent Actions

As mentioned in Section 2.1, executing an agent action on a
place generally results in a modification of the agent state as
well as the state of the place. Because of the particular
failure dependency between agent and place, a crash of the
agent may leave the machine and the place in an incorrect
state (see Section 3.4). The same issue arises with incorrect
failure suspicions.

Consequently, it must be possible to undo the agent
actions on the place and adequate protocols must be
devised that ensure the consistent state of machine and
place even when the agent fails. Generally, two approaches
are used: optimistic and pessimistic execution. With pessi-
mistic execution, the stage actions of the agent are
tentatively executed. The modifications are only made
permanent when it is ensured that the agent neither crashes
nor is erroneously suspected. Undoing the modifications in
this context is simple: The modifications are ignored.
Generally, pessimistic execution is based on the use of
transactions, which lock the accessed data items. A lock
protects a data item and grants exclusive access to the data
item. All other agents that try to access the same data item
have to wait until the agent that holds the lock has
committed (i.e., made permanent) its modifications.

In contrast, with optimistic execution, modifications to
the place are immediately made permanent and visible to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.2, FEBRUARY 2003

other agents. Undoing modifications becomes a more
complex task. For instance, undoing agents is difficult as
the agent may have moved on in the meantime. In an
asynchronous system, a message or undo agent sent after an
agent may trace this agent, but never actually catch up with
it. Undoing modifications performed by an agent becomes
more difficult if multiple agents access the same services.
Generally, modifications are visible to other agents when
they are made permanent. Assume that agent a has
modified the state of its local place and agent b has
retrieved (part of) this state. Undoing the modifications of
agent a may invalidate also the state of b. In the context of
transactions, the notion of a compensating transaction [12],
[11] has been introduced. Compensating transactions
semantically undo transactions. With this concept, mod-
ifications to the data can immediately be committed. If they
need to be aborted later, simply the compensating transac-
tion is run.

Note that the approach presented in this article can
support both optimistic and pessimistic execution. Without
loss of generality, we focus on pessimistic execution in the
rest of this article.

3.6 Exactly-Once in the Context of Hetero-Places

Hetero-places run no replication mechanism among them-
selves (see Section 3.3.2). Indeed, hetero-places are generally
competitors that have no interest in sharing any information
(i.e., communicating) among themselves. The hetero-places
in M; need not all execute the agent request; in contrast, the
exactly-once execution property of the agent request needs
to be enforced. Hence, if no failure and no false suspicions
occur, only one hetero-place at a stage reflects the execution
of the mobile agent at this stage and only its services have
been invoked. However, although no replication occurs
among hetero-places, the state of the agent is replicated
among the agent replicas: All agent replicas know the place
that has executed the agent replica.

Failures and false suspicions can lead to the execution of
agent replicas on multiple hetero-places of M; (see
Section 3.4). Hence, multiple hetero-places reflect the
modifications of the agent a;. As the exactly-once property
requires that only one place has executed the agent, the
modifications on all but one place need to be undone (see
Section 3.5). Because of the lack of communication, hetero-
places cannot prevent multiple executions of the agent
request themselves; they generally have no means to detect
that another hetero-place has already executed the same
request. Hence, the exactly-once property needs to be
ensured by the agent replicas. More specifically, the agent
replicas need to guarantee that, at the end of the agent
execution, only one agent replica has executed the opera-
tions, while all others undo potential executions. For this
purpose, recovering agent replicas a; have to retrieve the
identity of the place that has executed the agent replica at
stage S;. If this identity denotes a place other than the one
running the recovering agent replica, all modifications by
this agent replica prior to the crash are undone. However,
this requires that agent, places, and machines be good, i.e.,
that they eventually be permanently up (see Section 2.2).

Executing an agent replica on a witness does not modify
the state of the witness (see Section 3.3.2). Hence, a witness

PLEISCH AND SCHIPER: FAULT-TOLERANT MOBILE AGENT EXECUTION

behaves similarly to a stateless server and partial executions
of the agent replica do not need to be undone. In other
words, the exactly-once execution property of the agent
replicas can be violated on witnesses as the execution is
idempotent. Failures of a witness or an agent running on a
witness are thus handled much more efficiently than on a
hetero-place or iso-place.

4 FAULT-TOLERANT MOBILE AGENT EXECUTION
AS A SEQUENCE OF AGREEMENT PROBLEMS

We claimed in Section 3 that replication of agents prevents
blocking without depending on reliable failure detection.
However, to enforce the exactly-once property of mobile
agent execution, the replicas have to decide on a place that
has executed the agent. This decision is modeled as an
agreement problem.

4.1 Basic Agreement Problem

Despite the differences of hetero-places and hetero-places
with witnesses, we give a specification of the problem that
encompasses the two cases. The idea is to model the
execution of each stage S; as an agreement problem. By
AgrPb; we denote the agreement problem of stage S;. The
problem AgrPb; is to be solved by the agent replicas a’
running on the places in M; and the solution is the decision
on which all agent replicas running on the places in M,
agree. We denote by dec; the decision (i.e., the solution) of
AgrPb;, with the following properties:

o (Agreement) No two agent replicas of stage 5; decide
differently.

o (Uniform wvalidity) If an agent replica of stage S;
decides dec;, then dec; was proposed by some agent
replica _a:f of S; and is the result of executing a/ on
place p!.

o (Uniform integrity) Every agent replica of stage .S5;
decides at most once.

o (Termination) Every agent replica of stage .S; decides
eventually.

The decision deg; is as follows for the two cases identified in
Section 3.3:

Hetero-places. The decision dec; has three parts: 1) the
single place p"""™ € M,, called primary, that has executed
the agent in stage .5;, 2) the resulting agent a;;1, and 3) the
places M, for a;4;.

Hetero-places with witnesses. Similar to the previous case.
Place p!"™"™ can potentially be a witness.

The agreement problem is fundamental to enforce the
exactly-once property of an agent execution (see Section 3.4).

4.2 Sequence of Agreement Problems

Having defined the basic agreement problem AgrPb;, we
now define the entire mobile agent execution as a sequence
of agreement problems. This is done as follows:

e The initial problem AgrPb, of stage S is solved by
ap only. This can be regarded as a trivial agreement
problem (only one agent replica has to decide). The
decision is 1) py, 2) a1, and 3) the places in M;. The

213

agent a; is then sent to the places in M;. In practice,
this agreement problem is reduced to a configura-
tion problem. The agent owner configures the agent
before sending it off to stage 5. _

e The problem AgrPb, of stage S; is solved by af
running on the places pj € M. The decision is p}""",
ay, and the places in M. The agent a is then sent to
the places in M.

e The problem AgrPb; of stage S; is solved by _a{
running on the places p/ € M;. The decision is p!""",
ai+1, and the places in M;,;. The agent a4 is then
sent to the places in M, ;.

e Similar to the problem AgrPby, AgrPb, of stage S, is
solved by only one agent replica. At this stage, the
agent’s results are presented to the agent owner or to
another designated destination.

