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Abstract 
We present a new technique for generating compact 

dictionaries for cause-effect diagnosis in BIST. This 
approach relies on the use of three compact dictionaries: (i) 
D1, containing compacted LFSR signatures for a small 
number of patterns and faults with high detection 
probability, (ii) an interval-based pass/fail dictionary D2 for 
the BIST patterns and for faults with relatively lower 
detection probability, and (iii) D3, containing compacted 
LFSR signatures for clean-up ATPG vectors and random-
resistant faults. We show that D2, which is two orders of 
magnitude smaller than a maximal-resolution pass/fail 
dictionary, provides nearly the same diagnostic resolution 
as an uncompacted dictionary. We also show that by using a 
16-bit LFSR signature for D1 and D2, we obtain three orders 
of magnitude reduction in dictionary size, yet nearly no loss 
in diagnostic resolution.   

 
1  Introduction 

 Fault diagnosis is necessary for the identification of 
manufacturing defects and for yield learning. One approach 
to diagnosis is based on the use of fault dictionaries, which 
alleviate the need for repeated fault simulation [1, 2]. 
However, as designs grow in complexity, dictionary-based 
diagnosis becomes infeasible due to prohibitively large 
dictionary sizes. A full-response dictionary can require 
Gbits of storage for today’s integrated circuits (ICs). An 
alternative approach is to record only pass/fail information 
in a pass/fail dictionary.  

A number of techniques have recently been proposed for 
reducing dictionary size [1-6]. An important consideration 
in dictionary compaction is that of diagnostic resolution, 
which is determined by the number of modeled faults that 
correspond to the same entry in a compact fault dictionary. 
An effective dictionary compaction scheme should yield a 
small dictionary without significant loss in diagnostic 
resolution. 

Dictionary compaction is achieved through the selection 
of appropriate dictionary organization and encoding 
schemes [1, 2, 4, 5, 6, 8]. A drawback of these techniques is 
that they are based on complex organization and encoding 
schemes, which increase computation and post-processing 
costs. In addition, these techniques rely on irregular data 
structures and data representation, which render bit-packing 
schemes ineffective. Finally, the loss in diagnostic 
resolution is often disproportionately large compared to the 
amount of compaction achieved.  
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The above problems have recently motivated new 
approaches to reduce dictionary size and increase diagnostic 
resolution [8]. However, it is difficult to analytically predict 
the amount of compaction relative to the diagnostic 
resolution for these approaches. Most prior work on cause-
effect diagnosis has been targeted at fault dictionaries based 
on deterministic vectors for external testing. Recently, built-
in self-test (BIST) has gained increasing acceptance as a test 
solution. However, a problem with this approach is that a 
BIST signature does not contain enough diagnostic 
information.  

Cause-effect analysis for BIST is also challenging due to 
prohibitively large dictionary sizes. The number of 
pseudorandom test vectors used in BIST is at least an order 
of magnitude larger than the compacted deterministic test 
sets used for external testing. Recently, the use of intervals 
of test vectors was proposed to identify failing vectors in 
BIST [9]. Here, we exploit the concept of intervals of test 
vectors to generate compact fault dictionaries.  

The proposed approach attemps to make diagnosis more 
efficient by classifying the faults in the underlying fault 
model and using a separate dictionary for each fault type. 
First, we create a compacted full-response dictionary D1 for 
a small number of vectors, e.g. the set of vectors in the first 
interval. We use this dictionary to diagnose faults with high 
detection probability. For a circuit with O outputs (including 
scan cells) and N vectors, a typical full-response dictionary 
contains an ON-bit entry for every fault. This makes a full-
response dictionary prohibitively large. We overcome this 
problem by simulating an LFSR to compact each ON-bit 
entry in D1 to an S-bit signature during dictionary creation. 
For example, for O = 100, N = 1000, and S = 16, each 
dictionary entry is reduced from 105 bits to 16 bits, which 
represents several orders of magnitude compaction. During 
fault diagnosis, an S-bit LFSR is used to generate a 
signature that is compared with the entries in D1. 

