An Exact Stochastic Analysis of Priority-Driven
Periodic Real-Time Systems and Its

Approximations

Kanghee Kimt Jo® Luis DiaZ Lucia Lo Belld Jo$ Maifa LopeZ

Chang-Gun Lek Daniel F. Garia* Sang Lyul Mif Orazio Mirabell&

Abstract

This paper describes a stochastic analysis framework for general priority-driven periodic real-time
systems. The proposed framework accurately computes the response time distribution of each task in
the system, thus making it possible to determine the deadline miss probability of individual tasks, even
for systems with a maximum utilization factor greater than 1. The framework is uniformly applied to
general priority-driven systems, including fixed-priority systems (such as Rate Monotonic) and dynamic-
priority systems (such as Earliest Deadline First), and can handle tasks with arbitrary relative deadlines
and execution time distributions. In the framework, both an exact method and approximation methods to

compute the response time distributions are presented and compared in terms of analysis accuracy and

*An earlier version of this paper appeared in the Proceedings of the 23rd IEEE Real-Time Systems Symposim, 2002.
“T Kanghee Kim khki m@r chi . snu. ac. kr) and Sang Lyul Min §yni n@andel i on. snu. ac. kr), School of

Computer Science and Engineering, Seoul National Unive(Sihillim-dong San 56-1, Kwanak-Gu, Seoul, 151-742 Korea).
This work was supported in part by the Ministry of Science and Technology under the National Research Laboratory program
and by the Ministry of Education under the BK21 program. Also, for this work, the ICT at Seoul National University provided
research facilities.

* José Luis Daz, José Ma# Lopez and Daniel F. Gaa’(j di az, chechu, dani el } @t c. uni ovi . es), Departamento
de Informatica Universidad de Ovied¢33204, Gign, Spain)

§ Lucia Lo Bello and Orazio Mirabella{(| obel | 0, omi rabel } @i i t.unict.it), Dipartimento di Ingegneria Infor-
matica e delle Telecomunicazipiacolta di Ingegneria, Universitdi Catania(Viale A. Doria 6, 95125 Catania, Italy)

T Chang-Gun Leeqgl ee@e. eng. ohi o- st at e. edu), Department of Electrical Engineering, Ohio State Univer§915

Neil Avenue, Columbus, OH 43210, U.S.A.)

complexity. We prove that the complexity of the exact method is polynomial in terms of the number of

jobs in a hyperperiod of the task set and the maximum length of the execution time distributions, and

show that the approximation methods can significantly reduce the complexity without loss of accuracy.
Keywords: C.3.d Real-time and embedded systems, D.4.1.e Scheduling, D.4.8.g Stochastic analysis,

G.3.e Markov processes

. INTRODUCTION

Most recent research on hard real-time systems has used the periodic task model [1] in ana-
lyzing the schedulability of a given task set where tasks are released periodically. Based on this
periodic task model, various schedulability analysis methods for priority-driven systems have been
developed to provide a deterministic guarantee that all the instances, dikdf every task in
the system meet their deadlines, assuming that every job in a task requires its worst case execution
time [1], [2], [3].

Although this deterministic timing guarantee is needed in hard real-time systems, it is too
stringent for soft real-time applications that only require a probabilistic guarantee that the deadline
miss ratio of a task is below a given threshold. For soft real-time applications, we need to relax
the assumption that every instance of a task requires the worst case execution time in order to
improve the system utilization. This is also needed for probabilistic hard real-time systems [4]
where a probabilistic guarantee close to 0% suffices, i.e. the overall deadline miss ratio of the
system should be below a hardware failure ratio.

Progress has recently been made in the analysis of real-time systems under the stochastic
assumption that jobs from a task require variable execution times. Research in this area can be
categorized into two groups depending on the approach used to facilitate the analysis. The methods
in the first group introduce a worst-case assumption to simplify the analysis (e.g., the critical instant
assumption in Probabilistic Time Demand Analysis [5] and Stochastic Time Demand Analysis [6],
[7]) or a restrictive assumption (e.g., the heavy traffic condition in the Real-Time Queueing
Theory [8], [9]). Those in the second group, on the other hand, assume a special scheduling
model that provides isolation between tasks so that each task can be analyzed independently of

the other tasks in the system (e.g., the reservation-based system addressed in [10] and Statistical

2

Rate Monotonic Scheduling [11]).

In this paper, we describe a stochastic analysis framework that does not introduce any worst-case
or restrictive assumptions into the analysis, and is applicable to general priority-driven real-time
systems. The proposed framework builds upon Stochastic Time Demand Analysis (STDA) in
that the techniques used in the framework to compute the response time distributions of tasks
are largely borrowed from the STDA. However, unlike the STDA, which focuses on particular
execution scenarios starting at a critical instant, the proposed framework considers all possible
execution scenarios in order to obtain the exact response time distributions of the tasks. Moreover,
while the STDA addresses only fixed-priority systems such as Rate Monotonic [1] and Deadline
Monotonic [12], our framework extends to dynamic-priority systems such as Earliest Deadline

First [1]. The contributions of the paper can be summarized as follows:

« The framework gives thexactresponse time distributions of the tasks. It assumes neither
a particular execution scenario of the tasks such as critical instants, nor a particular system
condition such as heavy traffic, in order to obtain accurate analysis results considering all
possible execution scenarios for a wide range of system conditions.

« The framework provides anified approach to addressing general priority-driven systems,
including both fixed-priority systems such as Rate Monotonic and Deadline Monotonic, and
dynamic-priority systems such as Earliest Deadline First. We neither modify the conventional
rules of priority-driven scheduling, nor introduce other additional scheduling rules such as

reservation scheduling, in order to analyze the priority-driven system as it is.

In our framework, in order to consider all possible execution scenarios in the system, we analyze
a whole hyperperiod of the given task set (which is defined as a period whose length is equal to
the least common multiple of the periods of all the tasks). In particular, to handle even cases where
one hyperperiod affects the next hyperperiod, which occurs when the maximum utilization of the
system is greater than 1, we take the approach of modelling the system as a Markov process over
an infinite sequence of hyperperiods. This modelling leads us to solve an infinite number of linear
equations, so we present three different methods to solve it: one method gives the exact solution,

and the others give approximated solutions. We compare all these methods in terms of analysis

complexity and accuracy through experiments. It should be noted that our framework subsumes the
conventional deterministic analysis in the sense that, by modelling the worst case execution times
as single-valued distributions, it always produces the same result as the deterministic analysis on
whether a task set is schedulable or not.

The rest of the paper is organized as follows. In Section Il, the related work is described in detail.
In Section lll, the system model is explained. Sections IV and V describe the stochastic analysis
framework including the exact and the approximation methods. In Section VI, the complexity
of the methods is analyzed, and in Section VII, a comparison between the solutions obtained
by the methods is given, together with other analysis methods proposed in literature. Finally, in

Section VIII, we conclude the paper with directions for future research.

Il. RELATED WORK

Several studies have addressed the variability of task execution times in analyzing the schedu-
lability of a given task set. Research in this area can be categorized into two groups depending
on the approach taken to make the analysis possible. The methods in the first group [5], [6], [7],
[8], [9], [13], [14] introduce a worst-case or restrictive assumption to simplify the analysis. Those
in the second group [10], [11] assume a special scheduling model that provides isolation between
tasks so that each task can be analyzed independently of other tasks in the system.

