
Brief Contributions__

Random Redundant Storage in Disk Arrays:
Complexity of Retrieval Problems

Joep Aerts, Jan Korst,
Frits Spieksma, Wim Verhaegh, and

Gerhard Woeginger

Abstract—Random redundant data storage strategies have proven to be a good

choice for efficient data storage in multimedia servers. These strategies lead to a

retrieval problem in which it is decided for each requested data block which disk to

use for its retrieval. In this paper, we give a complexity classification of retrieval

problems for random redundant storage.

Index Terms—Random redundant storage, load balancing, video servers,

complexity analysis.

�

1 INTRODUCTION

Amultimedia server [13] offers continuous streams of multimedia
data to multiple users. In a multimedia server, one can generally
distinguish three parts: an array of hard disks to store the data, an
internal network, and fast memory used for buffering. The latter is
usually implemented in random access memory (RAM). The
multimedia data is stored on the hard disks in blocks such that a
data stream is realized by periodically reading a block from disk
and storing it in the buffer, from which the stream can be
consumed in a continuous way. A block generally contains a
couple of hundred milliseconds of video data. The total buffer
space is split up into a number of buffers, one for each user. A user
consumes, possibly at a variable bit rate, from his/her buffer and
the buffer is repeatedly refilled with blocks from the hard disks. A
buffer generates a request for a new block as soon as the amount of
data in the buffer becomes smaller than a certain threshold. We
assume that requests are handled periodically in batches, in a way
that the requests that arrive in one period are serviced in the next
one [16]. In the server, we need a cost-efficient storage and retrieval
strategy that guarantees, either deterministically or probabilisti-
cally, that the buffers do not underflow or overflow.

Load balancing is very important within a multimedia server,
as efficient usage of the available bandwidth of the disk array
increases the maximum number of users that can be serviced
simultaneously, which results in lower cost per user. Random
redundant storage strategies have proven to enable a good load
balancing performance [1], [3], [15], [23]. In these storage strategies,
each data block is stored more than once, on different, randomly
chosen disks. This data redundancy gives the freedom to obtain a
balanced load with high probability. To exploit this freedom, an
algorithm is needed to solve, in each period, a retrieval problem,
i.e., we have to decide, for each data block, from which disk(s) to
retrieve it in such a way that the load is balanced.

In this paper, we consider two load balancing approaches. In
block-based load balancing, we balance the number of block
requests assigned to the disks, whereas, in time-based load
balancing, we balance the time that each disk needs for the
retrieval of the assigned block requests. The block-based approach
is the more conventional load balancing approach, whereas the
time-based approach was introduced by the authors in [3]. Time-
based load balancing has the advantage that it can also be applied
in case of heterogeneous streams and heterogeneous disks.
Furthermore, the multizone character of disks can be exploited,
which leads to more efficient usage of the disk array [4], in a way
that more blocks are read from the faster, outer zones of the disks.
In this paper, we analyze the time complexity of the retrieval
problems for block-based as well as time-based load balancing. For
an elaboration on the load balancing algorithms, we refer to [1], [3],
[15], [23]. The remainder of the paper is organized as follows: In
the next section, we discuss related work in the area of multimedia
servers. In Section 3, we model the block-based and the time-based
retrieval problem and explain the relation to the multiprocessor
scheduling problem [19] that is defined in the field of combinator-
ial optimization. We deal with the complexity of the block-based
retrieval problem in Section 4 and with the complexity of the time-
based retrieval problem in Section 5. In Section 6, we give an
overview of the complexity results.

2 RELATED WORK

Several papers describe the implementation of multimedia storage
servers, such as those describing the PRESTO multimedia storage
network [5], the MARS project [8], and the RIO project [24].