We next use the interval-based technique to generate a 
highly-compacted dictionary D2 over all BIST vectors to 
target the random-testable faults that have relatively low 
detection probability. We use an interval-based dictionary 
instead of an LFSR-based dictionary here because the 
former provides valuable information on failing vectors, 
which in turn allows us to perform targeted effect-cause 
analysis. Moreover, an LFSR-based dictionary is generated 
using all the output values hence it is practical only for a 
small number of test vectors. 

Finally, a third dictionary D3 is used to diagnose the 
remaining random-resistant faults that are targeted by 
“clean-up”  ATPG vectors. This dictionary has the same 
organization as D1.  
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Compared to a traditional pass/fail dictionary, the 
interval-based approach leads to two orders of magnitude 
reduction in storage with negligible loss of diagnostic 
resolution. As interval length increases, we show that there 
is no loss of resolution until a compression threshold is 
reached on most faults. This threshold serves as an 
important parameter in the design of interval-based compact 
fault dictionaries.  

The organization of the rest of the paper is as follows. In 
Section 2, we describe the proposed interval-based approach 
for diagnosis. In Section 3, we present the 3-stage BIST 
diagnosis approach and outline its use with scoring 
algorithms for diagnosing unmodeled faults. Finally, in 
Section 4, we demonstrate the effectiveness of the proposed 
diagnosis approach for BIST by determining dictionary 
sizes and diagnostic resolution for the large ISCAS-89 
benchmark circuits.  

2  Interval-based dictionary  
 Let T  be an ordered set of patterns that is applied to the 

circuit under test. An interval I corresponds to a subset of 
consecutive vectors from T.  We divide T into a set of 
intervals I1, I2, …, IN such that T = I1 ∪ I2 ∪ ⋅⋅⋅ ∪ IN . As 
described in detail in [9], the MISR used to collect 
signatures is reset at the start of every interval such that a 
faulty interval does not affect the pass/fail status of 
subsequent intervals. 

Figure 1(a) illustrates three consecutive intervals. The 
test sequence is split into intervals of length L and overlap r. 
Note that I i represents the i th interval. We assume that error 
masking (aliasing) can be neglected such that if an interval 
contains one or more failing vectors, the corresponding 
BIST signature is different from the fault-free signature.  

We illustrate the interval-based method via a compact 2-
D pass/fail dictionary in Figure 1(b). Let F = { F1, F2,…, 
FM}  be the set of modeled faults. These faults correspond to 
rows in the compact dictionary, and the intervals make up 
the columns. If a fault Fi is detected by a vector in interval 
I j, i.e. interval I j fails due to fault Fi, the corresponding (i,j) 
entry in the fault dictionary is set to 1, otherwise it is set to 
0. A given set of failing and non-failing intervals 
corresponds to a particular bit pattern that can often be 
mapped to a set of candidate faults from F.  

Since we set the number of intervals to be one to two 
orders of magnitude smaller than the number of test vectors, 
the interval-based pass-fail dictionary is significantly 
smaller than a maximal-resolution pass/fail dictionary. The 
savings in storage must now be weighed against the possible 
loss of diagnostic resolution. We address this issue in the 
next two subsections. 

2.1 Analytical results 
Let the number of test vectors applied to the circuit under 

test be N and let the number of modeled faults be M. The 
size (in bits) of a maximal-resolution 2-D pass/fail 
dictionary is then simply NM. If we use an interval-based 2-
D pass/fail dictionary with interval length L and zero 
overlap, the size (in bits) of the compact dictionary is NM/L. 
Thus we are able to reduce the size of the dictionary by a 
factor of L. Since the processing time for dictionary-based 

diagnosis is proportional to the number of entries in the 
dictionary, the proposed approach significantly improves 
the efficiency of the diagnosis process. 

We now analyze the diagnostic resolution of the interval-
based compact dictionary. First, we note that even in a 2-D 
pass/fail dictionary based on the N test vectors, not all faults 
in F can be distinguished from each other. Let ME (ME ≤ M) 
be the number of distinct rows in this maximal-resolution 
pass/fail dictionary. Each distinct row of this dictionary 
corresponds to an equivalence class; the faults in any 
equivalence class cannot be distinguished from each other 
using a pass/fail dictionary. 