Examples of analysis methods in the first group include Probabilistic Time Demand Analysis
(PTDA) [5] and Stochastic Time Demand Analysis (STDA) [6], [7], both of which target fixed-
priority systems with tasks having arbitrary execution time distributions. PTDA is a stochastic
extension of the Time Demand Analysis [2] and can only deal with tasks with relative deadlines
smaller than or equal to the periods. STDA, on the other hand, which is a stochastic extension
of General Time Demand Analysis [3], can handle tasks with relative deadlines greater than the
periods. Like the original time demand analysis, both methods assume the critical instant where
the task being analyzed and all the higher priority tasks are released or arrive at the same time.
Although this worst-case assumption simplifies the analysis, it only results in an upper bound on

the deadline miss probability, the conservativeness of which depends on the number of tasks and

the average utilization of the system. Moreover, both analyses are valid only when the maximum
utilization of the system does not exceed 1.

Other examples of analysis methods in the first group are the method proposed by Manolache
et al. [13], which addresses only uniprocessor systems, and the one proposed by Leulseged and
Nissanke [14], which extends to multiprocessor systems. These methods, like the one presented in
this paper, cover general priority-driven systems including both fixed-priority and dynamic-priority
systems. However, to limit the scope of the analysis to a single hyperperiod, both methods assume
that the relative deadlines of tasks are shorter than or equal to their periods and that all the jobs that
miss the deadlines are dropped. Moreover, in [13], all the tasks are assumed to be non-preemptable
to simplify the analysis.

The first group also includes the Real-Time Queueing Theory [8], [9], which extends the classical
gueueing theory to real-time systems. This analysis method is flexible, in that it is not limited to a
particular scheduling algorithm and can be extended to real-time queueing networks. However, it is
only applicable to systems where the heavy traffic assumption (i.e., the average system utilization
is close to 1) holds. Moreover, it only considers one class of tasks such that the interarrival times
and execution times are identically distributed.

Stochastic analysis methods in the second group include the one proposed by Abeni and
Buttazzo [10], and the method with Statistical Rate Monotonic Scheduling (SRMS) [11]. Both
assume reservation-based scheduling algorithms so that the analysis can be performed as if each
task had a dedicated (virtual) processor. That is, each task is provided with a guaranteed budget
of processor time in every period [10] or super-period (the period of the next low priority task,
which is assumed to be an integer multiple of the period of the task in SRMS) [11]. So, the
deadline miss probability of a task can be analyzed independently of the other tasks, assuming
the guaranteed budget. However, these stochastic analysis methods are not applicable to general
priority-driven systems due to the modification of the original priority-driven scheduling rules or

the use of reservation-based scheduling algorithms.

. SYSTEM MODEL

We assume a uniprocessor system that consistsrmdependent periodic tasl&= {11,...,Tn},
each taskrj (1 <i < n) being modeled by the tupl€T;, ®;, C;, D), whereT; is the period of the
task, ®; its initial phase,C; its execution time, and; its relative deadline. The execution time
is a discrete random variablavith a given probability mass function (PMF), denoted 1Y OF
where fe, (c) = P{Cj=c}. The execution time PMF can be given by a measurement-based analysis
such as automatic tracing analysis [15], and stored as a finite vector, whose indices are possible
values of the execution time and the stored values are their probabilities. The indices range from
a minimum execution tim€™" to a maximum execution tim€™. Without loss of generality,
the phased; of each taskr; is assumed to be smaller thdn The relative deadlind®; can be
smaller than, equal to, or greater thgn

Associated with the task set, the system utilization is defined as the sum of the utilizations of
all the tasks. Due to the variability of task execution times, the mininufff", maximumu MaX
and the average system utilizatioh are defined ag! ,C™"/T;, YI,C™/T,, and Y, Ci/T;,
respectively. In addition, a hyperperiod of the task set is defined as a period of [Bngivhich
is equal to the least common multiple of the task periods,Ties= Icmi<i<n{Ti}.

Each task gives rise to an infinite sequence of jobs, whose release times are deterministic. If
we denote thg-th job of taskt by J j, its release time\; j is equal to®; 4 (j —1)T;. Each job
Ji,j requires an execution time, which is described by a random variable following the given PMF
fe,(-) of the taskr;, and is assumed to be independent of other jobs of the same task and those of
other tasks. However, throughout the paper we use a single intexthe job subscript, since the
task that the job belongs to is not important in describing our analysis framework. On the other
hand, we sometimes additionally use a superscript for the job notation, to express the hyperperiod
that the job belongs to. That is, we usjé‘) to refer to thej-th job in thek-th hyperperiod.

The scheduling model we assume is a general priority-driven preemptive one that covers both
fixed-priority systems such as Rate Monotonic (RM) and Deadline Monotonic (DM), and dynamic-

“Throughout this paper, we use a calligraphic typeface to denote random variable8, ®4.and®R, and a non-calligraphic

typeface to denote deterministic variables, eé33. W, andR.

priority systems such as Earliest Deadline First (EDF). The only limitation is that once a priority is
assigned to a job, it never changes, which is called a job-level fixed-priority model [16]. According
to the priority, all the jobs are scheduled in such a way that, at any time, the job with the highest
priority is always served first. If two or more jobs with the same priority are ready at the same
time, the one that arrived first is scheduled first. We denote the priority ofljdly a priority
value p;. Note that a higher priority value means a lower priority.

The response time for each jdb is represented bfR; and its PMF byfg, (r) = P{Rj=r}.
From the job response time PMFs, we can obtain the response time PMF for any task by averaging
those of all the jobs belonging to the task. The task response time PMFs provide the analyst with
significant information about the stochastic behavior of the system. In particular, the PMFs can
be used to compute the probability of deadline misses for the tasks. The deadline miss probability

DMP, of task 1j can be computed as follows:

DMPB =P{R;>D;j} = 1-P{R;<D;} Q)

IV. STOCHASTIC ANALYSIS FRAMEWORK
A. Overview

The goal of the proposed analysis framework is to accurately computgdhienaryresponse
time distributions of all the jobs, when the system is in the steady state. The stationary response
time distribution of jobJ; can defined as follows:
lim f
k— o0 fRE
wheref, is the response time PMF df"). In this section, we will describe how to compute the
j

k) - fREoo)

response time distributions of all the jobs in an arbitrary hyperpétjahd then, in the following
section, explain how to compute the stationary distributions, which are obtainedkvhen. We
start our discussion by explaining how the response titnef a job Jj is determined.

The response time of a jaly is determined by two factors. One is the pending workload that
delays the execution afj, which is observed at its release timig We call this pending workload
backlog The other is the workload of jobs that may preenmdptwhich are released aftgy. We

call this workloadinterference Since both the backlog and the interference Joconsist of jobs

7

with a priority higher than that o; (i.e., with a priority value smaller than the priority valysg
of Jj), we can elaborate the two terms pg-backlogand pj-interference respectively. Thus, the

response time of; can be expressed by the following equation
Rj =Wp;(Aj) + € +Tp, (2)

where Wp, (Aj) is the pj-backlog observed at timg;, Cj is the execution time o8;, andJy, is
the pj-interference occurring after tima.