Most papers propose disk striping strategies to distribute the
video data over the disks. Berson et al. [7], Chua et al. [9], and
Santos et al. [25] describe data striping techniques. However, these
striping techniques have some disadvantages, especially when
used for variable-bit-rate streams. Most striping techniques
distribute the consecutive blocks of a video file in a round-robin
fashion over the disks of the disk array. This storage strategy is
especially suited for constant-bit-rate streams, but results in large
waiting times when the system is highly loaded. An alternative
striping strategy is to split up each data block into a number of
subblocks and request these subblocks in parallel. If we would use
as many subblocks as the number of disks, a request for a block
results in a request for a subblock on each disk such that a perfect
load balance is guaranteed. Disadvantages of this strategy are that,
in case the bandwidth requirements are the bottleneck, the total
buffer size grows quadratically in the number of users and that the
switch overhead increases due to the increase in the number of
requests [13].

Korst [15] and Santos et al. [25] show that, for variable bit-rates
and less predictable streams, e.g., in case of MPEG encoded video
or VCR functionality, random multiplicated storage strategies
outperform the striping strategies. In these strategies, each block is
stored on a randomly chosen disk and (for some of the blocks) a
copy is stored on another randomly chosen disk. Korst discusses
random duplicated assignment and describes algorithms that
balance the number of block requests assigned to each disk in each
period. In his approach, he does not take into account the actual
transfer times of the blocks. Santos et al. describe an asynchronous
disk system in which they use shortest queue scheduling to assign
the block requests to the disks. However, they use a FIFO disk
scheduling algorithm, whereas a SCAN-approach would decrease
the switch overhead. Both papers use replication schemes, but do
not discuss how to exploit the multizone character of the disks.

1210 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

. J. Aerts, J. Korst, and W. Verhaegh are with Philips Research Laboratories,
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands.
E-mail: aertsjcqm.nl, {jan.korst, wim.verhaegh}@philips.com.

. F. Spieksma is with Katholieke Universiteit Leuven, Naamsestraat 69, 3000
Leuven, Belgium. E-mail: frits.spieksma@econ.kuleuven.ac.be.

. G. Woeginger is with Universiteit Twente, PO Box 217, 7500 AE
Enschede, The Netherlands. E-mail: g.j.woeginger@math.utwente.nl.

Manuscript received 17 May 2001; revised 7 May 2002; accepted 11 Sept.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114166.

0018-9340/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

Sanders describes alternative online scheduling strategies for
asynchronous disk control in [21] and other scenarios, such as
disk failures and scheduling of variable size requests in [22]. Aerts
et al. [1], Sanders et al. [23], and Berenbrink et al. [6] prove that,
with high probability, random duplicated storage results in a good
load balance. Aerts et al. [3] and Sanders [22] show that the time-
based retrieval problem is NP-complete, but none of the above
papers focuses on the computational complexity of the retrieval
problem. The aim of this paper is to give a complexity overview.

3 PROBLEM MODELING

In each period, the following retrieval problem has to be solved.
Given is a set J ¼ f0; . . . ; n� 1g of blocks that have to be retrieved
from a set M ¼ f0; . . . ;m� 1g of hard disks. We want to select, for
each block, the disk from which it is to be retrieved such that the
load of the disks is balanced. In block-based load balancing, we
take as optimization criterion the maximum load, i.e., the
maximum number of block requests assigned to one of the disks.
This results in the following retrieval problem.

Problem 1 (Block-based retrieval problem (BRP)). Given are
n blocks that have to be retrieved from m disks and, for each
block j, the set Mj of disks on which it is stored. Select, for each
block j, a disk out of Mj in such a way that the maximum
number of blocks to be read from any disk is minimized. The
feasibility variant of BRP is defined as the question whether or
not an assignment of block requests to disks exists with a
maximum load of at most K.

In time-based load balancing, we minimize the time at which the
last disk finishes the retrieval of its assigned blocks. The completion
time of a disk equals the sum of the retrieval times of the blocks plus
the total switch time, where the switch time consists of seek times
and rotational delays. Seek time is the time required to move the
disk head from one track to another. We approximate the seek time
with a function linear in the distance that the disk head has to move.
For the rotational delay, we use the worst-case assumption of one
rotation per disk access. Furthermore, we assume that the disk head
has tomove in each cycle entirely from inside to outside or vice versa
to retrieve the assigned block requests. Then, we can compute the
total switch time per disk by a function linear in the number i of
blocks assigned to the disk, i.e., the switch time equals s � iþ cwith
s; c � 0.

