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Abstract

Internet (IP) packet forwarding is typically done by finding the longest prefix in a router table that
matches the packet’s destination address. For W-bit destination addresses, the use of binary tries
enables us to determine the longest matching prefix in O(W) time, independent of the number n of
prefixes in the router table. New prefixes may be inserted and old ones deleted in O(W) time also.
Since n << 2% in real router tables, it is desirable to develop a data structure that permits longest
prefix matching as well as the insertion and deletion of prefixes in O(logn). These three operations
can be done with O(logn) cache misses using a B-tree data structure [19]. However, the run-time
(including operation cost and cost of cache misses) is not O(logn). In this paper we develop a data
structure in which prefix matching, prefix insertion, and deletion can each be done in O(logn) time.
Experiments using real IPv4 routing databases indicate that although the proposed data structure is
slower than optimized variable-stride tries for longest prefix matching, the proposed data structure is
considerably faster for the insert and delete operations.
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1 Introduction

An Internet router table is a set of tuples of the form (p,a), where p is a binary string whose length is
at most W (W = 32 for IPv4 destination addresses and W = 128 for IPv6), and a is an output link (or
next hop). When a packet with destination address A arrives at a router, we are to find the pair (p, a)
in the router table for which p is a longest matching prefix of A (i.e., p is a prefix of A and there is no
longer prefix g of A such that (g, b) is in the table). Once this pair is determined, the packet is sent to
ouput link a. The speed at which the router can route packets is limited by the time it takes to perform
this table lookup for each packet.

Longest prefix routing is used because this results in smaller and more manageable router tables. It
is impractical for a router table to contain an entry for each of the possible destination addresses. Two
of the reasons this is so are (1) the number of such entries would be almost one hundred million and

would triple every three years, and (2) every time a new host comes online, all router tables will need to
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incorporate the new host’s address. By using longest prefix routing, the size of router tables is contained
to a reasonable quantity and information about host/router changes made in one part of the Internet
need not be propagated throughout the Internet.

Several solutions for the IP lookup problem (i.e., finding the longest matching prefix) have been
proposed. IP lookup in the BSD kernel is done using the Patricia data structure [17], which is a variant
of a compressed binary trie [8]. This scheme requires O(W) memory accesses per lookup. We note that
the lookup complexity of longest prefix matching algorithms is generally measured by the number of
accesses made to main memory (equivalently, the number of cache misses). Dynamic prefix tries, which
are an extension of the Patricia data structure, and which also take O(W') memory accesses for lookup,
have been proposed by Doeringer et al. [5]. LC tries for longest prefix matching are developed in [13].
Degermark et al. [4] have proposed a three-level tree structure for the routing table. Using this structure,
IPv4 lookups require at most 12 memory accesses. The data structure of [4], called the Lulea scheme, is
essentially a three-level fixed-stride trie in which trie nodes are compressed using a bitmap. The multibit
trie data structures of Srinivasan and Varghese [18] are, perhaps, the most flexible and effective trie
structure for IP lookup. Using a technique called controlled prefix expansion, which is very similar to
the technique used in [4], tries of a predetermined height (and hence with a predetermined number of
memory accesses per lookup) may be constructed for any prefix set. Srinivasan and Vargese [18] have
developed dynamic programming algorithms to obtain space optimal fixed-stride and variable-stride tries
of a given height. Improved algorithms to construct optimal multibit tries appear in [14, 15].

Waldvogel et al. [20] have proposed a scheme that performs a binary search on hash tables organized
by prefix length. Using this binary search scheme, we can perform longest prefix matching in O(log W)
expected time. The expected insert and delete time is O(nlog? W). The basic hash-table structure of
[20] may be modified so that the expected time for longest-prefix matching is O(a + log W) and the
expected insert/delete time is O(a ¢/nW log W), for any « > 1 [20]. An alternative adaptation of binary
search to longest prefix matching is developed in [9]. Using this adaptation, a lookup in a table that has
n prefixes takes O(W + logn) time.

Cheung and McCanne [3] have developed “a model for table-driven route lookup and cast the table
design problem as an optimization problem within this model.” Their model accounts for the memory
hierarchy of modern computers and they optimize average performance rather than worst-case perfor-
mance.

Hardware solutions that involve the use of content addressable memory [10] as well as solutions that



involve modifications to the Internet Protocol (i.e., the addition of information to each packet) have also
been proposed [2, 12, 1].

Gupta and McKeown [7] examine the asymptotic complexity of a related problem, packet classification.
They develop two data structures, heap-on-trie (HoT) and binary-search-tree-on-trie (BoT), for the
dynamic packet classification problem. The complexity of these data structures (for packet classification
and the insertion and deletion of rules) also is dependent on W. For d-dimensional rules, a search in a
HoT takes O(W9) and an update (insert or delete) takes O(W?logn) time. The corresponding times for
a BoT are O(W%logn) and O(W% !logn), respectively.

Lampson et al. [9] have proposed a binary search scheme in which prefixes are encoded as ranges.
Even though this scheme permits one to determine the longest matching prefix in O(logn) time, inserts
and deletes take O(n) time. In fact, for their scheme, they state that “there does not appear to be any
update technique that is faster than just building the table from scratch.” Ergun et al. [6] use ranges
to develop a biased skip list structure that performs longest prefix matching in O(logn) time. Their
scheme is designed to give good expected performance for “bursty access patterns”. The biased skip list
scheme of Ergun et al. [6] permits inserts and deletes in O(logn) time only in the severely restricted and
impractical situation when all prefixes in the router table are of the same length. For the more general,
and practical, case when the router table comprises prefixes of different length, their scheme takes O(n)
expected time for each insert and delete. In this paper, we show how to use the range encoding idea of
[9] so that longest prefix matching as well as prefix insertion and deletion can be done in O(logn) time.

The simplest efficient data structure for a dynamic router-table is a a compressed binary trie [8].
Using a compressed binary trie, longest-prefix matching and prefix insertion and deletion take O(W)
worst-case time each.

Suri et al. [19] have proposed a B-tree data structure for dynamic router tables. Using their structure,
we may find LM P(d) in O(logn) time. However, inserts/deletes take O(W logn) time. The number
of cache misses is O(logn) for each operation. When W bits fit in O(1) words (as is the case for IPv4
and IPv6 prefixes) logical operations on W-bit vectors can be done in O(1) time each. In this case, the
scheme of [19] takes O(log W x logn) time for an insert and O(W + logn) = O(W) time for an update.