In our framework, we compute the distribution of the response titpen two steps:backlog
analysisandinterference analysidn the backlog analysis, the stationgpy-backlog distributions
pr,— ()\j)(-) of all the jobs in a hyperperiod are computed. Then, in the interference analysis,
the stationary response time distributiohﬁj(-) of the jobs are determined by introducing the
associated execution time distributidg, (-) and thepj-interference effecly, into each stationary

pj-backlog distributionfwpj A ()

B. Backlog analysis algorithm

For the backlog analysis, we assume a job sequddge..,Jj} in which all the jobs have
a priority value smaller than or equal fg;. It is also assumed that the stationgsy-backlog
distribution observed at the release time of the firstjpbi.e., prj (A (+), is given. In Section V,
it will be explained how the assumed stationary backlog distribution can be computed. Then the
pj-backlog distributionfwpj () () at the release time afj can be computed fronﬁij () (+) by
the algorithm described in this subsection. For the sake of brevity, we will simplify the notation
Wy, (Aj) to W(A)), i.e., without the subscript denoting the priority levg)l.

Let us first consider how to compute the backlog when the execution times of all the jobs are

given as deterministic values. In this deterministic scenario, the batkidg) at the release time

of each jobJk (1< k< j) can be expressed as follows:
W (Aks1) = max{W(Ax) + C«x — (Ak+1 — Ak), 0} 3)

So, once the backldg/ (A1) for the first jobJ; is given, the series of the backlgdV,,, W,,,..., W, }

]

can be calculated by repeatedly applying Equation (3) along the job sequence.

Jy Jry1

Ak Ayt !
few

n
o o=

T T T T T T
9 0 11 12 13 14 15

T
7
ﬂl: Convolve
54
w

0 1 2 3 4 b 6 T 3 9 10 11 12 13 14 15

w

ﬂz; Shift by (Ar1 — Ak

3: Sum up all the probability
W) valucs in the non-positive

Fig. 1. An example of backlog analysis using the convolve-shrink procedure

Then we can explain our backlog analysis algorithm as a stochastic extension of Equation (3).
Deterministic variable®V(Ayx) and Cy are translated into random variabl&g(Ax) and Gk, and
Equation (3) is translated into a numerical procedure on the associated PMFs. This procedure can
be summarized in the following three steps:

1) The expressionW(Ax) + C” is translated into convolution between the two PMFs of the

random variabledV(Ay) and Cy, respectively.

fwong+ed) = (Fwo © fe) ()

In Figure 1, for example, the arrow annotated with “Convolve” shows such a convolution
operation.

2) The expressionW(Ak) + Ck — (A1 — Ak)” is translated into shifting the PMFyy 5, ¢, (+)
obtained above byAx;1 — Ak) units to the left. In the example shown in Figure 1, the
amount of the shift is 6 time units.

3) The expression “ma§V(Ax) + Cx — (Ak+1— Ak),0}” is translated into summing up all the
probability values in the negative range of the PMF obtained above and adding the sum

to the probability of the backlog equal to zero. In the above example, the probability sum

iS 20/54,

These three steps exactly describe how to obtain the backlog M,) (-) from the preceding
backlog PMFfW(Ak)(-). So, starting from the first job in the given sequence, for which the
stationary backlog PMI-‘rW()\l)(-) is assumed to be known, we can compute the stationary backlog
PMF of the last johJ; by repeatedly applying the above procedure along the sequence. We refer

to this procedure as “convolve-shrink”.

C. Interference analysis algorithm

Once thepj-backlog PMF is computed for each jdpat its release time by the backlog analysis
algorithm described above, we can easily obtain the response time PMF of thebjpleonvolving
the p;j-backlog PMFfWpj (a;)(-) and the execution time PMF,(-). This response time PMF is
correct if the jobJ; is non-preemptable. However, X is preemptable, and there exist higher
priority jobs following Jj, we have to further analyze thg-interference fod;, caused by all the
higher priority jobs, to obtain the complete response time PMF.

For the interference analysis, we have to identify all the higher priority jobs following
These higher priority jobs can easily be found by searching for all the jobs released later than
Jj and comparing their priorities with that df. For the sake of brevity, we represent these jobs
with {Jj1,Jj+2, ..., Jj+k, -}, While slightly changing the meaning of the notatiap, from the
absolute release time to the release time relativ&jtd.e., Aj;x < (Ajik— Aj).

As in the case of the backlog analysis algorithm, let us first consider how to compute the
response timdR; of J; when the execution times of all the jobs are given as deterministic values.

In this deterministic scenario, the response tiRgof Jj can be computed by the following

algorithm:
Rj =Wy, (Aj) +Cj s k=1
while Rj > Aj ik (4)
Ri=Rj+Cjk; k=k+1
The total numbek of iterations of the “while” loop is determined by the final response time

that does not reach the release time of the next higher priorityjop_1. For an arbitrary value

10

Jj Jit1 Ji2 0 1 3
I 1 fe, = fepn = foin
Ay A Ajta !
fw '
+ +
JJ_. T T T ‘ w
1 2 3 4

T T T
h [7 & 9 10

H®f67

E3
< i
I
+ | + Response time without interference
- l | l F
T T T T T T %
1 2 5| 5
T / T
1 2 3

fw @ fe,

R;
1 = 4 5
¥ i 33 a2 1
- - - 32
T T I J ! T

1 2 3 4 Ll 6 T 8 9 10

Response time with interference

Fig. 2. An example of interference analysis using the split-convolve-merge procedure

k, the final response timB; is given asWj, (Aj) +Cj + 3, Cji.

We can explain our interference analysis algorithm as a stochastic extension of Algorithm (4). We
treat deterministic variableRj andC; as random variable®j andCj, and translate Algorithm (4)
into a numerical procedure on the associated PMFs as follows:

1) The expressionR®j = Wy, (Aj) + €;” is translated intofy, (-) = (pr,-(/\i) ® fe;)(-). This
response time PMF is valid in the intervé,A;.1]. For example, in Figure 2, the first
convolution® shows the corresponding operation.

2) While P{Rj>Aj 1k} > 0, the expressionRj = Rj + Cj,” is translated into convolution
between the partial PMF defined in the rangdg.,) of the response time PMF, ()
calculated in the previous iteration and the execution time F¥E (-). The resulting PMF
is valid in the rang€Aj 1k, Aj1k+1]. WhenP{R;>Aj,«} =0, the loop is terminated. In the
example shown in Figure 2, this procedure is described by the two successive convolutions,

where only two higher priority jobsj,1 andJj,, are assumed (In this case, all three jobs

11

are assumed to have the same execution time distribution).

Note that in the above procedure the number of higher priority jobs we have to consider in
a real system can be infinite. However, in practice, since we are often interested only in the
probability of job J; missing the deadlin®j, the set of interfering jobs we have to consider can
be limited to the jobs released in the time inter¢aj,A; + D;). This is because we can compute
the deadline miss probability, i.P{R;>Dj}, from the partial response time distribution defined
in the range[0,Dj], i.e.,P{R;>Dj} = 1-P{R;<Dj}. Thus, we can terminate the “while” loop of
Algorithm (4) whenAj . is greater tharDj. For the example in Figure 2, if the relative deadline
Dj of Jj is 7, the deadline miss probability will blB{R;>D;} =1-11/16=5/16.

We will refer to the above procedure as “split-convolve-merge”, since at each step the response
time PMF being computed is split, the resulting tail is convolved with the associated execution

time distribution, and this newly made tail and the original head are merged.