The retrieval time of a block depends on the location of the block
on the disk. Disks consist of multiple zones [20], where the outer
zones have a higher transfer rate than the inner zones, but the
transfer rate within a zone is constant. The information of the zone
location of blocks on disks is assumed to be available, so the retrieval
time of each block is known beforehand. The decision on how to
distribute the blocks over the zones is defined by the storage strategy
[3] and is considered to be beyond the scope of this paper.

In contrast to the block-based retrieval problem, we allow in the
time-based retrieval problem that blocks are partially retrieved
from different disks as long as each block is fetched completely. In
this way, there is more freedom for load balancing. The drawback
of splitting up a block access is that the total number of accesses
increases, which results in a larger total switch time. We can define
the time-based retrieval problem as follows.

Problem 2 (Time-based retrieval problem (TRP)). Given are
n blocks that have to be retrieved from m disks and, for each
block j, the set Mj of disks on which it is stored. Furthermore,
the retrieval times of the blocks and the parameters s and c of
the linear switch time function are given. The problem is to
assign (fractions of) each block request j to the disks of Mj such
that:

. Each block is fetched entirely and

. The completion time of the disk that finishes last is
minimized, where the completion time equals the sum
of the total switch time and total transfer time.

The feasibility variant is defined as the question whether or not
an assignment of block requests to the disks exists that finishes
at, or before, a given time T .

Retrieval problems can be seen as a special class of multi-
processor scheduling problems by viewing the disks as machines
and the requested blocks as jobs. The transfer time of block j

corresponds to the processing time pj in the scheduling problem and
the switch time corresponds to a set-up time. We will give a short
introduction into the three-field notation of scheduling problems
and, afterward, model BRP and TRP in this notation. For a more
elaborate discussion of the three-field notation, we refer to [19].

In the three-field notation, the first field gives the machine
environment, the second one describes the job characteristics, and
the third one the optimization criterion. In the retrieval problems,
we have parallel machine environments, indicated by P or R,
corresponding to parallel identical machines and unrelated
machines, respectively. The difference between P and R is that,
in the case of P , the processing time pj of a job j is equal on all
machines, whereas, in the case of R, the processing time pij of job j

also depends on the machine i. To indicate that we have a fixed
number m of parallel identical machines, we use Pm.

For the second field, we introduce four job characteristics that
are necessary for the retrieval problems.

. When we have unit processing times, as is the case in BRP,
we indicate this by “pj ¼ 1.”

. Machine eligibility is denoted by “Mj,” which means that
only machines of subset Mj are available for job j.

. Set-up times, denoted by “set-up,” indicate that we need a
certain time to set up the machine before starting a new
job. In the retrieval problems, this is the switch time.

. Preemption, denoted by “pmtn,” indicates that we allow
job splitting. In the retrieval problem, this means that we
allow that a block is partially retrieved from different
disks. Preemption in the retrieval problem is not exactly
the same as preemption in the general scheduling
literature as we allow that multiple disks retrieve parts
of one block at the same time. We use “pmtn�” to denote
this generalized variant of preemption.

As optimization criterion, we will only use Cmax, i.e., the
completion time of the machine that finishes last. It equals the
completion time of the last job and is referred to as the makespan.

Now, we can formulate BRP and TRP as multiprocessor
scheduling problems. In BRP, we want to minimize the maximum
number of blocks assigned to any disk. This means that we have
jobs with unit processing times in a parallel identical machine
environment and makespan as optimization criterion. Further-
more, we have machine eligibility constraints as, for each job, only
a subset of the machines can be used. In the three-field notation,
this problem can be denoted by P jMj; pj ¼ 1jCmax.

For TRP, the machine environment is given by unrelated
parallel machines as a block need not be stored in the same zone
for all disks on which it is stored. Again we have machine
eligibility as a job characteristic. Furthermore, we have a set-up
time for each job. This set-up time is constant as we approximate
the total switch time with a linear function. To enable partial
retrieval, we allow generalized preemption. The optimization
criterion is again the makespan. Hence, in the three-field notation,
TRP can be denoted by RjMj;pmtn�; set-upjCmax.

