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Abstract—In this paper, we present a strongly fault-tolerant design for the k-ary n-cube multiprocessor and examine its

reconfigurability. Our design augments the k-ary n-cube with ðkjÞ
n
spare nodes. Each set of jn regular nodes is connected to a spare

node and the spare nodes are interconnected as either a ðkjÞ-ary n-cube if j 6¼ k
2 or a hypercube of dimension n if j ¼ k

2 . Our approach

utilizes the capabilities of the wave-switching communication modules of the spare nodes to tolerate a large number of faulty nodes.

Both theoretical and experimental results are examined. Compared with other proposed schemes, our approach can tolerate

significantly more faulty nodes with a low overhead and no performance degradation.

Index Terms—Fault tolerance, k-ary n-cube, hypercube, spare allocation, reconfiguration, augmented multiprocessor, wave

switching.
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1 INTRODUCTION

A number of multiprocessors have been built using
networks that are either k-ary n-cube or are isomorphic

to one. Examples include meshes, tori, and hypercubes.
Some of the architectures based on the mesh and the torus
include Paragon XP/S and DELTA (Intel) [1], J-Machine (MIT)
[2], and MPP-T3E (Cray) [3].

As the size of the k-ary n-cube multicomputer grows, due
to its complexity, the probability of node failures becomes
high. Therefore, it is crucial that such systems be able to
withstand a large number of faults for a reasonable amount
of time. To sustain the same level of performance, some
researchers have investigated hardware schemes for the
k-ary n-cube where spare nodes are used to replace the
faulty ones. A system so reconfigured, however, may no
longer be able to efficiently support the original task
partition. Furthermore, it may have to use a slower adaptive
router instead of continued use of a faster oblivious one.
Therefore, a fault-tolerant design that retains the same
service level in the presence of faults and does not require
any alteration of the computation or communication
algorithms is preferred. Most of such schemes in the
literature do so by preserving the physical topology of the
system and, in general, are referred to as strongly fault-
tolerant schemes [4], [5]. The scheme in this paper retains
the same capabilities by preserving the logical topology of
the system. Therefore, we have expanded the definition of
the strongly fault-tolerant system to preservation of either
the physical or the logical topology of the system. Under the
extended definition, a strongly fault-tolerant system must

not require any modification of the communication or
computation algorithms. Our scheme does not add any
congestion penalty on the communication paths. However,
it does impose a higher dilation, resulting in small
additional internode communication delays. Therefore, the
service level could be degraded slightly.

Two classes of hardware schemes have been proposed in
the literature to tolerate faulty nodes. Some researchers
have examined local reconfiguration techniques where a
spare node can only replace a faulty node within a given
subset [6], [7], [8], [9], [10], [11], [12], [13], [14]. The switch
complexity of these schemes is similar to ours. However,
they suffer from low utilization of spare nodes and, in
general, are not strongly fault-tolerant.

The second class of approaches uses global reconfigura-
tion schemes. One group of approaches is based on creating
a supergraph of the target topology such that if a node and
its associated links are removed from the supergraph, the
remaining graph would be isomorphic to the target
topology [15], [16], [17], [18], [19], [20]. These schemes are
therefore strongly fault-tolerant. However, most of the
graph-based schemes are only node-minimal and suffer
from prohibitively large node degree. For example, the
f-fault-tolerant scheme for n-dimensional mesh in [15],
which tolerates f faulty nodes, requires a node degree of
ðf þ 1Þn and ðf þ 2Þn for even and odd f , respectively.
Another node-minimal approach for an f-fault-tolerant two-
dimensional mesh [16] requires f rows of switches between
every pair of processing elements rows. A non-node-
minimal f-fault-tolerant two-dimensional mesh [19] has a
node degree of 13, but requires 8f3 þ 16f2 spare nodes.

A second group of global reconfiguration schemes
utilizes rows and columns of spare nodes to tolerate the
faulty nodes [21], [22], [23], [24]. The main objective of row-
column bypass schemes is to increase yield (defect
tolerance) in integrated microelectronic systems. The main
distinction among most of the proposed schemes is the
complexity of the switch elements and the way they are
implemented. To achieve a reasonable probability of
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survival, most of the schemes require a large number of
spare rows or spare columns.

In this paper, we propose a global reconfiguration
scheme that utilizes wave-switching communication [25]
to make the k-ary n-cube multicomputer strongly fault-
tolerant. Wave-switching implements circuit-switching and
wormhole-switching concurrently; permanent connections
and long messages use the circuit-switched segment, while
short messages are transmitted using the wormhole-switch-
ing. In our scheme, one spare node is assigned to each
group of regular nodes, called a cluster; each spare node is
connected to every regular node of its cluster via an
intracluster spare link. Furthermore, the spare nodes of
neighboring clusters are interconnected using intercluster
spare links; two clusters are declared neighbors if there
exists at least one regular node in each with a direct link
between them. Our approach differs from others in the way
we link the spare nodes to the faulty regular nodes. Once a
node becomes faulty, most schemes discard the faulty node
along with the healthy links that are connected to it.
Therefore, additional spare links are needed to connect the
node that replaces the faulty node to the neighboring nodes
of the faulty node. In our approach, we only need to replace
the faulty component of the node and therefore can
communicate with the neighboring nodes of the faulty
node using the existing links. As a result, our scheme
minimizes the required number of spare links, which is an
important factor in the design of massive parallel machines
[26]. To facilitate communication, we utilize the circuit-
switched capabilities of various spare nodes’ communica-
tion modules to construct dedicated paths between multiple
faulty regular nodes and multiple spare nodes. We use this
property to show that our scheme can globally assign faulty
nodes to spare nodes and has a significant higher fault-
tolerant capability than other approaches. Our approach is
both practical and flexible such that, depending on the
desired reliability of the system, one can design a fault-
tolerant system with different numbers of spare nodes.

The rest of the paper is organized as follows: In the next
section, notation and definitions that are used throughout
the paper are given. An overview of our approach is
presented in Section 3. Theoretical and simulation results
are presented in Sections 4 and 5, respectively. Finally,
concluding remarks are presented in Section 6.

