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Abstract—The main contribution of this paper is twofold. First, we present an appropriate schedulability analysis, based on response

time analysis, for supporting fault-tolerant hard real-time systems. We consider systems that make use of error-recovery techniques to

carry out fault tolerance. Second, we propose a new priority assignment algorithm which can be used, together with the schedulability

analysis, to improve system fault resilience. These achievements come from the observation that traditional priority assignment

policies may no longer be appropriate when faults are being considered. The proposed schedulability analysis takes into account the

fact that the recoveries of tasks may be executed at higher priority levels. This characteristic is very important since, after an error, a

task certainly has a shorter period of time to meet its deadline. The proposed priority assignment algorithm, which uses some

properties of the analysis, is very efficient. We show that the method used to find out an appropriate priority assignment reduces the

search space from Oðn!Þ to Oðn2Þ, where n is the number of task recovery procedures. Also, we show that the priority assignment

algorithm is optimal in the sense that the fault resilience of task sets is maximized as for the proposed analysis. The effectiveness of

the proposed approach is evaluated by simulation.

Index Terms—Hard real-time systems, fault tolerance, schedulability analysis, priority assignment algorithm.
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1 INTRODUCTION

APPROPRIATE schedulability analysis schemes are funda-
mental to the design of predictable hard real-time

systems. Response time analysis [1], [9] is one approach that
has successfully been used to achieve this goal. In line with
this approach, task worst-case response times are efficiently
derived due to the fact that tasks have known fixed
priorities (given by some priority assignment algorithm).
In fact, this scheme provides a good level of flexibility
without impairing predictability and has represented a
significant step toward the design of flexible and predict-
able hard-real time systems [20], [21], [4], [16], [17].

Usually, response time analysis has been used for the
design of systems on the assumption that there is no error
during system execution. The fault-free assumption is, in
fact, not realistic. Quoting Laprie [11]:

Non-faulty systems hardly exist, there are only systems
which may have not yet failed.

Response time analysis has recently been extended to
cope with the possibility of errors in the system’s computa-
tion [3]. Modeling the recovery of tasks as alternative tasks
that should be executed to recover the system from an
erroneous state, the authors have shown that fault tolerance
based on error-recovery techniques can easily be modeled
by response time analysis. However, this approach does not
consider appropriate priority assignment schemes to
calculate priorities of alternative tasks: They use the same

fixed-priority assignment algorithms as those used under
the fault-free assumption. Indeed, having a more flexible
priority assignment scheme that allows task recovery to be
carried out at higher priority levels is very useful since, after
errors, tasks certainly have a shorter period of time to meet
their deadlines.

The inappropriateness of standard priority assignment
approaches for error-recovery can be illustrated as follows
(see Fig. 1). The figure represents a set of two hard real-time
tasks, f�i; �jg, where the priority of �j is higher than the
priority of �i. Associated with �i is its alternative task, �i,
which should be executed in case of errors in �i and must
finish by �i’s deadline, Di. Consider that an error interrupts
the execution of �i, which means that the error is raised in �i.
As can be seen from the scenario illustrated in Fig. 1a, it is not
possible to recover �i before its deadline because of preemp-
tion due to the execution of �j. Nevertheless, if there is enough
slack time available at some higher priority level where �i can
be executed, it may finish before Di, as Fig. 1b illustrates. In
this example, the preemption of the second activation of �j is
avoided by assigning a higher priority to �i.

The difficulty in deriving an appropriate schedulability
analysis to cope with the example illustrated in Fig. 1b
comes from the fact that the worst-case scenario is not
characterized by the instant when all tasks are released at
once as it is in the standard response time analysis. In Fig. 1,
for instance, we can note that the response time of �j in its
second activation (Fig. 1b) is higher than its response time
in Fig. 1a due to extra preemption caused by the execution
of �i. To carry out an appropriate response time analysis
which takes these characteristics into account, we divide the
calculation of task worst-case response times into three
main phases. First, we derive, for each task in the task set,
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its worst-case response time, assuming that errors interrupt
the execution of other tasks but �i (i.e., due to external
errors). Then, we derive its worst-case response time,
assuming that �i may be faulty. In other words, this is the
time necessary, in the worst-case, to meet task deadlines
despite internal errors. Finally, the values of worst-case
response times due to internal and external errors are used
to derive the worst-case response time of tasks. This
approach has already been proposed by us [14]. Here, an
improved version of this approach is described1 and a more
appropriate notation is used. Also, in this work, we propose
an optimal priority assignment algorithm to determine the
priorities of alternative tasks, a problem that has not been
addressed before. By optimal we mean that the algorithm
finds the best priority assignment so that the number of errors
tolerated (fault resilience) by the task set is maximized and the
task set is considered schedulable by the analysis. For
example, from Fig. 1, we can see that the priority assignment
given in Fig. 1b is better than the one given in Fig. 1a since, in
Fig. 1a, the task set is not schedulable. This is due to the fact
that, in Fig. 1b, the spare capacity at higher priority levels is
being used to recover �i from errors, which makes the task set
more resilient to faults.

It is important to realize that the schedulability analysis
and the search for the optimal priority assignment are
interdependent problems and, so, the concept of optimal is
relative to the considered analysis, as we now explain. The
available spare capacity, necessary to assign priorities to
alternative tasks, is only known after carrying out the
schedulability analysis, which gives the worst-case re-
sponse times of tasks. On the other hand, an optimal
priority assignment can only be given after discovering the
available spare capacity. This dependency cycle suggests an
iterative procedure, where priorities and task response
times are calculated altogether throughout the iterations.
This is the basic idea of our approach.

Carrying out this iterative procedure by brute-force,
which tests all possible priority combinations, is not

practical since the number of possible priority assignments
is too high. For a task set with n alternative tasks, the search
space is Oðn!Þ, for instance. We solve the problem of
assigning priorities to alternative tasks in a very efficient
way. The algorithm to do so is iterative, as suggested.
However, by establishing a partial order on the alternative
task’s priorities and using some properties of the derived
schedulability analysis, only a few priority configurations
need to be examined. Indeed, the proposed assignment
algorithm reduces the search space from Oðn!Þ to Oðn2Þ. We
have proven that the proposed algorithm finds the optimal
priority configuration in the sense that it maximizes the
system fault resilience, as seen by the proposed analysis. To
the best of our knowledge, the problem of using a
nonstandard priority assignment to maximize fault resi-
lience has not been addressed before.

The remainder of this paper is organized as follows: The
next section presents the assumed computation model.
Then, some initial concepts on the use of response time
analysis for fault tolerance purposes are presented in
Section 3. Also, in this section, we give the main motivation
by presenting an illustrative example. Section 4 presents our
approach to carrying out the schedulability analysis. In
Section 5, the method for finding out the optimal priority
configuration is given and its optimality is proven. The
algorithm to implement such a method and a proof of its
correctness are given in Section 6. Results from simulation
are shown in Section 7. A brief survey on related works is
presented in Section 8. Section 9 presents our final
comments.

2 COMPUTATIONAL MODEL

We assume that there is a set ÿ ¼ f�1; . . . ; �ng of n tasks,
called primary tasks, that must be scheduled by the system in
the absence of errors. Any primary task �i in ÿ has a period,
Ti, a deadline Di (Di � Ti), and a worst-case computation
time, Ci. Tasks can be periodic or sporadic. For sporadic
tasks, the period means the minimum interarrival time.
Each primary task �i can have some alternative tasks
associated with it. Each alternative task corresponds to a
given action taken to recover �i from a given error. Any
alternative task has a worst-case computation time, also
called worst-case recovery time. For the sake of simplicity,
we denote �i as the alternative task of �i whose worst-case
recovery time is the largest one. Also, we assume that all
alternative tasks associated with �i run at the same priority
level. Hence, hereafter we do not include the details of
individual alternative task per primary in the description
we present. We only need to refer to �i as the worst-case
alternative task in case of errors in task �i.

Primary tasks are scheduled according to some fixed
priority assignment algorithm (FPðÿÞ), which attributes a
distinct priority to each task �i in ÿ. We consider n different
priority levels (1; 2; . . . ; n), where 1 is the lowest priority
level. The alternative tasks of �i are assumed to execute at
priority levels greater than or equal to �i’s priority. We
denote the priority of �i and �i as pi and pi, respectively.
When a primary task, say �i, and an alternative task, say �j,
are ready to execute at the same priority level, we assume
that �j is scheduled first.
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Fig. 1. Two illustrative scenarios: (a) both �i and its recovery run at the

same priority level; (b) �i runs with higher priority.