5 Two BUILDING BLOCKS FOR FAULT-TOLERANT
MoOBILE AGENTS

The previous section has shown that fault-tolerant mobile
agent execution can be expressed as a sequence of
agreement problems. In this section, we identify two
building blocks for fault-tolerant mobile agent execution:
1) consensus and 2) reliable broadcast. Building block 1) is
used to solve the agreement problem at stage .5;, whereas 2)
allows the agent to be forwarded reliably between
consecutive stages. Our approach encompasses various
system models such as process recovery, depending on the
implementation of consensus and of the reliable forwarding
of agents.

Fig. 4 depicts a fault-tolerant mobile agent execution. The
execution at stage S; consists of 1) one (or, in case of a
failure or false suspicions, multiple) place(s) executing the
agent, 2) the agent replicas running on the places in M,
reaching an agreement on the computation result, and 3) the
reliable forwarding of the result a;4; to the next stage Si..
The computational result contains the new agent a;; and
the set of places executing the agent at stage S;.1 (ie.,
M;1), as well as the place pi"™" that has executed the agent.
Note that the latter relates to stage .S;, whereas the former
two results provide information about the next stage S;.

Stage 2 in Fig. 4 illustrates the case of a place failure.
When a} detects the failure of a), it starts executing and tries
to impose its computation as the decision value of the
agreement protocol to all p} € M,. Upon recovery, aj learns
the outcome of the agreement (i.e., decy). If p) = pb™™", the
modifications of ag on pg become permanent; otherwise (i.e.,
py # py"™), they are undone/aborted.

In the following, we present the Consensus with
Deferred Initial Value (DIV consensus) as building block 1
(Section 5.1) as well as a protocol to forward the agent
reliably to the next stage (building block 2) in Section 5.2.

5.1 Building Block 1: Solving the Agreement Using

DIV Consensus

5.1.1 DIV Consensus Problem

The consensus problem is a well-specified and studied
problem in fault-tolerant distributed systems research. It is

214

Stage S |
0 — a,| E5 F—»
S | 28 Stage S ,
o
P 2 > P>
1< at'M1>PDU <azM; >p !
2
(o
Po- =, <a M, >p Stage S ,
Stage S p21 D
p2 a, gg _—
> 4 g9
4 Reliable P2 2=

broadcast

Fig. 4. Agent execution with pj failing. An erroneously suspected place
2 Ieads to the same situation. The notation < a1, M, > g Means
that p?""" has executed agent a; (which leads to a;;; and M;,,).

defined in terms of the primitive propose(v). Every process
pi in a set of processes 2 calls this primitive with an initial
value vj, as an argument. Informally, the consensus allows
an agreement on a certain value to be reached among the
correct processes in). This value, called decision value, is
an element of the set of initial values v,. The formal
specification of the consensus problem is given in [6].

The algorithm in [6] solves the consensus problem with
the unreliable failure detector S and a majority of correct
processes. DIV consensus [9] modifies the consensus
problem such that all processes need not have an initial
value. The initial value is computed during the execution of
the consensus algorithm, whenever needed. Specifically, in
the absence of failures, only one process computes the
initial value. For this purpose, the participants do not
invoke the consensus by passing their initial value as an
argument. Rather, they pass a handler H(z) that allows the
protocol to compute the initial value only when needed.

5.1.2 Applying DIV Consensus

At each stage .5;, an instance of DIV consensus is solved and
determines the outcome of the stage execution. Using DIV
consensus requires the following transformations:

Initial handler H(z). The initial handler H(z), passed as an
argument to the function propose, is the agent a; or, more
precisely, a method of a;. It is executed only when
needed during the execution of DIV consensus. In
particular, in the absence of failures, it is executed only
once.

Decision value dec. The execution of consensus decides on
the tuple dec; = (@11, Mis1) i (see Section 4.1).

DIV consensus ensures that all a! running on p{ e M,;

agree on the p/"™ that has executed a;, on the new agent
a;+1, as well as on the places of the next stage 5.

The version of DIV consensus presented in [9] assumes
reliable communication channels. As stated in [9], the
algorithm can easily be extended to handle unreliable
communication channels as well by using an approach
along the lines of [1]. As long as the network is partitioned
in such a way that one partition contains a majority of
places of a stage, the execution is not blocked. Moreover, it
makes the assumption that a majority of a] does not fail, i.e.,
is correct. In our system model, agents are good (see
Section 2.2). However, the termination of the agreement
does not depend on the recovery of the agents. Rather, we
assume that a majority of them does not fail while DIV

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.2, FEBRUARY 2003

consensus executes. When they recover, they no longer
participate in consensus. But, they undo their modifications
(if needed) to ensure exactly-once. Assuming good agents
maintains consistency from the point of view of the agent
owner (or application) who has launched the mobile agent
by bringing all accessed places to a consistent state.

However, the protocol presented could easily be ex-
tended to also encompass recovery by using a correspond-
ing version of consensus along the lines of [2]. Indeed, we
argue in the next section that recovery needs to be
supported to a certain degree because of asynchronous
agent propagation.

Note that the order of the places in M; determines the
order in which the places attempt to execute the agent
replicas. For instance, if M; contains the set of places
{p?, p}, p?}, the agent execution is first performed on p}. If p?
is suspected, then p! starts executing its agent replica.
Hence, the places given first in the set M; have a higher
probability of executing the agent replica than the ones
given later. Witnesses always appear last in M;.

5.1.3 Asynchronous Agent Propagation

We have assumed (see Section 2) an asynchronous system,
where there is no bound on the transmission delay of
messages. This has an impact on the different instances of
the agreement protocol (i.e., DIV consensus) that run at each
stage S; of an agent execution. Because of the asynchrony,
the agent a; may not arrive simultaneously at the different
places p! of stage S;. Assume, for instance, that the agent
replicas a!, a}, a? are sent respectively to p}, p}, p? € M, (see
Fig. 4) and assume that a? arrives late at p?. DIV consensus
may have already started executing for agent replicas a!
and a] when o} arrives. The execution of DIV consensus
may even have terminated when a? arrives. The late arrival
of a? at p? is indistinguishable to a) and a} from the crash of
a? followed by the recovery of a?. Agent a? thereby always
uses a model of recovery, where no partial state survives a
crash. In summary, the asynchrony assumption thus forces

us indirectly to support the recovery of agents after a crash.

5.2 Building Block 2: Reliably Forwarding the Agent
between S; and S;,

Having solved the problem of executing the agent at a
stage, we must address the issue of reliably forwarding the
agent to the next stage. A naive approach leads to a
protocol, where every place in M, broadcasts the result dec;
to every place in M;;;. However, this incurs significant
overhead in terms of message number as well as number of
communication steps,® depending on the protocol selected.
Our approach reduces this overhead considerably. For this
purpose, only a majority of the places in M; broadcast to all
places in M. As DIV consensus assumes that a majority
of places in M; do not fail, it is ensured that at least one
place actually sends the agent.

5.3 Optimization: Pipelined Mode

In our discussion so far, we have assumed that M;_; and
M, are a disjoint set of places. However, this is not a

6. A communication step is identified as the sending of a message that is
in the critical path of the protocol, i.e., the protocol cannot proceed until it
has received this message.