Despite the intense research that has been conducted in recent years, there is no known way to peform
longest prefix matches as well as insertion and deletion of prefixes in O(logn) time.

In Section 2, we describe the range encoding technique of [9]. We establish a few properties of ranges

that represent prefixes in Section 3. Our O(logn) method is described in Section 4. In Section 5, we



Prefix Name | Prefix | Range Start | Range Finish
P1 * 0 31
P2 0101* 10 11
P3 100* 16 19
P4 1001* 18 19
P5 10111 23 23

Figure 1: Prefixes and their ranges

present our experimental results. These results, obtained using real IPv4 prefix databases, indicate
that the O(logn) method proposed in this paper represents a good alternative to existing methods in
environments where there is a significant number of insert and/or delete opeations. For example, our
method takes more time to find the longest matching prefix than do the variable-stride tries of [18].
However, although these tries are optimized for longest matching prefix searches, they perform very
poorly when it comes to insertion and deletion of prefixes. Our proposed method handily outperforms

variable-stride tries on these latter operations.

2 Prefixes And Ranges

Lampson, Srinivasan, and Varghese [9] have proposed a binary search scheme for longest prefix matching.
In this scheme, each prefix is represented as a range [s, f], where s is the start of the range for the prefix
and f is the finish of the range for that prefix. For example, when W = 5, the prefix P = 1* matches
all destination addresses in the range [10000, 11111] = [16, 31]. So, for prefix P, s = 16 and f = 31.
Figure 1 shows a set of five prefixes together with the start and finish of the range for each. This figure
assumes that W = 5. The prefix P1 = * which matches all legal destination addresses, is called the
default prefix. Although a real router database may not include the default prefix, we assume throughout
this paper that this prefix is always present. This assumption does not, in any way, affect the validity
of our work as we may simply augment router databases that do not include the default prefix with a
default prefix whose next hop field is null.

Prefixes and their ranges may be drawn as nested rectangles as in Figure 2(a), which gives the pictorial
representation of the five prefixes of Figure 1.

Lampson et al. [9] propose the construction of a table of distinct range end-points such as the one
shown in Figure 2(b). The distinct end points (range start and finish points) for the prefixes of Figure 1
are [0, 10, 11, 16, 18, 19, 23, 31]. Let r;, 1 < i < ¢ < 2n be the ¢ distinct range-end-points for a set

of n prefixes. Let ry41 = co. Let LM P(d) be the longest matching prefix for the destination address



0
rl
10 | End Point | > | =
F’% a |0 Pl | P1
3 10 P2 | P2
Pl § %111 P1 | P2
P3 18 | 16 P3| P3
P g 18 P4 | P4
4 19 P1 | P4
ps|23 | 23 Pl | P5
M, |31 - P

(a) (b)
Figure 2: (a) Pictorial representation of prefixes and ranges (b) Table for binary search

d. With each distinct range end-point, r;, 1 < ¢ < g, the table stores the longest matching prefix for
destination addresses d such that (a) r; < d < r;41 (this is the column labeled “>” in Figure 2(b)) and
(b) i = d (column labeled “="). Now, LM P(d), r1 < d < r4 can be determined in O(logn) time by
performing a binary search to find the unique ¢ such that r; < d < r;y1. If r; = d, LM P(d) is given by
the “=” entry; otherwise, it is given by the “>” entry. For example, since d = 20 satisfies 19 < d < 23
and since d # 19, the “>” entry of the end point 19 is used to determine that LM P(20) is P1. As noted
by Lampson et al. [9], the range end-point table can be built in O(n) time (this assumes that the end
points are available in ascending order). Unfortunately, as stated in [9], updating the range end-point
table following the insertion or deletion of a prefix also takes O(n) time because O(n) “>” and/or “="
entries may change. Although Lampson et al. [9] provide ways to reduce the complexity of the search
for the LMP by a constant factor, these methods do not result in schemes that permit prefix insertion

and deletion in O(logn) time.

3 Properties Of Prefix Ranges

The length, length(P), of a prefix P is the number of zeroes and ones in the binary representation of
the prefix. For example, P1 of Figure 1 has a length of 0 and length(P4) = 4. W is the number of
bits in a destination address. Hence, the number of bits in the start and finish points of a prefix also is
W. P = [s, f] is a trivial prefiz iff length(P) = W (equivalently, iff s = f). P is a nontrivial prefiz iff
length(P) < W (equivalently, iff s # f). Prefixes P1-P4 of Figure 1 are nontrivial while P5 is a trivial
prefix. Let [sb(x) be the least significant bit in the binary representation of z. For example, [sb(32) =0
and Isb(3) = 1.
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Figure 3: (a) Intersecting ranges (b) Nested ranges (c) Disjoint ranges

Lemma 1 If P = [s, f] is a nontrivial prefiz, then lsb(s) = 0 and lsb(f) = 1.

Proof Since P is nontrivial, length(P) < W. Therefore, s is the bits of P followed by W —length(P) > 0
zeroes and f is the bits of P followed by W —length(P) > 0 ones. Consequently, [sb(s) = 0 and Isb(f) = 1.

Two ranges [u,v] and [w,z], u < v, w <z, u < w, intersect iff u < w < v < z (see Figure 3(a)). The
ranges are nested iff u < w <z < wv (see Figure 3(b)). The ranges are disjoint iff v < w (see Figure 3(c)).
Two prefixes intersect, are nested, or are disjoint iff the corresponding property holds with respect to
their ranges.

The following lemma is implicit in [9] and other papers on prefix matching.

Lemma 2 Let P; = [s;, f;] and P; = [s;, f;] be two different prefizes. P; and P;j are either nested or

disjoint (i.e., they cannot intersect).

Proof When length(P;) = length(P;), the destination addresses matched by P; and P; are different.
So, the ranges of P; and P; (and hence the prefixes) are disjoint. When length(P;) # length(P;), we
may, without loss of generality, assume that length(P;) < length(P;). If P; is not a prefix of P; (i.e., P;
and P; differ in one of the specified bits), then again, the ranges of P; and P; (and hence the prefixes)

are disjoint. If P; is a prefix of P;, s; < s; < f; < f;. Consequently, P; is nested within P;. ]



Lemma 3 Let P =[s, f], s # f, be a prefiz and let a = | (s + f)/2]|. P is the longest length prefiz that

includes' [a,a + 1].