1. Actually, this previous work turned out to be optimistic for some
scenarios.



Alternative tasks represent some extra processing that is
necessary to recover a task from a given erroneous state
caused by a fault. Errors are detected at the task level. When
an error interrupts the execution of a task, the system must
schedule an appropriate alternative task, which is respon-
sible for carrying out the error-processing procedure and
has to finish by the deadline of its primary task. If other
errors take place in the alternative tasks, we assume that it
is scheduled again for reexecution. We also assume that
there is no cost associated with any scheduling of primary
or alternative tasks. Further, we assume that all errors are
detected by the system and there is no fault propagation in
the value domain (i.e., faults affect only the results
produced by the executing task).

The kinds of fault with which we are dealing are those
that can be treated at the task level. Consider, for example,
design faults. It may be possible to use techniques such as
exception handling or recovery blocks to perform appropriate
recovery actions [3], modeled here as alternative tasks. In
addition, one may consider some kind of transient faults,
where either the reexecution of the faulty task or the
execution of some compensation action is effective. For
example, suppose that transient faults in a sensor (or
network) prevent an expected signal from being correctly
received (or received at all) by the control system. This kind
of system fault can easily be modeled by alternative tasks,
which can be released to carry out a compensation action.
However, it is important to emphasize that we are not
considering more severe kinds of fault that cannot be
treated at the task level. For example, if a memory fault
causes the value of one bit to be arbitrarily changed, the
operating system may fail, compromising the whole system.
Tolerating these kinds of faults requires spatial redundancy
(perhaps using a distributed architecture) and is not
covered in this paper. Our work fits the engineering
approach that uses temporal redundancy at the processor
level and spacial redundancy at the system level.

We assume in the analysis that there is a minimum time
between two consecutive error occurrence, TE . By finding
out the minimum value of TE such that the system is still
schedulable, we are expressing to what extent the system is
resilient to the occurrence of errors. This may be important
information about the system’s fault resilience. For exam-
ple, if designers are aware of such a value, they may infer
how likely the system will be subject to missed deadlines
due to faults in a given environment.

It is important to emphasize that the motivation for the
approach taken here is to improve fault resilience. To do
this, we require a measure of this resilience. The magnitude
of TE is the measure employed in this paper. We assume
that the scheduling of a system to reduce TE will improve
the resilience of the system, regardless of the actual fault
model employed by the application engineer. Support for
the use of this metric comes from Burns et al. [5], who
proved that if error arrivals are modeled by a Poison
distribution (a usual and often realistic assumption), then
the probability of failure during the lifetime of the system is
proportional to TE (i.e., the smaller the value of TE , the
more fault resilient the system).

3 BACKGROUND AND MOTIVATION

Schedulability analysis based on the well-known response

time analysis [1] which takes into account the effects of

possible faults has already been proposed [3]. In this section,

we summarize this result and illustrate its limitations.
The input parameters of this analysis are: the task

attributes (Ti, Di, Ci, and C); the primary task priorities (pi),

which are given by some fixed-priority assignment algo-

rithm (e.g., deadline monotonic); and the assumed value of

TE . The priorities of alternative tasks are assumed to be the

same as their primary tasks (pi ¼ pi).
Consider that no task suffers any error. Under this

particular scenario, the worst-case response time of task �i is

the time necessary to execute �i and all tasks �j such that

pj > pi. When faults are considered, on the other hand, we

have to include in the calculation of the worst-case response

time of �i the time necessary to recover the faulty task, as we

explain below.
Initially, let us consider that only one error may take

place during the execution of �i. Any task that may be

executing concurrently with �i (including �i itself) may be

interrupted by this error. In the worst-case scenario, the

error interrupts tasks just before the end of their execution

and the faulty task is the one with the longest alternative

task among �i and all tasks that may preempt the execution

of �i (i.e., tasks with priority greater than or equal to pi). Let

us say that �k is such a task. This means that we have to add

the time to recover �k (i.e., recovery cost Ck) to the response

time of �i. These observations lead to (1), where Ri is the

worst-case response time of �i, hpðiÞ ¼ f�j 2 ÿj pj > pig and

hpeðiÞ ¼ f�j 2 ÿj pj � pig. Since Ri appears on both sides of

the equation, its solution is obtained, as usual, iteratively by

forming a recurrence relation with R0
i ¼ Ci. This iterative

procedure finishes either when Rmþ1
i ¼ Rm

i (the worst-case

response time of �i is found) or when Rmþ1
i > Di (�i is

considered unschedulable).2

Ri ¼ Ci þ
X

�j2hpðiÞ

Ri

Tj

� �
Cj þ max

�k2hpeðiÞ
Ck: ð1Þ

Nevertheless, errors may interrupt the execution of �k
more than once. As the worst-case period of error

occurrence is TE , the maximum number of errors that

may take place during the execution of �i is given by dRiðTEÞ
TE
e,

which leads to (2), originally presented in [18], [3]. As TE is

an input to the analysis, Ri is given as a function of TE , i.e.,

RiðTEÞ. Also, note that this equation is conservative in the

sense that, in practice, some of the errors may not interrupt

the task with the largest recovery cost. Indeed, this

conservative assumption could only hold if error occur-

rences were in phase with tasks. Assuming that errors

always interrupt the execution of such a task, however,

simplifies the worst-case response time computation. In this

work, we use the same sort of conservative assumption.
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effects, although they can easily be incorporated into the analysis.



RiðTEÞ ¼ Ci þ
X

�j2hpðiÞ

RiðTEÞ
Tj

� �
Cj þ

RiðTEÞ
TE

� �
max

�k2hpeðiÞ
Ck:

ð2Þ

Now, consider a simple but illustrative example, pre-
sented in Table 1, which gives a task set with three tasks. As
can be seen from the solutions of (2) presented in the table,
this task set is schedulable for TE ¼ 11 and unschedulable
for TE ¼ 10 since �3 does not meet its deadline
(R3ð10Þ > D3). Nevertheless, there is some slack time
available at priority levels p1 and p2 that is not being used
for carrying out the execution of �3.

Our goal in this work is to develop a more generic
schedulability analysis, according to which we can deal
with alternative tasks running at higher priority levels. By
doing so we can make use of the available slack time to
carry out task recoveries. This involves two steps. First, new
equations that can cope with this characteristic have to be
derived (Section 4). Second, an efficient algorithm to
calculate the optimal priority assignment for alternative
tasks must be available (Sections 5 and 6).

4 SCHEDULABILITY ANALYSIS

Our goal in this section is to derive schedulability analysis
that takes into account alternative tasks running at higher
priority levels. We assume that the priorities of alternative
tasks are known beforehand. This assumption will be
withdrawn in Section 5. Thus, in this section, we are only
concerned with finding out whether or not a given task set
is considered schedulable for a given value of TE .

A particular choice for alternative task priorities is
named a priority configuration, which is defined as follows:

Definition 4.1. A priority configuration, Px, is a tuple
hhx;1; . . . ; hx;ni, where 0 � hx;i < i and hx;i ¼ pi ÿ pi.

As can be noted from the definition, hx;i represents the
priority increment for task �i in relation to the priority of �i.
The definition of hx;i bounds the priority of �i from �i’s
priority to the highest priority level. For example, consider
Px ¼ h0; 0; . . . ; 0i, a priority configuration. This means that
any alternative task executes at the same priority level as
the primary task with which it is associated. For
Px ¼ h0; 0; . . . ; 0; 1i, all tasks execute at their original priority
level apart from �n, which executes one priority level above
its primary task. Thus, the schedulability analysis we will
present is a function of Px and TE .

This section is structured as follows: Section 4.1 illustrates
and characterizes the effects of raising priorities of alternative
tasks. Section 4.2 describes the equations to calculate worst-

case task response times. In Section 4.3, the effectiveness of

the analysis using the example given in Table 1 is illustrated.

As we will see from this example, one can achieve significant

gains by using the proposed analysis.

4.1 Raising Priorities of Alternative Tasks

In order to understand the effects of raising priorities of

alternative tasks, consider the set of two tasks in Fig. 2.

Task �j has higher priority than �i. Suppose that an error

interrupts �i just before the completion of its execution

(Fig. 2a). As can be seen, �i is then selected to execute with

precedence over �j. As a result, the response time of �j is

increased by Ci and the response time of �i is decreased by

Cj (since the second execution of �j is delayed). These

effects, which are not present when alternative and primary

tasks have the same priority, have to be taken into account

by the response time analysis.
In addition to this, it is important to realize that the

worst-case scenario cannot be represented simply by taking

the task with the longest alternative task as in (2). For

example, consider Fig. 2b, which represents a different

execution scenario for tasks �i and �j. Consider that Cj < Ci

and that an error interrupts the execution of �j instead of �i.

This situation, as can be noted from the figure, leads to a

longer response time for task �i when compared to Fig. 2a.