PLEISCH AND SCHIPER: FAULT-TOLERANT MOBILE AGENT EXECUTION

M, :

4
. Stage S, \

.0) S
Py T2

StageS, 4 StageS,
Fig. 5. Pipelined mode without failures.

y [‘a,)| A,) ‘ {
Py) b y P, T4

&

Agent |
Destination |

requirement [15], [23]. On the contrary, reusing places of
stage S;_; as witnesses for S; (see Section 3.3.2) improves
the performance of the protocol and prevents high messa-
ging costs; the pipelined mode thus assumes hetero-places
with witnesses. At a limit, every stage S; merely adds
another place to M;_;, while removing the oldest from the
set M;_;. In this mode, forwarding costs are minimized and
limited to forwarding the agent to the new place (see Fig. 5).
We call this mode pipelined. Note that, for set M;, we
assume the existence of a place that acts as a witness for the
stage execution (not displayed in Fig. 5). The execution at
stage Sy (or S,) is not replicated (see Section 3.2) and no
witnesses are needed for Mg (M,).

6 FATOMAS

In Sections 4 and 5, we have introduced an approach for
fault-tolerant mobile agent execution. In this section, we
present FATOMAS,” a FAult-TOlerant Mobile Agent
System that implements this approach. FATOMAS ad-
dresses hetero-places, but also works with replicated iso-
places (see Section 7). We first present the architecture
(Section 6.1) followed by implementation issues and
performance results (Section 6.2). Our implementation is
based on ObjectSpace’s Voyager 3.1.2 Java mobile object
platform [19]. To validate our architecture, we have also
ported FATOMAS to Mopros, an experimental mobile
process platform developed in our laboratory. A more in-
depth discussion of FATOMAS can be found in [22].

6.1 Architecture
6.1.1 Isolation of Fault Tolerance Mechanisms

Ideally, fault tolerance should be orthogonal to mobile
agents and its mechanisms transparent to the agent owner.
Unfortunately, complete transparency is difficult to achieve
and the user-defined agent, i.e., the part that defines the
application-specific operations of the agent, needs to
interact with the fault tolerance mechanisms. Whereas, in
single-agent execution, for instance, an agent simply needs
to specify the next place it moves to, our fault-tolerant agent
execution generally® requires a set of destination places for
the next stage (M;;1). Clearly, the agent is aware of the
replication and complete transparency is no longer possible.

We propose an architecture that isolates the fault
tolerance mechanisms in a component called the Fault
Tolerance Enabler (FTE). The FTE interacts with the user-

7. Not to be confused with FANTOMAS [20]. See Section 8 for a
discussion.
8. Except in the particular case of the pipelined mode (see Section 5.3).

215
Place pi
Mobile Agent a;
User- |g Reliable -
S > =3 ; communication
defined i Forwarding ‘gyage with another
T Agreement / agent replica

Agent
ge _ /. Recovery |
\ N o—

Fig. 6. Agent-dependent approach: architecture of FATOMAS.

defined agent through a well-defined interface, called FTE-
API (see Fig. 6). At each stage S; (0 < i < n), the FTE solves
the stage agreement problem, i.e., it runs an instance of DIV
consensus (see Section 5.1.1). Depending on the outcome of
the agreement, the operations performed during the
execution of H(z) (i.e., the agent’s stage action) are either
committed or undone. Indeed, in Section 3.4, we mention
that imperfect failure detection may lead to a violation of
the exactly-once property of mobile agent execution.
Solving an agreement problem prevents multiple execu-
tions of the agent by deciding on a primary p!"". Only the
primary commits the operations, while all other places that
have executed the agent as well must undo the agent
operations. The semantics of the undo depend on the agent
operations. For instance, database transactions need to be
committed or aborted (or rolled back, depending on the
database), whereas operations without side-effects gener-
ally require no further action (see also Section 3.5). Finally,
the FTE moves the agent to the set of places in M, which
are computed by the user-defined agent and returned as the
result of executing H(z) (see Section 5).

We can identify two approaches related to the location of
the FTE: the agent-dependent (FTE with the agent) and the
place-dependent approach (FTE with the places). FATOMAS
uses the agent-dependent approach, which is presented in
more detail in the next section. We only briefly discuss the
place-dependent approach here.

6.1.2 Agent-Dependent Approach

In the agent-dependent approach, the FTE is integrated into
the agent and travels with it. Only one instance of the FTE
exists per agent. It is initialized by the user-defined agent at
the agent source and terminates the execution of the user-
defined agent at the agent destination. The interaction of a
user-defined agent with the FTE creates a fault-tolerant
mobile agent. Hence, the replication mechanisms are
completely transparent to the places; the agent appears to
the place as a normal agent. Consequently, existing mobile
agent platforms do not need to be modified. However, we
redefine the way agents are created and moved. Instead of
programming the agent against the proprietary mobile
agent platform API, the agent uses the functionality of the
FTE-API (see Fig. 6). The FTE then addresses issues such as
fault tolerance and mobility.

Fig. 6 shows the architecture of the agent-dependent
approach. The FTE is composed of a stage agreement
component (implementing DIV consensus), a reliable for-
warding component (responsible for the agent forwarding to
the next stage), and a recovery component. The latter

216

handles the recovery in case the agent fails or arrives late at
a place (see Section 5.1.3). Finally, the repository is a location
where place-specific fault tolerance information can be
stored temporarily. This location is agent-platform-depen-
dent, but typically corresponds to some sort of local
repository, such as the Voyager directory. For convenience,
we require that such repositories allow agents at place p; to
access some information remotely at another place
pr (k#14). If this is not the case, an agent needs to be
defined that acts as a proxy between the local directory and
the fault-tolerant agents.

6.1.3 Place-Dependent Approach

In the place-dependent approach, the FTE is provided by
the mobile agent platform, e.g., [18], [26]. Here, fault
tolerance is built into the places and a new instance of the
FTE is created and executes at every stage of the agent
execution. A disadvantage of the place-dependent approach
is the need to modify existing proprietary mobile agent
platforms. In particular, the installed base of mobile agent
platforms needs to be replaced by platforms that all use the
same fault tolerance mechanisms, which is problematic.
Moreover, providing the fault tolerance mechanisms locally
on a place may lead to versioning problems.

On the other hand, the FTE can be reused if two agents, a
and b, execute on a similar set of places (M;) at stage S;.
However, the performance gain is small as we believe that
the sets M, for an agent a and M; for an agent b are
generally not identical. Another advantage of the place-
dependent approach is that it allows the places to
instantiate the agent replicas a] selectively when needed.
Indeed, only agent replicas are instantiated whose stage
action sq; (i.e., the initial function H(x)) is actually executed.
Nevertheless, each place runs an instance of the FTE per
agent replica a], whether the agent replica a] itself is
instantiated or not, in order to participate in the stage fault
tolerance protocol for q; (i.e., the consensus algorithm). As
the FTE is located at the places, it does not need to be
transported with the agents, thus limiting the size of the
agent and improving transmission performance.

