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Abstract—Scaling in CMOS device technology has made it possible to cheaply embed intelligence in a myriad of devices. In

particular, it has become feasible to fabricate flexible materials (e.g., woven fabrics) with large numbers of computing and

communication elements embedded into them. Such computational fabrics, electronic textiles, or e-textiles have applications ranging

from smart materials for aerospace applications to wearable computing. This paper addresses the modeling of computation,

communication and failure in e-textiles and investigates the performance of two techniques, code migration and remote execution, for

adapting applications executing over the hardware substrate, to failures in both devices and interconnection links. The investigation is

carried out using a cycle-accurate simulation environment developed to model computation, power consumption, and node/link failures

for large numbers of computing elements in configurable network topologies. A detailed analysis of the two techniques for adapting

applications to the error prone substrate is presented, as well as a study of the effects of parameters, such as failure rates,

communication speeds, and topologies, on the efficacy of the techniques and the performance of the system as a whole. It is shown

that code migration and remote execution provide feasible methods for adapting applications to take advantage of redundancy in the

presence of failures and involve trade offs in communication versus memory requirements in processing elements.

Index Terms—Electronic textiles, sensor networks, wearable computing, fault tolerance, application remapping, code migration,

remote execution.
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1 INTRODUCTION

THE scaling of device technologies has made possible
significant increases in the embedding of computing

devices in our surroundings. Embedded microcontrollers
have for many years surpassed microprocessors in the
number of devices manufactured. The new trend, however,
is the networking of these devices and their ubiquity not
only in traditional embedded applications such as control
systems, but in items of everyday use, such as clothing, and
in living environments.

A trend deserving particular attention is that in which
large numbers of simple, cheap processing elements are
embedded in environments. These environments may cover
large spatial extents, as is typically the case in networks of
sensors, or may be deployed in more localized constructions,
as in the case of electronic textiles. These differing spatial
distributions also result in different properties of the
networks constituted, such as the necessity to use wireless
communication in the case of sensor networks and the
feasibility of utilizing cheaper wired communications in the
case of electronic textiles.

Electronic textiles, or e-textiles, are a new emerging
interdisciplinary field of research, bringing together
specialists in information technology, microsystems, ma-
terials, and textiles. The focus of this new area is on
developing the enabling technologies and fabrication
techniques for the economical manufacture of large-area,

flexible, conformable information systems that are ex-
pected to have unique applications for both the consumer
electronics and aerospace/military industries. They are
naturally of particular interest in wearable computing,
where they provide lightweight, flexible computing
resources that that are easily integrated or shaped into
clothing.

Due to their unique requirements, e-textiles pose new
challenges to hardware designers and system developers,
cutting across the systems, device, and technology levels of
abstraction:

. The need for a new model of computation intended
to support widely distributed applications, with
highly unreliable behavior, but with stringent con-
straints on the longevity of the system.

. Reconfigurability and adaptability with low compu-
tational overhead. E-textiles must rely on simple
computing elements embedded into a fabric or
directly into active yarns. As operating conditions
change (environmental, battery lifetime, etc.), the
system has to adapt and reconfigure on-the-fly to
achieve better functionality.

. Device and technology challenges imposed by em-
bedding simple computational elements into fabrics,
by building yarns with computational capabilities, or
by the need for unconventional power sources and
their manufacturing in filament form.

In contrast to traditional wearable computers, which are
often a single monolithic computer or a small computer
system that can be worn, e-textiles will be cheap, general
purpose computing substrates in the form of a woven fabric
that can be used to build useful computing and sensing
systems “by the yard” [1].
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At the architecture layer, we expect to have a large
number of resource-constrained computing elements which
will be defect prone (i.e., manufacture-time defects will be
common due to difficulties and costs of testing). In addition,
the devices will witness significant fault rates during their
lifetime due to the nature of the environments in which
devices will be deployed and due to the psychological
treatment of these devices by humans since they will no
longer be regarded as computing devices per se. These
individual elements are interconnected in a network which
is likewise subject to defects and faults, for similar reasons
as the individual computing elements. The computing
elements connected in the interconnection network must
be able to provide some useful functionality, with stringent
constraints on quality of results or operational longevity.

Techniques to program such networks are required that

permit useful applications to be constructed over the defect

and fault-prone substrate. There is a need for a new model

of computation to support distributed application execution

with highly unreliable behavior at the device-level, but with

stringent constraints on longevity at the system level. Such a

model should be able to support local computation and

inexpensive communication among computational ele-

ments. In the classical design cycle (Fig. 1), the application

is mapped onto a given platform architecture, under

specified constraints (performance, area, power consump-

tion). When these constraints are met, the prototype is

tested, manufactured, and used for running the application.

In the case of e-textiles (Fig. 2), the substrate is comprised of

large numbers of interconnected computing elements, with

no prescribed functionality. To achieve high yields (that is,

low defect rate), as well as high fault-tolerance later in the

lifetime cycle, regularity is important. The application is

modified (partitioned) so as to expose as much local

computation as possible. At power-up, the application is

mapped so as to optimize different metrics of interest (such

as quality of results, power consumption, operational

longevity, fault tolerance) and later remapped whenever

operating conditions change.
Although e-textiles ostensibly present distributed com-

puting challenges similar to those currently being pursued
in adaptive control networks and pervasive computing, the
specific characteristics and demands of the e-textile hard-
ware platform add new dimensions to those challenges.
E-textiles impose specific challenges as opposed to other
applications in the general area of networked systems:

1.1 What E-Textiles Are Not

. Classic data networks. While the underlying structure
of an e-textile application implies the existence of
many processing elements, connected in a Textile-
Area Network (TAN), they have limited processing
and storage capabilities, as well as very limited
power consumption budgets. Hence, classic techni-
ques and inherent methodologies for coping with
mapping an application, communication among
nodes, and dealing with network failures are not
appropriate. In addition, having very limited pro-
cessing capabilities, e-textiles are not the equivalent
of “desktops/laptops on a fabric,”, significantly
restricting the range of applications that can be
mapped on them.