This is because task �i suffers not only the interference of �j,

but also the interference of another activation of task �j.
Summing up, the characterization of the worst-case

scenario is more complex than the traditional approach (by

(2)). Indeed, we have to observe the worst-case interferences

due to both preemption and possible errors, which may

involve the recovery of lower priority tasks. For example,

from the above figure, it can be noted that the worst case for

task �i is when it is released at the same time as task �j and the

error interrupts the execution of �j just before its execution. By

contrast, the worst case for task �j is when it is released just

after task �i is interrupted by an error. Let us identify tasks
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TABLE 1
Illustration of the Limitations of (2)

Fig. 2. Worst-case execution scenarios: (a) for task �j and (b) for task �i.



according to the extra interference they cause or suffer due
to errors by defining three subsets of ÿ:

. ipðx; iÞ. These are the tasks that may interfere with
the response time of �i as regards priority config-
uration Px if an error occurs. More formally,
ipðx; iÞ ¼ f�j 2 ÿjhx;j þ pj � pig.

. spðx; iÞ. Tasks that belong to such a subset do not
suffer any extra interference when errors interrupt
the execution of �i as regards priority configuration
Px. Their priorities are higher than pi. More formally,
spðx; iÞ ¼ f�j 2 ÿj pj > hx;i þ pig.

. ipeðx; iÞ. This subset is defined as

ipeðx; iÞ ¼ ipðx; iÞ if hx;i ¼ 0
ipðx; iÞ ÿ f�ig if hx;i > 0:

�
This subset is particularly useful, as we will see in
Section 4.2.2, for modeling cases where errors may
interrupt task �i since the maximum interference its
recovery suffers depends on whether or not pi ¼ pi.

Fig. 3 illustrates the meaning of subsets ipðx; iÞ and
spðx; iÞ. Note that �i does not suffer any interference from
tasks in ÿÿ ipðx; iÞ, but suffers the interference from �j
since �j 2 ipðx; iÞ. Thus, when calculating the response time
of �i for a given priority configuration Px, we need to
consider only errors in tasks belonging to ipðx; iÞ.

4.2 Task Response Time Calculation

In this section, we show how the worst-case response times
of tasks are computed. Let ÿ be a task set which is subject to
faults so that the minimum time between error occurrences
is bounded by TE > 0 and assume that the priority
configuration for the alternative tasks is given by Px. The
derivation of the worst-case response time of any task
�i 2 ÿ, denoted Riðx; TEÞ, is split into two branches:
considering that errors interrupt the execution of any task
but �i and considering that �i may be interrupted by some
error. The justification of this approach is that the worst-
case response time of any task �i may depend on whether or
not the execution of �i is itself interrupted by some error
(see Fig. 2).

We call an error internal if it interrupts �i (or �i) or
external if it interrupts other tasks. We define Rext

i ðx; TEÞ to
be the worst-case response time of �i in cases where only
external errors are considered. In cases where some internal
error takes place, the computation of the worst-case
response time of �i is given by Rint

i ðx; TEÞ. Sections 4.2.1
and 4.2.2 describe the equations that give the values of
Rext
i ðx; TEÞ and Rint

i ðx; TEÞ, respectively. Once the values of

Rext
i ðx; TEÞ and Rint

i ðx; TEÞ are known, Riðx; TEÞ can be
easily derived (Section 4.2.3).

4.2.1 Considering Only External Errors

The computation of the worst-case response time of task �i
due to external errors, Rext

i ðx; TEÞ, is straightforward. This is
because we do not need to consider the recovery of �i. In this
situation, the worst-case scenario as for task �i can be
described as follows: 1) Errors take place at a rate of 1=TE ;
2) just before the release of �i, some alternative task with
maximum recovery time among all tasks in ipðx; iÞ ÿ f�ig is
released; and 3) all tasks in hpðiÞ are released so that they
cause the maximum interference in the execution of �i.
Therefore, we have to take into account the time to execute �i
plus all tasks in hpðiÞ and the time to recover the faulty task
times the maximum number of errors that may occur over
Rext
i ðx; TEÞ. This scenario yields (3), which is similar to (2).

Here, we consider that max�k2;ðCkÞ ¼ 0.

Rext
i ðx; TEÞ ¼ Ci þ

X
�j2hpðiÞ

Rext
i ðx; TEÞ
Tj

� �
Cj

þ Rext
i ðx; TEÞ
TE

� �
max

�k2ipðx;iÞÿf�ig
ðCkÞ:

ð3Þ

It is clear that, in general, if errors arrive at each TE time
units, some of them may not hit the task with the largest
recovery cost. However, like (2), here we make this
conservative assumption for the sake of simplicity. Note
that analyzing all the possibilities of error occurrences to
have a less pessimistic approach may lead to a computa-
tionally impractical and/or complex solution.

Not considering �i in the computation of Rext
i ðx; TEÞ may

appear counterintuitive at first. Indeed, after the recovery of
some faulty task �k 2 ipðx; iÞ ÿ f�ig, internal errors may take
place. However, these internal errors are only relevant for
the derivation of the worst-case response time of �i when
the recovery cost of �i is maximum. This is the result of
Lemma 4.1. If Ci is maximum, we need to consider these
internal errors, a problem that we address in the next
section.

Lemma 4.1. Consider a fixed-priority set of primary tasks ÿ and
their respective alternative tasks. Suppose that ÿ is subject to
faults so that the minimum time between error occurrences is
bounded by TE > 0 and let Px be a priority configuration for
the alternative tasks. If Ci < max�k2ipðx;iÞðCkÞ, Rext

i ðx; TEÞ
represents the worst-case response time of �i regardless of
whether or not the execution of �i is interrupted by some error.

Proof. If just external errors take place regarding �i, the
lemma holds by the explanation given earlier in this
section. Hence, we have to prove that the lemma holds
assuming that some internal error takes place. Thus, let
us assume a hypothetical (but generic) scenario in which
there is at least one internal error as for �i. Without loss
of generality, define t as the time at which �i is released,
t0 > t the time at which an internal error interrupts its
execution, and t00 > t0 the worst-case finishing time of �i
despite other possible errors. Note that the existence of t
and t0 is guaranteed by assumption. In this circumstance,
there have been at most mþm0 þ 1 ¼ dðt

00ÿtÞ
TE
e error

occurrences, m � 0 of which take place during ½t; t0Þ,
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one error that interrupts the execution of �i at time t0, and
m0 ¼ dt00ÿtTE

e ÿmÿ 1 � 0 error occurrences that take place
during the interval ðt0; t00Þ (by definition of t0 and t00).
From time t until time t0, �i suffers the interference due to
the execution of tasks in hpðiÞ, whereas, from t0 to t00, it
suffers the interference due to the execution of tasks in
spðx; iÞ. Taking errors into account, in the worst-case:
m error occurrences interrupt the execution of a task �k
that has the longest recovery cost among all tasks in
ipðx; iÞ ÿ f�ig and m0 error occurrences interrupt the
execution a task �l that has the longest recovery cost
among all tasks in spðx; iÞ [ f�ig.

Now, let us compare Rext
i ðx; TEÞ with t00 ÿ t, where we

have to prove that Rext
i ðx; TEÞ � t00 ÿ t. It is clear that

Rext
i ðx; TEÞ cannot be less than t0 ÿ t since, by assump-

tion, �i was executing at t0 and, during this interval of
time, (3) takes into account the worst-case interference. In
other words, (3) takes into account at least: mþ 1 error
occurrences during ½t; t0� and the same amount of
interference caused by alternative and primary tasks
that may preempt �i during ½t; t0�. From t0 onward,
however, (3) takes into account external errors in task �l.
Since spðx; iÞ � ipðx; iÞ, Ci < Ck, and Cl � Ck, (3) cannot
converge to a number smaller than t00 ÿ t, as required.tu

Although we do not need to carry out the computation of
Rint
i ðx; TEÞ when Ci < max�k2ipðx;iÞðCkÞ, we will do so for the

sake of illustration. This means that the equations we derive
in the next section will take into account scenarios ruled out
by Lemma 4.1.

4.2.2 Considering Internal Errors

In this section, we assume that there is at least one internal
error during the execution of �i. The general strategy for
deriving Rint

i ðx; TEÞ is illustrated in Fig. 4. As can be seen
from the figure, an internal error takes place at time t which
releases �i. The interference that �i and �i suffer due to the
execution of other tasks may be different if pi < pi, as is
illustrated in the figure. The objective of the analysis is to
derive the worst-case response times of �i before and after
the error. We call these times Rint0

i ðx; TEÞ and Rint1

i ðx; TEÞ,
respectively.