2 NOTATION AND DEFINITIONS

Each node of a k-ary n-cube is identified, in radix k, by
n-tuple ðan�1 � � � ai � � � a0Þk, where ai is a radix k digit and
represents the node’s position in the ith dimension. Each
node is connected to i ts neighboring nodes
ðan�1 � � � ðai � 1 mod kÞ � � � a0Þk, along the dimension i.
Each spare node, in addition to n digits, is labeled with
a prefix S i.e. ðSan�1 � � � ai � � � a0Þk. The link connecting any
two nodes P and Q is represented by P ! Q. A cluster
whose local spare is labeled San�1 � � � ai � � � a0 is called
cluster an�1 � � � ai � � � a0. The topology that interconnects the
spare nodes is called the spare network. We define the
Connection Requirement (CR) of a spare node in a cluster with
multiple faulty nodes as the number of edge-disjoint paths
that must be constructed, within the spare network from

that spare node to other spare nodes in the fault-free
clusters, so that faulty nodes can be tolerated. Each of these
edge-disjoint paths is referred to as a dedicated path from a
faulty node to its assigned spare node. The graph
theoretical notations used throughout the paper follow
standard graph theory definitions as outlined in [27].

3 OVERVIEW OF THE ENHANCED CLUSTER

APPROACH

An enhanced cluster k-ary n-cube (ECKN), consisting of
kn regular nodes, is constructed by assigning one spare
node to each cluster of jm regular nodes; each spare node
is connected to each of the jm regular nodes of its cluster
via an intracluster spare link. Hence, there exist kn

jm spare
nodes assigned to kn

jm clusters. Moreover, the spare nodes
are interconnected using intercluster spare links. To keep
the interconnecting topology of the spare nodes similar to
the one that interconnects the regular nodes, one can
either design for k ¼ j (0 � m � n) or n ¼ m (1 � j � k
and k ¼ c� j, where c is a constant); the resulting
topology among the spare nodes would then either be a
k-ary ðn�mÞ-cube or a k

j -ary n-cube, respectively. For
example, the topology among the spare nodes of an
enhanced cluster 6-ary 4-cube with j ¼ k ¼ 6 and m ¼ 2 is
a 6-ary 2-cube, and the spare nodes of an enhanced cluster
6-ary 4-cube withm ¼ n ¼ 4 and j ¼ 2 are interconnected as
a 3-ary 4-cube. In Section 4, we show that, in our approach,
a higher connectivity among spare nodes results in a higher
fault tolerance. Therefore, we choose the k

j -ary n-cube as our
spare network. As a result, in our scheme, one spare node is
connected to each of the jn regular nodes of every cluster
via intracluster spare links. Moreover, the ðkjÞ

n spare nodes
are interconnected as a k

j -ary n-cube using intercluster spare
links. We next present two designs for the ECKN. In the
first scheme, j 6¼ k

2 and, in the second one, j ¼ k
2 ; the second

case is a special case of the first where the spare network is a
2-ary n-cube (hypercube).

3.1 The ECKN with j 6¼ k
2

The resultant structure consists of kn regular nodes and ðkjÞ
n

spare nodes. The degree of each regular node and spare
node is 2nþ 1 and 2nþ jn, respectively. Naturally, a
smaller j yields a smaller cluster, a smaller spare node
degree, and a higher number of spare nodes, resulting in a
higher fault tolerance. Fig. 1 depicts an enhanced cluster
6-ary 2-cube with j ¼ 2. In the figure, each spare node is
assigned to a cluster of 22 regular nodes and the spare
nodes are connected as a 3-ary 2-cube.

We next describe how the ECKN tolerates faulty nodes. It
is common to assume that faulty nodes retain their ability to
communicate since, normally, the hardware complexity of
the communicationmodule ismuch lower than the computa-
tional module. Therefore, the probability of failure in the
communicationmodule is much lower than the computation
module. However, depending on the value of j and n, the
spare node degree could be large enough that such an
assumption would not be appropriate. In such a case, the
communication module of each node should be duplicated.
This provides similar protection to the schemeswhere a spare
node replaces the computation and communication modules
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of the faulty node. The difference is that, in our scheme,
the replacement computation and communication mod-
ules would be physically in different nodes. The downside
of duplicating the communication module, aside from
increased VLSI area, is the higher probability of stuck-at
faults in the related links.

To tolerate a faulty node, the computation module of the
spare node logically replaces the computation module of
the faulty node. In addition, if the spare node resides in the
cluster of the faulty node, the new communication module
consists of the functional communication module of the
faulty node logically merged with the appropriate routing
channel of the local spare node. If the assigned spare node
and the faulty node belong to different clusters, a dedicated
path is constructed by linking the appropriate routing
channels of the intermediate spare nodes.

Fig. 2 illustrates reconfiguration of an enhanced cluster
6-ary 2-cube with the spare network of a 3-ary 2-cube in the
presence of indicated faulty nodes. For the sake of clarity,

only active spare links are shown in the figure and dedicated

paths are drawn in a variety of line styles to distinguish them.

In the figure, faulty nodes 22, 23, 32, 33, 34, 35, 40, 43, and 50

are replaced by spare nodesS02,S01,S10,S11,S22,S12,S20,

S21, and S00, respectively. Note that, by utilizing the

intermediate spare nodes, in effect, four logical spare nodes

arepresent in cluster 11. Fig. 3 illustrates howspare nodes S01

and S11 replace faulty nodes 23 and 33, respectively, by

merging their communication modules. The dashed and

solid light lines in Fig. 3 pertain to similar lines in Fig. 2 and

represent effective permanent circuit-switched dedicated

paths after the reconfiguration. Once such paths are estab-

lished, due to the circuit-switched capability of the wave-

switching communication modules, the physical location of

the faulty nodes and their assigned spare nodes become

irrelevant. Therefore, the logical topology is preserved with

similar congestion and higher dilation. Moreover, no mod-

ification of the available computation or communication

algorithm is required.
The node degree of the regular node and spare node in

Fig. 2 is five and eight, respectively. In contrast, to tolerate

the same number of faulty nodes, the scheme in [15], which

has one of the least node degrees among graph-based

schemes, requires a node degree of 22. Also, the non-node-

minimal scheme in [19] would require a node degree of 13

at the expense of 7,128 spare nodes.