. Networked embedded systems (including wireless sen-
sor networks). Wireless sensor networks share with
e-textiles the constraints of limited power budgets
and, to some extent, the limited processing and
storage capabilities. However, communication
among processing elements in e-textiles is wired
and, thus, much less expensive than communication
in wireless sensor networks. In addition, as opposed
to ad hoc networks, the topological location of
different processing elements is fixed throughout
the lifetime of the application (although the mapping
of the application on processing elements may
change). Last, e-textiles must have low manufactur-
ing costs and, thus, the defect rate of the processing
nodes (and physical links) will be much higher and
very different than in the case of wireless networks.
More limited processing and storage capabilities, in
conjunction with higher failure rates, imply that the
existing body of research for sensor networks is not
directly applicable to TANs.

. Defect-free reliable mobile systems. E-textiles must have
low manufacturing costs and, thus, the defect rate of
the processing nodes (and physical links) will
presumably be much higher than in the case of
traditional mobile wireless networks.

1.2 What E-Textiles Are

E-textiles are “living designs” consisting of highly unreli-
able, low-cost, simple components and interconnect. These
characteristics are shared by other nonsilicon computing
systems (such as those based on nanoelectronics). In many
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Fig. 1. Classical static design cycle—no remapping occurs after the

initial design is built.
Fig. 2. Dynamic continuously adapting Living Designs—through

continuous online monitoring, the mapping of applications to the

hardware substrate may evolve over time.



ways, e-textile systems will be the conformable, fabric
equivalent of rigid body, Micro-Electro-Mechanical Systems
(MEMS). However, unlike MEMS, e-textiles require coping
with tears in the fabric, whether it is due to regular wear of
the fabric or due to unexpected damage. Some of the salient
features of e-textiles are:

. limited processing, storage and energy per computa-
tional node,

. potential failures for both nodes and communication
links,

. highly spatially and temporally correlated node and/or
link failures due to topological placement or due to
external events,

. need for scalability and flexibility of resource
management,

. a marked difference between traditional computing
systems and e-textile-based systems is the possibility
of incorporating computational and signal processing
capabilities directly into communication links. These
“active yarns” may perform signal conditioning and
data processing in situ and may contain devices such
as A/D converters or simple computing elements
(i.e., adders, multipliers, pseudorandom number
generators).

This paper presents techniques for addressing many of
the aforementioned challenges at different layers of
abstraction. At the lowest layer, we present techniques for
achieving useful computation from individual unreliable
computing elements and for adapting to runtime failures.
One level above, we show how the individual elements can
monitor the runtime failure rates and adapt to these failures
in what we call on-the-fly fault tolerance management, by
analogy to power management. At an even higher level, we
introduce the concept of colloidal computing as a model for
structuring systems comprised of unreliable computing
elements and interconnects.

The next section presents the relation of various aspects
of our work to already existing efforts. The computing
model we propose is presented in Section 3. Section 4
discusses issues related to application partitioning and
presents a driver application that we shall use in the
analysis throughout the remainder of the paper. Section 5
describes the communication architecture employed in our
experimental evaluation and presents two techniques for
adapting applications running on the individual computing
elements, in the presence of failures in the elements
themselves and in the networks that interconnect them.
Section 6 outlines the simulation framework that was
employed in the subsequent investigations and provides a
detailed experimental evaluation of the ideas presented in
the paper. The ideas and results presented are summarized
in Section 7, along with projections for future directions of
this work.

2 RELATED WORK

There have been a handful of attempts to design and build
prototype computational textiles. In [2], the authors
demonstrate attaching off-the-shelf electrical components,
such as microcontrollers, surface mount LEDs, piezoelectric
transducers, etc., to traditional clothing material, transform-
ing the cloth into a breadboard of sorts. In fabrics which

contain conductive strands, these may be used to provide
power to the devices as well as to facilitate communication
between devices. In [3], the authors extend the work
presented in [2], detailing methods by which items such
as user interfaces (keypads) and even chip packages may be
constructed directly by a textile process.

The routing of electrical power and communications
through a wearable fabric was addressed in [4]. In [4], the
authors provide a detailed account of physical and electrical
components for routing electricity through suspenders
made of a fabric with embedded conductive strands. The
authors also detail the physical construction of a battery
holder to be attached to this power grid, as well as a data-
link layer protocol for interconnecting devices on a
Controller Area Network (CAN) bus, also implemented
with the strands embedded in the fabric.

A complete apparel with embedded computing elements
is described in [5]. The authors describe a jacket designed to
be worn in the harsh arctic environment, which augments
the capabilities of the wearer with a global positioning
system (GPS), sensors (accelerometers, conductivity elec-
trode, heart rate monitors, digital thermometers), and
heating. All the components obtain power from a central
power source and the user interacts with them through a
single user interface.

The “wearable motherboard” project [6] is a substrate
that permits the attachment of computation and sensing
devices in much the same manner as a conventional PC
motherboard. Its proposed use is to monitor vital signs of its
wearer and perform processing. Proposed applications
include monitoring vital statistics of soldiers in combat.

Adaptive techniques such as code migration and remote
execution have previously been employed in server and
mobile computing systems. The use of remote invocation to
reduce the power consumption in mobile systems has
previously been investigated in [7], [8]. The goal in both of
these efforts was to reduce power consumption by offloading
tasks from an energy constrained system to a server without
constraints in energy consumption. The trade off involved
determining when it was worthwhile to ship data to the
remote sever. Both approaches involved the use of remote
invocation and not code migration. The systems investigated
were mobile computers and PDAs operating with fast reliable
wireless networking, an environment very different from low
power, unreliable, network sensors with possibly unreliable
communication investigated in this paper.

Process migration is the act of transferring a process
between two machines (the source and destination nodes),
during its execution [9]. Process migration has traditionally
been employed in distributed systems of servers and work-
stations, primarily for load distribution and fault tolerance.
Unlike the traditional implementations of process migration,
the code migration implementation studied in this paper is
significantly lighter weight, taking into consideration the
special properties of the target application class.

The use of code migration has been successfully applied
in the field of mobile agents [10], [11], [12]. Mobile agents
are an evolution of the general ideas of process migration.
They can be thought of as autonomous entities that
determine their traversal though the network, moving their
code as well as state as they do so. The examples employed
in this study may be loosely considered to fall into the
category of mobile agents. Our focus here is not on the
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techniques for constructing mobile agents, but rather on the
basic principles of employing code migration in the
presence of redundancy and energy constraints.