Deriving the values of Rint0

i ðx; TEÞ and Rint1

i ðx; TEÞ is not
simple since: 1) This may involve two levels of priorities,

before and after the first internal error; 2) the procedure to
carry out response time analysis is iterative; and 3) the
information about when the first internal error takes place is
not available beforehand. In other words, in general,
Rint0

i ðx; TEÞ and Rint1

i ðx; TEÞ cannot both be derived at once

using response time analysis.
In order to circumvent difficulties 1) and 2), we compute

the values of Rint0

i ðx; TEÞ and Rint1

i ðx; TEÞ separately. This
strategy makes it easier to use response time analysis for
taking into account the different interference in both
priority levels, before and after the error. The final result
of Rint

i ðx; TEÞ can then be given by the sum of Rint0

i ðx; TEÞ
and Rint1

i ðx; TEÞ, as we will see. Due to difficulty 3), we
carry out the following approach: First, we suppose that the
execution of �i is interrupted by an error at some time t (as
illustrated in Fig. 4). Then, we can easily derive Rint1

i ðx; TEÞ.
Note that this derivation does not need any information
about what happened before t. Then, using the computed
value of Rint1

i ðx; TEÞ, we derive Rint0

i ðx; TEÞ. We detail this
approach below.

Computing Rint1

i ðx; TEÞ. Here, we assume that an

internal error took place. What we have to do is to show

how long the recovery of �i will last subject to both other

possible errors and the interference due to tasks in spðx; iÞ.
In the worst-case, there may be dR

int1

i ðx;TEÞ
TE

e errors over the

period Rint1

i ðx; TEÞ. The first error accounts for Ci, while the

others may cause the release of the recovery of any task in

spðx; iÞ [ f�ig. The worst case is when all other errors

interrupt a task in spðx; iÞ [ f�ig that has the longest

recovery time.3 Therefore, Rint1

i ðx; TEÞ is given by (4).

Rint1

i ðx; TEÞ ¼ Ci þ
X

�j2spðiÞ

Rint1

i ðx; TEÞ
Tj

& ’
Cj

þ Rint1

i ðx; TEÞ
TE

& ’
ÿ 1

 !
max

�k2spðx;iÞ[f�ig
ðCkÞ:

ð4Þ

Computing Rint0

i ðx; TEÞ. The computation of Rint0

i ðx; TEÞ
is slightly more complex. Let us analyze it considering two
cases depending on the values of pi and pi.

When pi < pi. This means that �i executes at a higher
priority level. Note that, in this case, knowing Rint0

i ðx; TEÞ
is equivalent to knowing the relative earliest possible
release time of �i so that it suffered the first internal error
at time t, as illustrated in Fig. 4. During Rint0

i ðx; TEÞ, �i
may suffer the preemption of tasks in hpðiÞ and possibly
the recoveries of tasks in ipðx; iÞ ÿ f�ig due to other
errors. It is important to note that we have to remove �i
from the set of tasks that may suffer errors in this phase
because, by assumption, the first error occurs at time t.
Indeed, if there was an earlier internal error, then �i
would be released earlier and, so, it would finish earlier.
It is clear that this situation does not represent the worst-
case scenario.
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3. As said before, here we are assuming a generic situation. However, in
practice, one can consider that all errors from t onward are internal due to
Lemma 4.1.

Fig. 4. Illustration of the derivation of Rint
i ðx; TEÞ.



When pi ¼ pi. Unlike the former case, the maximum
interference during Rint0

i ðx; TEÞ can take place when all
errors are internal since both �i and its alternative task
run at the same priority level. This situation happens, for
example, when Ci ¼ max�k2ipðx;iÞðCkÞ (recall (2)). As a
result, instead of considering errors in ipðx; iÞ ÿ f�ig, one
should consider errors in the whole ipðx; iÞ.
In summary, as for possible errors during Rint0

i ðx; TEÞ,
when pi < pi, one has to consider errors in ipðx; iÞ ÿ f�ig.
Otherwise, errors in ipðx; iÞ should be taken into account.
This is the main difference between the cases analyzed
above. In order to join both cases together in a single
equation, we say that errors during the interval Rint0

i ðx; TEÞ
may take place in any task in ipeðx; iÞ (see Section 4.1).

Now, we are able to derive the equation that gives
Rint0

i ðx; TEÞ. It has to take into account: the worst-case
execution time of �i (Ci), the interference due to tasks in
hpðiÞ, and possible recoveries of tasks in ipeðx; iÞ. Note that
some releases of tasks in spðx; iÞ and some error occurrences
may have already been taken into account when computing
Rint1

i ðx; TEÞ. This means that we have to take care not to
compute the same task in spðx; iÞ and the same error
occurrence twice. In other words, we have to subtract, for
each task in spðx; iÞ and each error occurrence, the
interference already computed in Rint1

ð iÞðx; TEÞ.
From the description above, (5) gives the value of

Rint0

i ðx; TEÞ. Note that, instead of computing the worst-case

interference due to tasks in hpðiÞ, we split this computation

as for two complementary subsets, hpðiÞ ÿ spðx; iÞ and

spðx; iÞ. This is to avoid the computation of tasks in

spðx; iÞ more than once, as commented before. We do so

by subtracting dR
int1

i ðx;TEÞ
Tl

eCl for each task �l 2 spðx; iÞ.
Similarly, possible double counting of errors is removed

by subtracting dR
int1

i ðx;TEÞ
TE

e from the total number of errors.

Rint0

i ðx; TEÞ ¼ Ci þ
X

�j2hpðiÞÿspðx;iÞ

Rint0

i ðx; TEÞ
Tj

& ’
Cjþ

X
�l2spðx;iÞ

Rint
i ðx; TEÞ
Tl

� �
ÿ Rint1

i ðx; TEÞ
Tl

& ’ !
Clþ

Rint
i ðx; TEÞ
TE

� �
ÿ Rint1

i ðx; TEÞ
TE

& ’ !
max

�k2ipeðx;iÞ
ðCkÞ:

ð5Þ

The value of Rint
i ðx; TEÞ can then be simply derived by

taking the sum of Rint0

i ðx; TEÞ and Rint1

i ðx; TEÞ:

Rint
i ðx; TEÞ ¼ Rint0

i ðx; TEÞ þRint1

i ðx; TEÞ: ð6Þ

The computation of Rint
i ðx; TEÞ is carried out by iteration as

usual. Initially, the calculation of Rint1

i ðx; TEÞ is done and
then its value is used in (5). Notice that the procedure for
calculating Rint0

i ðx; TEÞ does not affect the value of
Rint1

i ðx; TEÞ.

4.2.3 Worst-Case Response Time

In this section, we show how to derive Riðx; TEÞ, the worst-
case response time of �i, from Rext

i ðx; TEÞ and Rint
i ðx; TEÞ. In

order to give an intuition behind this derivation, let us

analyze two cases below. Consider �k a task in ipðx; iÞ such

that Ck ¼ max�l2ipðx;iÞðClÞ.
If �k 2 ipðx; iÞ ÿ f�ig. In this case, Rint

i ðx; TEÞ is maximum

when all errors hit task �k or some other task �l (or their

alternative tasks) that has recovery cost equal to Ck. This,

in turn, can only be true if �k or �l belong to spðx; iÞ. Without

loss of generality, assume that �k 2 spðx; iÞ. Hence, the

computation of Rint
i ðx; TEÞ takes into account mÿ 1 � 0

error occurrences regarding �k and one for �i, where m is

the maximum number of errors that may occur during

Rint
i ðx; TEÞ. Clearly, this represents the worst-case scenario

when some internal error takes place. However, as the

computation of Rext
i ðx; TEÞ takes into account all error

occurrences for �k, R
ext
i ðx; TEÞ assumes a value at least as

big as Rint
i ðx; TEÞ. Indeed, if Ci < Ck, by Lemma 4.1, we

know thatRext
i ðx; TEÞ � Rint

i ðx; TEÞ. Moreover, if Ci ¼ Ck,

it is not difficult to see that Rext
i ðx; TEÞ � Rint

i ðx; TEÞ since

spðx; iÞ � hpðiÞ. Therefore, Riðx; TEÞ ¼ Rext
i ðx; TEÞ.

If �k ¼ �i. In this case, the computation of Rint
i ðx; TEÞ takes

into account some errors in another task �l 2 ipðx; iÞ ÿ
f�ig and some in �i. Since Rint

i ðx; TEÞ depends on pi, pi,

Ci, and Cl, the relation between Rext
i ðx; TEÞ and

Rint
i ðx; TEÞ is unknown before the computation of their

values. In other words, in this case, Riðx; TEÞ is given by

the maximum of Rext
i ðx; TEÞ and Rint

i ðx; TEÞ.
Therefore, the generic expression that gives the value of

Riðx; TEÞ is straightforwardly given by

Riðx; TEÞ ¼ maxðRext
i ðx; TEÞ; Rint

i ðx; TEÞÞ: ð7Þ

To conclude this section, we call the attention of the

reader to the fact that the described analysis represents a

generalization of the analysis by (2). This is proven by the

lemma below.