Proof First observe that f = s +2W~9 — 1, where g = length(P). Since prefixes do not intersect, any
longer (or equal) length prefix P! = [¢/, f'] that includes [a,a + 1] must have s < s’ <a<a+1< f/ < f.
Further, s, §', f, and f’ all have the same first g bits and s’ and f' have the same first g + 1 (or more)
bits. Since a and a + 1 differ in bit g+ 1, P’ cannot include [a,a + 1]. Therefore, no prefix whose length
is longer than that of P can include [a,a + 1]. If length(P') = length(P), P' = P. So, P is the longest
length prefix that includes [a,a + 1]. [ ]

4 Representation Using Binary Search Trees

4.1 The Representation

Let r;, 1 < i < ¢ < 2n be the distinct end points of the given set of n prefixes. Assume that these end
points are ordered so that 7; < 741, 1 < i < ¢. Each of the intervals [r;,74+1], 1 <14 < g is called a basic
interval. The basic intervals of the five-prefix example of Figure 1 are [0, 10], [10, 11], [11, 16], [16, 18],
[18, 19], [19, 23], and [23, 31]. These basic intervals are labeled 71 through r7 in Figure 2(a).

To perform longest prefix matches, inserts and deletes in O(logn) time per operation, we use a
collection of n + 1 binary search trees (CBST). Although the O(logn) performance results only when
each of the n + 1 binary search trees in the CBST is a balanced binary search tree, we introduce the

CBST in terms of binary search trees that are not necessarily balanced.

4.1.1 The Basic Interval Tree (BIT)

Of the n + 1 binary search trees in the CBST, one is called the basic interval tree (BIT). The BIT
comprises internal and external nodes and there is one internal node for each r;. Since the BIT has ¢
internal nodes, it has ¢ + 1 external nodes. The first and last of these, in inorder, have no significance.
The remaining g — 1 external nodes, in inorder, represent the ¢ — 1 basic intervals of the given prefix set.
Figure 4(a) gives a possible (we say possible because, at this time, any binary search tree organization for
the internal nodes will suffice) BIT for our five-prefix example of Figure 2(a). Internal nodes are shown
as rectangles while circles denote external nodes.

The fields of the BIT internal nodes are called key, leftChild, and rightChild. We describe the

structure of the BIT external nodes later.

'The prefix P; = [s;, fi] includes the interval [a,b] iff s; < a < b < fi.
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Figure 4: CBST for Figure 2(a). (a) base interval tree (b) prefix tree for P1 (c) prefix tree for P2 (d)
prefix tree for P3 (e) prefix tree for P4 (f) prefix tree for P5

4.1.2 The Prefix Trees

The remaining n binary search trees in the CBST are prefiz trees. For each of the n prefixes in the router
table, there is exactly one prefix tree. For each prefix and basic interval, z, define next(z) to be the
smallest range prefix (i.e., the longest prefix) whose range includes the range of z. For the example of
Figure 2(a), the next() values for the basic intervals r1 through r7 are, respectively, P1, P2, P1, P3,
P4, P1, and P1. Notice that the next value for the range [r;,r;+1] is the same as the “>” value for 7; in
Figure 2(b), 1 < i < ¢g. The next() values for the nontrivial prefixes P1 through P4 of Figure 2(a) are,
respectively, “-”, P1, P1, and P3. The nezt() values for the basic intervals and the nontrivial prefixes
of Figure 2(a) are shown in Figure 5 as left arrows.

The prefix tree for prefix P comprises a header node plus one node, called a prefiz node, for every
nontrivial prefix or basic interval z such that next(xz) = P. The prefix trees for each of the five prefixes
of Figure 2(a) are shown in Figures 4(b)-(f). Notice that prefix trees do not have external nodes and that
the prefix nodes of a prefix tree store the start point of the range or prefix represented by that prefix

node. In the figures, the start points of the basic intervals and prefixes are shown inside the prefix nodes
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Figure 5: next() values are shown as left arrows.

while the basic interval or prefix name is shown outside the node. Notice also that nontrivial prefizes
and basic intervals do not store the value of next() explicitly. The value of next() is stored only in the

header of a prefiz tree.?
4.1.3 BIT External Nodes

Each of the g—1 external nodes of the BIT that represents a basic interval  points to the prefix node that
represents this basic interval in the prefix tree for next(z). We call this pointer basicInterval Pointer.
In addition, an external node that represents the basic interval = = [r;,7;11] has a pointer startPointer
(finishPointer) which points to the header node of the prefix tree for the trivial prefix (if any) whose
range start and finish points are 7; (r;41). For example, startPointer for r7 = [23,31] in Figure 2(a)
points to the header node for the prefix tree of the trivial prefix P5; finishPointer for r6 = [19, 23] also

points to the header node for the prefix tree of P5; the remaining start and finish pointers are null.

4.2 Longest Prefix Matching

Notice that, because of our assumption that the default prefix is always present, there is always a prefix
in our database that matches any W-bit destination address d. The search for the longest prefix that

matches d is done in two steps:

Step 1 First we start at the root of the BIT and move down to an appropriate external node. An
external node = that represents the basic interval [r;, 7;+1] is appropriate for d iff (a) d = r; and

z.startPointer # null, or (b) d = r;y1 and z.finishPointer # null, or (c) LM P(d) = next(z).

%If next() values were explicitly stored with basic intervals and trivial prefixes, an update would take O(n) time, because
O(n) next() values change following an insert/delete.



Notice that the appropriate node for a given d may not be unique. For instance, for our example
BIT, the external nodes for both r6 and r7 are appropriate when d = 23. When d = 18, only the

external node for r5 is appropriate.

Step 2 If cases (a) or (b) of Step 1 apply, then LM P(d) is obtained by following the non-null start
or finish pointer. When case (c) applies, the basic interval pointer is followed into the prefix tree
corresponding to nezt(z). The header node of this prefix tree contains the longest matching prefix

for d. This header node is located by following parent pointers.

In step 1, we search for an appropriate external node by performing a series of comparisons beginning
at the root of the BIT. The search process differs from that employed to search a normal binary search
tree (see, for example, [8]) only in how we handle equality between the address d and the key in the
current search tree node y. Whenever d equals the key in an internal node y (i.e., d = y.key) of the BIT,
we know that the basic interval [r;, ;1] represented by the rightmost (leftmost) external node in the
left (right) subtree of y is such that r;11 = d (r; = d). It is not too difficult to see that one (or both)
of these two external nodes is an appropriate external node for d. To determine which, we examine the
least significant bit (Isb(key.y)) of key.y (equivalently, examine [sb(d)). If Isb(key.y) = 0, then it follows
from Lemma 1 that y.key = d is the start point of some prefix (note that the start and finish points
of a trivial prefix are the same). Therefore, the leftmost external node in the right subtree of y is an
appropriate node for d (recall that the basic interval for this external node is [r;,r;y1], where r; = d).
When [sb(y.key) = 1, y.key = d is the finish point of some prefix and so the rightmost external node in
the left subtree of y is an appropriate node for d. This external node has r;; = d.