It has previously been proposed [13] to employ redun-
dantly deployed nodes in a sensor network to increase the
operational lifetime of the network. There have been
proposals such as [14] that exploit redundancy to support
routing of data in wireless ad hoc networks and thereby
save energy. In contrast to these previous efforts, this paper
investigates the feasibility of employing code migration in
the presence of redundancy to increase the operational
lifetime of a system, specifically looking at the cost of
migration in terms of energy consumption and attendant
techniques to make this feasible, in the presence of high
failure rates.

3 COLLOIDAL COMPUTING

The Model of Colloidal Computing (MC2) [15] supports
local computation and inexpensive communication among
computational elements: Simple computation particles are
“dispersed” in a communication medium which is
inexpensive, (perhaps) unreliable, yet sufficiently fast
(Fig. 3). This concept has been borrowed from physical
chemistry [16]1 since some of its properties and char-
acteristics resemble the features that an e-textile-based
computational model would require. In the case of
unstable colloidal suspensions, colloidal particles tend to
coalesce or aggregate together due to the Van der Waals
and electrostatic forces among them. Coalescing reduces
surface area, whereas aggregation keeps all particles
together without merging. Similarly, the resources of a
classic system are coalesced together in a compact form,
as opposed to the case of e-textile-based computation
where useful work can be spread among many, small,
(perhaps) unreliable computational elements that are
dynamically aggregated depending on the needs (Fig. 4).
Dynamic or adaptive aggregation is explicitly performed
whenever operating conditions change (e.g., failure rate of
a device is too high or battery level is too low).

The MC2 model [15] was previously proposed to model
both the application software and architecture platform. Most
of the applications under consideration consist of a number of
computational kernels with high spatial locality, but a low
degree of communication among them. Such kernels (typi-
cally associated with media or signal processing applications)

can thus be mapped on separate computational “particles”
that communicate infrequently for exchanging results.

The underlying architecture of the e-textile matches the
proposed MC2 model. Both the architecture configuration
and the mapping of the application on the computational
elements is done dynamically, at power-up and whenever
the system becomes “unstable.” As an analogy, in the case
of unstable colloids, a minimal energy configuration is
achieved via coalescing (e.g., oil in water) or aggregation
(e.g., polymer colloids). In e-textiles, a “stable” configura-
tion is one that achieves the required functionality, within
prescribed performance, power consumption, and prob-
ability of failure limits. We propose employing aggregation
(Fig. 4) or dynamic connection of computational “particles”
based on their state (i.e., functional or not, idle or active)
and their probability of failure so as to achieve a required
quality of service (QoS) (characterized by performance,
power, and fault tolerance). The mapping and reconfigura-
tion process of the application onto the underlying
architecture is achieved via explicit mechanisms, as opposed
to classic computing systems where mapping and resource
management is done via implicit mechanisms.

Reorganization and remapping requires thin middleware
or firmware clients, sufficiently simple to achieve the
required goals without prohibitive overhead. In addition,
fault and battery modeling and management become
intrinsic components for achieving requisite levels of
quality of results or operational longevity. We describe in
the sequel some of the issues that are critical to e-textile
application lifetime, namely, application modeling and
partitioning, architecture, and communication modeling,
as well as fault modeling and management.

4 APPLICATION PARTITIONING

A fundamental issue which should be addressed in order to
efficiently map complex applications onto e-textiles is that
of concurrency. Given that the e-textiles will contain many
computational particles distributed on large surfaces, it is of
crucial importance to expose the concurrency available in
applications since this will dictate the ultimate limit of
parallelism that may be obtained when they are partitioned
to execute on e-textiles. The methods by which such
concurrency may be extracted are a very interesting
research avenue in their own right. In this work, a driver
application that is trivially partitioned was employed.
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(between 1nm and 1000nm), suspended in a continuous medium, such as
liquid, a solid, or a gaseous substance.

Fig. 3. Colloidal computing model—analogy to colloidal chemistry.

Fig. 4. Coalesced versus aggregated resources: partitioning applications

to expose concurrency.



4.1 Driver Application: Beamforming

For the analysis of the mechanisms for adaptation that will
be described in later sections, the driver application is that
of beamforming. This application is intended to highlight the
effect of different parameters on the benefits that can be
derived from the architectures and adaptation techniques to
be discussed.

4.1.1 Beamforming in Wired Sensor Network

Beamforming consists of two primary components—source
location and signal extraction. It is desirable to detect the
location of a signal source and “focus” on this source. The
signals from spatially distributed sensors are sent to a central
processor, which processes them to determine the location of
the signal source and reconstruct a desired signal. Each
received sample is filtered and this filtering could indeed be
performed at the sensor. Fig. 5 illustrates the organization for
a wired network of sensors used to perform beamforming,
deployed, for example, on an e-textile.

The beamforming application is easily partitioned to run
over an e-textile. The filtering operation on each collected
sample can be considered to be independent of other
samples, thus it could be performed individually at each
sensor node (slave node). The final signal extraction need
only be performed at one node (master node). This division
of tasks scales well with an increasing number of sensors
since the complexity of processing at each sensor node
remains the same and the only increase in complexity is in
the number of filtered samples collected at the master.

Our example system operates in periods, during each of
which all the slaves collect samples, filter them, and send
the filtered samples to the master. The duration of the
sampling period will differ for different applications of
beamforming. In the case of beamforming for speech
applications, an overall sampling rate of 8KHz is sufficient.
For geophysical phenomenon, a sampling rate of 1KHz is
sufficient. For applications such as tracking motion of
animals, a sampling rate of 10Hz is sufficient. In the
analysis used throughout the rest of the paper, a sampling
rate of 10Hz corresponding to a 100 millisecond sampling
period is used. Using a larger sampling rate would shift all
the results by a constant factor, but would not change the
general trends observed and insights provided.

The communication messages between the master and
slave nodes consist of 4 byte data packets containing the
digitized sample reading. When the battery level on any of
the slave nodes falls below a specified threshold, the slave
application attempts to use its remaining energy resources
to migrate to one of the redundant nodes. If migration is

successful, the slave application resumes execution on the
redundant node and adjusts its behavior for the fact that it
is now executing on a different sensor, which is detected
when it restarts. The migrated application code and data for
the slave application is small (only 14K). The application on
the processing elements with attached sensors implemented
a 32-tap FIR filter and consists of 14,384 bytes of application
code and 648 bytes of application state. The application
mapped on the sample aggregation (master) node performs
a summation over the samples and is never migrated in the
experiments that follow. The sequence of messages that are
exchanged between the master and slaves during normal
operation and between the slaves and redundant nodes
during migration is illustrated in Fig. 7.