Lemma 4.2. Consider a set of fixed-priority scheduled set of

primary tasks ÿ and their alternative tasks. For any value of

TE > 0, the worst-case response time given by (2) equals the

maximum of Rext
i ðx; TEÞ and Rint

i ðx; TEÞ whenever

Px ¼ h0; 0; . . . ; 0i.
Proof. The proof of this lemma is straightforward and

follows the observation that, when Px ¼ h0; 0; . . . ; 0i,
hpðiÞ ¼ spðx; iÞ and ipeðx; iÞ ¼ hpeðiÞ ¼ ipðx; iÞ. After

some simple algebra, (3) and (6), respectively, can be

rewritten as follows:

Rext
i ðx; TEÞ ¼ Ci þ

X
�j2hpðiÞ

Rext
i ðx; TEÞ
Tj

� �
Cj

þ Rext
i ðx; TEÞ
TE

� �
max
�k2hpðiÞ

ðCkÞ

and

Rint
i ðx; TEÞ ¼ Ci þ

X
�j2hpðiÞ

Rint
i ðx; TEÞ
Tj

� �
Cj

þ Rint
i ðx; TEÞ
TE

� �
ÿ 1

� �
max

�k2hpeðiÞ
ðCkÞ þ Ci:

It is clear that if
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Ci ¼ max
�k2hpeðiÞ

ðCkÞ;

Rint
i ðx; TEÞ � Rext

i ðx; TEÞ. Otherwise,

Rint
i ðx; TEÞ � Rext

i ðx; TEÞ:

The maximum of these two equations can then be
rewritten as a single equation, which yields (2). tu

4.3 An Illustrative Example

As we have seen, when TE is set to 10 time units, the task set
presented in Table 1 is unschedulable for priority configura-
tion h0; 0; 0i. Table 2 shows that, for priority configurations
h0; 0; 1i and h0; 0; 2i, the task set is schedulable according to
the analysis described earlier. This is because the slack time
available at higher priority levels is being used to execute �3.
The two values given in each cell of Table 2 are the solutions of
(6) and (3), respectively. The maximum value (i.e., the worst-
case response time) is in bold.

The advantages of considering alternative tasks execut-
ing at higher priority levels are not only noted from the
significant reductions of task response times, but also from
the increase in the fault resilience of the task set. In this
example, the value of TE drops from 11 (priority config-
uration h0; 0; 0i) to 8 (priority configuration h0; 0; 2i), as
illustrated in the table. This represents a gain of 27.3 percent,
which may be very significant when dealing with critical
applications.

Fig. 5 illustrates some examples of scheduling that lead
to the worst-case response times of �3 when an internal
error takes place. Scenarios (a), (b), and (c) correspond to
the three last columns of Table 2, respectively. Let us focus
on scenario (c) in the figure and compare with the values
given by the analysis. By (4) and (5), Rint1

3 ðx; 8Þ ¼ 5 and
Rint0

3 ðx; 8Þ ¼ 18, respectively. This is because the analysis
takes into account two errors as for �2 and one internal error
in �3. It is clear that �2 (or its recovery) cannot be interrupted
by two errors since its period is 25 and TE ¼ 8. This
approximation is the result of our conservative assumption,
which says that any error always interrupts the task with
the longest recovery time among all tasks that may interfere
in the execution of �3 (in this case). The approximation is
represented in the figure as if there were two consecutive
executions of �2. Similar consequences of this assumption
can also be seen in both (2) and (3), as noted earlier.

Up to now we have not been concerned with determin-
ing the best priority configuration so that the fault resilience
of the task set is minimized. The difficulty in finding such
an optimal priority configuration is twofold. First, there are a
huge number of possible different arrangements of alter-

native task priorities. For a set of n tasks (one alternative
task per primary task), this number is n! since there are n
possible priority values for the lowest priority task, nÿ 1
for the second lowest priority task, and so on. Second, the
search for the optimal priority configuration depends on the
slack time available in higher priority levels, which, in turn,
depends on the worst-case response times of tasks. The next
section addresses this problem and presents an efficient
solution to it.

5 THE PRIORITY CONFIGURATION SEARCH METHOD

A description of the method to find out the optimal priority
configuration regarding the analysis described earlier is
given in this section. The main idea behind the method can
be summarized as follows: Based on some properties of the
analysis, an iterative procedure transforms a given priority
configuration, say Px, into another, say Py, where Py is a
potential optimization of Px. We say that Py is an
optimization of Px if smaller values of TE may be used on
Py without causing any task to miss its deadline. The
procedure for improving a priority configuration is based
on raising the priority of the alternative tasks that are
causing the unschedulability of the task set. These tasks are
called dominant tasks (Section 5.1). This iterative procedure
stops when it is no longer possible to carry out any
improvement. In order to search for optimized priority
configurations from the initial configuration, a partial order
of priority configurations is established (Section 5.2). The
search is carried out in ascending order of priority
configurations and it chooses those that could potentially
reduce the value of TE . The great advantage of this
approach is that we do not need to consider all possible
priority configurations, which would be too expensive.
Only a small number of possibilities are checked.

5.1 Dominant Tasks

A given priority configuration, say Px, has a minimum
allowed value of TE , denoted by the function TeðxÞ. If any
value less than TeðxÞ is attributed to TE , some task may be
unschedulable. In particular, if TE ¼ TeðxÞ ÿ 1, then there is
at least a task �i in ÿ such that Riðx; TeðxÞ ÿ 1Þ > Di. The
tasks that cause the unschedulability of ÿ under this
circumstance are called dominant tasks. We distinguish
two kinds of dominant task: 1-dominant and 2-dominant. A
task �i is 1-dominant regarding the priority configuration Px
if Rint

i ðx; TeðxÞ ÿ 1Þ > Di. Two-dominant tasks are those
tasks that may cause other tasks to miss their deadlines
when TE ¼ TeðxÞ ÿ 1 because of the execution of their
alternative tasks. Below, we define more formally the
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The Effects of Raising Priorities of Alternative Tasks for Different Priority Configurations



concept of dominant tasks and give the definition of their

respective task sets.

Definition 5.1. A task �i is a dominant task in relation to a

priority configuration Px if �i is 1-dominant, i.e., it belongs to

D1ðxÞ, or 2-dominant, i.e., it belongs to D2ðxÞ, where

D1ðxÞ ¼ �i 2 ÿjRint
i ðx; TeðxÞ ÿ 1Þ > Di

� 	
and

D2ðxÞ ¼ �i 2 ÿj 9�j 2 ÿ : �i 2 ipðx; jÞ ^
�
Rext
j ðx; TeðxÞ ÿ 1Þ > Dj ^ Ci ¼ max

�k2ipðx;jÞ
ðCkÞ

�
:

Therefore, optimizing a priority configuration means

reducing the worst-case response times due to internal

errors of all 1-dominant tasks. Worst-case response times

due to internal errors can only be reduced by increasing

alternative task priorities. Table 2 illustrates this, where the

Rint
3 ðx; 10Þ is decreased when p3 is increased. This is because

the size of spðx; 3Þ is reduced and, so, the interference due to

preemption over the execution of �3 is reduced as well. As

for 2-dominant tasks, there is no space for optimization by

raising the priorities of their alternative tasks. This is

because doing so does not decrease the interference
2-dominant tasks cause in other tasks.

Table 3 shows the worst-case response times due to
internal and external errors for three different configura-
tions with regard to the task set of Table 1. The symbol “�”
means that the task is unschedulable. The minimum
allowed value of TE in h0; 0; 0i is 11 time units, where �3

is 1-dominant. Increasing the priority of �3 by 1 leads to
h0; 0; 1i, which makes Teðh0; 0; 1iÞ ¼ 8. Note that, in priority
configuration h0; 0; 1i, �3 is 2-dominant since it makes �2

unschedulable for TE ¼ 7. Since Rext
2 ðx; 7Þ cannot decrease

by raising p3 further, from h0; 0; 1i no optimization is
possible.

As can be noted from Table 3, the reduction of
Rint
i ðx; TEÞ, where �i is some 1-dominant task, plays an

important role in optimizing priority configurations. How-
ever, sometimes it is not possible to decrease Rint

i ðx; TEÞ by
raising the priorities of alternative tasks. For example, if �2

ran at the highest priority level in the priority configuration
Px ¼ h0; 1; 0i, Rint

2 ðx; TEÞ would still be eight time units. A
similar situation occurs with Rint

3 ðx; TEÞ regarding priority
configurations h0; 0; 1i and h0; 0; 2i. Let us formalize this
property by means a condition, which is a direct conse-
quence of (4) and (5).
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Fig. 5. Illustration of Rint
3 ðx; TEÞ regarding Table 2.