An interval-based compact dictionary is most effective if 
the number of equivalence classes M′E (M′E ≤ ME) in it is 
only slightly less than ME. Note that M′E depends to a large 
extent on the number of intervals NI, which in turn depends 
on the length of the interval L. As L is increased, i.e. as NI is 
decreased, the number of columns in the dictionary 
decreases, thereby leading to greater compaction. At first, 
there is no loss in diagnostic resolution since the use of 
longer intervals simply eliminates the redundant 
information in the dictionary based on pseudorandom 
vectors. However, loss of diagnosis resolution is inevitable 
(M′E ≤ ME) after L exceeds a certain threshold. This 
property is formalized by the following theorem. 
Theorem 1: Let ME be the number of fault equivalence 
classes in the maximal-resolution pass/fail dictionary. Let 
M′E be the number of equivalence classes in an interval-
based dictionary with interval length L and NI = N/(L �  r) 
intervals. If NI < �log2(ME + 1)� then M′E ≤ ME. In other 
words, M′E ≤ ME if L > N/�log2(ME + 1)�+ r. (Proof omitted.) 

The above bounds on L and NI are sufficient conditions 
for loss of diagnostic resolution, but they are not necessary. 
In practice, we observe loss in diagnostic resolution for 
values of L that are smaller than the bound given by 
Theorem 1.  
Theorem 2: If two faults f1, f2 ∈ F belong to the same 
equivalence class in a maximal-resolution pass/fail 
dictionary, they belong to the same equivalence class in an 
interval-based pass/fail dictionary. (Proof omitted.) 

Theorem 2 leads us to conclude that if L′ > L, the number 
of candidate faults obtained with interval length L′ is at least 
equal to the number of candidate faults obtained with 
interval length L. This leads to the somewhat expected 
result that the diagnostic resolution for ID can never be 
better than the diagnostic resolution for MD. However, an 
interesting observation is that this relationship does not hold 
for two interval-based dictionaries.  

We next investigate the variation of diagnostic resolution 
with change in interval length L. Consider two faults f1 and 
f2 with detection probabilities �  and 

�
, respectively. A high 

 

Figure 1. Interval-based dictionary. 
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detection probability indicates an easy-to-detect fault and a 
low detection probability indicates a hard-to-detect fault. 
Consider the following three events: 
1. E1: f1 and f2 are not in the same equivalence class in MD; 
2. E2: f1 and f2 are in the same equivalence class in ID; 
3. E3: f1 and f2 are in the same equivalence class in MD.  
Let the corresponding probabilities of occurrence of these 
events be P[E1], P[E2] and P[E3], respectively. These 
probabilities can be expressed as follows: 
P[E1] = 1− P[E3]           (1) 
P[E2] =((1−(1− � )L)(1−(1− 

�
)L) + (1− � )L (1− 

�
)L )NI       (2) 

P[E3] = (� �
 + (1− � ) (1− 

�
))N                         (3) 

Next we consider the conditional probability P[E2|E1], 
which is defined as the probability that f1 and f2 are in the 
same equivalence class in ID, given that they are not in the 
same equivalence class in the corresponding MD. Note that 
P[E2|E1] reflects the likelihood that two faults are 
distinguishable in MD but indistinguishable in ID. A smaller 
value of P[E2|E1] indicates better diagnostic resolution.  

P[E2|E1] can be derived as follows using the notion of 
joint probabilities and marginal probabilities:  

 
 P[E2|E1] 

P[E1|E2]P[E2] (1− P[E3|E2] )P[E2] 

 (1− P[E3E2] /P[E2] )P[E2] (1− P[E3]/P[E2] )P[E2] 

P[E2]− P[E3] 
1− P[E3] 
 

= 
P[E2E1] 
P[E1] 

= 
P[E1] 

= 
P[E1] 

= 
P[E1] 

= 
P[E1] 

= 

Here we have utilized the relationship P[E3E2] = P[E3], 
which follows from Theorem 2. Note that although this 
analysis addresses only a pair of faults, the conclusion 
appears to be valid for larger sets of faults, as is justified by 
experimental results later in this section. 