5 COMMUNICATION ARCHITECTURE AND

FAULT MANAGEMENT

Achieving reliable computation in the presence of failures
has been an active area of research dating back to the early
years of computing [17], [18]. Unlike large networked
systems in which failure usually occurs only in commu-
nication links or in computational nodes and communica-
tion links with low correlation, in the case of e-textiles,
nodes and links coexist in close physical proximity and thus
witness a high correlation of failures.

An important issue is fault modeling, according to their
type (electrical versus mechanical, intermittent, or perma-
nent). Intermittent failures, such as those due to electrical
failures, tend to follow a uniform failure probability distribu-
tion in which the failure probability remains constant over
time. Mechanical failures, on the other hand, can be modeled
with an exponential failure probability distribution, where
each failure increases the probability of subsequent failures.
A special class of permanent faults are those due to battery
depletion. They have the advantage of being predictable,
given a sufficiently accurate battery model.

It is assumed that the application is initially mapped at
system power-up for given quality of results (QoR), power,
and fault tolerance constraints. As operating conditions
change (e.g., permanent failures due to fabric wear and tear
or intermittent failures due to battery depletion), the entire
application (or portions of it) will have to be remapped
and/or communication links rerouted (Fig. 6). Such
reconfiguration mechanisms assume that redundancy exists
for both nodes and links. Many aproaches exist for
providing such redundancy in nodes and links. In a fixed
infrastructure, the logical implementation of redundancy is
to replicate resources, with one resource taking over on the
failure of the other. Upon such failures, applications must
be remapped, for example, by code migration or remote
execution. Code migration is generally a difficult problem
as it could, in the worst case, require the movement of the
entire state of an executing application. However, migration
of running applications can be greatly simplified by
restricting the amount of application state that must be
preserved.

In what follows, the potential benefits of using code
migration and remote execution for alleviating the effects of
finite battery lifetime on operational longevity constrained
e-textiles in the presence of intermittent electrical failures
will be discussed.
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5.1 Application Remapping by Lightweight Code
Migration

Many difficulties and trade offs exist in implementing code
migration and the solution proposed here is a compromise
between implementation complexity and flexibility.

In the ideal case, migrating an executing application will
mean the application itself can be unaware of this move and
can continue execution on the destination host without any
change in behavior. This transparent migration requires
that all state of the executing application (code, data,
machine state, and state pertinent to any underlying system
software) must be migrated faithfully. Such migration is,

however, costly in terms of data that must be transmitted to
the target host and in terms of implementation complexity.

A compromise is to implement applications in a manner
in which they can be asynchronously restarted, while
maintaining persistence for any important state. This then
makes it possible to migrate only the state necessary for
correct execution upon a restart, in addition to the
migration of application code. Fig. 8 illustrates such a
solution. The textile processing node consists of a processor
and memory. The memory space is partitioned between
that used for the application and memory dedicated to the
devices firmware. For example, in many embedded
systems, firmware may run in SRAM while applications
run in DRAM or both may be placed in different regions of
a single memory. The memory region in which the
application runs is occupied by the different parts of the
running application—its code (text), initialized data
(data), uninitialized data (bss), stack (grows downward
from the top of the memory region), and heap (grows
upward from bss), as illustrated by the blow-up in Fig. 8.

Global initialized (uninitialized) variables reside in the
data(bss) segment. By placing information that must be
persistent across restarts in the data and bss segments of
the application, it is possible to maintain state across
migration while only transferring the text, data, and bss

segments. Applications must, however, be designed to check
the values of these persistent variables on each start of
execution and must generally be implemented to be able to
continue correct execution in the presence of such restarts. For
example, the ID of the original node on which the application
was launched is kept in the data segment during migration,
enabling the application to resume its old identity on the new
host. This constraint to application construction is reasonable
and was used to successfully implement code migration in
the examples described in this paper.

Each node has preloaded into it firmware referred to as the
monitor. This firmware is responsible for receiving applica-
tions and loading them into memory. Each application can
transmit its text, data, and bss (uninitialized data)
segments and, when these are loaded by a remote monitor,
they effect the migration. Upon loading an application into
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Fig. 6. Dynamic reconfiguration in the presence of failures. In the event
of a defective link (a), the network topology mapping is adapted to
circumvent the faulty link, likewise in the case of a defective node,
mapping and topology change to use a redundant node and a different
link (b).

Fig. 7. Messages exchanged in beamforming application.

Fig. 8. Migration of application code and state.



memory, control of the hardware is transferred to the
loaded code. On completion of execution, control returns to
the monitor.

The sequence of messages that are exchanged between a
node attempting to migrate and one that receives it is
illustrated in Fig. 9. A node that wants to migrate first sends
a migration request (req_migrate) out to a remote node.
In practice, this initial migration request might often be
broadcast. A node that is capable of receiving a migrating
application responds to the migration request with a grant
message. The migrating application then sends over its
text, data, and bss segments, which the remote node
loads into memory. Finally, the migrating application sends
an FIN message to the remote node indicating that it is
done sending its image over. The monitor application on
the remote node then transfers control of execution to the
newly loaded code in memory and migration is complete.

5.2 Application Remapping by Remote Execution

The technique we refer to here as remote execution is also
often referred to as remote invocation. It entails replicating
the code for each individual application that will ever be
run in the network, at each node. The storage of the
applications at nodes must be persistent across time, in the
presence of failures at the nodes and failures in the links
that interconnect them. The applications must therefore be
stored in some form of nonvolatile memory.

Consider two different scenarios that may arise when
employing remote execution to take advantage of redun-
dant resources in a network. Both cases involve two nodes,
one whose energy resources are close to exhaustion and the
other with a full supply of energy. In the first scenario, the
nodes are identical, and interchangeable, with neither
having any distinguishing resources (except remaining
energy storage) and both having identical copies of the
application code. In such a situation, the energy supply of
one node could be harnessed by the other simply by
migrating only the state of the application to the device with
more energy and resuming execution on that node.