D. Backlog dependency tree

In the backlog analysis algorithm, for a given jdy we assumed that a sequence of preceding
jobs with a priority higher than or equal to that §f and the stationary backlog distribution of the
first job in the sequence were given. In this subsection, we will explain how to derive such a job
sequence for each job in a hyperperiod. As a result, we glvaclog dependency treehere the
pj-backlog distributions of all the jobs in the hyperperiod can be computed by traversing the tree
while applying the convolve-shrink procedure. This backlog dependency tree greatly simplifies
the steady-state backlog analysis for the jobs, since it reduces the problem to computing only the
stationary backlog distribution of the root job of the tree. In Section V, we will address how to
compute the stationary backlog distribution for the root job.

To show that there exist dependencies betweenpjhleacklog’s, we first classify all the jobs
in a hyperperiod intground jobsand non-ground jobsA ground job is defined as a job that has
a lower priority than those of all the jobs previously released. Thaljiss a ground job if and
only if pe < pj for all jobs Jx such thatAx < Aj. A non-ground job is a job that is not a ground

job. One important implication from the ground job definition is that thebacklog of a ground

12

nl) W 5l sl
20 40 60 80 100 120 140 (
2 5| & O] N\t
0) 140 Wp, (A2) ,Js} We, (As)

(a) Task set {32,33,04} Wy (ha)
WPS(A5)
hyper period {3} ‘ {3}
Wps(26) 15,37} Wp, (A7)
v v v v {Jﬁ,JLJS}‘ w g(AS)
Il | mﬁ m ~J10| Ju1 P
|]] R
W(A1) W(A3) | W(As) | W(A7) | W(Ag) W(A1o)
W(A2) W) W) W(Ag) W(A11)

(b) Ground jobs and non-ground jobs (c) Backlog dependency tree

Fig. 3. An example of backlog dependency tree generation

job is always equal to the total backlog in the system observed at its release time. We call the
total backlogsystem backlogind denote it byW(t), i.e., without the subscripp; denoting the
priority level. So, for a ground jold;, Wp, (Aj) = W(A;).

Let us consider the task set example shown in Figure 3(a). This task set consists of two tasks
71 and 12 with the relative deadlines equal to the periods 20 and 70, respectively. The phases
of both tasks are zero. We assume that these tasks are scheduled by EDF.

In this example, there are five ground jobs Jo, Js, Js, and Jg, and four non-ground jobs
Js, Ja, J7, and Jg, as shown in Figure 3(b). That is, regardless of the actual execution times
of the jobs, Wy, (A1) = W(A1), Wp,(A2) = W(A2) (which is under the assumption tha(A,)
includes the execution time df while W(A1) does not),Wy,(As) = W(As), Wp.(Ae) = W(Ae),
and Wp,(Ag) = W(Ag). On the contrary, for any of the non-ground jolys Wp,(Aj) # W(Aj).
For example W, (As4) # W(A4) if J is still running until 4 is released, since the system backlog
W(A4) includes the backlog left by, while the ps-backlogWy,(A4) does not.

We can capture backlog dependencies between the ground and non-ground jobs. For each non-
ground jobJ;, we search for the last ground job that is released befpesd has a priority higher
than or equal to that o;. Such a ground job is called thmse jobfor the non-ground job. From

this relation, we can observe that tipg-backlog of the non-ground joB; directly depends on

13

that of the base job. For example, for the task set shown above, the base Jolamd J is Ji,
and that ofJ; and Jg is Js. We can see that, for the non-ground j@f) the ps-backlog can be
directly computed from that of the ground jdhp by considering only the execution time &f. In
this computation, the existence &f is ignored becaus& has a lower priority thads. Likewise,
for the non-ground jolds, the ps-backlog can also be directly computed from that of the ground
job J; in the same manner, except for the fact that, in this case, we have to take into account the
arrival of J3 in betweenA; and A4 (sinceJs has a higher priority thad,).

Note that such backlog dependencies exist even between ground jobs, and can still be captured
under the concept of the base job. The base joliy & J;, that ofJ5 is Jo, and so on. As a result,
all the backlog dependencies among the jobs can be depicted with a tree, as shown in Figure 3(c).
In this figure, each node represents thebacklogWy, (Aj) of Jj, each linkWy, (Ak) — Wy, (Aj)
represents the dependency betwagp (Ax) and Wp,(A;), and the label on each link represents
the set of jobs that should be taken into account to comp@ge(Aj) from W, (Ak).

It is important to understand that this backlog dependency tree completely encapsulates all the
job sequences required in computing thiebacklog'sWy, (Aj) of all the jobs in the hyperperiod.
For example, let us consider the path froftp, (A1) to Wp,(Ag). We can see that the set of labels
found in the path represents the exact sequence of jobs that should be considered in computing
Whpg(Ag) from Wy, (A1). That is, the job sequendgly, J,J3, Js, 5, J7} includes all the jobs with
a priority higher than or equal to that dg, among all the jobs preceding. This property is
applied for every node in the tree. Therefore, given the stationary root backlog distribution, i.e.,
prl(Al)(')’ we can compute the stationapy-backlog distributions of all the other jobs in the
hyperperiod by traversing the tree while applying the convolve-shrink procedure.

Finally, note that there is one optimization issue in the dependency tree. In the cases of comput-
ing Wp,(A3) and computing®Vy, (A4), the associated job sequences fig} and{Jy,Js}, and the
former is a subsequence of the latter. In this case, since we can 08{ai{A3) while computing
Whp,(As) with the sequencgJy, s}, i.e., Wp,(A3) = Wp,(A3), the redundant computation for
Whp,(A3) with the sequencgJ;} can be avoided. This observation is also applied to the case of

non-ground jobs); and Jg. It suffices to note that such redundancies can easily be removed by

14

certain steps of tree manipulation.

E. Extension to dynamic-priority and fixed-priority systems

In this subsection, we will prove the existence of ground jobs for the job-level fixed-priority
scheduling model [16]. We will also prove the existence of base jobs while distinguishing between

fixed-priority systems and dynamic-priority systems.

Theorem 1. Let S={13,...,Tn} be a periodic task set, in which each task generates a sequence of
jobs with a deterministic period; Bnd phaseb;. Also, let |y = lcmi<i<n{Ti}, i.e., the length of a
hyperperiod. Consider a sequence of hyperperiods the first of which starts at {one t < Ty).

Then, for any t, if the relative priorities of all jobs in a hyperperidoth-kTy,t+ (k+1)Ty)
coincide with those of all jobs in the next hyperperivd- (k+ 1)Th,t+ (k+2)Tq) (k=0,1,...),

it follows that

(a) at least one ground job exists in any hyperperiod.

(b) the same set of ground jobs are found for all the hyperperiods.
Proof. The proof of this theorem can be found in the Appendix. O

The key point of the proof is that, in any hyperperiod, a job with the maximum priority value
always has a lower priority than any preceding jobs. From this, it is easy to devise an algorithm
to find all the ground jobs in a hyperperiod. First, we take an arbitrary hyperperiod and simply
find the job J; with the maximum priority value. This job is a ground one. After that, we find
all the other ground jobs by searching the single hyperperiod starting at the release time of the
ground job, i.e.[Aj,Aj+TH). In this search, we simply have to check whether a jpln the
hyperperiod has a greater priority value than all the preceding jobs released in the hyperperiod,
e, {Jj,....d—1}.

In the following, we will address the existence of the base jobs for dynamic-priority systems

such as EDF.