3.2 The ECKN With j ¼ k
2

If j ¼ k
2 , the network interconnecting the spare nodes

becomes a 2-ary (binary) n-cube. The resultant structure

consists of kn regular nodes and 2n spare nodes. The degree of

each regular node and spare node is 2nþ 1 and nþ ðk2Þ
n,

respectively. Fig. 4 depicts a 6-ary 2-cube with j ¼ 3. Hence,

each spare node is assigned to a cluster of 32 regular nodes

and the spare nodes are interconnected as a two-dimensional

hypercube. Faulty nodes are tolerated, as discussed before.
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Fig. 1. An enhanced cluster 6-ary 2-cube with j ¼ 2.

Fig. 2. Reconfiguration of an ECKN in presence of faulty nodes.

Fig. 3. Replacing faulty nodes 23 and 33 with spare nodes S01 and S11,

respectively.



4 THEORETICAL RESULTS

4.1 The ECKN with j 6¼ k
2

Let us define a cluster with one or more faulty nodes as a
faulty cluster. Since, within a cluster, the local spare node is
directly connected to every regular node, every dedicated
path between a faulty node of a cluster and its assigned
spare node must pass through the local spare node of the
cluster. Therefore, the number of edge-disjoint paths
between the faulty nodes of a cluster and the unassigned
spare nodes in other clusters is the same as the number of
edge-disjoint paths (within the spare network) between the
local spare node of the faulty cluster and the unassigned
spare nodes. The reconfigurability of the ECKN is then a
function of the number of dedicated and edge-disjoint paths
that can be established, within the spare network, between
the local spare node of a cluster with multiple faulty nodes
and the available spare nodes in the fault-free clusters. The
Connection Requirement (CR) of the spare node of a faulty
cluster then represents the required number of such paths.
For example, in Fig. 2, since three out of four logical spare
nodes of cluster 11 physically belong to other clusters, the
CR of the spare node S11 is three. Note that the CR of a
spare node is equal to the number of faulty nodes in its
cluster minus one. We next set the upper bound on the
number of faulty nodes that can be tolerated in a cluster and
the lower bound on the number of the faulty nodes that an
ECKN can tolerate regardless of their distribution.

Lemma 1. The upper bound on the number of faulty nodes that

an enhanced cluster k-ary n-cube, with j 6¼ k
2 , can tolerate in a

cluster is 2nþ 1.

From Lemma 1, it follows that the maximum CR of a
spare node is 2n.

Theorem 1. In an enhanced cluster k-ary n-cube, with j 6¼ k
2 ,

2nþ 1 faulty nodes can be tolerated regardless of fault
distribution.

Even though, compared with the published results in the
literature [6], [7], [8], [9], [10], [13], [14], [15], [16], [17], [19],
[18], [20], [24], the ECKN under Theorem 1 has an attractive
fault-tolerant capability, only a small fraction of spare nodes
and spare links are utilized to tolerate 2nþ 1 faulty nodes.
Hence, with the majority of the spare nodes and spare links
left intact, one should expect that the actual fault tolerance
of the ECKN would be much higher.

We next examine whether the ECKN can tolerate ðkjÞ
n

faulty nodes under specific fault patterns. Certainly, if each
faulty cluster is limited to one faulty node, the ECKN can
tolerate all ðkjÞ

n faulty nodes by assigning each one to its
local spare node. To examine the case with multiple faulty
nodes per faulty clusters, let us group the spare nodes into
three sets: SS (set of source nodes), SU (set of used nodes),
and ST (set of target nodes). A source node is a spare node
in a cluster with multiple faulty nodes. The set SS then
represents the spare nodes with a CR greater than 0. ST is
the set of unassigned spare nodes, and SU consists of spare
nodes that have been assigned to faulty nodes and have a
CR of 0. For example, considering only the faulty nodes in
Fig. 2, after assigning the local spare node to a local faulty
node in each faulty cluster, SS ¼ fS11; S12; S20g,
SU ¼ fS21g, and ST ¼ fS00; S01; S02; S10; S22g. During
our reconfiguration algorithm, which is discussed in
Section 5, the spare nodes are dynamically assigned to the
various sets. To illustrate this, suppose the CR of a spare
node � 2 SS is greater than 0 and there exists a dedicated
path from � to � 2 ST . Consequently, � replaces a faulty
node in the cluster of � via a dedicated path. � is then called
used and is assigned to SU . Also, the CR is reduced by one. If
the CR of � becomes zero, it is also marked as used and is
assigned to SU . The ECKN is called reconfigured when SS
becomes an empty set.

As mentioned before, the reconfigurability of the ECKN
is a function of the number of dedicated and edge-disjoint
paths, within the spare network, that can be established
between the local spare nodes (nodes in SS) of the clusters
with multiple faulty nodes and the available spare nodes
(nodes in ST ) of the fault-free clusters. Obviously, if the
spare nodes are interconnected as a complete graph, the
ECKN can tolerate all ðkjÞ

n
faulty nodes regardless of their

distribution. Hence, the reconfigurability of the ECKN is a
direct consequence of the connectivity of the topology of the
spare network. Let us denote the topology of the graph
connecting the spare nodes by G ¼ ðV ;EÞ, where V ¼
SS

S
SU

S
ST and E consists of the appropriate spare links.

Let the CR of a node n 2 SS be represented by CRðnÞ and let
us denote the sum of the CRs of all nodes in a set P asP

n2P CRðnÞ. Since the number of faulty nodes cannot
exceed the number of spare nodes, jST j �

P
n2SS

CRðnÞ. The
following theorem examines the connectivity of G as it
pertains to the reconfigurability of the ECKN.
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Theorem2.Consider a graphGðV ;EÞ, where V ¼ SS
S
SU

S
ST .

The necessary and sufficient condition for every node n 2 SS to

have CR edge-disjoint paths to CR nodes in ST is that the

minimum number of edges leaving any subset of nodes P � V

be greater than or equal to
P

n2ðP
T

SSÞ CRðnÞ � jP
T
ST j.

Based on Theorem 2, the ECKN can tolerate a given
distribution of faulty nodes provided the sum of the CRs of

any set of spare nodes (with nonzero CR) is smaller than the
number of edges leaving the set. To examine reconfigura-
tion under multiple faulty nodes per faulty cluster (spare
node’s CR � 1), consider the example depicted by Fig. 5,
representing a segment of a spare network. If every spare

node in the figure has a CR ¼ 1 (two faulty nodes per faulty
cluster), the sum of the CR of the entire set would be 36
(72 faulty nodes within the set). However, since the number
of edges leaving the set is only 24, reconfiguration would
fail according to Theorem 2. The result can be obtained for

any dimension of the ECKN since, for a given dimension,
one can find a radix that violates Theorem 2. Therefore,
under the maximum number of faulty nodes, no theoretical
lower bound on the number of faulty nodes per cluster can
be established.