A different scenario, however, arises if the two nodes
under discussion do not have identical resources. Not
having identical resources could mean one of many
different things:

. The nodes have different code. This would occur if
one node was deployed at a different time than the
other, with the application of interest being available

only during the deployment of the first node (or vice
versa). It could also mean different versions of the
same application, one not being fully substitutable
for the other (for example, the later version could
contain critical bug fixes). It could also be due to one
of the nodes simply not being capable of storing
more than one application in nonvolatile storage.

. The nodes have identical code, but different
resources, such as sensors. It can be expected that
devices in the network might have different attached
sensors to provide a rich range of information
sources for the system as a whole. In such a
situation, one node is not substitutable for the other
unless the data to be processed, such as a set of
readings from a sensor, will be transmitted to the
replacement device during migration.

In the first case of different code at each node above,
remote execution is not feasible since the underlying
requirement in remote execution is that all application code
be duplicated at all elements in the network. In the second
case, remote execution is only useful if the ability to process
just one set of data readings (the set migrated with the
application state during remote invocation) is critical to
system functionality. This would be the case, for example, if
the system correctness criteria require that a set of sample
readings from sensors should never be discarded.

Remote invocation is therefore best suited for situations in
which all nodes are identical, in terms of both hardware and
software deployed. It has the benefits that, when applicable, it
can minimize the amount of data that must be transmitted
since the migrated state is always smaller than the combina-
tion of state and application code, which is the case for code
migration. It, however, has the disadvantages that the
flexibility of the system is reduced (requires any node pair
to have identical code stored), the cost of the system is
increased (nonvolatile storage such as Flash can be as much as
twice the cost of DRAM), and the power consumption is
likewise increased, due to the added storage device.

6 EXPERIMENTAL EVALUATION

As a newly emerging field, e-textiles impose new challenges
not only on modeling and analysis, but also on simulation
tools used for validation. It is desirable to employ a
simulation environment built around a processor architec-
tural instruction set simulator, able to provide detailed
power consumption and performance results for the
execution of real partitioned applications on processing
elements (i.e., for example, compiled binaries). The simula-
tion testbed must include detailed battery models, accurate
communication link modeling, as well as failure modeling. Since
processors, active, or passive links may each fail indepen-
dently, or may have correlated failures, multiple failure
models have to be supported. The simulation environment
should enable modeling of failure probabilities, mean duration
of failures, and failure probability distributions for each of the
nodes and communication links. Furthermore, failures be-
tween nodes and links may be correlated and an environ-
ment should enable the specification of correlation coefficients
between the failure probabilities of any given network
segment and any processing element.

A simulation framework that meets the above criteria
was developed with the express purpose of performing
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cycle-accurate investigations of e-textile-based systems,
both in terms of performance/functionality and in terms
of power dissipation and battery lifetime effects. This
simulation framework was employed to investigate the
impact of node/link failure rates and correlations among
failures on performance, as well as the feasibility of using
code migration versus remote execution for increasing
operational longevity.

6.1 Simulation Framework

The simulation framework used in this study enables the
cycle-accurate modeling of computation (instruction execu-
tion), communication, failure (in both the interconnection
network and processing elements), batteries, and different
network topologies. It was designed to enable the functional
and power consumption/battery discharge simulation of
moderately sized (approximately 100 nodes) networks of
embedded processors. We routinely employ this simulation
framework to simulate networks with of the order of
50 processors with an equal number of batteries and
50 network links. The processing elements may be
connected together in arbitrary topologies (e.g., multiple
processing elements to a single shared link, point-to-point
links, etc.) and they may likewise be connected many-to-one
with batteries, subject to maximum current draw restric-
tions imposed by the battery models.

At the core of the simulation framework is an energy
estimating architectural simulator for the Hitachi SuperH
embedded processor architecture [19]. It models a network
of embedded processors, each consisting of a Hitachi SH3
microcontroller, memory, and communication interface.
The modeled processor in each system may be configured
to run at different voltages and, hence, operating frequency.
The time-scale of all of these components is synchronized,
making possible cycle accurate estimation of both computa-
tion and communication performance. The communication
links between the modeled embedded systems are cycle-
accurate with respect to the simulation of each processor in
the network. The mapping between simulation cycles and
simulated elapsed time is dictated by the configured
operating frequency. For example, if nodes run at 60MHz,
each clock tick corresponded to 16.6667ns. Each processing
element may be attached to a battery of configurable
capacity, with battery models based on the discrete-time
models described in [20].

The simulation environment permits the instantiation of
a large number of nodes (the limit is currently 512 and the
absolute limit is determined by the amount of memory in
the simulation host machine), as well as interconnection
links. Each node may be configured with one or more
network interfaces, each of which may be attached to one of
the instantiated communication links, in an arbitrary
topology. The links may be configured in terms of their
transmission delays (i.e., bit-rate), frame size, failure
probability, and whether they permit single or multiple
simultaneous accesses.

The power estimation performed for each individual
processor is based on an instruction level power model. The
model used within the simulator has been verified to be
within 6.5 percent of measurements from the modeled
hardware [19]. The power estimation for the communication
links assigns fixed costs for transmission and receiving,

respectively. In the experiments, costs of 100mW for both
transmission and receiving were used for the wired network.

In the experiments presented in the following sections,
the nodes were attached to batteries which were sized for
each set of experiments so as to limit simulation time. The
lifetimes of the simulated batteries were thus of the order of
a few seconds since simulating the execution of a system
for, say, one day would take over an order of magnitude
more simulation time for each simulated configuration and
would not necessarily provide additional insight.

The beamforming application was implemented in C and
compiled with GCC [21] to generate code for the target
architecture modeled in the simulation environment. The
application was constructed as a typical event-driven
embedded application, which runs directly over a micro-
controller in the absence of a separate operating system
layer. It consists of two primary parts—the application code
and interrupt handlers. Execution of the application code is
triggered by the occurrence of events (arrival of a data
packet, elapse of a period of time). This is a typical
implementation in small embedded software and has even
been used as the model for an operating system for
networked sensors [22].

6.2 Effects of System Parameters on Application
Remapping

The key focus in this simulation study and analysis is the
effect of system parameters such as node and link failure
probabilities, link speed, and link frame size on the utility of
remote execution and code migration to prolong system
lifetime. Issues such as topology discovery, routing in large
sensor networks, and node discovery have received atten-
tion elsewhere, for example, in [23], [24], [25], [26], and are
beyond the scope of this paper.