Theorem 2. For a system defined in Theorem 1, if the priority valugé) of every job Q”) in

the hyperperiod nX 2) can be expressed aénb: pgn_l) + A, whereA is an arbitrary positive

15

constant, any job in a hyperperiod can always find its base job among the preceding ground jobs

in the same hyperperiod or a preceding hyperperiod.
Proof. The proof of this theorem can be found in the Appendix. O

For EDF,A = Ty, since the priority value assigned to each job is the absolute deadline.
Note that in our analysis framework it does not matter whether the basg jedound in the
same hyperperiod (say) the non-ground jok); belongs to, or a preceding hyperperiod ($qy
since the case where the base jbbs found in a preceding hyperperiod simply means that the
corresponding job sequence frahto J; spans over the multiple hyperperiods from the hyperperiod
k to n. Even in this case, since it is possible to compute the stationary backlog distribution for the
root of the backlog dependency tree that originates from the hyperpkyrittdough the steady-
state analysis in Section V, the backlog distribution of such a non-ground, joan be computed
along the derived job sequence.
The next possible question will be whether there exists a bound on the search range for the

base jobs. Theorem 3 addresses this problem for EDF.

Theorem 3. For EDF, it is always possible to find the base job of any non-ground jom he
time window[A; — (D™®4Ty), Aj], where D'®* = max<i<nD;. That is, the search range for the

base job is bounded by ™9+ Ty.
Proof. The proof of this theorem can be found in the Appendix. O

Note that if we consider a case whdd&®* < Ty (since the opposite case is rare in practice),
Theorem 3 means that it is sufficient to search at most one preceding hyperperiod to find the base
jobs of all the non-ground jobs in a hyperperiod.

On the contrary, in fixed-priority systems such as RM and DM, the base jobs of the non-ground
jobs do not exist among the ground jobs (Recall that, for such systems, Theorem 2 does not hold,
sinceA = 0). In such systems, all jobs from the lowest priority tagkare classified as ground jobs
while all jobs from the other tasks are non-ground jobs. In this case, since any ground job always
has a lower priority than any non-ground job, we cannot find the base job for any non-ground job

(even if all the preceding hyperperiods are searched).

16

Note, however, that this special case does not compromise our analysis framework. It is still
possible to compute the backlog distributions of all the jobs by considering each possible priority
level. That is, we can consider a subset of tagks..., 7} for each priority leveli =1,...,n,
and compute the backlog distributions of all the jobs from taslksince the jobs front; are all
ground jobs in the subset of the tasks, and there always exist backlog dependencies between the
ground jobs.

Therefore, the only difference between dynamic-priority systems and fixed-priority systems is
that for the former the backlog distributions of all the jobs are computed at once with the single
backlog dependency tree, while for the latter they are computed by iterative analysis over the

priority levels, which results im backlog dependency lists.

V. STEADY-STATE BACKLOG ANALYSIS

In this section, we will explain how to analyze the steady-state backlog of a ground job, which
is used as the root of the backlog dependency tree or the head of the backlog dependency list.
In this analysis, for the ground jol;, we have to consider an infinite sequence of all the jobs
released beforgy, i.e.,{...,Jj_3,Jj—2,Jj_1}, since all the preceding jobs contribute to the “system
backlog” observed by;.

In Section V-A, we will prove the existence of the stationary system backlog distribution, and in
Sections V-B and V-C, explain the exact and the approximation methods to compute the stationary
distribution. Finally, in Section V-D, it will be discussed how to safely truncate the exact solution,

which is infinite, in order to use it as the root of the backlog dependency tree.

A. Existence of the stationary backlog distribution
The following theorem states that there existstationary (or limiting) system backlog distri-

bution, as long as the average system utilizatibis less than 1.

Theorem 4. Let us assume an infinite sequence of hyperperiods, the first of which starts at the
release time\; of the considered ground johy.JLet 3, (-) be the distribution of the system backlog

Bk observed at the release time of the ground qu,Ji.e., at the beginning of hyperperiod k.

17

Then, if the average system utilizatith is less than 1, there exists a stationary (or limiting)
distribution fz_(-) of the system backloy such that

lim fg, = fg_.
k—00 B Be

Proof. The proof can be found in [17]. O

For the special case whet#"® < 1, the system backlog distributiorfg, (-) of all the hyper-
periods are identical. That idg, =--- = fg, =--- = fg_. In this case, the stationary backlog
distribution f3_(-) can easily be computed by considering only the finite sequence of the jobs
released before the release time of the groundjolbhat is, we simply have to apply the convolve-
shrink procedure along the finite sequence of jobs releasgd, A3), assuming that the system
backlog at time 0 is 0 (i.eP{W(0)=0} = 1). Therefore, for the special case wher@ < 1, the

following steady-state backlog analysis is not needed.

B. Exact solution

For a general case whet&"® > 1, in order to compute the exact solution for the stationary
backlog distributionfg_(-), we show that the stochastic process defined with the sequence of
random variable§Bo, B1,...,By,...} is a Markov chain. To do this, let us express the PMF of

By in terms of the PMF ofBy_; using the concept of conditional probabilities.

P{Bi=x} = 3 P{Bi1=y}P{Bx=x| Bx_1-Y} (5)
y

Then we can see that the conditional probabiliffté®8=x | Bx_1=Yy} do not depend oR, since
all hyperperiods receive the same sequence of jobs with the same execution time distributions.
That is, P{Bx=X| Bk_1=Y} = P{B1=x| Bo=y}. This leads us to the fact that the PMF Bf
depends only on that @By 1, and not on those of Bx_», Bk _3,...}. Thus, the stochastic process

is a Markov chain. We can rewrite Equation (5) in matrix form as follows
bk = Pbyx_1 (6)

whereby is a column vectofP{By=0},P{Bx=1},...]", i.e., the PMF ofBy, andP is the Markov

18

matrix, which consists of the transition probabilitiP¢x,y) defined as
P(x,y) = by(X) = P{Bx=x| Bk—1=y} = P{B1=x| Bo=Y}.

Thus, the problem of computing the exact solutimrfor the stationary backlog distribution,
i.e., [P{Bo=0},P{Bw=1},...]", is equivalent to solving the equilibrium equatian= P.

However, the equilibrium equatiomr = P cannot be directly solved, since the number of
linear equations obtained from it is infinite. Theoretically, wHen> «, the system backlog can
be arbitrarily long, sinc&J™® > 1. This means that the exact solutianhas an infinite length,
and the Markov matrix is therefore also of infinite size. We address this problem by deriving a
finite set of linear equations that is equivalent to the original infinite set of linear equations. This

is possible due to the regular structure of the Markov matrix proven below.

bo(0) bi(0) by(0) b© 0o 0 0
bo(1) bi(1) by(1) b(l) bO 0O 0O
bo(2) b1(2) b (2) br (2) br (1) by (0) 0
' : ' Db b
br(2)
P= 1 bom) bum) oty b (my)
0 0 0 0 b(m)
0 0 o .. o 0 b(m)
0 0 0 0 0 0

Each columry in the Markov matrixP is the backlog PMF observed at the end of a hyperperiod
when the amount of the backlog at the beginning of the hyperperigdlibe backlog PMF of the
columny can be calculated by applying the convolve-shrink procedure (in Section IV-B) along the
whole sequence of jobs in the hyperperiod, assuming that the initial backlog is equéao the
regular structure found in the Markov matrix, i.e., the columns+ 1, r + 2, ..., with the same
backlog PMF only shifted down by one position, means that there exists a vdbrethe initial
backlog from which onwards the backlog PMF observed at the end of the hyperperiod is always

the same, only shifted one position to the right in the system. The valsghe maximum sum

19

of all the possible idle times occurring in a hyperperiod. It is equal to
r =Ty (1—U™") 4 wmn (7

whereW™n is the system backlog observed at the end of the hyperperiod when the initial system
backlog is zero and all the jobs have minimum execution tifé$'{ is usually zero unless most
of the workload is concentrated at the end of the hyperperiod). If the initial backlgdhs whole
hyperperiod is busy, and thus the backlog PMF observed at the end of the hyperperiod is simply
the result of convolving the execution time distributions of all the jobs, shiffed—r) units to
the left. The length of the backlog PMF (s + 1), wherem, is the index of the last non-zero
element in colummn. This observation is analogously applied to all cases where the initial backlog
is larger tharr.