Figure 2 shows the variation of P[E2|E1] with L for 
various values of � . We assume here that the faults f1 and f2 
have the same detection probability, i.e. �  = 

�
. We also 

assume that a total of 1,500 pseudorandom vectors are 
applied to the circuit under test, i.e. N = 1,500. As expected, 
we find that for given values of �  and N, using a smaller 
interval results in better diagnostic resolution. The 
surprising observation is that P[E2|E1] remains almost 
unchanged for a wide range of L up to a certain threshold. 
This is potentially significant since it implies that L can be 
increased   ( the  dictionary   can   be   compacted )   without  

TID (minutes) Circuit TMD (hours) 
L = 40 L = 80 L = 120 L = 160 

s13207 4 4.5 2.5 1.5 1.3 
s15850 10 7.5 5.6 2.2 1.8 
s35932 89.7 18.5 12 5.2 4.6 
s38417 54.2 55 25 14.8 9.5 
s38584 75.7 57 28 14.3 9.4 

Table 1. Dictionary generation time for maximal-resolution and 
interval-based dictionaries. 

significantly affecting diagnostic resolution. For example, 
for �  = 0.01, we reach this threshold at about L = 140, which 
implies that no diagnostic resolution is lost with a 
compaction factor of 140 using our interval-based method. 

2.2 Initial experimental results  
We now present some initial simulation results on 

interval-based dictionaries. For each benchmark circuit, we 
first create a maximal-resolution pass/fail dictionary for 
1,500 pseudorandom vectors and all single stuck-at faults. 
We then generate interval-based pass/fail dictionaries for 
various values of L. We use a Sun Ultra 10 workstation with 
a 333 MHz processor and 256 MB of RAM.  

In order to evaluate diagnostic resolution for a 
benchmark, we randomly inject a stuck-at fault into the 
circuit and determine the dictionary entries for the maximal-
resolution dictionary MD and each interval-based dictionary 
ID. We consider a total of 50 randomly-chosen faults, out of 
which we report results here for a set of eight representative 
faults. Similar results were obtained for the remaining faults.  

Table 1 shows the CPU time needed to generate 
maximal-resolution and interval-based dictionaries for the 
benchmark circuits. These times are referred to as TMD and 
TID, respectively. Note that the time needed to generate TMD 
is excessive in many cases; this clearly makes maximal-
resolution pass/fail dictionaries impractical. On the other 
hand, interval-based dictionaries are generated in at most an 
hour for L = 40, and within a few minutes of CPU time for 
larger values of L. 

Figure 3 shows the diagnostic resolution using an 
interval-based dictionary for various values of L. We show 
results on only two benchmarks due to lack of space. We 
present results for eight representative faults, injected one at 
a time. For each injected fault, we determine the size of the 
equivalence class obtained from the dictionary. The 
diagnostic resolution is measured by the size of this 
equivalence class. Clearly, a smaller equivalence class 
indicates higher resolution. We make the following two 
important observations, which corroborate the analytical 
results of Section 2.1.  

First, compared to MD, the diagnostic resolution for ID 
does not decrease significantly with increase in L until a 
threshold is reached. This threshold is lower than the 
threshold TH = �log2(ME + 1)� predicted by Theorem 1, and 
it depends on the circuit and the particular fault. We find 
that in every case, the dictionary can be compacted 
considerably with negligible impact on diagnostic resolution.   
Once this threshold on L is exceeded, the diagnostic 
resolution decreases for some faults. However, for many 
faults we continue to get high diagnostic resolution for 
larger values of L.  

 

Figure 2. Variation of P[E2|E1] with interval length 
L for several values of detection probability �  (�  =

�
). 

L 

P[E2|E1] 



  

Our second observation is that the diagnostic resolution 
tends to decrease for most faults after the threshold 
predicted by Theorem 1 is exceeded. Beyond this threshold, 
the dictionary simply does not contain any redundancy to 
allow further compaction.  