6.2 Implementation and Performance Evaluation

In this section, we first give a brief overview of the most
important implementation issues of FATOMAS
(Section 6.2.1). The performance of FATOMAS is then
evaluated using the example agent presented in
Section 6.2.2. The goal of this performance evaluation is to
identify the overhead introduced to a mobile agent by our
replication mechanisms.

6.2.1 Implementation

This section describes the implementation of the FTE. As
indicated in Section 6.1, we build fault tolerance on top of
an existing mobile agent platform (i.e., Voyager) without
modifying existing code.

Stage Execution. A stage execution works as follows: On
arrival on place p!, the agent replica a] (more specifically,
the FTE) immediately starts executing DIV Consensus.

When the consensus algorithm decides, the FTE stores
the decision value in a local repository (see Fig. 6). Actually,
only part of the decision is stored, i.e., the primary’s ID

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.2, FEBRUARY 2003

p/""™. This information must be kept until all participants in
a stage execution, ie., M,;, are aware of the result. In
particular, participants that have crashed during consensus
and are assumed to recover again need to learn about the
primary to decide whether to commit or abort the agent’s
operation on their place. However, it is not necessary to
forward the agent to the next stage, as the agent execution
may well have terminated in the meantime. The decision
value can only be discarded from the local repository when
all the failed agents/places of the stage have recovered and
know the outcome of the decision. In a simple approach, the
decision value is discarded after a certain time. In more
elaborate approaches, the places of a stage notify each other
when the decision value is no longer needed.

Having stored the decision value in the repository, the
FTE either commits or aborts the actions of the user-defined
agent, depending on the decision value or, more specifi-
cally, on the p/""™ value of the decision (see Section 5).
Finally, the FTE forwards the agent to the next stage as
described in the next section.

Reliably Forwarding the Agent. Having solved con-
sensus at stage .S;, the agent needs to be forwarded reliably
to members M,,; of the next stage. To ensure reliable
forwarding, each participant of stage S; sends a clone of the
agent to the participants in M, 1 \ M;.

If M;1NM; =10, ie., if the places at two consecutive
stages S; and S form disjoint sets, the simplest solution to
reliable forwarding consists of sending |M;| | M|
agents. However, to reduce the communication overhead,
we chose the following optimistic approach: The agent a;;
is sent to each place in M;; only by the agent q; at place
P/ The other agents a/ # a’"™ simply verify whether the
agent ;41 has arrived at the places in M;;; by remotely
accessing the corresponding value in the repository on the
places in M. If an entry for the agent al ., already exists,
the agent a/, | has successfully arrived; otherwise, the agent
al 1 is cloned and sent to this place. In other words, instead
of a priori always sending the entire agent, a small message
is sent to check the need for sending the entire agent. This
approach is optimistic because it assumes that in most cases
the agents arrive at their destinations. Even though the
performance gain for a single agent is not great, the
communication overhead is reduced for large agents. If an
agent fails to arrive at its destination because either 1) the
sender place failed or 2) the agent was lost during
transmission, agent forwarding leads to additional latency.

Recovery. Although recovery and nonsimultaneous
agent arrival can be handled in the same way (see
Section 5.1.3), our prototype distinguishes between the
following two problems: A delayed agent a/ takes part in
the running instance of consensus (except if consensus has
finished already), whereas a recovering agent does not. A
recovering agent af requests the decision value of the
consensus, more specifically, p/"", once it is available.
Based on p/"™, a either commits or aborts its stage
operations and can thus recover into a consistent state.

A recovering place that failed in stage S; takes part again
in the mobile agent execution at any stage 5 (I >) (if it is
in M;) as well as in the execution of any other agent. For
this case, no particular recovery algorithm is needed.

PLEISCH AND SCHIPER: FAULT-TOLERANT MOBILE AGENT EXECUTION

217

TABLE 1
Costs of Replication Degree 1 and 3 in Milliseconds Compared to the Single Agent
| Typc of Agent H 3 stages | 4 stages | 5 stages |

Single agent (666 bytes) 793 100% 1089 100% 1546 100%
Single FTE agent, degree 1 939 118% 1427 131% 2004 130%
(1440 bytes)

Replicated FTE agent, degree 3 2369 290% 4375 402% 6470 418%
Replicated FTE agent, degree 3, || 10000 + 10000 + 10000 +

with failure (timeout = 10000) 2445 1569% 4631 1344% 6299 1054%

6.2.2 Example: A Fault-Tolerant Agent Accessing
Counters

To measure the performance of FATOMAS, we assume
hetero-places (see Section 3.3.2) and use a simple service
running on every place: a counter. Accesses to this counter
are performed as local transactions, via the three methods:
increment (to increment the value of the counter),
commit (to commit the modifications), and abort (if the
modifications need to be undone). A call to method
increment locks the counter; the lock is only released
after a call to either commit or abort.

Our test consists of sequentially sending a number of
agents that increment the value of the counter at each stage
of the execution. Each agent starts at the agent source and
returns to the agent source, which allows us to measure its
round-trip time. Between two agents, the places are not
restarted. Consequently, the first agent needs considerably
longer for its execution, as all classes need to be loaded into
the cache of the virtual machines. Consecutive agents
benefit from already cached classes and thus execute much
faster. We do not consider the first agent execution in our
measurement results. For a fair comparison, we used the
same approach for the single agent case (no replication).

Moreover, we assume that the Java class files are locally
available on each place. Clearly, this is a simplification, as the
class files do not need to be transported with the agent.
Remote class loading adds additional costs because the
classes have to be transported with the agent and then loaded
into the virtual machine. However, once the classes are
loaded in the class loader, other agents can take advantage of
them and do not need to load these classes again.

6.2.3 Experimental Setup

Our performance tests are run on seven AIX machines
(PowerPC 233 MHz processor, 256 MByte of RAM). The
machines are connected by either a 100 Mbps Ethernet or
16 Mbps Tokenring; they are on three different subnets. As
our evaluation results are in the area of hundreds of
milliseconds, the difference in network bandwidth is
negligible. The influence of the different subnets does not
turn out to be significant either.

The results represent the arithmetic average of 10 runs,
with the highest and lowest values discarded to eliminate
outliers. The coefficient of variations is in most cases much
lower than 5 percent. However, for very few results, it went
up to 15 percent. As a mobile agent execution combines agent
forwarding and consensus, minor variations on network load

and load on the AIX machine have a considerable influence
on the execution time of a mobile agent.

6.2.4 Costs of Replication

We measure two aspects of the replication costs: 1) the
overhead of the replication mechanism incurred by con-
sidering replication degree 1 and 2) the costs of replication
degree 3. The replication degree denotes the number of
places at a stage and is an indicator of the number of
failures the algorithm tolerates at a stage. Because of the
assumption for our consensus algorithm, i.e., a majority of
agent replicas does not fail (see Section 5), replication
degree 3 handles one failure and replication degree 5 would
handle two failures. The results of these measurements are
given in Table 1.