As an example, suppose we wish to determine LM P(11). We start at the root of the BIT of Figure 4(a).
Since d = 11 < root.key = 18, the current node yy become the left child of the root. Now, since d = y.key
and [sb(y.key) = 1, the appropriate external node for d is the rightmost external node in the left subtree
of y. This external node represents the basic interval 2. Notice that next(r2) = P2. As another example,
consider determining LM P(18). Since d = 18 = root.key and [sb(root.key) = 0, the appropriate external
node is the leftmost external node in the right subtree of the root. This external node represents the
basic interval r5 = [r;, ;1] = [18, 19]. Once again, notice that LM P(18) = next(r5) = P4. For d = 23,
we reach the external node for r6 = [r;,r;y1] = [19,23]. Since d = r;;1 and the finish pointer of this
external node is non-null, the finish pointer (this points to the header node of the prefix tree for the
trivial prefix P5) is used to determine LM P(23) = P5. Notice that when the router table has a trivial
prefix that matches the destination address d, this trivial prefix is LM P(d).

10



algorithm longestMatchingPrefiz(d)
{// return header node for LM P(d)
// find appropriate external node
y = root of BIT;
while (y is an internal node)
if (d < y.key) y = y.leftChild;
else if (d > y.key) y = y.rightChild,
else // d equals y.key
if (Isb(y.key) is 0)
{
eNode = leftmost external node in right subtree of y;
if (eNode.startPointer is null)
return (prefiz(eNode.basicInterval Pointer));
else return (eNode.startPointer);

}
else //lsb(y.key) is 1

{

eNode = right most external node in left subtree of y;
if (eNode.finishPointer is null)

return (prefiz(eNode.basicInterval Pointer));
else return (eNode.finishPointer);

}

return (prefiz(y.basicInterval Pointer));

}

algorithm prefiz(pNode)
{// return prefix in header node of prefix tree that contains node pNode
y = pNode;
while (y is not a header node)
Yy = y.parent;
return (y);

}

Figure 6: Algorithm to find LM P(d)
Figure 6 gives a high-level statement of the algorithm to determine LM P(d).

Theorem 1 (a) Algorithm longestMatchingPrefix correctly finds LM P(d).
(b) The complexity of algorithm longestMatchingPrefix is O(height(BIT) + height(prefizTree(d))),
where prefizTree(d) is the prefiz tree for LM P(d).

Proof Correctness follows from the definition of the BIT and prefix tree data structures. For the

complexity, we note that it takes O(height(BIT)) time to find the appropriate external node and an

11
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Figure 7: (a) Figure 2(a) after inserting P6 = 01 (b) Figure 2(a) after inserting P7 = 10x
additional O(height(prefizTree(d))) time to find LM P(d) in case the function prefix is invoked. m

4.3 Inserting A Prefix

Suppose we wish to add the prefix P6 = 01* = [8, 15] to the prefix set P1-P5. Figure 7(a) gives
the pictorial representation for the prefixes P1-P6. Relative to the pictorial representation of P1-P5
(Figure 2(a)), we see that the insertion of P6 has created two new end points (8 and 15), the basic
interval 1 has been split into the basic intervals r1a and r1b as a result of the new end point 8, and the
basic interval 73 has been split into the basic intervals r3a and r3b as a result of the new end point 15.

Figure 7(b) shows the pictorial representation for the case when P1-P5 are augmented by the prefix
P7 =10* = [16, 23]. In this case no new end points are created and none of the basic intervals of P1-P5
split.

In addition to possibly increasing the number of distinct end points, the insertion of a new prefix
changes the next() value of certain prefixes and basic intervals. The insertion of P6 into P1-P5 changes

next(P2) from P1 to P6 (next(rlb) and next(r3a) become P6). The insertion of P7 into R1-R5 changes

12
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Figure 8: Basic interval tree and prefix trees after inserting P6 = 01% into Figure 4: (a) BIT for P1-P5
and P6 (b) prefix tree for P1 (c) prefix tree for P6

next(P3) and next(r6) from P1 to PT.

4.3.1 Updating The BIT

Since the default prefix * is always present, we need not be concerned with insertion into an empty BIT.

It is easy to verify that the insertion of a new prefix will increase the number of distinct end points by
0, 1, or 2. Correspondingly, the number of basic intervals will increase by 0, 1, or 2. Because the number
of internal (external) nodes in a BIT equals (is one more than) the number of distinct end points, the
number of internal and external nodes in the BIT increases by the same amount as does the number of
distinct end points. Figure 8(a) shows the BIT for P1-P6. Since the insertion of P7 into the prefix set
P1-P5 does not change the set of distinct end points, the BIT for P1-P5 and P7 has the same structure
as does that for P1-P5.

13



algorithm insert EndPoint(u)
{// insert the end point u into the BIT
y = root of BIT;
while (y is an internal node)
if (u < y.key) y = y.leftChild;
else if (u > y.key) y = y.rightChild,
else // u equals y.key
{// w is not a new end point
if (length of new prefix is W)

{

eNode = leftmost external node in right subtree of y;

update eNode.startPointer to point to header node for new prefix;
eNode = right most external node in left subtree of y;

update eNode. finish Pointer to point to header node for new prefix;

}

return;

}

// w is a new end point

insert a new internal node z with z.key = u between y and its
parent and create a new external node for the remaining child of z;

return;

}

Figure 9: Algorithm to insert an end point

Lemma 4 Let P = [s, f] be a new prefiz that is inserted into a router database. Assume that the

insertion of P creates no new end points.

(a) If length(P) < W, the BIT is unchanged. (Even though the next value may change for several

basic intervals and prefizes, these changes do not affect the BIT.)

(b) Iflength(P) = W, the structure of the BIT is unchanged. However, the start pointer in the external
node for the basic interval [ri,Ti+1], where r; = s = f and the finish pointer in the external node

for the basic interval [r;,r;y1], where ;11 = s = f change (both now point to the header node for

the prefiz tree of P).

Proof Straightforward. n

To update the BIT as required by the insertion of the prefix P = [s, f], we insert the end points s
and f into the BIT using algorithm insertEndPoint of Figure 9. Of course, when s = f, we invoke

insertEndPoint just once.