Consider a priority configuration, say Px. Rint
i ðx; TEÞ can

be reduced by increasing pi if the following improvement
condition holds:

Condðx; i; jÞ � 9 �j 2 spðx; iÞ :

Rint
i ðx; TEÞ
Tj

� �
>

Rint0

i ðx; TEÞ
Tj

& ’
:

ð8Þ

This condition means that all preemption on the execution
of �i caused by the releases of �j can be eliminated if we set
pi � pj. We use the predicate above to avoid checking all
configuration priorities in the optimization procedure. Only
those that may reduce the values of 1-dominant task worst-
case response times due to internal errors (where the
predicate is true) need to be checked. It is important to note
that this condition is necessary (but not sufficient) to
optimize priority configurations. The next section presents
the method used for such an optimization.

5.2 Search Graph and Search Path

Consider tasks �i and �j in ÿ, a given priority configuration
Px and TE > 0. Raising the priority of �i, as we have seen,
may decrease the value of Rint

i ðx; TEÞ, but cannot decrease
the value of Rext

i ðx; TEÞ. Also, if �i 2 ipðx; jÞ ÿ hpðjÞ, raising
the priority of �i may increase the value of Rext

j ðx; TEÞ.
Hence, in general, we can say that the maximum worst-case
response times considering internal errors and the mini-
mum worst-case response times due to external errors is
when all alternative tasks run at the same priority level as
their respective primary tasks, i.e., when the priority
configuration equals h0; 0; . . . ; 0i. Conversely, when all
alternative tasks run with the highest possible priority,
i.e., priority configuration h0; 1; . . . ; nÿ 1i, we have the
minimum worst-case response times due to internal errors,
but the maximum values of worst-case response times due
to external errors. As the schedulability of any task �i is
given by the maximum of Rint

i ðx; TEÞ and Rext
i ðx; TEÞ, we

have to search the optimal priority configuration in the
interval h0; 0; . . . ; 0i and h0; 1; . . . ; nÿ 1i. Based on this
observation, let us order the set of all possible priority
configurations by means of a direct acyclic graph, the search
graph, where the priorities configurations h0; 0; . . . ; 0i and
h0; 1; . . . ; nÿ 1i are in the first and last position of such an
order, respectively.

Definition 5.2. A search graph SG ¼ fV ;Eg is a direct
acyclic graph. Its vertex set is a set of n! vertices,
V ¼ fv0; v1; . . . ; vn!ÿ1g, where each vx is labeled with the
priority configuration Px. Its edge set is defined as

E ¼ fðvx; vyÞ 2 V � V j 91j; 8 i 6¼ j :

hx;i ¼ hy;i ^ hx;j < hy;jg:

Fig. 6 illustrates the search graph for a set of three tasks.
It can be seen from the graph that the vertex labeled
h0; 0; . . . ; 0i does not have any incoming edges and the
vertex labeled h0; 1; . . . ; nÿ 1i does not have any outcome
edges. We name these vertices the source (v0) and the sink
vertices (vn!ÿ1), respectively. The order shown in the graph
is expressed by the relatione>, which is defined below.

Definition 5.3. Let vx and vy be two vertices of a search graph
SG. We say that vy is reached from vx, denoted vxe> vy, if and
only if x ¼ y or there is a path in SG from vx to vy. More
formally, xxe> vy , ðx ¼ yÞ _ ðvx; . . . ; vyÞ 2 SG, where
ðvx; . . . ; vyÞ is a path in SG.

Consider the search graph presented in Fig. 6. Let vx be a
given vertex of the search graph and Px its associated
priority configuration. The problem we will now address
can be stated as follows: Is there any vertex vy, where vxe> vy,
such that its associated priority configuration, Py, makes the task
set schedulable with TE < TeðxÞ? Suppose, for instance, that
Px ¼ h0; 0; 1i has two 1-dominant tasks, �2 and �3. In this
scenario, only the sink vertex may optimize Px provided
that 1) the task set is schedulable in such a priority
configuration with TE < TeðxÞ and 2) it is possible to reduce
Rint

2 ðx; TEÞ and Rint
3 ðx; TEÞ. This is because it is necessary

(but not sufficient!) that both �2 and �3 run with higher
priorities than their priorities in Px. Consider now that only
�3 is dominant. Thus, we can guarantee that neither h0; 1; 0i
nor h0; 1; 1i can optimize Px since the priority of �3 is not
increased in those priority configurations. If �3 is
1-dominant, h0; 0; 2i may be an optimization of Px. How-
ever, if �3 is 2-dominant, no improvement is possible (recall
that �3 is causing Rext

1 ðx; TEÞ > D1 or Rext
2 ðx; TEÞ > D2). Let

us now take Px ¼ h0; 0; 0i and let us look at the possibilities
to optimize Px. If the only 1-dominant task is �3, either
h0; 0; 1i or h0; 0; 2i may optimize Px. Which one is the best
choice? To answer this question, we have to look at the
improvement condition, (8). If h0; 0; 1i does not satisfy this
condition, we try h0; 0; 2i. Otherwise, h0; 0; 1i is a better
choice since we avoid increasing the priority of �3 too much.
If other improvements are possible from h0; 0; 1i, similar
analysis will lead to h0; 0; 2i or even further to h0; 1; 2i.

As can be seen, if we start searching for the optimal
configuration from the source vertex, we only need to carry
optimization with respect to increasing in priorities. The
idea is to keep decreasing the worst-case response times
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TABLE 3
Worst-Case Response Times Due to Internal and External

Errors when TE ¼ TeðxÞ ÿ 1

Fig. 6. The search graph for a set of three tasks.



due to internal errors of 1-dominant tasks through a path
from the source vertex. The last vertex of this path is one
that can no longer be improved (either because it is the sink
vertex or because the improvement condition is not true).
We call this path the search path.

Definition 5.4. A search path SP ¼ ðv0; v1; . . . ; vwÞ is any path

in SG beginning from the source vertex such that, for all edges
ðvx; vyÞ 2 SP , there is a 1-dominant task �i with regard to Px
such that

Rint
i ðx; TeðxÞ ÿ 1Þ > Rint

i ðy; TeðxÞ ÿ 1Þ ð9Þ

and

hy;i ¼ min
ðvx;vzÞ2SG

hz;i
ÿ �

: ð10Þ

If an edge belongs to a search path, it leads to a priority
configuration which reduces the value of Rint

i ðx; TeðxÞ ÿ 1Þ
for a given 1-dominant task �i (by (9)) and such a priority
configuration has the minimum possible value of pi (by (10)).

Consider the task set given in Table 1. Its search path,
ðv0; v1Þ, is shown in Fig. 7. In h0; 0; 0i, we know that �3 is
1-dominant. Observing the definition of the search path, we
move to h0; 0; 1i. Note that h0; 0; 1i is the last priority
configuration in the path since there is no other 1-dominant
task. Also, observe that, even if �3 were 1-dominant in this
priority configuration, its worst-case response time could
not be decreased (recall Table 3 and the improvement
condition).

Summing up, in order to find out an optimal priority
configuration one has to follow a search path. This is
formalized by the theorem below.

Theorem 5.1. Consider ÿ a fixed-priority scheduled set of
primary tasks and their respective alternative tasks. Suppose

that ÿ is subject to faults so that the minimum time between
error occurrences is bounded by TE > 0. Let SP ¼
ðv0; v1; . . . ; vwÞ be a search path in a search graph SG as for
tasks in ÿ. The priority configuration Px such that TeðxÞ ¼
min8vz2SP TeðzÞð Þ is the minimal value of TE such that

Riðx; TeðxÞÞ < Di for any task �i 2 ÿ.