4.2 Theoretical Results under j ¼ k
2

The spare network under j ¼ k
2 is a hypercube of dimensionn

(spare cube). The theorems given below examine the
connectivity of the spare cube and, therefore, the reconfi-
gurability of the ECKN. We first set the upper bound on the
number of faulty nodes that can be tolerated in a cluster. We
then examine the lower bound on the number of faulty
nodes that an ECKN can tolerate for any fault distribution.

Finally, we examine the conditions under which the
maximum number of faulty nodes can be tolerated.

Lemma 2. The upper bound on the number of faulty nodes that

an enhanced cluster k-ary n-cube, with j ¼ k
2 , can tolerate in a

cluster is nþ 1.

Theorem 3. In an enhanced cluster k-ary n-cube, with j ¼ k
2 ,

nþ 1 faulty nodes can be tolerated regardless of fault

distribution.

We next apply Theorem 2 to the spare cube and examine
the reconfigurability of the ECKN. Theorems 4 and 5 set the
bounds on the number of faulty nodes per cluster, under

the maximum number of faulty nodes (2n), that can be
tolerated regardless of the fault distribution.

Theorem 4. Clusters with four or more faulty nodes can cause
the reconfiguration of an ECKN, with j ¼ k

2 and in the

presence of 2n faulty nodes, to fail.

Theorem 5. The ECKN, with j ¼ k
2 , can tolerate 2n faulty nodes

with up to three faulty nodes per cluster regardless of the fault
distribution.

Hence, the ECKN has a higher theoretical fault tolerance
if j ¼ k

2 .

5 SIMULATION RESULTS

Our theoretical results indicated that some patterns of
faulty nodes can cause the reconfiguration of the ECKN to
fail. However, the probability that the faulty nodes can form
such patterns is very low. Therefore, a more realistic
measure of the reconfigurability of the ECKN would be
under random fault distributions.

An optimal reconfiguration algorithm can be developed
by utilizing the maxflow algorithm. Here, optimality is
measured as the ability to assign a spare node to every faulty
node whenever such an assignment is feasible vis-a-vis
Theorem 2. The main drawback to reconfiguration using
the above algorithm is that a digraph representation of the
spare network has to be constructed [28] and the spare
node assignment has to be done by the host processor. To
overcome these deficiencies, we next present a near-optimal
reconfiguration algorithm, which is called Alloc-Spare. The
algorithm consists of three parts, as specified below:

1. Early Abort: The following solvability checks are
performed to determine whether the reconfiguration
is feasible. If the total number of faulty nodes is
greater than the number of spare nodes (ðkjÞ

n), the
reconfiguration fails. If the CR of a spare node is
greater than 2n for j 6¼ k

2 or n for j ¼ k
2 , the

reconfiguration fails due to Lemmas 1 or 2,
respectively. The reconfiguration also fails if the
sum of the CR of any two neighboring spare nodes in
the spare network is greater than 4n� 2 for j 6¼ k

2 or
2n� 2 for j ¼ k

2 , based on Theorem 2.
2. Local Assignment: The local spare node of every

faulty cluster is assigned to a faulty node within the
cluster. If all faulty nodes are covered, the ECKN is
reconfigured.

3. Nonlocal Assignment: To find a set of candidate
spare nodes that can be assigned to a faulty node, we
utilize Lee’s path-finding algorithm [29]. The algo-
rithm begins by constructing a breadth-first search
of minimum depth d (1 � d � ðkjÞ

n � 1) in the spare
network from the local spare node of a faulty cluster
with a nonzero CR. If a free spare node is found, a
path to the source node is formed. The algorithm
guarantees that a path to a spare node will be found
if one exits and that the path will be the shortest
possible [29]. Therefore, all faulty nodes that are one
link away from available spare nodes (at depth 1) are
assigned first. Once a path is formed, the links
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associated with that path are deleted from the spare
network, resulting in a new structure. If there still
remain some uncovered faulty nodes, a solvability
test to check the CR of neighboring spare nodes,
similar to Early Abort, is performed on the new
structure and Step 3 is repeated for a higher depth d.
Reconfiguration fails if d > ðkjÞ

n � 1, which is the
longest acyclic path in the spare network.

In an ECKN, at most, there would be 1
2 ðkjÞ

n source nodes.
Since the longest path from a source node to a target node is
ðkjÞ

n � 1, the time complexity of the algorithm is OððkjÞ
2nÞ,

provided thehost processor implements it. The algorithmcan
also be applied in a distributed manner inOððkjÞ

nÞ bymaking
each source node do its own breadth-first search [30].

We implemented the algorithm Alloc-Spare for an ECKN
with k ¼ 24, n ¼ 4, and j ¼ 6 (j 6¼ k

2 ); spare nodes are
interconnected as a 4-ary 4-cube. Step 3 of Alloc-Spare was
implemented by first assigning spare nodes to the faulty
nodes in the clusters with the lowest indices, i.e., the
breadth-first search was first formed from the spare node
S00004 (provided its CR is nonzero), followed by the spare
node S00014, and so on. The simulation result for up to 256
randomly placed faulty nodes is shown in Fig. 6. One
thousand simulation runs were performed for each given
number of faulty nodes. The result indicates 100 percent
reconfigurability for the ECKN under up to 256 randomly
placed faulty nodes. The other plot in the figure pertains to
the result of our local reconfiguration scheme, called the
cluster scheme [28], whose performance is similar to the
Interstitial scheme proposed by Singh [7].

To simulate the case under j ¼ k
2 , we implemented

algorithm Alloc-Spare for an ECKN with k ¼ 6, n ¼ 10, and
j ¼ 3, resulting in a spare cube of dimension 10. Our
simulation result for up to 1,024 randomly placed faulty
nodes indicates 100 percent reconfiguration.

Perhaps a better measure of the fault-tolerant capability of
the ECKN is the connectivity of the spare network after the
reconfiguration. As a measure of its connectivity, we
calculated the average number of spare links per spare node
that were left unused after the reconfiguration. Our result
reveals that, under random distribution of faults, on the

average, about one spare link per spare node is used to
reconfigure theECKN.Hence, thesparenetworkof theECKN
is a well-connected graph even after the reconfiguration.