The first line in Table 1 shows the costs for a single agent,
a traditional Voyager agent that performs exactly the same
task as the replicated agent. The single FTE agent (line 2 in
Table 1) uses the replicated agent’s code to execute in a
single agent mode. Compared with the previous line, the
second line shows the overhead of the replication mechan-
ism (increased agent state adding to the communication
costs, increased computing time). The results show that the
replication mechanisms add about a 30 percent overhead
compared to a single agent. The overhead is lower
(18 percent) in the case of three stages as no communication
between intermediate stages occurs.

A replicated agent that is able to tolerate one failure at a
stage is three to four times more expensive than a single
agent (line 3). The increase in the agent execution time is
caused mainly by the additional communication costs of
agent forwarding and consensus. Indeed, consider, for
instance, the single agent execution on four stages, where
there are three messages in the critical path. On the other
hand, with replication, there are 12 messages in the critical
path in the most favorable scenario. We suspect Voyager
communication to be rather inefficient. Nevertheless, the
overhead of the fault tolerance mechanisms seems reason-
able, considering the guarantees the fault tolerance mechan-
isms provide: nonblocking and exactly-once mobile agent
execution. Moreover, in our experiment, the execution time
of the agent’s stage operation is less than 5 ms and therefore
not significant. Clearly, the longer the execution time of the
agent’s stage operation, the smaller the ratio of the over-
head between the single agent and the replicated agent.

Finally, the last line shows the execution costs when the
coordinator fails. For this purpose, we force agent replica a}
to crash in exactly the situation presented in Fig. 4 (stage 2).

218
Influence of the Agent Size on the Execution Time (4 Stages)
single agent™——
80 - replicated agent degreeé 3 —+—
70 , |
60]
E 50 - ,/'// 4
[] #
E af |
30 * |
20 |
L ,'/1’ s |
10 /:” /M’ .
- =
0 o,) | . I
0 20 40 60 80 100
agent size [KBytes]

Fig. 7. Costs of single and replicated agent execution with increasing
agent size (four stages).

The main part of the costs stems from the selected timeout
value in the failure detection mechanisms for consensus
(timeout = 10,000 ms). A more aggressive timeout value
considerably speeds up the agent execution, but it also
increases the risk of false suspicions.

6.2.5 Influence of the Size of the Agent

The size of the agent has a considerable impact on the
performance of the fault-tolerant mobile agent execution. To
measure this impact, the agent carries a Byte array of
variable length used to increase the size of the agent. As the
results in Fig. 7 show, the execution time of the agent
increases linearly with increasing size of the agent.
Compared to the single agent, the slope of the curve for
the replicated agent is steeper.

6.2.6 Optimization: Pipelined Mode

We have introduced the pipelined mode in Section 5.3. It
results in a reduced number of messages (i.e., forwarded
agents) as the agent only needs to be forwarded to one new
place of the next stage. This reduced number of messages
does not entirely show up in the performance gain because
our algorithm waits only for the reception of the first
message. Reducing the number of messages, however, has a
great impact on the underlying communication infrastruc-
ture. Nevertheless, Fig. 8 shows that the pipelined mode has
a lower execution time than the normal replicated agent.

6.2.7 Discussion

In [26], Silva et al. measure the performance overhead of
their approach, called James, and also compare it to a partial
implementation of the approach in [23] that is, similarly to
our approach, based on replication. For an agent of size of
about 1 KByte, they measure an overhead of 20 percent for
James, while the approach in [23] introduces an overhead of
300 percent. This latter overhead is comparable to the
overhead introduced by FATOMAS (see Table 1). However,
the approach in [23] is blocking, whereas our approach is
not, and Silva et al. mention having made only a partial
implementation. James uses an approach with different
characteristics which we call the commit-at-dest approach

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.2, FEBRUARY 2003

Optimizations by the pipelined mode for 8 stages

160 T T T T T T T T T
) Replicated agent ——

140 | Replicated agent pipelined il
120 + // i
100 B
g 80 B
ol / / |

0 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 55

agent size [KBytes]
Fig. 8. Performance gain with the pipelined mode for eight stages.

(see Section 8) and it is not clear to us what exactly has been
taken into account in their performance measurements (i.e.,
overhead of fault-tolerant lookup directory and of locking).
Hence, it is difficult to compare the performance of the two
approaches. Moreover, our measurements are more de-
tailed as we also isolate the cost of consensus at a stage.

7 FAULT-TOLERANT MOBILE AGENT EXECUTION IN
THE CONTEXT OF Iso-PLACES

In Section 3.3, we briefly introduced replicated and
independent iso-places, but so far have limited the discus-
sion to hetero-places and hetero-places with witnesses. In
this section, we present fault-tolerant mobile agent execu-
tion in the context of iso-places. In particular, we address
the modifications that are required by our approach in
order to handle iso-places as well. We first address the case
of replicated iso-places (Section 7.1). Then, we discuss
independent iso-places (Section 7.2) and show that, because
of particularities in the case of independent iso-places, the
agent must know beforehead whether it is dealing with
independent iso-places.

7.1 Replicated Iso-Places

In contrast to hetero-places, replicated iso-places run a
replication mechanism among themselves (see Fig. 9a).
Consequently, executing the replicated agent on replicated
iso-places leads to two levels of replication: 1) place
replication (replication running among the iso-places’) and
2) agent replication (replication among the agent replicas).
The replication technique used for agent replication is based
on DIV consensus (see Section 5), whereas place replication
can use either active [24], passive [5], or semi-passive [9]
replication. Actually, the case of replicated iso-places
corresponds to a replicated client invoking a replicated
server in traditional distributed systems.

The agent replicas need not run on all replicated iso-
places; rather, they can run on a subset of these places.

9. Strictly speaking, the replication mechanism occurs among the
services running on the replicated iso-places (i.e., U’ in Fig. 9a). For
simplicity, we do not make this distinction in our discussion (see also
Section 2.1).

PLEISCH AND SCHIPER: FAULT-TOLERANT MOBILE AGENT EXECUTION

Stage S, Stage S,

Stage S,

p?2 @

i2

. Replication mechanism
. Replication mechanism

(@) (b) (c)

Fig. 9. Agent replicas execute on (a) replicated iso-places and (c)
independent iso-places. U’ represents the replica of the service running
on place p] and provides access to (part of) the state of p/ (see Section
2.1). The failure of p! in the case of replicated iso-places is shown in (b).

Indeed, the replication mechanism among replicated iso-
places ensures that all iso-places eventually reflect the
changes, whether they run a replica agent or not. Revisiting
the example in Section 3.3.1, although airline X may
provide five iso-places, M; may contain only three of them.

To isolate the replication technique used by the
replicated iso-places from the agent replicas, i.e., to achieve
transparency, the agent replicas access the service on the
iso-place through a local proxy. This proxy then forwards
the request to the service. In the case of actively (semi-
passively) replicated iso-places, the proxy atomically
(reliably) broadcasts the request to all iso-places [6]. With
passively replicated iso-places, the request is sent to the
primary place. To exploit locality, it is desirable that the
primary of agent replication and the primary of place
replication be identical. However, they may denote differ-
ent places at stage S;, in particular if failures or false
suspicions occur.