14
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Figure 10: Splitting a basic interval when lsb(u) = 1

The fields of the two external node children of the newly created internal node z are easily changed/set
to their correct values. When a new internal node z is created, a basic interval [r;, r;+1] is split into the
two basic intervals [r;, u] and [u,7;41]. Let el and e2, respectively, be the external nodes that represent
these basic intervals. Let e be the external node that represents the original interval [r;,7;11] (note that
e is either el or €2). The start pointer of el is the start pointer of e and the finish pointer of €2 is the
finish pointer of e. When the length of the new prefix P is W, the basic interval pointers of el and e2
are the same as that of e and the finish pointer of el and the start pointer of e2 point to the header node
of the prefix tree of the new prefix. When length(P) # W, the finish pointer of el and the start pointer
of €2 are null. Further, when length(P) # W and lsb(u) = 1 (see Figure 10), the basic interval pointer
of e2 is the same as that of e and the basic interval pointer of el points to a new node that is to go into

the prefix tree of the new prefix P. The case when length(P) # W and lsb(u) = 0 is similar.

Theorem 2 (a) Algorithm insertEndPoint correctly inserts an end point into the BIT.
(b) The complezity of the algorithm is O(height(BIT)).

Proof Correctness follows from the definition of a BIT. For the complexity, we see that it takes
O(height(BIT)) time to exit the while loop. The ensuing insert (if any) of a new internal and external
node takes O(1) time if the BIT is not to be balanced and O(height(BIT)) time if the BIT is to be

balanced. m

4.3.2 Updating Prefix Trees

When the prefix P = [s, f] is inserted, we must create a new prefix tree for P. Additionally, when
length(P) < W or when length(P) = W and s is a new end point, we must update the prefix tree for
the longest prefix Q = [a,b] such that a < s < f < b (i.e., the prefix @ such that nezt(P) = Q). Note
that because of our assumption that the default prefix * is always present, () exists whenever P is not
the default prefix. We assume that whenever a request is made to insert a prefix that is already in the

database, we need only update the next-hop information associated with this prefix. Therefore, the only
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time that ) does not exist, we are to simply locate the header node for the default prefix and update the
next-hop information. For the remainder of this subsection, we assume that () exists. Additional work
that is to be done includes the insertion of up to two new basic interval nodes. These nodes go into the
prefix trees for P and/or Q.

Consider the insertion of P6 = [8,15] into P1-P5 (Figures 2(a) and 7(a)). When P6 is inserted,
@ = P1. Let Z be the set of prefixes and basic intervals  for which nezt(z) = @Q = P1 and the range
of z is contained within that of P6 (i.e., P2). The next() value for the prefixes and basic intervals in Z
changes from ) = P1 to P6. The basic intervals (r1 and r3) that intersect the range of P6 (recall from
Lemma 2 that no prefix can intersect P6) get split into four basic intervals with two of these having next
value @ and the other two having next value P6. The prefix trees for prefixes other than @) and P6 are
unaffected by the insertion of P6.

To make the above changes, we use the split and join operations [8] of a binary search tree. For binary

search trees T', small, and big, these operations are defined below.

1. T.split(u) Split T' into two binary search trees small and big such that small has all keys/elements

of T that are less than u and big has those that are greater than or equal to u.

2. join(small,big) This operation starts with two binary search trees small and big with the property
that all keys in small are less than every key in big and creates a binary search tree that includes

all keys in small and big.

To determine, the basic intervals and prefixes in the prefix tree of Q = P1 whose nexzt value changes
to P6, we first split the prefix tree of P1 by invoking split(8) (8 is the start point of the new prefix P6).
The resulting binary search trees smalll and bigl have the keys {0} and {10, 11,16, 19,23}, respectively.
Next, we split the binary search tree bigl by invoking split(15) (15 is the finish point of P6) to get the
binary search trees small2 and big2, which have the keys {10,11} and {16, 19,23}, respectively. We
now have three binary search trees smalll with key {0} representing the basic interval {rla}, small2
with keys {10, 11} representing {r1b, P2}, and big2 with keys {16, 19,23} representing {P3,76,77}. To
construct the new prefix tree for P1, we join smalll and big2 and then insert the basic interval r3b as
well as the new prefix P6. To get the prefix tree for P6, we insert the basic interval r1b into small2.
The resulting P1 and P6 prefix trees are shown in Figures 8(b) and (c).

Now, consider the insertion of P7 = [16, 23] into P1 — P5. Once again, @@ = P1. Following split(16),
smalll has the keys {0,10,11} and bigl has the keys {16,19,23}. When bigl is split using split(23), we
get small2 with keys {16,19} and big2 with the key {23}. To get the new prefix tree for P1, we join
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Figure 11: Prefix trees after inserting P7 = 10x into P1-P5 (a) prefix tree for P1 after the insertion of
P7 (b) prefix tree for P7

smalll and big2 and then insert the new prefix P7. The resulting tree has the keys {0,10,11,16,23}
(the key 16 represents PT7). small2 is the tree for P7. These prefix trees for P1 and P7 are shown in
Figures 11(a) and (b).

To complete the discussion of the insertion operation, we need to describe how the prefix () is deter-
mined. When length(P) < W, Q may be determined using Lemma 5. When length(P) = W and s is a
new end point, Q) is LM P(s).

Lemma 5 Let R be a prefiz set that includes the default prefiz x. Let P = [s, f], s # f (i.e., length(P) <
W), P ¢ R, be a prefiz that is to be inserted into R. Let a = |(s + f)/2].

(a) There is a unique basic interval x of R that contains [a,a + 1].

(b) The longest prefiz Q € R that includes the interval [s, f] is next(z).

Proof (a) Since the default prefix * is in R, the distinct end points of Rare 0 =1 <79 < ... <71¢ =
2W — 1. Therefore, there is a unique i such that r; < a < a+1 < 7;41. So, T = [rs,7;11] is the unique
basic interval of R that contains [a, a;1].