3  Fault dictionaries for BIST diagnosis 
In Section 2, we did not consider the effect of the 

detection probability of a fault on diagnostic resolution. 
Experimental results presented in Section 2 were for faults 
with low detection probability. If an entry is made in an 
interval-based dictionary for an easy-to-detect fault, it is 
likely that all intervals will fail due to the fault, and the 
dictionary entry will consist of all 1s. As a result, a large 
number of easy-to-detect faults will map to the same 
dictionary entry of all 1s. Hence the interval-based 
dictionary is only one component of a complete diagnosis 
procedure. 

3.1 A three-step diagnosis approach  
First we note that in a diagnosis method based on 

modeled faults, most of the computation effort is expended 
on the hard-to-detect faults. We have seen during simulation 
that over 90% of the pseudorandom vectors are used to 
cover the relatively hard-to-detect faults, which comprise a 
significantly smaller proportion of the set of modeled faults. 
The interval-based dictionary provides the best performance 
for the hard-to-detect faults that are detected by a small 
number of pseudorandom vectors.  

We create an interval-based dictionary using an 
appropriate interval length, usually determined by the 
diagnostic threshold, and two smaller full-response 
dictionaries. As a pre-processing step, the set of modeled 
faults is partitioned into three categories: easy-to-detect, 
hard-to-detect, and undetectable by the pseudorandom 
patterns used for BIST. The interval-based dictionary is 
created for the hard-to-detect faults such that the resolution 
is not adversely affected by the easy-to-detect faults. An 
LFSR-based compacted full-response dictionary D1, as 

described in Section 1, is created for vectors in the first 
interval and for the easy-to-detect faults. We have seen that 
the vectors in the first interval are usually adequate for these 
faults. Faults in the third category are not detected by the 
BIST vectors. Additional “clean-up”  ATPG vectors are 
typically used for these faults and dictionary D3 is used for 
this step. We have considered LFSRs with primitive 
polynomials in our work since they appear to be the most 
effective in reducing dictionary size with little impact on 
diagnostic resolution. 

3.2 Diagnosis of unmodeled faults using scoring 
algorithms 

The single stuck-at fault model has often been shown to 
be inadequate in practice [10]. In order to handle unmodeled 
faults in dictionary-based diagnosis, scoring algorithms 
have been proposed in the literature [2, 6]. Scoring can be 
easily applied to an interval-based dictionary D2 since it 
contains valuable pass/fail status of failing vectors. 
However, it is difficult to directly use scoring on LFSR-
based dictionaries D1 and D3 because the information of 
failing vectors and failing outputs in the responses is 
‘scrambled’  in the S-bit LFSR signature.  

An LFSR-based dictionary (either D1 or D3) can be made 
useful for scoring through two partition schemes described 
below. These schemes are currently being implemented, 
hence we describe them here without presenting 
experimental results. 

In vector-based-partition, we perform a partition on the 
test response information over all the outputs. For each ON-
bit entry in a full response dictionary, where O is the length 
of scan chain and N is the number of test vectors, we divide 
the entry into Jv partitions of equal length. We apply LFSR 
compaction to each ON/Jv-bit long partition. The resulting 
entry in such an LFSR-based dictionary is therefore a 
composite signature, which contains Jv signatures 
concatenated together. Since each signature is derived for 
only ON/Jv bits of test response data, we can now reduce the 
length of the S-bit LFSR. Let the LFSR size now be Qv, 
where Qv < S. The resulting dictionary is therefore JvQv /S 
times as large as the original D1 or D3. However, this new 
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Figure 3. Diagnostic resolution (size of equivalence class) for the 
two largest ISCAS-89 benchmarks. 

  

Figure 4. Enhanced LFSR-based dictionary with scoring 

algorithm using vector-based-partition. 
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dictionary contains pass/fail status information for each 
partition of ON/Jv bits, which makes it suitable for scoring 
algorithms. For example, if O = 50, N = 200, Jv = 10, Qv = 8 
and S = 64, each dictionary entry is reduced from 104 bits to 
80 bits, which still represents two orders of magnitude 
compaction, and since the length of each dictionary entry is 
increased, the diagnostic resolution also increases. The 
pass/fail status of the 10 signatures can be deemed as a 10-
bit entry which can be used by a scoring algorithm. We 
illustrate this procedure in Figure 4.  