6.2.1 Effect of Node and Network Configuration on

Baseline Performance

Before delving into details on the effect of various node and
network architectures on the cost and utility of remapping,
it is instructive to note the effect of these parameters on the
performance of a baseline system without remapping.

To this end, the effect of link transmission delay, link
frame size, node failure rate, and link failure rate were
investigated for the beamforming application, which was
described previously in Section 4.1. The configuration used
consisted of one master and 50 slaves, interconnected on a
single shared network segment. The default configuration
employed a link frame size of 64 bytes and speed of
1.6Mb/s unless otherwise varied. Fig. 10 shows plots of the
average number of samples received by the master per
sampling period (shown as Average Quality of Result, QoR in
the figure), as each of the parameters was varied across a
range of 10 configurations. For each configuration, the data
point plotted is the average number of samples received
before the battery level falls below the usability threshold.
The data points were obtained by simulating the entire
system using the previously described simulation infra-
structure, configured with the specified interconnection link
speeds, failure rates, etc., with the compiled beamforming
master and slave binaries simulated in the different nodes
in the network.

The performance of the beamforming application (aver-
age QoR) is seen to be insensitive to failure probabilities in
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nodes and links below 1E-7 per simulation quantum, as
shown in Fig. 10a and Fig. 10b. This is due to the fact that, at
the sample request rate employed, 100Hz, there is sufficient
slack between requests from the master node and, thus,
failure rates in the nodes and links can be hidden and do
not manifest as an overall degradation in system perfor-
mance. Above failure probabilities of 1E-7, performance
drops off rapidly, with the system being nonfunctional at
failure probabilities greater than 1E-4. The system is more
sensitive to the link speed and frame size. Faster links are
preferable, though larger frame sizes hurt performance as
they require longer computational time for transmission
and receipt, requiring the copying of larger amounts of data
into and out of the modeled hardware transmission and
receive buffers, respectively.

6.2.2 Naively Adding Redundancy to Beamforming

Application

In order to facilitate application remapping in the presence of
failures, such as low battery levels, there must be redundantly
deployed (idle) devices to which such remapping may occur.
The simple addition of redundant nodes in the presence of
applications that can take advantage of redundancy is not
sufficient for effective exploitation of redundancy. There are
many factors that influence the efficacy of remapping, though
they might not otherwise be considered when just looking at
application performance.

Fig. 11 shows the sample arrival profile for the
beamforming application, in the presence of varying
degrees of redundancy, for two different configurations.
In the first case, for the 1.6Mb/s network, even though this
network speed is sufficient for retrieving samples, as shown
in Fig. 10a and also seen in the first 60 sample periods of

simulation, once nodes begin to attempt to migrate, it
severely handicaps the benefits of remapping. Increasing
the network link speed to 100Mb/s, as shown in Fig. 11b,
provides a substantial increase in the benefits of redun-
dancy (though not improving the performance of the
application otherwise).

Observing the trends in recovery of the network versus
added redundancy, it can be seen in Fig. 11 (more clearly in
Fig. 11b) that increasing the amount of redundancy beyond
a point in this case actually leads to a decrease in the number
of successful remappings. This is due to the fact that, in the
beamforming application, increasing the number of redun-
dant nodes increases the opportunity for dying nodes to
find a node to migrate to. However, since the network is
shared among all active and redundant nodes, this leads to
an effective decrease in the available link capacity, reducing
the number of successful migrations.

6.2.3 Remote Execution and Code Migration in

Fault-Free Network

The effect of adding increasing amounts of redundancy on
the total energy consumption of a fabric was investigated in
order to compare the overall energy consumption for given
levels of redundancy when employing remote execution
compared to code migration. A fabric consisting of a baseline
of 20 computing elements was employed. The beamforming
application was implemented for this substrate, with low
battery levels (battery level below 50 percent) at an element
triggering an attempt to transfer the application. For remote
execution, each processing element in the fabric was modeled
as having an additional 4MB Flash, with power consumption
based on the Am29PDS322D Flash memory device from
AMD [27].

The experiments were performed by limiting the energy
consumption of the system as a whole to 5.94 Joules,
corresponding to the theoretical capacity of a 0.5mAh
battery with a terminal voltage of 3.3V. The performance of
the fabric with different amounts of redundancy was
judged by observing the system performance across time,
being quantified by the number of samples received by the
signal aggregation node in the beamforming application.

Fig. 12 shows the number of samples received per
sampling period with time, as the percentage of redun-
dancy is increased from 10 percent to 40 percent, and this
redundancy was exploited using remote execution. The
actual number of samples received per period and the trend
in this number of samples is not of much interest by itself,
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Fig. 10. Effect of transmission delay, link frame size, node and link

failure rates on baseline performance. The plots show the throughput of

the beamforming application per round in terms of the number of

samples received by the master node.

Fig. 11. Effect of adding redundancy to baseline system.



but rather only when compared to the same trend for code
migration, shown in Fig. 13.

For small amounts of redundancy (up to 20 percent
redundancy), code migration offers a larger sustained
sample rate than remote execution. The trade off point in
these experiments occurred at 30 percent redundancy,
where code migration is able to achieve a larger peak
sample rate after low battery levels begin to occur, but,
however, is able to extend the system lifetime for a shorter
period (up to 0.7 seconds, i.e., the seventh sample period)
versus 0.8 seconds for remote execution.

This observed behavior is a result of the added power
consumption of the modeled nonvolatile storage for remote
execution. For a small number of redundant nodes, this
additional power drain constitutes a larger fraction of the
overall (computation and communication) power consump-
tion as communication overhead increases rapidly with an
increased number of nodes, due to increased contention for
the shared medium. Thus, even though the additional
power consumed by the Flash per fetched instruction is
about one-fifth of the power dissipated in the communica-
tion interface for the equivalent amount of time, the
processing elements expend a larger fraction of power
due to the Flash devices, in the case of remote execution
versus code migration, in situations with less than
30 percent redundancy.

For larger amounts of redundancy, above 30 percent, the
cost of performing more network activity in code migration
exceeds that of the continual power drain from the Flash in
remote execution and, thus, code migration performs worse,
witnessing a reduction in system lifetime and performance.