In the following, we show how exactly-once execution of
the agent at stage S, can be achieved on replicated iso-
places. Assuming deterministic execution,'® the exactly-
once property in the case of replicated iso-places is achieved
immediately (Section 7.1.1). Without this assumption,
ensuring the exactly-once property requires recovery of
failed agents (Section 7.1.2).

7.1.1 Exactly-Once and Determinism

As shown in Section 3.4, replication can lead to multiple
executions of the agent’s code and, thus, also multiple
instances of the agent request to the place. However,
multiple executions of the agent replica’s requests on the
place can easily be prevented. Indeed, the use of request IDs
allows replicated iso-places to detect whether the same
request has already been processed. If this is the case, the
iso-places simply return the result; otherwise, the agent
replica’s request is executed. However, this requires that the
agent replicas use identical request IDs when issuing the
same request. Assume, for instance, that the agent replica
executing on p! sends request rq, to service U’ on p! (see

10. An execution is deterministic if all agent replicas execute the same
steps and return the same results. Moreover, these results are reproducible.
Multiple threads, for instance, lead to nondeterministic execution as the
thread scheduling cannot be controlled and is somewhat arbitrary.

219

Fig. 9b, step (1)). Service U" executes ¢y and, because of the
replication mechanism among the replicated iso-places, all
other iso-places reflect the result of this execution (Fig. 9b,
step (2)). Before the result of rgy is communicated to the
agent replica, p) fails. Another agent replica (e.g., the one
executing on p}) takes over the execution and sends request
rq; to service U! (step (3) in Fig. 9b). If the request IDs of rqo
and rq; are equal, then the service on p! detects the
duplicate request and simply returns the previously
computed result. Identical request IDs on different agent
replicas are generally only possible if the agent replicas
execute deterministically. Interestingly, in this case, the
stage agreement (see Section 4.1) may no longer be
required. Indeed, if the agent performs invocations only to
replicated iso-places, then no agreement is required among
the agent replicas. The exactly-once execution is ensured by
the replicated iso-places. Moreover, the requests of two
agents a and b are processed in the same order on all
replicated iso-places.

7.1.2 Nondeterminism Requires Recovery

Nondeterminism in the execution of the agent replicas
requires that the agent replicas be good, i.e., that they are
eventually permanently up. Indeed, revisiting the example
in the previous section, assume that the request IDs of rg
and rq; are not equal. Although p! already reflects the
execution of rqy on place p! (via the replication mechanism
among the replicated iso-places, i.e., step (2) in Fig. 9b), it
still executes rq;. Because of the different request IDs, p!
considers rq; a new request. Actually, a! and a; act like two
different clients from the point of view of the iso-places and
not as the replicas they are. This leads to a violation of the
exactly-once execution property as the iso-places reflect the
result of executing the agent request twice.

Ensuring exactly-once is thus only possible when af
recovers, learns that another agent replica has executed, and
undoes its stage action, in particular the modifications to
the iso-places caused by rq, (see Section 3.5). Consequently,
the case of nondeterministic execution in the context of
replicated iso-places is similar to the case of hetero-places.
Moreover, the decision dec; in the basic agreement problem
is equal to the case with hetero-places (see Section 4.1).
Hence, FATOMAS also handles the execution of the agent
on replicated iso-places.

A problem that is particular to the case of replicated iso-
places arises with the use of pessimistic execution by the
services of the replicated iso-places (see Section 3.5): the
problem of blocking. Indeed, assume that the replicated iso-
places in M, use locking to achieve pessimistic execution,
ie.,, they execute the agent requests as transactions.
Consequently, the execution of gy on place p! has locked
the accessed data items. Executing rq; on p! accesses the
same (replicated) data items, currently locked by a!. The
execution of a! can generally only proceed when a!

recovers, aborts rqy, and thus releases the locks.

7.2 Independent Iso-Places

Independent iso-places are exact replicas with no replica-
tion mechanism running among them (see Section 3.3.1). So,

the agent replicas ensure that all places in M; learn about
the agent replica’s request and about the new state of the

220

iso-place that has executed the request (see Fig. 9c). This can
be done by either 1) executing the agent on all places or 2)
executing the agent on one place and sending the state
update information of the place to the other agent replicas,
which then update their local iso-place. In approach 1),
agreement (i.e., DIV consensus) between the agent replicas
is not required. However, approach 1) requires determinis-
tic execution of the agent replicas. Indeed, to ensure that all
iso-places p] have the same state after the execution of a;,
the agent replicas a/ need to execute the same sequence of
steps. Clearly, the execution of the agent replicas on all
places p! leads to a higher computation overhead. More-
over, the replicas of two mobile agents a; and b; need to be
executed in the same order on all independent iso-places p/,
ie., the execution of agent replicas needs to be totally
ordered. Hence, reliable broadcast is not sufficient to
forward the agent between two stages; rather, the agent is
atomically (total order) broadcast to M, by the places in
M,;. Note that, with this approach, the exactly-once
property of agent execution is, in a strict sense, no longer
required; rather, all agent replicas are executed, ie., we
have multiple executions of agent a; at stage S;. However,
we still need to ensure that agent replica a! executes exactly-
once. In other words, the exactly-once property now refers
to the execution of replica a/ and not to the execution of
agent a; as with hetero-places and replicated iso-places.

Approach 2) also requires atomic broadcast to forward
the agent between two consecutive stages. However,
approach 2) is more generic in that it also addresses
nondeterministic execution of the agent replicas. For this
purpose, the basic agreement problem (see Section 4.1) is
used to decide on the iso-place that has executed the agent
replica. Consequently, approach 2) has a lower computation
overhead if no failures and false suspicions occur. Indeed,
in this case, only one agent replica executes and sends the
state update information to the other agent replicas.
However, this state update information might be large or
difficult to obtain. With independent iso-places, the
decision value dec; (see Section 4) is different: 1) the state
update information for all the places in M;, 2) the resulting
agent a;41, and 3) the places M, for a;;.

Whereas executing the agent replicas on independent
iso-places prevents blocking, failures of the agent replicas
may lead to inconsistencies of the state of the independent
iso-places. Indeed, assume that agent replica a! at stage S;
fails. As it has not received the state update information,
place p! is not aware of the latest agent replica request,
whereas places p} and p? have already updated their state.
To avoid inconsistency, place p) can only execute another
agent replica b, when a) has recovered and successfully
executed.

A summary of this section is given in Table 2, in which
we identify the building blocks required to achieve fault-
tolerant mobile agent execution in the context of indepen-
dent and replicated iso-places. Table 2 also presents the case
of hetero-places. Note that deterministic execution of agents
and places is not meaningful with hetero-places.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.2, FEBRUARY 2003

TABLE 2
Summary of the Required Building Blocks Needed to Achieve
Fault-Tolerant Mobile Agent Execution

agent/place
deterministic

agent/place

place properties non-deterministic

DIV consensus
Reliable Broadcast
DIV consensus
Atomic Broadcast
DIV consensus
Reliable Broadcast
The building blocks are given with respect to the place properties and
determinism in the agent/place execution. The case of hetero-places
with deterministic execution of the agent/place is not meaningful as no

replication mechanism runs between hetero-places.

hetero-places -

independent iso-places || Atomic Broadcast

replicated iso-places Reliable Broadcast

8 RELATED WORK

Recently, fault-tolerant mobile agent execution has been a
very active field of research. We distinguish between the
commit-after-stage and commit-at-dest approaches. Commit-
after-stage approaches make the modifications at the agent
and place permanent and visible to other agents during or
immediately after every stage execution. In contrast,
commit-at-dest approaches generally commit the modifica-
tions only at the end of the entire agent execution. Our
approach, as well as the approaches in [3], [15], [20], [23], is
commit-after-stage approaches, whereas [18], [26] are part
of commit-at-dest approaches.