To examine the limitation of the ECKN under random
fault distribution, we next assumed that the number of
faulty nodes in the ECKN is the maximum (ðkjÞ

n). Moreover,
we assumed that each faulty cluster contains a fixed
number of faulty nodes. We first present our simulation
results for j 6¼ k

2 . Since, by Lemma 1, a faulty cluster may
have up to 2nþ 1 faulty nodes, simulation runs for 1 to
2nþ 1 faulty nodes per cluster were carried out. Note that,
under the maximum number of faulty nodes, the number of
faulty clusters is equal to the number of faulty nodes
divided by the given number of faulty nodes per cluster. If
the division results in a remainder, an additional cluster
with the number of faulty nodes equal to the remainder
needs to be allocated as well. The faulty clusters were then
randomly allocated in an ECKN with k ¼ 66, j ¼ 11, and
n ¼ 3; 216 spare nodes connected as a 6-ary 3-cube. The
simulation result is shown by the solid line in Fig. 7, where
each point in the graph represents 1,000 simulation runs.
Fig. 7 indicates the percent number of cases where the
ECKNwas able to reconfigure. The figure shows that nearly
100 percent reconfiguration is achieved (all 216 faulty nodes
are tolerated) for up to four faulty nodes per cluster.
Moreover, our other simulations reveal that, on the average,
less than half of the six spare links per spare node were
used to make the reconfiguration feasible. Therefore, the
spare network remains a well-connected graph via the
unused spare links, even after the reconfiguration.

During Step 3 of the reconfiguration algorithm, once a
breadth-first search is made, there may be a number of
candidate spare nodes that can be assigned to a faulty node.
So far, the selection among the candidate spare nodes has
been random. However, it may be more appropriate to
select a free spare node, which is least likely to be picked by
the faulty nodes in other clusters. To do so, we added a
preprocess step to Step 3 of the algorithm. During the
preprocess, weights are assigned to each free spare node
based on the proximity of the free spare node to other faulty
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Fig. 6. The ECKN, with j 6¼ k
2 , under random fault distribution.

Fig. 7. The ECKN, with j 6¼ k
2 , under maximum number of faulty nodes.



nodes; the higher the weight, the higher the number of
faulty nodes that are in the vicinity of the free spare.
Therefore, during Step 3, the candidate free spare node with
the lowest weight is assigned to the faulty node first. The
pertaining simulation results are shown in Fig. 7 by the
dashed line. The plot indicates some performance improve-
ment. However, the effectiveness of the modified algorithm
is less vivid in ECKN’s with higher dimensions.

Under j ¼ k
2 , additional simulations were carried out to

examine the fault-tolerant limitation of the ECKN. Note
that, by Lemma 2, a faulty cluster may have up to ðnþ 1Þ
faulty nodes. The simulation results for an ECKN of
different dimensions are shown in Fig. 8. The figure shows
that, under the maximum number of faulty nodes and
random fault distribution, an ECKN can nearly achieve
100 percent reconfiguration for up to ðn� 2Þ faulty nodes
per cluster, which is higher than the theoretical lower
bound of three faulty nodes per cluster for n > 5. Compar-
ing Figs. 7 and 8 reveals that, for the same number of faulty
nodes, the ECKN under j ¼ k

2 has a higher fault tolerance
than the ECKN under j 6¼ k

2 . Our simulations also show that
the ECKN, with j ¼ k

2 and under the maximum number of
faulty nodes and the highest number of reconfigurable
faulty nodes per cluster, uses on average less than three
spare links per spare node to reconfigure.

To measure the effect of the size of the radix and the
dimension of the network on its fault tolerance, additional
simulations were carried out. For j 6¼ k

2 , our results indicate
that, for a given dimension, the radix of the spare network
of the ECKN is inversely proportional to its reconfigur-
ability. Moreover, for all values of j, a higher dimension
network uses a lower percent of its spare links to
reconfigure and therefore is more fault-tolerant.

6 CONCLUSION

In this paper, we have presented a strongly fault-tolerant
design for the k-ary n-cube multiprocessor and examined its
reconfigurability. Our theoretical results indicate that our
schemecanalways tolerate (2nþ 1Þ faultynodes for j 6¼ k

2 and

(nþ 1) for j ¼ k
2 , regardless of their distribution. For j ¼ k

2 ,
our theoretical results further indicate that the ECKN can
tolerate 2n faulty nodes for up to three faulty nodes per faulty
cluster. Our experimental results suggest that, under random
fault distribution, ðkjÞ

n faulty nodes (the maximum) is
toleratedwith a very high probability. For faster reconfigura-
tion, our near-optimal reconfiguration algorithm is more
appropriate than the optimal one, with negligible difference
in the end result. Our scheme has a regular node degree of
ð2nþ 1Þ, which is optimal. The node degree of the spare node
is 2nþ jn if j 6¼ k

2 and nþ ðk2Þ
n if j ¼ k

2 . Hence, depending on
the value of j, k, and n, the required spare node degree could
become large. However, they are significantly lower than the
published schemes for the same number of tolerated faulty
nodes; those schemes can theoretically guarantee the max-
imum number of faulty nodes, where our scheme can only
probabilistically guarantee it.

The ECKN has the advantage of having the flexibility of
utilizing the rich interconnection properties of the hyper-
cube to attain a higher fault tolerance by setting j ¼ k

2 .
However, this is achieved at the expense of having a fixed
number of spare nodes ð2nÞ. With j 6¼ k

2 , one has the
flexibility to incorporate more spare nodes to attain a higher
reliability or reduce cost by using a smaller number of spare
nodes, at the expense of lower fault tolerance and higher
spare node degree. Compared with other proposed
schemes, the ECKN can tolerate significantly more faulty
nodes for the same overhead.