It is, however, important to note that code migration
might actually provide greater effective redundancy than

remote execution in practice. This is because, since code
migration does not require elements to have identical
replicated copies of code, it is more likely that, for a given
fabric, there will be more processing elements that will
benefit from code migration since the chances of finding just
any surrogate processing element will be higher than
finding a specific one with the necessary nonvolatile storage
and identical replicated code.

6.2.4 Remote Execution and Code Migration in

Faulty Network

As motivated in Section 1, one reason for building

redundancy into e-textiles is to be able to continue

functioning in the presence of failures. In the previous

section, we investigated the effect of adding redundancy in

the presence of predictable failures, in the form of low battery

levels. A second type of failure that will be common in

e-textiles is that of unpredictable intermittent failures, such

as those due to electrical faults.

Fig. 14 shows the trends in the number of samples

received across time for the case of remote execution, with

link failure rates from 1E-8 to 1E-6, as well as the

corresponding cases for code migration.
The results in the case of intermittent failures for the lowest

failure rate (1E-8 per 17ns) are to be expected from the

previous experiments with the fault-free network—for the

system with 10 percent redundancy investigated, code

migration outperforms remote execution at the low failure

rate. As the failure rates are increased, however, the

performance of code migration degrades more rapidly than
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0.3s). The plots depict the number of samples received by the master accross time.

Fig. 13. Employing code migration in a fault-free network with 10-40 percent redundancy. The plots depict the number of samples received by the

master across time.



that of remote execution and remote execution turns out to be

superior to code migration for all but the lowest failure rates.

In the application investigated, code migration involves

a significantly larger amount of communication (14K bytes

versus 648 bytes) and, as such, with intermittent failures in

the interconnection links between nodes, the cost of

migration is quickly amplified with increasing failure rates

as more transmissions fail and must therefore be retried.

6.2.5 Effect of Network Topology on Migration

In a wired network with fixed link throughput capability,

one means of increasing the effective link throughput is to

partition the network into separate segments. Typically, this

would mean adding the requirement of having routers or

switches to forward traffic between segments. However, it

is possible, in some cases, to partition a network in an

application-specific manner.

A factor that leads to unnecessary depletion of energy

resources in the redundant nodes is that, in the single bus

network, they must awake from sleep mode whenever the

master broadcasts a request to all nodes to collect samples.

The second factor leading to unnecessary power dissipation

is a side effect of fixed throughput on links—the nodes are

attached to batteries in groups and, thus, they all experience

low battery levels during the same time frame.2 There can

therefore be a significant number of collisions at the link

layer as nodes compete for the communication channel

during migration. These repeated retries lead to unneces-

sary power dissipation, both in the dying nodes and in the

redundant ones.
One possible partitioning strategy of the network for the

beamforming application is shown in Fig. 15. Each node has
two network interfaces, one attached to the network
segment used for sending back samples to the master and
the other attached to a segment dedicated for use during
migration. This partitioning takes advantage of the fact that
there are two distinct types of communication that occur in
the network—normal exchange of samples between the
master and slaves (regular, small amounts of traffic) and the
migration of applications from active nodes to redundant
ones (bursty, large amounts of data).

It is possible to further partition the network as shown in
Fig. 16. The link used for communicating between the
master and slaves is left as is, but the network for
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Fig. 14. Effect of variation in the node failure rate in remote execution and code migration, in a faulty network with 10 percent redundancy and

interconnect failure rate of 1E-8 per 17ns. (a) Failure rate 1E8, (b) failure rate 1E7, (c) failure rate 1E6.

2. This battery connection topology is assumed since it reduces the cost
of wiring power to the individual nodes and is thus likely to be the adopted
approach in smart fabrics.



communicating between slaves and redundant nodes is
subdivided. Since there is no need to communicate between
these new partitions (each slave will try to reach a
redundant node on its local partition if possible, otherwise,
it will give up), there is no need for any forwarding of data
between these links. The obvious extreme case of this
extension is that which employs direct links between active
nodes and redundantly deployed ones.

Fig. 17a and Fig. 17b illustrate the sample arrival profile
for an experiment with the network configured as in Fig. 15,
with one master, 20 slaves, and 50 percent and 100 percent
redundancy, respectively. The gains from partitioning can
be seen by comparing to Fig. 17c and Fig. 17d, which
illustrate the same application running over the reparti-
tioned network. In the latter case, the network used for
migration was partitioned so that each segment was used
by five nodes. Partitioning the network permits a larger
number of nodes to successfully migrate, as shown by the
longer and larger tails on the sample arrival profiles in
Fig. 17c and Fig. 17d.

6.2.6 Effect of Node Failures on Migration

The effect of intermittent failures in nodes was investigated
to assess the extent to which these failures affect the
effectiveness of using migration and the performance of the
system. Intermittent failures in the nodes with five failure
probabilities per 16ns, of 1E-9 to 1E-5 were simulated. The
failure durations were uniformly distributed between 0ms
and 16ms. During a failure, a node ceases to execute
instructions of the application running over it. Its network
interface is likewise decommissioned and any network
frames destined for it are lost.

Fig. 18 illustrates the cost of migration for the example
application. The beamforming slave is able to migrate
even the presence of node failure probabilities as high as
1E-6 per 16ms.

The beamforming application can continue to function at
node failure probabilities as high as 1E-5, even though the
performance (average sample inter arrival time) is de-
graded by an order of magnitude.

6.2.7 Effect of Link Failures on Migration

The effect of intermittent failures in the communication link
on the efficacy of code migration and application perfor-
mance was investigated. Five different failure probabilities

per 16ns of 1E-9, to 1E-5 were investigated, with an average
failure duration of 16ms, shown in Fig. 19.

During a link failure, nodes attached to the link continue
to execute application code, but will be unable to commu-
nicate on the link. Thus, nodes that would usually transmit
a frame and return to sleep mode would keep trying to
retransmit (sleeping between attempts) until the link re-
covers from failure. This leads to increased power dissipa-
tion in the nodes.

As in the case of node failures, link failures have a larger
impact on the effectiveness of migration than on perfor-
mance. The effect of link failures on migration in the
beamforming slave is largely due to there being a large
number of nodes that contend for the link. With intermittent
failures, more of these nodes will need to retry their
transmit requests, effectively reducing the performance of
the system.