Proof. Assume by contradiction that there is a priority
configuration Py 6¼ Px such that TeðyÞ < TeðxÞ and
Riðy; TeðyÞÞ < Di for any task �i 2 ÿ. If vy 2 SP , then
the proof is trivial. Consider that vy 62 SP . This means
that: 1) 8�i 2 D1ðxÞ : hy;i > hx;i and 2) 8�j 2 D2ðxÞ : hy;j <

hx;j since these conditions are necessary for decreasing
t h e v a l u e o f TE ¼ TeðxÞ. C o n s i d e r t h e p a t h
P ¼ ðvx; . . . ; vwÞ � SP . See Fig. 8, where the dotted line
represents the search graph and the dashed line
represents the search path. By the definition of the
search path, all vertices in P have increased the priority
of the alternative task of some dominant task in D1ðxÞ
and, from Pw, it is no longer possible to reduce any
dominant task worst-case response time due to internal
errors by increasing the priorities of alternative tasks.
Since Py exists (by assumption), TeðxÞ (by definition) is
minimum in SP and 1) holds, we conclude that
D1ðxÞ ¼ ;. Now, consider D2ðxÞ 6¼ ;. Without loss of
generality, consider some �j 2 D2ðxÞ. Thus, there is an
edge ðvu; vsÞ in SP such that hy;j ¼ hu;j, making the value
hs;j too high. By (10), hs;j is the minimum necessary to
decrease Rint

j ðu; TeðuÞ ÿ 1Þ (note that �j 2 D1ðuÞ). Any
priority configuration with the same value of hu;j cannot
be schedulable using TE < TeðuÞ since �j is a dominant
task in Pu. Therefore, since TeðxÞ is minimum in SP and
ðvu; vsÞ 2 SP , TeðxÞ � TeðuÞ � TeðyÞ, which provides the
contradiction. tu

6 THE ALGORITHM

Theorem 5.1 proves the correctness of the method for
finding out the optimal configuration based on the concepts
of search graph and search path. This section presents an
algorithm to implement such a method. As we will see, its
execution is equivalent to traversing a search graph through
a search path up to a point at which some task becomes
2-dominant. However, it is not necessary to use the
implementation of the search graph itself. This approach
would be too expensive since the search graph has
n! vertices. The intuition behind the algorithm is to make
TE ¼ TeðxÞ ÿ 1 for a given priority configuration Px and
then to look for a priority configuration Py (where vxe> vy)
which makes the task set schedulable with such a value of
TE . If such a Py exists, the algorithm finds it. Otherwise, the
algorithm stops. This procedure is iterative and starts with
Px ¼ h0; 0; . . . ; 0i.

The algorithm is straightforward (see Fig. 9). First of all,
some initialization is done in lines 1-2. Then, the lower
bound L on TE and the minimum value for TE regarding
the initial configuration are calculated (lines 3, 4, and 5,
respectively). The value of L is set to 1þmax8�j2ÿðCjÞ. This
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Fig. 7. The search path for the task set given by Table 1.

Fig. 8. Illustration that the search path contains the vertex labeled with

the optimal priority configuration.



is because, if TE assumes lower values, in the worst-case,
the same alternative task is always interrupted by an error.
This means that the task with the longest recovery cost
never completes, which implies that the task set is
unschedulable. The initial priority configuration Px and
the found value of TeðxÞ is saved in variables P �x and T �E ,
respectively. This is necessary in cases where the task set is
unschedulable in h0; 0; . . . ; 0i. These values will change
throughout the execution of the search algorithm if some
optimal priority configuration is found. Otherwise, P0 ¼
h0; 0; . . . ; 0i and Teð0Þ are returned as default values. After
the initialization, the optimization procedure is carried out
(lines 5-23) until no optimization is possible (lines 13 or 20)
or TE < L (line 11).

The iterative search has two blocks, the save-block
(lines 8-11) and the promotion-block (lines 13-21). When-
ever the task set is schedulable, the save-block is executed in
order to save both the last improved priority configuration
and the minimum value found for TE regarding such a
priority configuration. Each execution of the save-block is
followed by the execution of the promotion-block. This is
because line 10 guarantees that the task set will not be
schedulable in the next iteration.

Whenever the task set is considered unscheduled and
there are no 2-dominant tasks, the promotion-block is
executed. If there is some 2-dominant task, the algorithm
stops. In line 14, some 1-dominant task is selected for
promotion. Note that any 1-dominant task can be selected.
Then, the improvement condition is checked since this is
necessary for decreasing the worst-case response time due
to internal errors of the selected dominant task. If there is no
task that satisfies the improvement condition (i.e.,
PromotionSet is empty), the search stops and the last

saved configuration is optimal. Otherwise, the promotion of
the alternative task of the selected dominant task is carried
out (line 17). Note that its alternative task priority is set to
the lowest priority level, which allows a smaller value of the
worst-case response times due to internal errors. Then, in
line 18, a new value of TE is calculated. This is necessary
because, if PromotionSet is a unitary set, the promotion
carried out in the earlier line may reduce the value of TeðxÞ.
The value of TeðxÞ may increase throughout the optimiza-
tion process if the selected 1-dominant task becomes
2-dominant. In this case, the algorithm stops in the next
iteration in line 13.

We have assumed up to now that the value TeðxÞ for any
priority configuration Px is available. Indeed, this function
can be implemented straightforwardly as a binary search.
The initial search interval can be set to ½L;max8�iðDiÞ�. As
we mentioned earlier, TE cannot assume values less than L
without compromising the schedulability of the task set. If
TE � max8�iðDiÞ, only one error occurrence within the
longest response time of the task set may take place. If the
task set is unschedulable with this maximum value, it will
be unschedulable with errors occurring at any rate.

It is interesting to note that it is possible to improve the
implementation of the algorithm by making two slight
changes. The first is with respect to the implementation of
the function TeðxÞ. As can be seen, we only set a new value
to TE in line 18 if the priority configuration is optimized.
Thus, we can reduce the search interval for the binary
search to ½L; TE�, where TE is its current value. The second
modification is related to the choice of the dominant task in
line 14. Although any 1-dominant task can be selected, it is
preferable to select one, say �i, with the highest alternative
task priority. This is because the possibility of reducing
Rint
i ðx; TEÞ is lower, which may lead to a smaller number of

iterations when it is not possible to improve priority
configurations.

6.1 Proof of Correctness and Complexity

In order to prove the correctness of the PCS algorithm,
we have to show that 1) an optimal priority configuration
is found (Theorem 6.1) and 2) the algorithm stops
(Theorem 6.2). Before showing this, the equivalence
between search path and the execution of the algorithm
is shown (Lemma 6.1).

Lemma 6.1. Let S ¼ ðP0; P1; . . . ; PwÞ be the sequence of priority
configurations generated by the algorithm PCS. S is a prefix of
or is equal to the label sequence of a search path
SP ¼ ðv0; v1; . . . ; vwÞ.

Proof. First, suppose that, during the execution of the
algorithm, no task becomes 2-dominant. In this case, we
prove by induction that S is the exact sequence of the
vertices inSP . The induction is on the number of times that
the algorithm executes the promotion-block. The base case
is the first execution of the promotion-block. Note that the
execution of the save-block does not change the priority
configuration. It is clear that v0, labeled P0 ¼ h0; 0; . . . ; 0i,
belongs to the search path by definition. Since D2ð0Þ ¼ ;,
during the first execution of the promotion-block either the
algorithm stops (PromotionSet ¼ ;) and, so, jSj ¼ jSP j ¼
1 or a promotion is carried out. Let P1 be the second
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Fig. 9. The optimal priority configuration search algorithm.



priority configuration in S. By definition of the search
path, P1 is the label of v1 since (10) corresponds to the
execution of l ine 17 and (9) holds because
PromotionSet 6¼ ;. Hence, the base case holds. Now,
suppose that a given Px 2 S is the label of vx so that
ðPx; PwÞ 2 S and ðvx; v0wÞ 2 SP . By the algorithm, this
means that line 17 was executed and the promotion of a
dominant task was carried out. By a similar argument
made for the base case, this promotion is equivalent to
traversing an edge in SP and, so, Pw is the label of v0w, i.e.,
v0w ¼ vw. Therefore, if no 2-dominant task is found during
the execution of the algorithm, the sequence S is the
exact sequence of a given SP . Now, consider that some
2-dominant task is found in some priority configuration
Px 2 S. As a result, by line 13, the algorithm stops in Px.
Observe that, in this case, Px is the last priority
configuration in S and the first one such that
D2ðxÞ 6¼ ;. Hence, by the induction above, it is clear that
there exists vx 2 SP and Px is the label of vx. As a result,
the sequence ðP0; P1; . . . ; PxÞ is the label of the vertices of
the subsequence ðv0; v1; . . . ; vxÞ 2 SP . Therefore, S is a
prefix of the label sequence of SP , as required. tu

Theorem 6.1. The algorithm PCS finds an optimal configuration
priority regarding the proposed analysis.

Proof. Based on the results of Lemma 6.1 and Theorem 5.1,
we only need to show that the last saved configuration
corresponds to the optimal one. By the algorithm, P0 ¼
h0; 0; . . . ; 0i is the first saved priority configuration.
Assume first that there is no other execution of the
save-block. This is because the algorithm stops in line 11,
13, or 20, which means that no optimization was possible
from P0. In other words, for any other priority config-
uration reached by the algorithm, say Pz, the task set is
unschedulable with TE ¼ Teð0Þ ÿ 1. As a result, P0 is
optimal. Now, assume that there are at least two
(consecutively) saved priority configurations, Py and Px
say. By the construction of the algorithm, the values
attributed to TE do not increase throughout the itera-
tions. Thus, TeðxÞ � TeðyÞ. This implies that the last saved
priority configuration has the minimum (optimal) value
of TE , as required. tu

Theorem 6.2. The algorithm PCS stops with at most nðnÿ 1Þ
iterations.