In this paper, we derive time complexity results for a number of
retrieval problems, block-based as well as time-based. Fig. 2 gives
an overview of the results that are described in this paper. In this

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003 1211

paper, we only give sketches of the proofs of the complexity
results. We refer to [2] for the complete proofs.

4 BLOCK-BASED LOAD BALANCING

In this section, we discuss the time complexity of solving the block-
based retrieval problem. We can solve BRP for all multiplicated
storage strategies with a max-flow algorithm. We define a directed
max-flow graph for BRP as follows: The set of nodes consists of a
source s, a sink t, a node for each disk, and a node for each block to
be retrieved. The set of arcs consists of 1) arcs with unit capacity
from the source to each block node, 2) arcs with unit capacity from
each block node j to the disk nodes corresponding to the disks of
Mj, and 3) arcs with capacity K from each disk node to the sink.
An example of such a max-flow graph is shown in Fig. 1.

With this max-flow graph, we can solve the feasibility variant of
BRP. Recall that networks with integral capacities admit maximal
flows that are integral in all edges. If an integral maximum flow
from source to sink saturates all edges leaving the source, then this
flow corresponds to a feasible assignment of blocks to disks. This
means that this solution approach not only solves the feasibility
question, but also gives an assignment, in case of a positive
answer, which can be derived from the flow over the arcs between
the block nodes and the disk nodes.

Theorem 1. Using the Dinic-Karzanov maximum flow algorithm [10],
[18], the feasibility variant of BRP can be solved in OðmnÞ time and
the optimization variant in Oðminfmn logn;m2n; n2gÞ time,
assuming that the size of each set Mj is bounded by a constant.

Proof (sketch). For the complete proof, we refer to [2]. The proof
follows the lines of the complexity result of OðjV j3Þ for the
Dinic-Karzanov algorithm for general graphs [18]. We strength-
en this result by using the bipartite structure of the BRP graph,
which results in a longest path of length OðmÞ instead of length
OðjV jÞ, and by using the fact that all arcs between block nodes
and disk nodes have unit capacity. tu

Theorem 2. Using the preflow-push maximum flow algorithm [14], the
feasibility variant of BRP can be solved in OðmnÞ time. The
optimization variant can also be solved in OðmnÞ time by following
the parametric approach [11]. Both statements hold under the
assumption that the size of each set Mj is bounded by a constant.

Proof (sketch). For the proof of the result for the feasibility variant,
we again use the bipartite structure and the unit capacities of
the BRP graph. For the optimization variant, we model BRP as a
parametric max-flow problem in which K is the parameter. By
reversing the arcs in the graph of Fig. 1, it fits in the constraints
of Gallo et al. [11] to apply the parametric maximum flow
algorithm for which they show that the optimization variant
can be solved in the same time complexity as the feasibility
variant. tu

For practical situations, the assumption that the size of each set
Mj is bounded by a constant is not a restriction as the maximum

multiplication factor in any relevant storage strategy is always

bounded by a constant. Besides, the size of the sets Mj is always

bounded by m such that the time complexity bounds for the

maximum flow algorithms grow at most with a factor m, if the

assumption would not hold.
In case of duplicate storage, i.e., jMjj ¼ 2 for all blocks, Korst

[15] describes an alternative graph formulation that gives a fourth

time complexity bound of Oðnþm3 lognÞ.

5 TIME-BASED LOAD BALANCING

This section discusses the time complexity of TRP. We note that all

variants of TRP that we discuss are problems with constant set-up

times as we assume a linear switch time function. In case we do not

allow preemption, the switch time parameter s can be included in

the transfer times, which means that the complexity of a problem

does not change by introducing only a set-up time. In case of

preemption, however, the set-up times complicate the problems.
We first prove that the feasibility variant of TRP is NP-complete

in the strong sense by a reduction from 3-partition, which is NP-

complete in the strong sense [12].

Problem 3 (3-Partition). Given are a set of integers A ¼
fa1; . . . ; a3kg and a bound B, for which B

4 < ai <
B
2 for all i

and
P

i ai ¼ kB. The question is whether or not A can be

partitioned into k subsets such that the sum of the elements of

each subset equals B.