A commit-after-stage approach sends multiple replicas of
the agent to a set M of places of the next stage. Having
multiple replicas of the agent allows it to mask failures and to
proceed despite failing replicas. To ensure the exactly-once
execution property, commit-after-stage schemes need to
solve an agreement problem at every stage. Current
commit-after-stage schemes assume reliable failure detection
[15], [20], are based on complex models using transactions
and leader election [3], [23], or block even on a single place
failure [23]. Our approach, which is based on an easily
understandable model, does not assume reliable failure
detection, prevents blocking, and ensures exactly-once
execution. To our knowledge, our work is the first to perform
an evaluation of a commit-after-stage approach for fault-
tolerant mobile agents. In [26], Silva et al. compare their
commit-at-dest approach with some basic performance
results from their partial implementation of [23]. However,
no details about the implementation are presented.

To our knowledge, Schneider [25] is the only one to
advocate a commit-after stage approach to independent iso-
places. However, his approach addresses Byzantine failures.

A commit-at-dest approach, on the other hand, attempts
to execute the agent on a place. If this execution fails, the
agent is sent to another place. Incorrect failure suspicion
may lead to duplicate agents and thus to a violation of the
exactly-once execution property. Generally, duplicate
agents are detected only at the agent destination [18], [26].
Consequently, accessed data items have to remain locked
until the execution of the current agent finishes. If this is not
the case, other agents may read incorrect data. At the end of
the agent execution, the operations of the valid mobile agent
have to be committed, whereas those of the redundant

PLEISCH AND SCHIPER: FAULT-TOLERANT MOBILE AGENT EXECUTION

duplicate agents have to be aborted or undone. As incorrect
failure suspicions may happen at any point, the commit/
abort mechanism is always needed, even though, at the end
of the agent execution, no duplicate agent may have
occurred. In other words, when the agent execution is
done, either a number of messages or another agent need to
be sent to commit and/or abort all operations. This
additional overhead, that, to our understanding, seems
not to have been taken into account in the performance
evaluation in [18], [26], results in reduced overall system
throughput. In contrast, commit-after-stage approaches do
not need to run a global commit/abort protocol. Instead,
undoing failed operations happens on a per-stage-basis and
therefore does not create dependencies among stages.
Locked data items are freed earlier, improving system
throughput. In addition, performing the undo operation on
a language level [18] requires specific knowledge about the
way applications handle rollbacks. To our understanding,
[18] assumes standard interfaces for rollbacks and undo
operations. In contrast, our approach leaves the undo
operation to the application, which has the best knowledge
about the services it is using and their way to handle
rollbacks. The JAMES platform [26] uses a replicated lookup
directory to prevent duplicate agents and thus also has
some elements of a commit-after-stage approach. Duplicates
caused when a place cannot reach the lookup directory (e.g.,
because of network partitioning) are generally detected only
at the agent destination. However, as network partitioning
can occur at any point in time, JAMES needs to behave as a
commit-at-dest approach. In our approach, network parti-
tions may, in the worst case, lead to blocking, but the lifetime
of duplicate agents is still limited to the stage execution.
Moreover, such a lookup directory violates, to some extent,
the autonomy property of a mobile agent.

To the best of our knowledge, our approach is the first to
propose a platform-independent architecture, the so-called
agent-dependent approach (see Section 6.1.2). The work in
[3], [15], [18], [23], [26] all uses a place-dependent approach.
As these approaches for fault-tolerant mobile agent execu-
tion are inherently different from ours, the place-dependent
architecture may be better suited. Indeed, Mohindra [18],
for instance, defines a new scripting language, with fault
tolerance tightly integrated into language constructs. The
commit-at-dest approach in [26] also seems to benefit from
a place-based approach. Indeed, a failure causes the
previous place to send the agent to another place to
circumvent the failed place. It is difficult, even though
probably not impossible, to achieve the same behavior with
an agent-dependent approach. Nevertheless, contrary to
our agent-dependent approach, the place-dependent ap-
proach has the major drawback of requiring modifications
to the existing mobile agent platform.

9 CONCLUSION

In this paper, we have identified two important properties
for fault-tolerant mobile agent execution: nonblocking and
exactly-once. Nonblocking ensures that the agent execution
proceeds despite a single failure of either agent, place, or
machine. Blocking is prevented by the use of replication.
However, replication may lead to multiple executions of the

221

agent and thus to a violation of the exactly-once property.
Whereas this is not a problem for idempotent operations, it
may lead to an incorrect agent and place state with
nonidempotent operations. Our approach consists of
modeling fault-tolerant mobile agent execution as a
sequence of agreement problems. In contrast to the more
complex model consisting of transactions and leader
election [3], [23], it is simple and does not rely on reliable
failure detection such as [15]. Moreover, accessed data items
are released immediately after the stage execution and not
locked until the agent has reached its destination [18].

Our approach requires two building blocks: 1) DIV
consensus [9] and 2) reliable broadcast. We have imple-
mented these building blocks in a prototype system called
FATOMAS (FAult-TOlerant Mobile Agent System). The
performance measurements of FATOMAS show the over-
head introduced by the replication mechanisms with
respect to a nonreplicated agent. Not surprisingly, they
also show that this overhead increases with the number of
stages and the size of the agent. A performance improve-
ment can be achieved with the pipelined mode.

Finally, we have shown that our approach is also
applicable to the case of replicated iso-places. In the
particular case of deterministic execution of the agent
replicas and places, building block 1) (i.e., DIV consensus) is
no longer needed (although its use is still correct).
Consequently, FATOMAS can also handle replicated iso-
places. In contrast, independent iso-places require the
implementation of atomic broadcast in FATOMAS. Never-
theless, our model of fault-tolerant mobile agent execution
is still valid.

REFERENCES

[1] MK. Aguilera, W. Chen, and S. Toueg, “Quiescent Reliable
Communication and Quiescent Consensus in Partitionable Net-
works,” Technical Report TR 97-1632, Cornell Univ., June 1997.

[2] MK. Aguilera, W. Chen, and S. Toueg, “Failure Detection and
Consensus in the Crash-Recovery Model,” Distributed Computing,
vol. 13, no. 2, pp. 99-125, 2000.

[3] EM. Assis Silva and R. Popescu-Zeletin, “An Approach for
Providing Mobile Agent Fault Tolerance,” Proc. Second Int’l
Workshop Mobile Agents (MA ’98), K. Rothermel and F. Hohl,
eds., pp. 14-25, Sept. 1998.