Using the above regularity, we can derive the equivalent finite set of linear equations as follows.
First, we take the firstm, + 1) linear equations fronmm = Pm, which correspond to rows 0 to
my in the Markov matrix. The number of unknowns appearing in the+ 1) linear equations
is (r+my+1), i.e., {mo,m,...,T%+m }. Next, we deriver additional equations from the fact that
m — 0 whenx — oo, in order to complete the finite set of linear equations, {1e+; m + 1) linear
equations with the€r 4+ m, 4 1) unknowns. For this derivation, from rowsy + 1), (my +2), ... in

the Markov matrix, we extract the following equation:

Qu1=AQx x>m+1 8)

where

QX - [n;(*d7 Th—d+1,- -5 Th—1, T&, Th41,- .-, n;(*dﬁ“m'*l]-r? (d =M — r)

0 1 0 0 0 0 0 0

0 0 - 0 0 0 0 0

0 0 0 1 0 0 0 0

A— 0 0 0 0 1 0 0 0
- 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

—br(my)/br(0) —br(m—1)/br(0) ... —br(d+1)/br(0) 1-br(d)/br(0) —br(d-1)/b(0) ... —br(1)/br(0)

Then, by diagonalizing the companion-form matix it can be shown that the general form

of 15 is expressed as follows:

20

my
=3 adg ™ 9
k=1

where {A1,A2,...,Am } are the eigenvalues obtained by the matrix diagonalization, and the as-
sociated coefficientsy are a linear combination of g1, 7% 2,...,Tk4+m }. Since it has already
been proved in [17] that in Equation (9) there eXist- 1) eigenvalues\, such that|Ay| > 1, the
associated coefficient are equated to 0 because the condition thgat> 0 whenx — o« is met

only in this case. As a resulfr + 1) additional linear equations are obtained, but since one linear
equation is always degeneratelinear equations remain.

Therefore, the complete set of linear equations is composed of thénfirst1) linear equations
taken fromm= Pm, and ther linear equations obtained by equating to O all the coefficiepts
such that|A¢| > 1. Then the set ofr + m, + 1) linear equations with thér + m, + 1) unknowns
can be solved with a numerical method, and as a result the solutiofirfQra,..., G m } iS
obtained. Once the solution is given, we can complete the general fomg sfnce all the other
unknown coefficientsy, such thatAy| < 1, are calculated from the solution. Therefore, we can
finally generate the infinite stationary backlog distribution with the completed general form. For

more information about the above process, the reader is referred to [17], [18].

C. Approximated solutions

Markov matrix truncation methadOne possible approximation of the exact solution is to
truncate the Markov matriR to a finite square matri®’. That is, we approximate the problem of
n=Pmton =P, wherem = [, m, 15, ..., ;] andP’ is a square matrix of sizgp+ 1), which
consists of the elemenB(x,y) (0<x,y < p) of the Markov matrixP. The resulting equation is an
eigenvector problem, from which we can calculate the approximated solatiwith a numerical
method. Among the calculated eigenvectors, we can choose as the solution an eigenvector whose
eigenvalue is equal to or sufficiently close to 1. In order to obtain a good approximation of the
exact solutionmt, the truncation poinip should be increased as much as possible, which makes

the eigenvalue closer to 1.

21

Iterative method Another approximation method, which does not require the Markov matrix
derivation, is simple iteration of the backlog analysis algorithm for the system baéklawyer a
sufficient number of hyperperiods. Since Theorem 4 guaranteesfth&) converges towards
fz.(-), we can computefy,, fg,, ..., fg, in turn, until convergence occurs. That is, while
monitoring the quadratic differendefg, — 3, || (def. || x—y|| = &/3;(x —yi)?), we can continue
the computation offg, (-)’s until the difference falls below a given threshatd

For both approximation methods, it is important to choose the associated control parameters
appropriately, i.e., the truncation point and the number of iterations, respectively. In gendsal, as
approaches 1, a larger value should be used for the control parameters, since the probability values
of the stationary backlog distribution spread more widely. Note that, by choosing an appropriate
value for the control parameters, we can achieve a trade-off between analysis accuracy and the
computational overheads required to obtain the approximated solution. We will address this issue

in Section VII-A.

D. Safe truncation of the exact solution

As mentioned earlier, the stationary backlog distribution has an infinite length WHA&H> 1.
So, in practice, to use the infinite solution obtained by the exact method as the root of the backlog
dependency tree, we have to truncate the solution at a certain point. In this subsection, we show
that the use of such a truncated solution is safe in that it is “more pessimistic” than the original
infinite solution, thus giving an upper bound on the deadline miss probability for each task.

Let f (-) be the solution obtained by truncating the original infinite solution at pinThat

is, the truncated solutiofi; (-) is expressed as follows:

5., (W) =
0 w > M

The truncated solution is not a complete distribution, since the total sum of the nonzero

probabilities is less than 1. In other words, the truncated solution has a “deficjt;, of fs., (W).

22

However, it is possible to say thdf, (-) is more pessimistic tharfiz, (-) in the sense that

t t
> fi, (W) < > fz.(w) foranyt.
w=0

w=0

This means that the use of the truncated distributign(-) always produces results which are
more pessimistic than that of the original distributiég_(-). Thus, it leads to a higher deadline

miss probability for each task than the original one.

VI. COMPUTATIONAL COMPLEXITY

In this section, we investigate the computational complexity of our analysis framework, dividing
it into two parts: (1) the complexity of the backlog and interference analysis, and (2) the complexity
of the steady-state backlog analysis. In this complexity analysis, to make the analysis simple and
safe, we introduce two assumptions. One assumption is that we regard the deterministic releases
of jobs in the hyperperiod as random releases which follow an interarrival time distribution. So,
if the total number of jobs in the hyperperiodnsthe interarrival time distribution is understood
as a random distribution with a mean vallie= Th/n. The other assumption is that all the jobs
in the hyperperiod have execution time distributions of the same lemgfhhis simplification is
safe, since we can make execution time distributions of different lengths have the same length by

zero-padding all the distributions other than the longest one.