Proof. By construction of the algorithm, it stops either when
PromotionSet ¼ ; or when L > TE or when the algo-
rithm reaches some configuration with a 2-dominant
task. Let us assume that there is some task set that does
not have any 2-dominant task for all possible priority
configurations. In this case, the algorithm never stops
due to 2-dominant tasks. As L � TE is a precondition of
the algorithm which is guaranteed to be true throughout
the iterations (line 11), we have to prove that the
condition PromotionSet ¼ ; is eventually true at most
at the iteration number nðnÿ 1Þ. Our proof will be by
looking at the longest possible search path in the search
graph (using the result of Lemma 6.1). By the definition
of the search graph, the longest path is ðv0; v1; . . . ; vn!ÿ1Þ.
If this path is the longest one, it is characterized by
increasing one task priority level per edge. Thus, for the

lowest priority task, we have to traverse n edges, for the
second lowest priority task, nÿ 1 edges, and so on. The
maximum number of traversed edges is

Xnÿ1

i¼1

i ¼ nðnÿ 1Þ
2

:

The worst case is when there is only one 1-dominant task
in each vertex of the search path and each promotion of
its priority makes the task set schedulable (i.e., each
execution of the promotion-block is followed by one
execution of the save-block). As a result, two iterations
per priority promotion are necessary, one to promote the
priority of a dominant task and the other to save the
priority configuration. As each promotion is equivalent
to traversing an edge of the search graph, the maximum
number of iterations is twice the maximum number of
traversed edges. Also, for the priority configuration
h0; 1; . . . ; nÿ 1i, PromotionSet ¼ ; since all alternative
tasks are executing in the highest priority level. There-
fore, there are at most nðnÿ 1Þ iterations. tu
The time complexity of the search is determined by the

worst-case number of iterations, i.e., Oðn2Þ. This can be
considered a significant result since we reduced the search
space from n! to n2. The whole algorithm has time
complexity nearly Oðn4Þ since, in the worst case, we have
to calculate the response time (line 23) n2 times and carry
out the sensitivity analysis (function TeðxÞ—line 18) when-
ever the promotion block is executed.

7 ASSESSMENT OF EFFECTIVENESS

This section characterizes the applicability of the described
approach by simulation, where 18,000 task sets (10 tasks per
task set) were generated. The values of worst-case compu-
tation time and recovery costs of each task set were
generated according to an exponential distribution with
mean U=10, where U is the processor utilization. The
periods and deadlines of tasks were assigned according to a
uniform distribution with minimum and maximum values
set to 50 and 5; 000, respectively. Deadlines were allowed to
be less than or equal to periods. We used the deadline
monotonic algorithm to assign the priorities of primary
tasks. We did not consider processor utilization higher than
0.9 since it is difficult to guarantee the schedulability of the
task set under error occurrences (i.e., most of the time it is
not possible to tolerate even one fault at these higher
processor utilisations).

The points in Fig. 10 represent the obtained gain in terms

of fault resilience of the task sets. This gain was measured

by comparing the values of Teð0Þ and TeðxÞ, where Px is the

optimal priority configuration found by the algorithm of

Fig. 9. In other words, the gain was measured as Teð0ÞÿTeðxÞ
Teð0Þ .

The line plotted in the graph represents the mean gain

obtained by the proposed approach. As can be seen from

the figure, the obtained reductions on TE are, on average,

low (up to 10 percent). However, high gains may be

obtained in some cases, mainly when processor utilization

is greater than 0.4. In our experiments, we found gains of up
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to 78 percent. The lower gains for lower processor

utilizations can be explained by the fact that, in these cases,

there is higher spare time available. This spare time can be

used to carry out fault tolerance assuming lower values of

TE . Promoting the priority of alternative tasks for these

cases, therefore, has lower impact in fault resilience since it

is already high.

8 RELATED WORK

Several scheduling mechanisms for fault-tolerant purposes
can be found in the literature. Most of them either assume a
restrictive task/fault model and, so, lack flexibility or
impose restrictions on the way in which fault tolerance is
carried out. Moreover, most approaches that are summar-
ized below assume that alternative tasks run with the same
priorities as their respective primaries. Here, we refer
mainly to approaches designed for scheduling fault-tolerant
uniprocessor systems.

One of the first scheduling mechanisms for fault
tolerance purposes was described by Liestman and Camp-
bell [13]. This mechanism only deals with periodic tasks,
whose periods have to be multiples of each other. Another
restriction of this mechanism is that the execution times of
alternative tasks have to be shorter than the execution times
of their respective primaries.

The approach presented by Ghosh et al. [8] considers
only reexecution of faulty tasks to tolerate transient faults.
As it is based on the Rate Monotonic priority assignment
policy [15], its disadvantages are inherited by the proposed
mechanism. Another approach that uses similar assump-
tions has been proposed [2]. This approach carries out fault
tolerance by periodically checkpointing tasks in different
nodes and, so, both transient and permanent faults can be
tolerated.

Kandasamy et al. [10] describe a recovery technique that
tolerates transient faults in an offline scheduled distributed
system. It is based on taking advantage of task set spare
capacity. The amount of spare capacity is distributed over a
given period so that task faults can be handled. Although
tasks are assumed to be preemptive and their precedence
relations are taken into account, only periodic tasks, whose
periods are equal to deadlines, are considered.

An interesting approach to tolerating transient faults
which is independent of the schedulability analysis being
used has been described by Ghosh et al. [7]. However, it is
considered that recovery is carried out only by reexecution
of tasks.

Recently, an EDF-based scheduling approach, which
takes the effects of transient faults into account, has been
proposed [12]. Its basic idea is to simulate the EDF
scheduler and to use slack times for executing task
recoveries given that a fault pattern or the maximum
number of faults per task is known a priori. This means
that the assumed error occurrences of the task set is
represented by several parameters, the fault pattern.

Another EDF-based scheduling approach for supporting
fault-tolerant systems has been proposed by Caccamo and
Buttazzo [6]. Their task model consists of instance skippable
and fault-tolerant tasks. The former may allow the system
to skip one instance once in a while. The latter is not
skippable (i.e., all instances have to execute by their
deadlines) and is composed of a primary and a backup
job. The primary job is scheduled online and provides high-
quality service, while the backup job is scheduled offline
and provides acceptable services.

In this work, we use fixed-priority-based scheduling for
both primaries and alternative tasks. We represent, using
TE , the extent that the task set is subject to errors. This
unique representation parameter has allowed us to derive a
simple but effective optimization algorithm. Also, we do
not restrict the number of errors that may interrupt primary
and alternative tasks since this number is a function of TE .
Yet, TE can be used to establish probabilistic scheduling
guarantees under the assumption that error occurrences
follow a Poison distribution. This result has been shown by
Burns et al. [5] and is the main motivation for our approach.
Our work is a generalization of the approach proposed by
Burns et al. [3]. As we have seen, fault tolerance can be
carried out by any error-recovery mechanism since the cost
of recovery can be accounted by the schedulability analysis.
This approach is represented here by (2).

The priority assignment problem has not been satisfac-
torily addressed for fault tolerance purposes. To the best of
our knowledge, the approach presented by Ramos-Thuel
and Strosnider [19] is the closest work related to ours. It is
based on the concept of transient server and its basic idea is
to explore the spare capacity of the task set to determine the
maximum server capacity at each priority level. This
information is used for online scheduling decisions in the
case of error occurrences. The authors have not presented a
reasonable way of determining the server periods, though.
Unlike them, we are concerned with static scheduling,
where the schedulability of the whole task set must be
guaranteed.

9 CONCLUSION

In this paper, we have addressed the problem of providing
suitable schedulability analysis for fault-tolerant hard real-
time systems. Two major contributions have been pre-
sented. First, response time analysis which allows task
recovery to be carried out at higher priority levels has been
described. Second, an efficient algorithm that assigns the
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optimal priority configuration for task recovery has been

presented. By optimal, we mean the priority configuration

which maximizes the fault resilience of task sets as for the

described analysis. The proposed algorithm uses the

properties of the analysis to reduce the space of search

from Oðn!Þ to Oðn2Þ. To the best of our knowledge, the

problem of maximizing fault resilience by priority manip-

ulation has not been addressed before in the context of

fixed-priority scheduling. We have shown by simulation

that significant gains in terms of fault resilience may be

obtained by applying our approach.
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