[4] A. Bieszczad, B. Pagurek, and T. White, “Mobile Agents for
Network Management,” IEEE Comm. Surveys, Sept. 1998.

[5] N. Budhirja, K. Marzullo, F.B. Schneider, and S. Toueg, “The
Primary-Backup Approach,” Distributed Systems, S. Mullender,
ed., second ed., pp. 199-216, Reading, Mass.: Addison-Wesley,
1993.

[6] T.D. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems,” J. ACM, vol. 43, no. 2, pp. 225-267,
Mar. 1996.

[71 D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G.
Tsudik, “Itinerant Agents for Mobile Computing,” IEEE Personal
Comm. Systems, vol. 2, no. 5, pp. 34-49, Oct. 1995.

[8] D. Chess, C.G. Harrison, and A. Kershenbaum, “Mobile Agents:
Are They a Good Idea?” Mobile Agents and Security, G. Vigna, ed.,
pp. 25-47, Springer Verlag, 1998.

[9] X.Défago, A. Schiper, and N. Sergent, “Semi-Passive Replication,”
Proc. 17th IEEE Symp. Reliable Distributed Systems (SRDS '98),
pp- 43-50, Oct. 1998.

[10] M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,” Proc. Second
ACM SIGACT-SIGMOD Symp. Principles of Database Systems, pp. 1-
7, Mar. 1983.

222

(1]

[12]
(13]

(14]

(15]

[16]
(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]

[20]

[27]

(28]

(29]

H. Garcia-Molina and K. Salem, “Sagas,” Proc. ACM SIGMOD Int’l
Conf. Management of Data and Symp. Principles of Database Systems,
pp. 249-259, 1987.

J. Gray, “The Transaction Concept: Virtues and Limitations,” Proc.
Int’l Conf. Very Large Databases, pp. 144-154, 1981.

J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques. San Mateo, Calif.: Morgan Kaufmann, 1993.

T. Gschwind, M. Feridun, and S. Pleisch, “ADK—Building Mobile
Agents for Network and Systems Management from Reusable
Components,” Proc. First Int’l Conf. Agent Systems and Applications/
Mobile Agents (ASAMA ’99), Oct. 1999.

D. Johansen, K. Marzullo, F.B. Schneider, K. Jacobsen, and D.
Zagorodnov, “NAP: Practical Fault-Tolerance for Itinerant Com-
putations,” Proc. 19th Int’l Conf. Distributed Computing Systems
(ICDCS "99), June 1999.

D.B. Lange and M. Oshima, “Seven Good Reasons for Mobile
Agents,” Comm. ACM, vol. 45, no. 3, pp. 88-89, Mar. 1999.

P. Maes, R.H. Guttman, and A.G. Moukas, “Agents that Buy and
Sell,” Comm. ACM, vol. 42, no. 3, pp. 81-91, Mar. 1999.

A. Mohindra, A. Purakayastha, and P. Thati, “Exploiting Non-
Determinism for Reliability of Mobile Agent Systems,” Proc. Int’l
Conf. Dependable Systems and Networks (DSN 00), pp. 144-153, June
2000.

ObjectSpace, Voyager: ORB 3.1 Developer Guide, 1999. http:/ /www.
objectspace.com/products.

H. Pals, S. Petri, and C. Grewe, “FANTOMAS—Fault Tolerance
for Mobile Agents in Clusters,” Proc. Int’l Parallel and Distributed
Processing Symp. (IPDPS) 2000 Workshop,].D.P. Rolim, ed.,
pp- 1236-1247, 2000.

S. Pleisch and A. Schiper, “Modeling Fault-Tolerant Mobile Agent
Execution as a Sequence of Agreement Problems,” Proc. 19th IEEE
Symp. Reliable Distributed Systems (SRDS "00), pp. 11-20, Oct. 2000.
S. Pleisch and A. Schiper, “FATOMAS: A Fault-Tolerant Mobile
Agent System Based on the Agent-Dependent Approach,” Proc.
Int’l Conf. Dependable Systems and Networks (DSN "01), pp. 215-224,
July 2001.

K. Rothermel and M. Strasser, “A Fault-Tolerant Protocol for
Providing the Exactly-Once Property of Mobile Agents,” Proc. 17th
IEEE Symp. Reliable Distributed Systems (SRDS ’98), pp. 100-108,
Oct. 1998.

FE.B. Schneider, “Replication Management Using the State-
Machine Approach,” Distributed Systems, S. Mullender, ed., second
ed., pp. 169-198, Reading, Mass.: Addison-Wesley, 1993.

E.B. Schneider, “Towards Fault-Tolerant and Secure Agentry,”
Proc. 11th Int’'l Workshop Distributed Algorithms, invited paper,
Sept. 1997.

L.M. Silva, V. Batista, and J.G. Silva, “Fault-Tolerant Execution of
Mobile Agents,” Proc. Int’l Conf. Dependable Systems and Networks
(DSN ’00), pp. 135-143, June 2000.

M. Strasser and K. Rothermel, “Reliability Concepts for Mobile
Agents,” Int’l]. Cooperative Information Systems, vol. 7, no. 4,
pp- 355-382, 1998.

K. Takashio, G. Soeda, and H. Tokuda, “A Mobile Agent
Framework for Follow-Me Applications in Ubiquitous Computing
Environment,” Proc. Int’l Workshop Smart Appliances and Wearable
Computing (IWSAWC “01), pp. 202-207, Apr. 2001.

W. Theilmann and K. Rothermel, “Optimizing the Dissemination
of Mobile Agents for Distributed Information Filtering,” IEEE
Concurrency, pp. 53-61, Apr. 2000.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.2, FEBRUARY 2003

Stefan Pleisch received the MS degree in
computer science from the Swiss Federal In-
stitute of Technology in Lausanne (EPFL) in
1997. After his studies, he was working for ELCA
Informatik AG, a Swiss IT supplier. Since 1998,
he has been working at the IBM Zurich Research
Laboratory and is about to finish his PhD thesis
at EPFL. His research interests include distrib-
uted systems, fault tolerance, and mobile agents.

André Schiper has been a professor of
computer science at the EPFL (Federal Institute
of Technology in Lausanne) since 1985, leading
the Distributed Systems Laboratory. During the
academic year 1992-1993, he was on sabbatical
leave at the University of Cornell, Ilthaca, New
York. His research interests are in the areas of
fault-tolerant distributed systems, middleware,
group communication, and, recently, mobile ad
hoc networks. He has taken part in the following
European projects: ESPRIT Basic Research BROADCAST (1992-
1995), ESPRIT R&D OpenDREAMS (1996), ESPRIT Working Group
BROADCAST (1996-1999), ESPRIT R&D OpenDREAMS Il (1997-
1999), IST REMUNE (2002-2004), IST MIDAS (2002-2003). He is a
member of the IST Network of Excellence in Distributed and Depend-
able Computing Systems (CABERNET). From 2000 to 2002, he was the
chair of the steering committee of the International Symposium on
Distributed Computing (DISC). He is a member of the IEEE and the
IEEE Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