(b) By definition, next(x) is the smallest range prefix (i.e., longest prefix) P’ = [s, f'] of R that includes
the basic interval [r;,r;11]. Therefore, P’ is the longest prefix of R that includes [a,a+1]. From Lemma 3
and P ¢ R (so P # P'), it follows that length(P') < length(P). Since prefixes do not intersect and since
both P and P’ include [a,a + 1], ' <s<a<a+ 1< f < f'. Further, since P’ is the longest prefix of

R with this property, @ = P’ = nezt(z). [ ]

Figure 12 gives a high-level description of our algorithm to update the prefix trees.
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algorithm updatePrefizTrees(s, f)
{// update the prefix trees when the prefix P = [s, f] is inserted
if (s == 0&&f ==2" —1)
{// P is the default prefix
Update next-hop field of default prefix;
return;
}
if (s==f)
{// length(P) =W
if (P is not a new prefix) Update next-hop field for P;
else
{
Create a header node for P’s prefix tree;
if (s is a new point)
{
Q = LMP(s);
Insert the basic interval that begins at s into Q;
¥
¥
return;
¥
// P is a nontrivial prefix
Determine @) using Lemma 5;
if (P == Q) Update next hop of @ and return;
(smalll, bigl) = Q.split(s);
(small2, big2) = bigl.split(f);
Q = join(smalll, big2);
Insert s (i.e., prefix P) into @;
if (f < finish point of prefix represented by Q)
Insert f into Q;
Insert basic intervals into @) as needed;
Insert basic intervals into small2 as needed;
small2 is the prefix tree for P;

Figure 12: Algorithm to update prefix trees

Theorem 3 (a) Algorithm updatePrefixTrees correctly updates a prefiz tree.
(b) The complezity of the algorithm is O(height(BIT)+ split(pt)+ join(pt) +insert(pt)), where split(pt),
join(pt), and insert(pt) are, respectively, the times to split a prefiz tree, join two prefiz trees, and insert

into a prefic tree.

Proof Correctness follows from the definition of a prefix tree. For the complexity, we see that it takes
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O(height(BIT)) time to determine (). In addition to determining @, at most 2 splits, 1 join, and 3

insertions into prefix trees are done. |

Theorem 4 The complexity of the insert-prefix operation is O(height(BIT) + split(pt) + join(pt) +
insert(pt)).

Proof Follows from the complexities of insertEndPoint and updatePrefixTrees and the obser-
vation that when a prefix is inserted, we make at most 2 invocations of insertEndPoint and 1 of

updatePrefizTrees. n

4.4 Deleting A Prefix
To delete P6 = [8,15] from the database P1 — P6 of Figure 7(a), we must do the following:
1. Delete 8 and 15 from the BIT and merge the basic intervals r1a and r1b as well as r3a and 73b.

2. Move the prefix-tree node for P2, which is presently in the in prefix tree for P6 to the prefix tree

for P1 and discard the remainder of the prefix tree for P6.

To delete P7 = [16,23] from the database P — P5 and P7 of Figure 7(b), we must move the prefix-tree
nodes for P3 and r6 from the prefix tree for P7 to the prefix tree for P1 and discard the header node of
the prefix tree for P7. To delete P5 = [23,23] from P1 — P5, we must remove 23 from the BIT, merge
the basic intervals r6 and r7, and discard the prefix tree for P5. The deletion of the default prefix x
requires us to simply change the next-hop field for this prefix to null (recall that the default prefix must
be retained in the database at all times).

In the remainder of our discussion, we assume that the prefix to be deleted is not the default prefix.
We see that the deletion of a prefix P = [s, f], P # *, requires us to perform some or all of the following

tasks:

—_

. Locate the prefix tree for P.

2. Determine the longest prefix L whose range includes [s, f] (L = P1 in our preceding examples).
3. Determine whether s and/or f are to be deleted from the BIT. If so, delete them.

4. Move a portion of the prefix tree for P into that of L and discard the remainder.

5. Merge pairs of external nodes in the BIT.
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f S
(a) (b) (c)
Figure 13: (a) P is shortest (b) P is not shortest (c) P is not shortest

To perform task 1, we observe that when s = f, the prefix tree for P may be located by first
determining an external node e of the BIT that represents a basic interval [r;,r;11] with either r; = s
or riy1 = f. In the former case, e.startPointer gives us the desired prefix tree and in the latter case,
e.finishPointer does this. In case the pointer is null, P is not a prefix of the database. When s # f,
task 1 may be performed using Lemma 5 to determine prefix () using s and f. If Q # P, then P is not
in the prefix database. In case the prefix to be deleted is not in the database, the deletion algorithm
terminates.

A simple strategy for task 2 is to add a prefix-node pointer prefizNode to the header node of every
prefix tree. The prefix-node pointer for the prefix S points to the unique node N that is in one of the
prefix trees and represents prefix S. By following parent pointers from N, we reach the header node for
the prefix L. The prefix-pointer in the header node of the prefix tree for S is set when S is inserted into
the database. Once set, this pointer does not change. A slightly more involved strategy is described
now. This strategy does not require us to make any changes to the BIT or prefix-trees structures. First
note that since the prefix database contains the default prefix * and since P # *, the database contains
a unique prefix L of longest length whose range includes [s, f]. To determine L, let U denote the subset
of database prefixes that either start at s or finish at f (or both). Since P € U, U is not empty. Let S
be the shortest prefix in U. We consider the following three cases, which are exhaustive: (1) P =S, (2)
P # S and S starts at s, and (3) P # S and S finishes at f. These three cases are shown pictorially
in Figure 13. Let z be the basic interval (if any) that includes [s — 1, s] (note that when s = 0, there
is no such z) and let y be the basic interval (if any) that includes [f, f + 1]. We see that, in all cases,
L is the shorter of the prefixes nexzt(z) and next(y). We may determine next(z) (next(y)) by following
the basic interval pointer in the BIT external node for z (y) to the prefix tree for nezt(z) (next(y)) and

then following parent pointers to the header node for next(z) (next(y)).
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The easiest way to perform task 3 is to augment the BIT structure so that with each distinct end
point we maintain a count of the number of prefixes in the database that start (finish) at that end point.
When this count is 1, the deletion of P = [s, f] requires us to remove s (f) from the BIT. The insert
algorithm is easily modified to update the count fields whenever a prefix is inserted. An alternative
strategy, which doesn’t require us to augment either the BIT or prefix-trees structure, is described now.
When s = f, s is to be deleted from the BIT iff there is no other prefix for which s is an end point. To
determine this, compute nezxt(x), where z is the basic interval that includes [s,s + 1] in case lsb(s) =0
and includes [f — 1, f], otherwise. When Isb(s) = 0, s is to be deleted iff the start point of nezt(z) # s.
When Isb(s) = 1, s is to be deleted iff the finish point of next(z) # s. When s # f, s (f) is to be deleted
iff none of the following is true (1) there is a prefix in the database whose start and finish points are s
(f), (2) next(x) # P, where z is the basic interval (if any) that includes [s, s+ 1] ([f — 1, f]), or (3) start
(finish) point of L (task 2) equals s (f).