A. Complexity of the backlog and interference analysis

To safely analyze the complexity of the backlog analysis, we assume that, for ary job
the hyperperiod, all the preceding jol3,,...,Jj—1} are involved in computing the;-backlog
distribution. That is, it is assumed that thg-backlog distribution can only be computed by
applying the convolve-shrink procedure to the stationary backlog distributiody agflong the
whole sequence of preceding jobs. This scenario is the worst case that can happen in computing
the pj-backlog distribution, since the set of jobs required to computeptRlbacklog distribution
does not necessarily cover all the preceding jobs. So, by assuming the worst case scenario for
every jobJj in the hyperperiod, we can safely ignore the complex backlog dependencies among

the jobs.

23

Without loss of generality, assuming that the truncated lerigtlof the stationary backlog
distribution of J; is expressed as a multiple of the execution time distribution lemgth.e.
sx m, let us consider the process of applying the convolve-shrink procedure to each job in the
sequencgJs, ..., Jj}. Each convolution operation increases the length of the backlog distribution
by (m—1) points, and each shrink operation reduces the length ppints on average. Note that,
if T~ (m—1), the backlog distribution length remains constant on average, and thus the convolve-
shrink procedure has the same cost for all the jobs in the sequence. HoweTer; @, which
implies thatU™& becomes significantly high, the backlog distribution length always increases
approximately bym points for each iteration. Assuming this pessimistic caselfahe complexity
of the j-th iteration of the convolve-shrink procedure@(s+ j —1)m?), since thej-th iteration
is accompanied by convolution between the backlog distribution of lefgithj — 1)m and the
associated execution time distribution of lengthSo, the complexity of computing the singbg-
backlog distribution from the stationary backlog distributiosig + (s+1)mP+- - -+ (s+j — 1)n?,

i.e., O(j2m?). Therefore, the total complexityof computing thep;-backlog distributions of all
the jobs{Js,...,Jn} in the hyperperiod i€O(nn?).

Likewise, the complexity of the interference analysis can be analyzed as follows. First, let us
consider the complexity for a single jolj. As explained above, the length of thg-backlog
distribution of J; for which the interference analysis is to be appliedss- j —1)m, so the initial
response time distribution (without any interference) will have a lengils-#fj)m. We can assume
that there exists a constant vakigalledinterference degréehat represents the maximum number
of interfering jobs, within the deadlines, for any job in the hyperperiod. Then the split-convolve-
merge procedure is appliddtimes to the initial response time distribution §f We can see that
the convolution at thé-th iteration of the technique has a complexity ©f(l; —iT)m), wherel;
is the length of the response time distribution produced by(ihel)-th iteration. That iteration
increases the response time distribution(by— 1) points. So, assuming thdt — 0, we can say

that thei-th iteration has a complexity o®((s+ j +i)m?), sincel; = (s+ j +i—1)m. Thus, the

*In this analysis, we have assumed that the associated backlog dependency tree is completely built by considering only all the
jobs in a single hyperperiod. However, if more than one hyperperiod were to be considered for the complete construction of the

backlog dependency tree, the temin O(n®m?) should be replaced with the total number of jobs in the multiple hyperperiods.

24

complexity of applying the split-convolve-merge procedlréimes to the initial response time
distribution is (s+ j)M? + (S+ j + 1)mP +--- + (s+ j + k— 1)n?, i.e. O(k?m?). Therefore, if we
consider all then jobs in the hyperperiod, the total complexity of the interference analysis is
O(nk?n?). In particular, by assuming that < n, this complexity can be expressed @gn°nr).

This assumption is reasonable, since the fact khatn means that every job in the hyperperiod

has a relative deadline greater than or equal to the length of the hyperperiod, which is unrealistic

in practice.

B. Complexity of the steady-state backlog analysis

The complexity of the steady-state backlog analysis is different, depending on the solution
method used to compute the stationary backlog distribution. First, let us investigate the complexity
of the exact method. The exact method consists of three steps: Markov rRatierivation,
companion-form matrixA diagonalization, and solving a system of linear equations. The com-
plexity of the Markov matrix derivation is equivalent to that of computingimes the system
backlog distribution observed at the end of a hyperperiod from that assumed at the beginning
of the hyperperiod, by applying the convolve-shrink procedure along the whole sequence of jobs
{J1,...,3dn}. So, the complexity i€©(rn’n?), sinceO(n’n¥) is the complexity of computing once
the system backlog distribution observed at the end of the hyperperiodwatis. The complexity
of the companion-form matrixA diagonalization iSO(n¥), since the diagonalization of a matrix
with sizel has a complexity 00(I3) [19]. However, note thaty is smaller thamm, since(my +1)
denotes the length of the backlog distribution obtained by convolriegecution time distributions
of lengthm. So, the complexity of diagonalizing the companion-form makixan be expressed
as O(n®m?3). Finally, the complexity of solving the system of linear equation®igm +r)3),
since solving a system dflinear equations also has a complexity®fl) [20]. This complexity
can also be expressed &(nm+r)3), sincem, < nm Therefore, the total complexity of the
exact method i©(rn?m?) + O(nm?) + O((nm+r)3). This complexity expression can be further
simplified toO(n*m?) by assuming that < nm This assumption is reasonable, simce Ty = nT

and we can assume that< m whenT — 0.

25

Next, let us consider the complexity of the Markov matrix truncation method. In this case,
since the complexity also depends on the chosen truncation pplet us assume that the value
p is given. Then we can see that the complexitf deriving the truncated Markov matriR
is O(pr?m?), and the complexity of solving the system pf linear equations through matrix
diagonalization iSO(p?). Thus, the total complexity i©(prn?) + O(p3).

Finally, let us consider the complexity of the iterative method. In this case, the complexity
depends on the number of hyperperiods over which the backlog analysis is iterated for convergence.
If the number of the hyperperiods Is the complexity isO(1?n°n?), since the convolve-shrink
procedure should be applied to a sequencéngbbs.

However, we cannot directly compare the complexities of all the methods, since we do not know
in advance the appropriate values for the control parametarsd| that can give solutions of the
same accuracy. In order to obtain insight as to how the control parameters should be chosen, we
have to investigate system parameters that can affect the accuracy of the approximation methods.

This issue will be addressed in the following section.

VII. EXPERIMENTAL RESULTS

In this section, we will give experimental results obtained using our analysis framework. First, we
compare all the proposed solution methods to compute the stationary system backlog distribution,
in terms of analysis complexity and accuracy. In this comparison, we vary the system utilization
to see its effect on each solution method, and also compare the results with those obtained by
Stochastic Time Demand Analysis (STDA) [6], [7]. Secondly, we evaluate the complexity of
the backlog and interference analysis by experiments, in order to corroborate the complexity
asymptotically analyzed in the previous section. In these experiments, while var{ting number
of jobs), m (the maximum length of the execution time distributioriE)(the average interarrival
time), andk (the interference degree), we investigate their effects on the backlog and interference

analysis.

“Note that, when the truncation poiptis larger tharr, the complexity is reduced t©(rn’n?), since the lastp—r) columns

in the Markov matrix can be replicated from theh column.