APPENDIX

Proof of Lemma 1. Given a cluster with multiple faulty
nodes, the local spare node can replace one of them.
Since the local spare node has a degree of 2n within the
spare network, at most 2n edge-disjoint paths may be
constructed from the local spare node to free spare
nodes. Therefore, the maximum number of tolerated
faulty nodes in a cluster is 2nþ 1. tu

Proof of Theorem 1. The proof is by induction. The base
case is shown for n ¼ 1. k regular nodes form a ring, as
depicted in Fig. 9a for k ¼ 12 and j ¼ 3. Similarly, kj spare
nodes form a ring. Hence, each spare node has a direct
spare link connecting it to each of its two immediate
neighboring spare nodes. By inspection, even if all 2�
1þ 1 ¼ 3 faulty nodes reside in the same cluster, there
exists three edge-disjoint paths connecting the faulty
nodes to the local spare node and its immediate
neighboring spare nodes.

Next, let us consider an ECKN of dimension nþ 1. By
construction, an ðnþ 1Þ-dimensional) CKN consists of
k n-dimensional ECKN modules such that each spare
node, in addition to its 2n spare links within its module,
is connected to two spare nodes in other modules
(Fig. 9b). By the induction hypothesis, each ECKN of
dimension n can tolerate 2nþ 1 faulty nodes. Suppose
there exist 2ðnþ 1Þ þ 1 ¼ 2nþ 3 faulty nodes. If the
distribution of faulty nodes is such that at most 2nþ 1
faulty nodes reside in one ECKN of dimension n, the
system can tolerate them by the induction hypothesis.
Consider the case where all faulty nodes reside in the
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same n-dimensional ECKN module. 2nþ 1 of the faulty
nodes can be tolerated locally by the induction hypoth-
esis. Furthermore, since every faulty node has an unused
spare link to its local spare node and the local spare node
has two unused spare links connecting it to two free
spare nodes in other modules (unassigned spare nodes
within two fault-free ECKN of dimension n), two
dedicated and edge-disjoint paths between the last two
faulty nodes and the unassigned spare nodes can be
established. The system can therefore tolerate 2ðnþ 1Þ þ
1 faulty nodes and the theorem follows by induction. tu

Proof of Theorem 2. We first prove the necessary condition:
If, from every node n 2 SS , there exists CR edge-disjoint
paths to CR nodes in ST , then the minimum number of
edges leaving any subset of nodes P � V must be greater
than or equal to

P
n2ðP

T
SSÞ CRðnÞ � jP

T
ST j, which is

the sum of the CRs of SS nodes within P minus the
number of ST nodes in P . Let us consider a subset
P1 � SS . Each of the edge-disjoint paths from a node in
SS to a node in ST must be carried over at least one edge
in the cutset (P1; V � P1Þ . Therefore, the sum of the CRs
of the nodes in P1, which represents the total required
number of edge-disjoint paths from the nodes in P1 to the
nodes in ST , must be smaller than or equal to the number
of edges in the cutset (P1; V � P1Þ. Now, let us consider a
subset P � V and denote the graph interconnecting the
nodes of P as g. Obviously, g is a subgraph of G. Within
g, there exists only jP

T
ST j target nodes. Therefore, at

most jP
T
ST j of the edge-disjoint paths may exist in g.

The rest of the paths must then be carried over the cutset
ðP; V � P Þ. Therefore, the necessary condition follows.

We next prove the sufficient condition: If the mini-
mum number of edges leaving any subset of nodes P �
V is greater than or equal to

P
n2ðP

T
SSÞ CRðnÞ � jP

T
ST j,

every node n 2 SS would have CRðnÞ edge-disjoint paths
to CRðnÞ nodes in ST . Let us create a new graph G0 ¼
ðV 0; E0Þ by adding two nodes s and t to G, as specified
below and depicted by Fig. 10. Each node in ST is

connected to t via a single edge. Each node n 2 SS is
connected to s via CRðnÞ parallel edges. Let the sum of
the CR of all nodes in SS be L. The number of edge-
disjoint paths between s and t in G0, according to
Menger’s theorem [27], is equal to the size of the mincut
in G0. We will show that there always exists an ðs; tÞ
mincut in G0 whose size is equal to L. The mincut in G0

may exist at s, t, G, or some combination of them. By
construction, the size of the cut at s equals L. Similarly,
the cutsize at t is greater than or equal to L since jST j
�

P
n2SS

CRðnÞ ¼ L. Per stated condition, for P ¼ s
S
SS

or P ¼ s
S
SS

S
SU , the cut ðP; V 0 � P Þ must have a

cutsize greater than or equal to L. Consider a general cut
in G0 crossing L1 of the edges connecting s to SS nodes,
L2 edges ofG, and L3 of the edges connecting ST nodes to
t (Fig. 10). The number of ST nodes on the unshaded side
of the cut is L3. The sum of the CRs of SS nodes within
the same side of the cut is L� L1. Therefore, the stated
condition can be formulated as L2 � ðL� L1Þ � L3 or
L1 þ L2 þ L3 � L. From this inequality, it follows that
any cut in G0 has a cutsize greater than or equal to L.
Therefore, L is the size of the mincut. Hence, there exist
L edge-disjoint paths between nodes s and t. Each of
these s-t edge-disjoint paths must pass through a unique
node in ST because each node in ST is connected to t via a
single edge. Since there only exist L edges from s (one
per path), the number of edge-disjoint paths from s that
passes through each node n 2 SS is equal to CRðnÞ.
Therefore, each node n 2 SS can make CRðnÞ edge-
disjoint paths to C0

RðnÞ distinct nodes in ST . tu

Proof of Lemma 2. The local spare node can tolerate one

faulty node. Since, within the spare cube, the local spare

node has a degree of n, at most n edge-disjoint paths may

be constructed from it to free spare nodes. Hence, at most

ðnþ 1Þ faulty nodes may be tolerated in a cluster. tu
Proof of Theorem 3. The proof is by induction. The base

case is shown for n ¼ 0. There exists one spare node,

which is connected to one regular node. Upon failure of

the regular node, the spare node can replace it directly.

Therefore, it can tolerate nþ 1 ¼ 1 faulty node.
Next, let us consider an ECKN of dimension nþ 1. By

construction, an ðnþ 1Þ-dimensional ECKN consists of
k n-dimensional ECKN modules such that each spare
node, in addition to its n spare links within its half of the
ECKN, is connected to a spare node in the other half of
the ECKN. By the induction hypothesis, each half of the
ECKN can tolerate nþ 1 faulty nodes. Suppose there
exist ðnþ 1Þ þ 1 ¼ nþ 2 faulty nodes. If the distribution
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Fig. 9. An enhanced cluster (a) k-ary 1-cube. (b) k-ary ðnþ 1Þ-cube.