Theorem 3. The feasibility variant of TRP, denoted by

RjMj;pmtn�; set-upjCmax � T is NP-complete in the strong sense.

Proof. It is obvious that we can check in polynomial time for a

given assignment whether or not all disks are finished at time

T , so the problem is in NP. To show that the problem is NP-

complete, we show that a polynomial time reduction from

3-partition to TRP exists.
Considering an instance of 3-partition, we construct an

instance of TRP in the following way: We take k disks and
define, for each number aj of the 3-partition instance, a block j,
which is stored on all disks and has a transfer time pij ¼ pj ¼ aj
on each disk i. Furthermore, we define the time bound T of TRP
as T ¼ 4B and the values s and c of the switch time function as
B and 0, respectively. Now, we show that a positive answer for
3-partition is equivalent to a positive answer for TRP.

) Given a solution to the 3-partition instance, we assign
each subset to a different disk. For each disk, the sum of the
transfer times equals B and three times a set-up time is needed,
so the completion time for each disk equals 4B.

(Assume we have an assignment for TRP with value 4B.
As the transfer times are strictly larger than zero and s ¼ B, no
disk retrieves more than three blocks and no blocks are
preempted. Consequently, each disk retrieves exactly three
blocks. Combining this with the facts that

P
pi ¼ kB and no

disk exceeds 4B, we conclude that the blocks assigned to each
disk form a feasible subset in 3-partition. This proves that
RjMj;pmtn�; set-upjCmax � T is NP-complete in the strong
sense. Note that this also proves that P jMjjCmax � T is NP-
complete in the strong sense as preemption is not used and,
consequently, the set-up times can be included in the transfer
times. tu

The next theorem states that TRP remains NP-complete in the

strong sense if each block is stored on exactly two disks.

Theorem 4. R jMjj ¼ 2;pmtn�; set-up
�
�

�
�Cmax � 2 is NP-complete in the

strong sense.

Proof (sketch). For the complete proof, we again refer to [2].

The theorem is proven by a reduction from a special variant

1212 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

Fig. 1. Example of a max-flow graph for feasibility variant of BRP.

of the satisfiability problem in which the number of literals
per clause and the number of occurrences per variable is
bounded. In the translation, we construct two disks for each

variable, corresponding to “true” and “false,” and a disk for
each clause. For each variable, a block is constructed that has
to be retrieved from the “true” disk or the “false” disk. For
each occurrence of a variable, a block is constructed that has

to be retrieved from the “true” disk or from the clause disk
if it is a positive occurrence and from the “false” disk or the
clause disk if it is a negative occurrence. The correspondence

uses that if an occurrence block is not scheduled on its
clause disk, it satisfies the clause. In the translation, each
clause disk has space for two occurrence blocks such that

each clause is satisfied if all blocks can be scheduled. tu

Using the same reduction, we also show in [2] that maximizing
the numbe of jobs completed on time 2 is MAX SNP-hard unless
P ¼ NP . This means that no polynomial time approximation
scheme exists for this problem.

It is a well-known result that multiprocessor scheduling
problems with preemption but without set-up times can be

modeled as a linear programming problem and, consequently,
these problems are solvable in polynomial time. As machine
eligibility constraints fit in such an LP model [3] and “pmtn�” is

easier than “pmtn,” the following corollary, which is added for the
sake of completeness, holds.

Corollary 5. RjMj;pmtn�jCmax is solvable in polynomial time.

Complexity results for multiprocessor scheduling problems
often change if the number of machines is considered to be a part
of the problem definition instead of part of the input. Practically,
these problems are of interest as they describe the retrieval

problems for a given disk array. We start with a complexity
analysis of the problems without preemption.

Theorem 6. P2jjMjj ¼ 2; set-upjCmax � T is NP-complete.

Proof. The problem is a special case of partition which is known to
be NP-complete in the ordinary sense [12]. tu

Generalization gives that the following problems are NP-
complete as well:

. Pm jMjj ¼ 2; set-up
�
�

�
�Cmax � T ,

. PmjMj; set-upjCmax � T ,

. RmjMj; set-upjCmax � T .