An alternative output-based-partition can be performed 
on the output responses over all the test vectors. In this 
method, we split the O-bit outputs into Jo partitions and we 
also use Jo LFSRs, each Qo bits long, where Qo is chosen to 
be much smaller than S. For each test vector, the output 
response from the i th partition is scanned into the i th LFSR, 
and a signature is produced over all the test vectors. As a 
result, the length of each dictionary entry is now JoQo /S 
times as large as the original LFSR-based dictionary. We 
note that this scheme can be implemented easily in a scan-
BIST architecture, where each scan chain can be associated 
with one LFSR. For the above example, if O = 50, N = 200, 
Jo =10, Qo = 8 and S = 64, each dictionary entry is reduced 
from 104 bits to 80 bits, which still represents almost three 
orders of magnitude compaction. The pass/fail status of the 
10 signatures can be viewed as a 10-bit dictionary entry that 
can be used by scoring algorithm. We illustrate this 
procedure in Figure 5; the scoring procedure is similar to 
that in Figure 4.  

4  Experimental results 
In this section, we present simulation results for the six 

largest full-scan ISCAS-89 benchmark circuits. In Section 
2.2, we reported results for some randomly injected faults; 
we now examine the resolution of an interval-based 
dictionary for all single stuck-at faults using an average 
measure DE, the diagnostic expectation, which is defined as 
the average size of an equivalence class. It can be calculated 
as follows: 

 
faults f 

DE = 

Size of f ’ s equivalence class 

number of faults 
 

A smaller value of DE indicates higher diagnostic resolution. 
For each benchmark circuit, we considered a total of 

10,000 pseudorandom vectors to construct a pass/fail 
dictionary for all the “hard-to-detect”  faults that are not 

detected by the first interval. We constructed a number of 
interval-based dictionaries for varying interval lengths.  

Our experimental results on diagnostic expectation are 
presented in Figure 6.  As expected, DE increases with an 
increase in the interval length. However, unlike in Figure 3, 
there does not always exist a distinct threshold point. The 
reason is that our analytical results in Section 2 are based on 
detection probabilities of individual faults, and the 
experimental results are also presented for individual faults. 
Here, DE is calculated over a large number of faults with 
different detection probabilities and different thresholds. 
Nevertheless, for some circuits, e.g. s38417 and s38584, an 
abrupt increase in DE is noticed, and this can serve as a 
valuable guideline to choose an appropriate interval length.  

We limit ourselves to 10,000 vectors because we also 
generate comparative data for full-response dictionaries. 
Even with only 10,000 patterns, the full-response 
dictionaries are gigantic, and it takes several days of CPU 
time to generate them. Moreover, we have observed in 
experiments that as we increase the number of BIST vectors 
to 100,000 and increase the interval length from 100 to 
1,000 simultaneously, i.e., keep dictionary size the same, 
there is no loss of diagnostic resolution. Therefore, D2 can 
be efficiently generated for a much larger number of 
patterns. The generation of D1 and D3 takes relatively less 
time since these dictionaries are generated using only a 
small number of patterns. Experimental results on smaller 
ISCAS-89 benchmarks show that full-response dictionaries 
can also be compacted using this method with two orders of 
magnitude reduction in dictionary size and nearly no loss on 
resolution (Figure 7). 

Next we examine the effectiveness of using a simulated 
LFSR to compact the first-stage full-response dictionary D1. 
In order to save computation time and storage for the 
uncompacted case, we use only 10 pseudorandom vectors to  

  

Figure 5. Enhanced LFSR-based dictionary using 
output-based-partition. 
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Figure 6. Variation of DE with interval length for pass/fail 
dictionaries on larger ISCAS-89 circuits. 