Fig. 10. A cut in graph G0.



of faulty nodes is such that at most nþ 1 faulty nodes
reside in one half of the ECKN, the system can tolerate
them by the induction hypothesis. Consider the case
where all faulty nodes reside in the same half of the
ECKN. nþ 1 of the faulty nodes can be tolerated locally
by the induction hypothesis. Since every faulty node has
an unused spare link to its local spare node and the local
spare node has an unused spare link in the dimension
nþ 1 to an unassigned spare node within the fault-free
half of the ECKN, a dedicated path within the spare cube
between the ðnþ 2Þth faulty node and the unassigned
spare node can be established. The system can therefore
tolerate ðnþ 2Þ faulty nodes and the theorem follows by
induction. tu

Proof of Theorem 4. We prove the theorem by showing that

Theorem 2 does not hold for a distribution of four faulty

nodes per cluster. Let SS contain k1 spare nodes with a

CR of 1, k2 spare nodes with a CR of 2, and k3 spare nodes

with a CR of 3. Also, let ST and SU contain k0 and ku
spare nodes, respectively. Next, consider a subset P � V

with j1 � k1 spare nodes with a CR of 1, j2 � k2 spare

nodes with a CR of 2, j3 � k3 spare nodes with a CR of 3,

j0 � k0 unassigned spare nodes, and ju � ku used spare

nodes. Since the degree of each spare node within the

spare cube is n, the number of links crossing P is

nj3 þ nj2 þ nj1 þ nj0 þ nju � l, where l represents the

number of internal links among the nodes in P . If an

ECKN is to tolerate up to four faulty nodes per cluster,

by Theorem 2, it is necessary to show that

nðj3 þ j2 þ j1 þ j0 þ juÞ � l � 3j3 þ 2j2 þ j1 � j0: ð1Þ

Consider the case where P ¼ SS and every spare node
has a CR of 3, (j3 ¼ k3 ¼ 2ðn�2Þ, j2 ¼ j1 ¼ j0 ¼ 0). Inequal-
ity (1) can then be rewritten as n� 2ðn�2Þ � l � 3� 2ðn�2Þ.
The left side of the inequality represents the total number
of links crossing P . Since 2ðn�2Þ nodes can form a subcube
of dimension ðn� 2Þ, the least number of links crossing
P is 2� 2ðn�2Þ. Therefore, 2� 2ðn�2Þ 6� 3� 2ðn�2Þ and,
hence, by Theorem 2, the ECKN may not be able to
tolerate 2n faulty nodes under four faulty nodes per
cluster. tu

Proof of Theorem 5. We prove the theorem by showing that

Theorem 2 holds for the ECKN with up to three faulty

nodes per cluster. Let SS contain k1 spare nodes with a

CR of 1 and k2 spare nodes with a CR of 2. Also, let ST
and SU contain k0 and ku spare nodes, respectively. Since

the total number of faulty nodes cannot exceed the total

number of spare nodes,

k0 � 2k2 þ k1: ð2Þ

Adding k2 þ k1 þ ku to both sides results in

k2 þ k1 þ k0 þ ku � 3k2 þ 2k1 þ ku: ð3Þ

Since the left side of (3) represents the total number of

spare nodes in the spare cube,

2n � 3k2 þ 2k1 þ ku ð4Þ

or

n � log2ð3k2 þ 2k1 þ kuÞd e: ð5Þ

Now, consider a subset P � V with j1 � k1 spare nodes

having a CR of 1, j2 � k2 spare nodes having a CR of 2,

j0 � k0 unassigned spare nodes, and ju � ku used spare

nodes. Since the degree of each spare node within the

spare cube is n, the number of links crossing P (cutsize of

P ) is nj2 þ nj1 þ nj0 þ nju � l, where l represents the

number of internal links among the nodes in P . We will

show that

nj2 þ nj1 þ nj0 þ nju � l � 2j2 þ j1 � j0: ð6Þ

Hence, by Theorem 2, an appropriate number of edge-

disjoint paths within the spare cube between the spare

nodes in SS and the free spare nodes in ST must exist.

Note that

nju � 0 ð7Þ

and

nj0 � �j0: ð8Þ

Also, from (5), it follows that

nj1 � j1: ð9Þ

Subtracting (7), (8), and (9) from (6) results in

nj2 � l � 2j2: ð10Þ

Inequality (10) pertains to a case where every spare
node in P has a CR of 2 (P � SS). Obviously, if (10) holds,
so must (6). The left side of (10) would be the minimum
when l is the maximum. l is the maximum when the
nodes within P have the highest connectivity among
themselves. In a hypercube, a set of nodes have the
highest connectivity when they form a subcube; j2 nodes
form a subcube of dimension ðn� rÞ, j2 ¼ 2ðn�rÞ. Of the
n links of each node of this subcube, ðn� rÞ are used by
the subcube itsel f and the remaining l inks
(n� ðn� rÞ ¼ r) are used to connect the node to the
other neighboring nodes of the spare cube, outside of the
subcube. Consequently, for j2 ¼ 2ðn�rÞ, (10) can be
formulated as

r� 2ðn�rÞ � 2� 2ðn�rÞ: ð11Þ

To examine whether (11) can ever be violated, it is
necessary to find the minimum r. r is the minimum
when the dimension of ðn� rÞ is the maximum. Given

j2 � k2 ¼
2n

3

� �
ð12Þ

and

2n

3
¼ 2n

4
þ 2n

12
; ð13Þ

the largest number of nodes with a CR of 2 that can form

a subcube is

j2 ¼
2n

4
¼ 2ðn�2Þ: ð14Þ
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Case (1) (0 < j2 � 2ðn�2Þ): From the foregoing discus-
sion, the smallest value of r is 2. Therefore, (11) and,
hence, (10) are satisfied for the specified range of this
case.