In case of a stricly positive set-up time, RmjMj;pmtn�; set-upjCmax

can be proven to be NP-complete in the same way as, in the

construction, the schedule is completely filled such that, due to the
set-up time, no blocks will be preempted.

The above problems are NP-complete in the ordinary sense.

This means that the best we can do for these problems is finding a

pseudopolynomial algorithm, which is an algorithm for which the

runtime is bounded by a polynomial in the size of the input and

the size of the largest number of the input.

Theorem 7. RmjMj; set-upjCmax is solvable in pseudopolynomial time.

Proof. The algorithm is a generalization of a dynamic program-

ming algorithm for the knapsack problem [17]. We assign the

blocks one by one according to a given block list. We try to

solve the question whether or not we can find a schedule that is

finished at time T . We use a state definition ðx1; . . . ; xmÞ in

which m is the number of disks and xi the amount of transfer

time assigned to disk i. We can restrict to values of xi from

f0; 1; . . . ; Tg such that the number of states equals ðT þ 1Þm.
Next, we define Fk as the set of states that can be reached after

assigning the first k blocks and start with F0 ¼ fð0; 0; . . . ; 0Þg. In
iteration k, we consider block k of the block list and we can
determine Fk with the recurrence relation

Fk ¼ xþ pikeijx 2 Fk�1 ^ i 2 Mkf g; ð1Þ

in which ei is the ith unit vector. We omit the states in which

any of the values xi is larger than T as these states can never

lead to a feasible assignment.
In this way, the feasibility question can be reformulated as

follows: A feasible assignment exists if and only if Fn 6¼ ;. The
complexity of this algorithm is bounded by OðTm � n �mÞ. As
we fixed the number of disks, m is a constant, so the algorithm
is pseudopolynomial in the size of the input. tu

A similar dynamic programming algorithm can be constructed

for the following problems:

. P2 jMjj ¼ 2; set-up
�
�

�
�Cmax � T ,

. Pm jMjj ¼ 2; set-up
�
�

�
�Cmax � T ,

. PmjMj; set-upjCmax � T .

Even in the case where all transfer times and the parameters

s and c of the switch time function are rational numbers, this

result holds. However, the complexity of the dynamic pro-

gramming algorithm grows considerably as the number of

states depends on the least common multiple of the denomi-

nators. This number is polynomially bounded in the largest

number of the instance as the number of zones is a constant

and the number of different denominators is of the same order

of magnitude as the number of zones.
In [2], we prove that RmjMj;pmtn�; set-upjCmax can also be

solved in pseudopolynomial time.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003 1213

Fig. 2. Complexity diagram of retrieval problems.

6 CONCLUSION

In this paper, we discussed the complexity of retrieval problems
for random redundant storage. The block-based retrieval problems
can be solved in polynomial time, whereas most time-based
retrieval problems are NP-hard, but, in some cases, solvable in
pseudopolynomial time. We conclude with an overview of the
complexity results in Fig. 2. The arcs in the diagram indicate the
relations between the problems. With this diagram, we capture the
complexity of the whole range of retrieval problems that result
from redundant storage in multimedia servers.

ACKNOWLEDGMENTS

The authors thank Jan van Leeuwen and Wil Michiels for their
useful comments. Gerhard Woeginger acknowledges support by
the START program Y43-MAT of the Austrian Ministry of Science,
and Frits Spieksma acknowledges support of EU Grant IST-30027
(APPOL II).

REFERENCES

[1] J. Aerts, J. Korst, and S. Egner, “Random Duplicate Storage Strategies for
Load Balancing in Multimedia Servers,” Information Processing Letters,
vol. 76, nos. 1-2, pp. 51-59, 2000.

[2] J. Aerts, J. Korst, F. Spieksma, W. Verhaegh, and G. Woeginger, “Load
Balancing in Disk Arrays: Complexity of Retrieval Problems,” Technical
Report NL-TN 2002-271, Philips Research Eindhoven, 2002.

[3] J. Aerts, J. Korst, and W. Verhaegh, “Load Balancing for Redundant Storage
Strategies: Multiprocessor Scheduling with Machine Eligibility,” J. Schedul-
ing, vol. 4, no. 5, pp. 245-257, 2001.