For task 4, we first delete the header node of the prefix tree for P as well as the basic interval nodes
for the up to two basic intervals in the prefix tree of P that are to be merged with adjacent basic
intervals. Call the resulting binary search tree PT'(P). Next, we split the prefix tree PT(L) for P as in
(small,big) = PT(L).split(s). The new prefix tree for L is join(join(small, PT'(P)), big).

Task 5 is to be done only when either s or f or both are to be deleted. This task is easily integrated
into the delete s (f) task (task 3).

Theorem 5 The complezity of the delete operation is O(height(BIT)+ height(pt)+ split(pt)+ join(pt)+
delete(pt)), where height(pt) is the height of a prefix tree and delete(pt) is the time to delete from a prefiz

tree.

Proof Task 1 is done by searching down the BIT and then (possibly) going up a prefix tree. This
takes O(height(BIT) + height(pt)) time. Task 2 requires us to go down the BIT and up a prefix tree
once for each of z and y. So, task 2 also takes O(height(BIT) + height(pt)) time. For task 3, we must
determine whether the end points s and f of the prefix that is to be deleted are also to be deleted and
then delete these end points if so determined. For each of s and f, we must find a nezt() value and
then (possibly) delete the point from the BIT. It takes O(height(BIT) + height(pt)) time to determine
next() and O(height(BIT)) to delete a point. For task 4, we must do up to 3 deletions from a prefix
tree, perform 1 split, and 2 joins. So, task 4 takes O(delete(pt) + split(pt) + join(pt)). Finally, task 5 is

integrated into task 3 without any increase in asymptotic complexity. [ |
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4.5 Complexity

The red-black tree [8] is a good choice of data structure for the binary search trees of the CBST. The

following properties [8] of red-black trees are important to us:
1. The height of a red-black tree is logarithmic in the number of nodes in the tree.
2. We may insert into, delete from, and split a red-black tree in O(height of tree) time.
3. Two red-black trees with n; and ny nodes, respectively, may be joined in O(log(nins)) time.

From these properties and the earlier stated complexities of the search, insert, and delete algorithms
for our proposed CBST structure, it follows that we can perform longest prefix matches as well as prefix
insertion and deletion in O(logn) time, where n is the number of prefixes in the database. When the
trees of the CBST structure are implemented as red-black trees, the resulting structure is called CRBT
(collection of red-black trees).

Although the use of AVL trees in place of red-black trees also results in O(logn) router-table opera-
tions, red-black trees are generally believed to be faster than AVL trees by a constant factor. When unbal-
anced binary search trees are used in place of red-black trees, the complexity of the match/insert/delete
algorithms becomes O(n) (though the expected complexity is O(logn)). Using splay trees in place of
red-black trees results in router-table operations whose amortized complexity is O(logn). As for the
space complexity, the BIT has at most 2n internal and 2n + 1 external nodes. Further, the n prefix trees
together have n header nodes, n — 1 prefix nodes (there is no prefix node for the default prefix), and
at most 2n — 1 basic interval nodes. So, the BIT and the prefix trees together have at most 8n nodes.

Therefore, the space complexity is O(n).

4.6 Comments

Our algorithms assume that prefixes are given by the start and finish points of their ranges. In practical
databases, this may not be the case; a prefix may be specified by its start point and length. In this
case, the finish point of the prefix may be computed in O(1) time provided we precompute the values

A(i) =2 —1,0 < i < W. The finish point of a prefix P whose start point is s is s + A(W — length(P)).
5 Experimental Results

We programmed the CRBT scheme in C++ and measured its performance using IPv4 prefix databases.

The codes were run on a SUN Ultra Enterprise 4000/5000 computer. The g++ compiler with optimization
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Database Paix Pb | MaeWest | Aads | MaeEast
Num of prefixes 85988 | 35303 30719 | 27069 22713
Num of 32-bit prefixes 1 0 1 0 1
Num of end points 167434 | 69280 60105 | 53064 44463
Max nesting depth 7 6 6 6 7
Avg nesting depth 2.13 1.90 1.90 1.86 1.82
Max prefix tree 76979 | 44333 38469 | 36201 32437
Avg prefix tree 2.95 2.96 2.96 2.96 2.96

Table 1: Prefix databases obtained from IPMA project on Sep 13, 2000 [11].

level -O3 was used. For test data, we used the five IPv4 prefix databases of Table 1. Interestingly, the
number of distinct end points is almost twice the number of prefixes in each database. The depth of
nesting is the number of prefixes that cover a given basic interval. For example, the depth of nesting for
the basic interval r1 of Figure 2(a) is 1, because prefix P1 is the only prefix that covers r1. The depth of
nesting for rb is 3, because P1, P3 and P4 cover r5. The maximum depth of nesting is surprisingly almost
the same for all five of our databases. Note that the depth of nesting reported in Table 1 includes the
default prefix that we have added to the database. The average nesting depth is obtained by summing
the nesting depth for all basic intervals and dividing by the number of basic intervals. For our sample
data, the average nesting depth is very small. In fact, if we eliminate the default prefix added by us to
the original databases, the average depth of nesting becomes about 1. So, most of the basic intervals are
covered by at most 1 prefix!

Max prefix tree is the maximum number of nodes in any of the constructucted prefix trees. This
number does not include the header node. Avg prefix tree is the average number of nodes in a prefix
tree. Although the prefix tree for the default prefix has a very large number of nodes (this prefix tree
was always the largest), the majority of the prefix trees are rather small.

Table 2 shows the amount of memory used by our data structure. Figure 14 compares the memory
used by our data structure and that used by the the optimal variable-stride tries (VST) of Srinivasan
and Varghese [18]. CRBT is our collection of red-black trees data structure, optVST is the optimal
variable-stride trie of [18], and optVST-Butler is the optimal variable-stride trie of [18] augmented with
Butler nodes. k is the height of the VST, and is a user-specified parameter. The data for VSTs are taken
from [15]. Our CRBT structure takes 6.4 times the memory required by an optimal VST whose height
is 2.