Case (2) (2ðn�2Þ < j2 � 2ðn�2Þ þ 2ðn�4Þ): Let us consider
j2 ¼ 2ðn�2Þ þ j02. Then,

j02 �
2n

3
� 2n

4
¼ 2n

12
: ð15Þ

For this case, (10) can then be formulated as

nð2ðn�2Þ þ j02Þ � l � 2ð2ðn�2Þ þ j02Þ: ð16Þ

Since 2ðn�2Þ nodes have the highest connectivity when

they form a ðn� 2Þ subcube, the above inequality can be

stated as

2� 2ðn�2Þ þ nj02 � l0 � 2� 2ðn�2Þ þ 2� j02; ð17Þ

where l0 represents the number of internal links among

the j02 nodes as well as the number of links connecting

j02 nodes to the ðn� 2Þ subcube. Subtracting 2� 2ðn�2Þ

from both sides of (17), results in

nj02 � l0 � 2� j02: ð18Þ

The least number of links that crossP existswhen j02 nodes

form a subcube of the highest possible dimension and the

subcube is concatenated with the ðn� 2Þ subcube. Since

j02 �
2n

12
¼ 2n

16
þ 2n

48
; ð19Þ

the largest subcube that canbe formedwithin j02 nodes is of

dimension ðn� 4Þ. Then, ðn� 4Þ links of each node of this

subcube are used within the subcube and the remaining

four links cross the subcube. The total number of links

crossing the ðn� 4Þ-dimensional subcube is then 4� 2ðn�4Þ.

When both ðn� 2Þ and ðn� 4Þ subcubes are concatenated
(the highest connectivity between them), the links that

connect these two subcubes together would not be in the

cutset. The number of such links could be as high as 2ðn�4Þ.

Therefore, to evaluate theminimumcutsize,2ðn�4Þ needs to

be subtracted from the total count of each subcube. The

minimum cutsize of ðP; V � P Þ is then

ð2� 2ðn�2Þ � 2ðn�4ÞÞ þ ð4� 2ðn�4Þ � 2ðn�4ÞÞ ¼
2ð2ðn�2Þ þ 2ðn�4ÞÞ:

ð20Þ

Therefore, (17) and, hence, (10) are always satisfied for

the specified range of this case.
Case (3) (2ðn�2Þ þ 2ðn�4Þ < j2 � 2ðn�2Þ þ 2ðn�4Þ þ 2ðn�6Þ):

Let us consider j2 ¼ 2ðn�2Þ þ 2ðn�4Þ þ j02. Then,

j02 �
2n

3
� 2n

4
� 2n

16
¼ 2n

48
: ð21Þ

Inequality (10) for this case can then be formulated as

nð2ðn�2Þ þ 2ðn�4Þ þ j02Þ � l � 2ð2ðn�2Þ þ 2ðn�4Þ þ j02Þ: ð22Þ

Since 2ðn�2Þ þ 2ðn�4Þ nodes have the highest connectivity

when they form two concatenated subcubes, the above

inequality can be stated as

2ð2ðn�2Þ þ 2ðn�4ÞÞ þ nj02 � l0 � 2ð2ðn�2Þ þ 2ðn�4ÞÞ þ 2� j02;

ð23Þ

where l0 represents the number of internal links among

the j02 nodes as well as the number of links connecting

j02 nodes to the ðn� 2Þ and ðn� 4Þ subcubes. Subtracting
2ð2ðn�2Þ þ 2ðn�4ÞÞ from both sides of (23) results in

nj02 � l0 � 2� j02: ð24Þ

The least number of links that cross P exists when

j02 nodes form a subcube of highest possible dimension

and the subcube is concatenated with both ðn� 2Þ and

ðn� 4Þ subcubes. Since

j02 �
2n

48
¼ 2n

64
þ 2n

192
; ð25Þ

the largest subcube that canbe formedwithin j02 nodes is of

dimension ðn� 6Þ. Then, ðn� 6Þ links of each node of this

subcubeareusedwithin the subcubeand the remaining six

links cross the subcube. The total number of links crossing

the ðn� 6Þ-dimensional subcube is then 6� 2ðn�6Þ. When

the subcubes ðn� 2Þ, ðn� 4Þ, and ðn� 6Þ are concate-

nated (the highest connectivity between them), the links

that connect them would not be in the cutset. The

number of such links could be as high as 2ðn�6Þ.

Therefore, to evaluate the minimum cutsize, 2ðn�6Þ needs

to be subtracted from the total count of each subcube.

The minimum cutsize of ðP; V � P Þ is then

ð2� 2ðn�2Þ � 2ðn�6ÞÞ þ ð2� 2ðn�4Þ � 2ðn�6ÞÞ
þ ð6� 2ðn�6Þ � 2� 2ðn�6ÞÞ;

ð26Þ

which is equal to 2ð2ðn�2Þ þ 2ðn�4Þ þ 2ðn�6ÞÞ. Therefore,

(17) and, hence, (10) are always satisfied for the specified

range of this case.
By repeating the process established in (13), (19), and

(25), the following equality can be written

2n

3

� �
¼ 2ðn�2Þ þ 2ðn�4Þ þ 2ðn�6Þ þ 2ðn�8Þ þ � � � þ 2ðn�2hÞ; ð27Þ

where ðn� 2hÞ is equal to 0 or 1 depending if the

dimension of the spare cube is even or odd, respectively.
Similar to the above cases, subcubes ðn� 8Þ through

ðn� 2hÞ can be added to P . At each step, ðP; V � P Þ
would have the smallest cutsize when the newly added
nodes form a subcube and the added subcube would be
neighbor to all previously established subcubes. We next
show that (10) holds after the last set of nodes are
included in P .

Case (h): Similar to prior cases, the smallest cutsize
would result if the last set of node(s) (two nodes or one
node if n is odd or even, respectively) form a subcube of
dimension ðn� 2hÞ and this subcube is adjacent to all
other ðh� 1Þ subcubes. The total number of links that are
not used within the ðn� 2hÞ subcube is 2h� 2ðn�2hÞ. The
minimum cutsize of ðP; V � P Þ is then

ð2� 2ðn�2Þ � 2ðn�2hÞÞ þ ð2� 2ðn�4Þ � 2ðn�2hÞÞ þ � � �
þ ð2� 2ðn�2hÞ � ðh� 1Þ � 2ðn�2hÞÞ;
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which is equal to 2� ð2ðn�2Þ þ 2ðn�4Þ þ � � � þ 2ðn�2hÞÞ.

Therefore, (10) and, hence, (6) holds for any distribution

of three faulty nodes per cluster. Therefore, by

Theorem 2, up to three faulty nodes per cluster can be

tolerated by the ECKN with j ¼ k
2 . tu
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