6.2.8 Effect of Correlated Failures on Migration

The effect of correlated failures was investigated, with
correlation coefficients between the links and the nodes of
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Fig. 16. Segmented topology. Single shared link is employed for the

regular exchange of samples and multiple separate links are employed

for migration, with five nodes per migration link.

F ig . 17. Ef fect o f segment ing network on ef f icacy of

migration—(a) shared topology, 50 percent redundancy, (b) shared

topology, 100 percent redundancy, (c) segmented topology, 50 percent

redundancy, and (d) segmented topology, 100 percent redundancy.

Fig. 15. Baseline topology. A single shared link is employed for the

regular exchange of samples and a separate shared link is employed for

migration.



1E-5 to 1E-1 and a fixed link failure probability of 1E-8 per
16ns. The result of this investigation is shown in Fig. 20.

In general, the beamforming application was unaffected
by increasing correlation between failures in the links and
failures in the network. This is partly due to the fact that,
with correlated failures, both the node and link fail together
with increasing probability as the correlation coefficient is
increased. When both the nodes and links fail simulta-
neously, there is less power wasted as the node is not trying
to transmit on a failed link and other nodes will likewise not
be trying to reach a failed node.

6.2.9 Effect of Link Speed on Migration

The effect of the speed of the interconnection links on
performance and efficacy of migration was investigated.

The beamforming application was able to migrate at link
speeds as low as 0.2 Mb/s. The performance of the
beamforming application was unaffected by increasing link
speed due to the small samples that are the norm in the
beamforming application, as implemented in the experi-
mental evaluation. There was no change in performance of

the beamforming application in increasing the link speed
from 0.2 to 3.2 Mb/s. This behavior is shown in Fig. 21.

Faster network links do not, however, always lead to
improved migration cost in the beamforming application.
At link speeds of 3.2Mb/s, migration begins to fail in the
beamforming application. This is due to the fact that the
monitor program on the redundant node responsible for
loading the migrating application into memory could not
keep up with such high data rates. This is not just an artifact
of the application, but rather a manifestation of an
important fact—the processing elements have limited processing
capabilities, thus, increasing the speed of the interconnect that
links them together will not always provide benefit if the
processing elements cannot keep up.

6.2.10 Effect of Link Frame Size on Migration

It was observed that migration cost in the beamforming
application was relatively insensitive to increases in frame
size. Fig. 22 illustrates the trends in sample interarrival
times and costs of migration for link frame sizes ranging
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Fig. 18. Effect of intermittent node failures on cost of migration and

sample receipt rate for beamforming application.

Fig. 19. Effect of intermittent link failures on cost of migration and

sample receipt rate for beamforming application.

Fig. 20. Effect of correlated link-node failures on cost of migration and

sample receipt rate for beamforming application.

Fig. 21. Effect of link speed on cost of migration and sample receipt rate

for beamforming application.



from 64 bytes to 32 Kbytes. In terms of performance, the
beamforming application witnesses no benefits as the frame
size is increased from 64 bytes to 1K byte. This is because
the samples that are exchanged between the master and
slaves during normal operation are only 4 bytes in size. As
the frame size is increased further, however, the network
link is more often occupied transmitting large frames (with
only 4 bytes of useful information). There is a degradation
in performance beyond 1 Kbyte frame sizes and the system
ceases to function at frame sizes beyond 8K.

The effect of increasing frame size on cost of migration is
more subtle. The amount of data to be transmitted during
migration is 14 KB for the beamforming slave. Increasing
the frame size would therefore ideally be desirable as it
would mean fewer frames would have to be transmitted to
effect migration. At small frame sizes (64 bytes), migration
cannot successfully occur. This is because, at such small
frame sizes, the framing overhead (frames have 36 byte
headers) is so large that the nodes deplete their energy
resources before they are able to successfully migrate.
Though not presented here, the overhead incurred in terms
of computation, data bytes transmitted, and power con-
sumption for different frame sizes can be analyzed to
provide more insight.

At frame sizes above 1K, migration is also no longer
successful. This is due to the fact that the time for which the
nodes back off before retransmitting is proportional to the
frame size, thus the throughput in transmitting large frames
is very sensitive to the occurrence of collisions and, once
again, the nodes deplete their energy resources before they
can successfully complete migration. Furthermore, if the
frame size is larger than the amount of application code and
data to be migrated, then frames will contain useless data
adding as padding bytes and this will reduce the useful
throughput on the links.

7 SUMMARY

New technologies often pose new challenges in terms of
system architectures, device architectures, and, sometimes,
models of computation. The technology of interest in this
paper was that of electronic textiles, which are flexible

meshes of material containing a large number of unreliable,
networked computing elements. The challenges addressed
in this paper were those of design methodologies and
system architectures, modeling, and fault tolerance for
electronic textiles.

The Model of Colloidal Computing was introduced as a
methodology for harnessing the capabilities of e-textiles,
both at the system and at the device level. E-textiles
inherently have high defect rates, as well as high fault rates
and, thus, must by necessity provide mechanisms for
extracting useful work out of the unreliable substrate. By
employing a detailed simulation infrastructure designed to
enable the simulation of the computation, communication,
power consumption, and battery discharge characteristics
of e-textiles, the dynamic adaptation of applications in the
presence of faults was investigated in order to support the
ideas of the proposed computing model. Two techniques to
enable adaptation in the presence of faults, code migration
and remote execution, were studied and the effect of various
system parameters, such as failure rates, interconnect link
speed, and link frame size, were analyzed.

It was shown in the analysis that, in the presence of
redundancy in the nodes deployed in a fabric, code
migration and remote execution provide feasible means of
adapting to failures. For the driver application (beamform-
ing) and the processing element speeds (60MHz) and
network speeds (0.2 to 3.2 Mb/s) investigated, it was
observed that, for both the regular operation and migration
phases of the application, failure rates as high as 1E-7 per
16ns in the nodes and 1E-8 per 16ns in the links could be
tolerated.

The two techniques provide a trade off between
additional cost of communication versus storage (memory)
overhead at the individual devices. A trade off point was
observed to exist for systems with 30 percent redundancy
—having more redundancy makes it more expensive to
perform code migration, thereby making remote execution
more favorable.
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