To measure the search, insert, and delete times for our data structure, we first obtained a random
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Database Paix Pb | MaeWest | Aads | MaecEast
Num of prefixes | 85988 | 35303 30719 | 27069 22713
Memory 16139 | 6664 5786 | 5106 4280

Table 2: Memory for data structure (in KBytes)
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Figure 14: Memory required (in KBytes) by best k-VST and CRBT for Paix

permutation of the prefixes in the databases of [11]. For each database, we started with a CRBT that
included the first 75% of the prefixes (order is determined by the random permutation). Then, the
remaining 25% were inserted and the time to insert these 25% was measured. The average time for one
of these inserts is reported in Table 3. For the delete time, we started with the CRBT for 100% of the
prefixes in a database and measured the time to delete the last 25% of these prefixes. The average time
for one of these delete operations is reported. Finally, for the search time, we measured the time to
perform a search for a destination address in each of the basic intervals, and averaged over the number
of basic intervals. The columns labeled Dyn (dynamic) give the times for the case when the insert and
delete codes use C++'s new and delete methods to create and free nodes as required by the insert and
delete operations, respectively. The columns labeled Sta (static) is for codes that do not use dynamic
memory allocation/deallocation during insert and delete operations. Instead, we begin by allocating the
maximum number of prefix trees as well as the maximum number of internal, external, and prefix nodes
that may be needed. These allocated nodes are linked into four different chains, one for each node type.
During an insert, nodes are taken from these chains, and during a delete, nodes are returned to these
chains. As the run times of Table 3 show, dynamic allocation/deallocation accounts for a significant

portion of the run time. Although one would, in theory, expect the time for a search to be the same
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Search Insert Delete
Database | Dyn | Sta | Dyn Sta | Dyn Sta

Paix 1.97 | 2.20 | 47.45 | 36.29 | 46.99 | 36.29
Pb 1.73 | 1.88 | 44.19 | 28.33 | 44.19 | 33.99
MaeWest | 1.83 | 2.00 | 44.28 | 27.25 | 42.97 | 31.25
Aads 1.51 | 1.88 | 44.33 | 28.08 | 41.38 | 32.51

MaeEast | 1.57 | 1.80 | 42.27 | 28.18 | 40.51 | 29.94

Table 3: Execution time (in psec) for randomized databases

when dynamic and static allocation and deallocation are used, the search times reported in Table 3
differ for three of the five databases. We suspect that this difference is largely due to caching differences
resulting from the differences in node addresses in the two schemes. It is interesting to note that even
though search, insert, and delete are O(logn) operations, an insert or delete takes about 25 times as
much time as does a search when dynamic allocation and deallocation are used. When static allocation
and deallocation are used, this ratio is about 16. In either case, the ratio is far more than the less than
two factor between the time to insert/delete from a red-black tree and that to search a red-black tree.
This order of magnitude jump in the ratio of insert/delete time and search time is due to the several join
and split operations needed to insert/delete into/from a CRBT.

The times of Table 3 cannot be compared with the times for corresponding operations on an optimal
VST as reported by Sahni and Kim in [15]. This is because in the experiments conducted in [15], the
database prefixes were considered in the order they appear in each database rather than in a random
order. Further, in the experiments of [15], we started with an optimal VST that contained the first
90% of the database prefixes and then inserted the remaining 10%. The average time for each of these
latter inserts is reported in [15]. The delete times are similarly obtained by removing the last 10% of the
prefixes from an optimal VST that initially has all 100% of the prefixes. The run times for our CRBT
structure for the experiment conducted in [15] are shown in Table 4. Notice that in this experiment, the
cost of an insert/delete is only 15 times that of a search when dynamic allocation and deallocation are
used. When static allocation and deallocation are used, this ratio drops to about 7.

Figures 15 through 17 compare the run times for the search, insert, and delete operations using the
Paix database and the CRBT and optimal VST structures. The search time using the CRBT structure is
about 4 times that when an optimal VST of height k£ = 2 is used. However, when k = 2, each insert takes
about 6 times the time taken by our CRBT structure with dynamic allocation/deallocation and 12 times

the time taken by our CRBT structure with static allocation/deallocation! For the delete operation,
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Search Insert Delete
Database | Dyn | Sta | Dyn Sta | Dyn Sta

Paix 2.33 | 2.21 | 27.91 | 13.96 | 30.24 | 18.61
Pb 1.98 | 1.98 | 28.33 | 14.16 | 31.16 | 19.83
MaeWest | 2.28 | 2.28 | 29.31 | 13.03 | 29.31 | 16.28
Aads 2.22 | 1.85 | 29.56 | 14.78 | 29.56 | 18.48

MaeEast | 1.76 | 2.20 | 26.42 | 17.61 | 30.82 | 17.61

Table 4: Execution time (in usec) for original databases
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Figure 15: Search time (in psec) comparison for Paix
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Figure 16: Insert time (in psec) comparison for Paix

these ratios are 26 and 43, respectively. Note that these ratios increase as we increase k. So, although
the CRBT is slower than optimal VSTs for the search operation, it is considerably faster for the insert

and delete operations!
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Figure 17: Delete time (in psec) comparison for Paix

6 Conclusion

The collection of red-black search trees (CRBT) data structure developed by us provides the first known
way to perform longest-prefix matches, as well as prefix insert and delete in O(logn) time. The CRBT
is interesting from both the theoretical and practical viewpoints. From the theoretical viewpoint, it
represents the first data structure to support dynamic router-table operations in O(logn) time each.
From the practical viewpoint, we note that the CRBT permits updates to be performed in much less
time than when structures such as the VST, which are optimized for search, are used. In a security
conscious environment, our router would need to operate in a blocking mode (i.e., an insert/delete must
complete any inbound/outbound packets are forwarded). In such an environment, the CRBT would block
traffic for about 1/10th the time the VST would. On the other hand, when traffic is not blocked due to an
insert/delete in progress, the VST would process packets at 4 to 5 times the rate of the CRBT. In another
application environment, our concern may be the total time to process a stream of search/insert/delete
requests. Suppose that for every pair of insert and delete requests, there are m search requests. Further,
suppose that the search/insert/delete times for the optimal VST are 0.5/170/800 micro seconds and that
the times for the CRBT are 2.2/14/19 micro seconds (these are approximately the times for Paix). Then,
when m > 551, the optimal VST would perform better than the CRBT.

It is worth noting that the technique developed here may be used to extend the biased skip list scheme
of Ergun et al. [6] so that lookups, inserts, and deletes may all be done in O(logn) expected time, while
providing good expected performance for bursty access patterns (see Sahni and Kim [16]).

Finally, as noted in the introduction, when a compressed binary trie is used to represent a dynamic
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router table, each of the dynamic router-table operations takes O(W) time. Since the compressed trie
algorithms have much smaller constants than do the CRBT algorithms and since n < 2", the CRBT
is expected to outperform the compressed binary trie structure for relatively small values of n. The
threshold at which the compressed binary trie gives better overall performance is higher for IPv6 than

for IPv4.
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