 

Figure 7. Variation of DE with interval length for full-
response dictionaries on smaller ISCAS-89 circuits. 
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DE after 
compac-

tion 

Rfp 
before 

compac-
tion 
(%) 

 
Rfp after 
compac-

tion 
(%) 

s9234 6.7 3.02 0.045 3.04 0.0755 0.0763 
s13207 43.1 2.47 0.09 2.56 0.0253 0.0277 
s15850 43.8 2.74 0.11 2.82 0.0272 0.0283 
s38417 332 2.96 0.30 3.24 0.0103 0.0118 
s38584 386 1.98 0.38 2.3 0.0044 0.0058 
s35932 396 10.5 0.33 10.6 0.0489 0.0497 
Table 2. Dictionary size and diagnostic expectation of D1 for 
larger ISCAS-89 circuits. 

target the easy-to-detect faults. In practice, we expect the 
number of vectors for the first stage to be less than 100. 
Faults that are not detected by these vectors are handled in 
the next two stages. In Table 2, we list the dictionary sizes 
and the DE values before and after compaction based on a 
16-bit LFSR.  It can be seen that by storing LFSR signatures 
in the dictionary, we obtain three orders of magnitude 
reduction in size, yet there is almost no loss in diagnostic 
resolution.  

In order to investigate the effectiveness of LFSR 
compaction further, we also use another measure of 
diagnostic resolution, which is referred to as “ fault pairs”  
[2]. We use the parameter Rfp to refer to the fraction of pairs 
of faults (out of all pairs of faults in the dictionary) that 
cannot be distinguished using the dictionary. Once again, 
we attain almost the same diagnostic resolution after the 
compaction� the values of Rfp before and after compaction 
are almost the same in Table 2. 

In Table 3, we present results on the total dictionary size 
and the DE values when we take into account the 
dictionaries for all the three stages. We also compare our 
results to a recent compact dictionary approach based on 
output compaction [8]. We note here that our method is 
based primarily on BIST vectors,  while the work in [8] was 
aimed at deterministic ATPG vectors. Column 2 in Table 3 
shows the dictionary size of a pass/fail dictionary based on 
10,000 BIST vectors. Clearly, for large circuits, even a 
pass/fail dictionary is impractical. For the interval-based 
dictionary used in the second stage, we choose the interval 
length L to be 100, which is less than the threshold value in 
most cases. This ensures that we achieve a low value of DE, 
hence high diagnostic resolution. We add the dictionary 
sizes for the three stages and list them in Column 3. In 
Column 4, we list the DE values of the proposed method. It 
is calculated over all the three dictionaries and all the 
detectable faults. In Columns 5 and 6, we list dictionary 
sizes and DE values obtained from the compaction method 
described in [8] using ATPG vectors. (Dictionary in [8] is 
based on pass/fail information together with output-
compacted signatures, and the dictionary size is referred to 
as f(v+o).

�
 It can be seen that even though our method uses 

a larger amount of BIST vectors than the ATPG vectors in 
[8], the overall dictionary size is smaller, and diagnostic 
resolution is in most case comparable to that in [8]. 

Finally, in order to demonstrate the effectiveness of using 
LFSR-compaction for a dictionary based on ATPG vectors, 
we apply the compaction procedure on the dictionaries 
referred to in Columns 5 and  6  of  Table  3.  We  show  the  
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s9234 58.1 0.36 2.8 2.30 1.87 0.11 1.97 
s13207 89.2 0.41 3.7  9.84 1.64 0.19 1.77 
s15850 106.8 0.50 2.7 8.83 1.7 0.19 1.86 
s38417 274.3 1.10 2.86 55.9 1.5 0.52 1.96 
s38584 340.0 1.46 2.24 63.5 1.22 0.59 1.75 
s35932 351.1 0.84 8.03 60.9 3.9 0.5 4.3 
Table 3. Overall dictionary size and DE values for the larger 
ISCAS-89 circuits and the corresponding results obtained using the 
output-compacted dictionary proposed in [8]. 

results in terms of dictionary size and DE values in 
Columns 7 and 8.  The results demonstrate that the proposed 
LFSR-based compaction is not only effective for 
pseudorandom vectors, but it is also effective for 
dictionaries based on ATPG vectors. 

5 Conclusions 
We have presented a new technique for generating 

compact dictionaries for diagnosis in scan-based BIST. This 
approach makes diagnosis more efficient by classifying the 
faults in the underlying fault model and using a separate 
dictionary for each fault type. We have shown that a 
combination of three compact dictionaries can be used to 
obtain two to three orders of magnitude reduction in 
memory requirements without compromising diagnostic 
resolution.  
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