[4] J. Aerts, J. Korst, and W. Verhaegh, “Improving Disk Efficiency in Video
Servers by Random Redundant Storage,” Proc. Conf. Internet and Multimedia
Systems and Applications (IMSA ’02), pp. 354-359, 2002.

[5] P. Berenbrink, A. Brinkmann, and C. Scheideler, “Design of the PRESTO
Multimedia Storage Network,” Proc. Int’l Workshop Comm. and Data
Management in Large Networks (CDMLarge ’99), 1999.

[6] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, “Balanced Alloca-
tions: The Heavily Loaded Case,” Proc. Symp. Theory of Computing (STOC
’00), pp. 745-754, 2000.

[7] S. Berson, S. Ghandeharizadeh, R.R. Muntz, and X. Ju, “Staggered Striping
in Multimedia Information Systems,” Proc. ACM SIGMOD Conf. Manage-
ment of Data, pp. 79-90, 1994.

[8] M. Buddhikot and G. Parulkar, “Efficient Data Layout, Scheduling and
Playout Control in MARS,” Proc. ACM Multimedia, pp. 199-212, 1997.

[9] T.S. Chua, J. Li, B.C. Ooi, and K.-L. Tan, “Disk Striping Strategies for Large
Video-on-Demand Servers,” Proc. ACM Multimedia, pp. 297-306, 1996.

[10] E. Dinic, “Algorithm for Solution of a Problem of a Maximal Flow in a
Network with Power Estimation,” Soviet Math. Doklady, vol. 11, pp. 1277-
1280, 1970.

[11] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan, “A Fast Parametric Maximum
Flow Algorithm and Applications,” SIAM J. Computing, vol. 18, no. 1, pp. 30-
55, 1989.

[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco: W.H. Freeman, 1979.

[13] J. Gemmell, H.M. Vin, D.D. Kandlur, P.V. Rangan, and L.A. Rowe,
“Multimedia Storage Servers: A Tutorial,” Computer, vol. 26, no. 5, pp. 40-
49, May 1995.

[14] A.V. Goldberg and R.E. Tarjan, “A New Approach to the Maximum-Flow
Problem,” J. ACM, vol. 35, no. 4, pp. 921-940, 1988.

[15] J. Korst, “Random Duplicated Assignment: An Alternative to Striping in
Video Servers,” Proc. ACM Multimedia, pp. 219-226, 1997.

[16] J. Korst, V. Pronk, P. Coumans, G. van Doren, and E. Aarts, “Comparing
Disk Scheduling Algorithms for VBR Data Streams,” Computer Comm.,
vol. 21, pp. 1328-1343, 1998.

[17] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. New York: John Wiley & Sons, 1990.

[18] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, 1982.

[19] M. Pinedo, Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1995.
[20] C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive Modeling,”

Computer, vol. 27, no. 3, pp. 17-28, Mar. 1994.
[21] P. Sanders, “Asynchronous Scheduling for Redundant Disk Arrays,” Proc.

ACM Symp. Parallel Algorithms and Architectures (SPAA ’00), pp. 98-108,
2000.

[22] P. Sanders, “Reconciling Simplicity and Realism in Parallel Disk Models,”
Proc. ACM-SIAM Symp. Discrete Algorithms (SODA ’01), pp. 67-76, 2001.

[23] P. Sanders, S. Egner, and J. Korst, “Fast Concurrent Access to Parallel
Disks,” Proc. ACM-SIAM Symp. Discrete Algorithms (SODA ’00), pp. 849-858,
2000.

[24] J.R. Santos and R.R. Muntz, “Peformance Analysis of the RIO Multimedia
Storage System with Heterogeneous Disk Configurations,” Proc. ACM
Multimedia, pp. 303-308, 1998.

[25] J.R. Santos, R.R. Muntz, and B. Ribeiro-Neto, “Comparing Random Data
Allocation and Data Striping in Multimedia Servers,” Proc. ACM Sigmetrics,
pp. 44-55, 2000.

1214 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