26

execution times utilizations
Cimin | C | Cimax ymin | U | U max
1 20 | 20 4 6 10
A o 60 | 60 12 16 22 .58 .82 1.27
3 9 | 90 16 23 36

1 || 20 | 20 4 6 10
B || 60| 60| 12 17 22 58 | 87 | 127
73|/ 9 |9 | 16 | 26 | 36

7L || 20 | 20 4 7 10
C || 60|60 12 17 22 .58 92 | 127
13 || 90 | 90 16 26 36
11 || 20 | 20 3 7 11
Cl|r,| 60| 60 10 17 24 46 92 | 1.38
3 || 90 | 90 13 26 39
7L || 20 | 20 2 7 12
C2 | 1, || 60| 60 8 17 26 34 92 | 150
3 || 90 | 90 10 26 42

task set Ti Di

TABLE |

TASK SETS USED IN THE EXPERIMENTS

A. Comparison between the solution methods

To investigate the effect of system utilization on each solution method to compute the stationary
system backlog distribution, we use the task sets shown in Table I. All the task sets consist of 3
tasks with the same periods, the same deadlines, and null phases, which result in the same backlog
dependency tree for a given scheduling algorithm.

The only difference in the task sets is the execution time distributions. For task sets A, B, and
C, the minimum and maximum execution times for each task do not change, while the average
execution time is varied. In this case, since the time needed for the backlog and interference
analysis is constant, if a system backlog distribution of the same length is used as the root of the
backlog dependency tree, we can evaluate the effect of the average system utilizatiothe
stationary system backlog distribution. On the other hand, for task sets C, C1, and C2, the average
execution time of each task is fixed, while the whole execution time distribution is gradually
stretched. In this case, we can evaluate the effect of the maximum system utilizdtiron the
stationary system backlog distribution, while fixing the average system utilization

Table Il summarizes the results of our stochastic analysis and, for the case of RM, also the results
obtained by STDA. The table shows the deadline miss probability (DMP) for each task obtained

from the stationary system backlog distribution computed by each solution method (i.e., exact,

27

RM EDF
task set - - - - - - - -
simulation | STDA | exact | trunc | iterative simulation | exact | trunc | iterative
T .0000 4 .0000 | .0000 .0000 .0001 4+ .0000 | .0001 | .0001 .0001
A T2 .0000 + .0000 | .0000 .0000 .0000 + .0000 | .0000 | .0000 .0000
13 .0940 4+ .0025 | .3931 | .0940 | .0940 | .0940 .0000 4 .0000 | .0000 | .0000 .0000
T .0000 + .0000 | .0000 .0000 .0013 + .0002 | .0013 | .0013 .0013
B T2 .0000 4 .0000 | .0000 .0000 .0005 4+ .0002 | .0005 | .0005 .0005
13 2173 + .0033 | .6913 | .2170 | .2170 | .2170 .0000 4+ .0001 | .0000 | .0000 .0000
T .0000 + .0000 | .0000 .0000 .0223 +.0013 | .0224 | .0224 .0224
C T2 .0000 4 .0000 | .0000 .0000 .0168 + .0014 | .0169 | .0169 .0169
13 .3849 + .0052 | .9075 | .3852 | .3852 | .3852 .0081 + .0011 | .0081 | .0081 .0081
T .0000 4 .0000 | .0000 .0000 .0626 + .0031 | .0630 | .0627 .0627
Cl| .0000 + .0000 | .0000 .0000 .0604 + .0038 | .0610 | .0607 .0607
13 4332 + .0065 | .9209 | .4334 | 4334 | 4334 .0461 4+ .0032 | .0466 | .0463 .0463
T .0000 + .0000 | .0000 .0000 .1248 + .0058 .1250 .1250
C2 |1, .0002 + .0001 | .0018 | .0002 | .0002 .0002 1293 £ .0064 | N.A. 1296 1296
13 4859 4+ .0081 | .9339 N.A. .4860 .4860 1136 + .0063 .1138 .1138
TABLE T

ANALY SIS ACCURACY COMPARISON BETWEEN THE SOLUTION METHODS (DEADLI NE MISS PROBABI LITY)

Markov matrix truncation, iterative), and the average deadline miss ratio (DMR) and standard
deviation obtained from simulations. For the truncation and iterative methods, the values used for
the control parameterg and| are shown in Table Il (This will be explained later). The average
DMR is obtained by averaging the deadline miss ratios measured from 100 simulation runs of each
task set, performed during 5000 hyperperiods. To implement the exact method and the Markov
matrix truncation method, we used the Intel linear algebra package called Math Kernel Library
5.2 [21].

From Table I, we can see that our analysis results are almost identical to the simulation results,
regardless of the solution method used. For the case of RM, the analysis results obtained by STDA
are also given, but we can observe significant differences between the DMPs given by STDA and
those obtained by our analysis. In the case of taskn task set A, the DMP given by STDA
(39.3%) is more than four times that given by our analysis (9.4%). Moreovel) as U™Max
increases, the DMP computed by STDA gets even worse. This results from the critical instant
assumption made in STDA.

On the other hand, our implementation of the exact method could not provide a numerically
valid result for task set C2 (in the case of RM, only for task This is because the numerical

package we used, which uses the 64-bit floating point type, may result in an ill-conditioned set of

28

SSBD computation time (seconds)
task et trunc iterative
st 5=10°[5=10°] 5=109 | §=10] 5=10 °| 5=10"°
A 13 .00 .00 .00 .00 .00 .00
p=2 | p=15 | p=25 1=2 1=2 1=3
B 13 .00 .00 .01 .00 .00 .01
p=8 | p=23 | p=37 1=2 1=3 1=6
c 15 .01 .03 .07 .00 .01 .03
p=29 | p=63 | p=96 1=4 =12 | 1=20
c1 2 .02 .10 .25 .01 .05 21
p=54 | p=115 | p=173 | =7 1=20 | 1=35
c2 s .07 31 .82 .02 .23 .88
p=86 | p=181 | p=272 | 1=10 | 1=30 | 1=52
TABLE T

ANALYSISTIME COMPARISON BETWEEN THE SOLUTION METHODS

linear equations when a significantly small probability valby€0) is used as the divisor in making

the companion-form matriA (Recall from Section V-B thab, (0) is the probability that all the

jobs in the hyperperiod have the minimum execution times). In the case of C2, the probability
valueb, (0) was 5x 1017, This is also the reason why a small difference is observed between the
DMP computed by the exact method and those computed by the approximation methods for task
set C1, scheduled by EDF. However, note that this precision problem can be overcome simply by
using a numerical package with a higher precision.

Table Il shows in the case of EDF the analysis timequired by each solution method to
compute the stationary system backlog distributions used to produce the results in Table II. The
analysis time does not include the time taken by the backlog dependency tree generation, which
is almost 0, and the time required by the backlog and interference analysis, which is less than 10
ms. The table also shows the values of the control paramegteasd |, used for the truncation
and iterative methods. For fair comparison between the two approximation methods, we define
an accuracy leved to be the quadratic difference between the exact solution of the stationary
system backlog distributio®SBRyact and the approximated solution computed by either of the
methodsSSBRpprox i.€., 0 = || SSBRxact— SSBRpproy|- In the evaluation 0B, however, due to
the numerical errors that can be caused by our implementation of the exact method, we do not

*The analysis time was measured with a Unix system call calimes() on a personal computer equipped with a Pentium

Processor IV 2.0 GHz and 256 MB main memory.

29

refer to the solution given by our implementation @SBRyac; but to the solution obtained by
infinitely applying the iterative method to the corresponding task set until the resulting solution
converges.

In Table Ill, we can see both the SSBD computation time and the associated control parameters
used to obtain solutions with the required accuracy ledets10-3,10°% 10-° (The DMPs shown
in Table Il for the truncation and iterative methods were obtained at an accuracy level b9-5).

From the results shown for task sets A to C, we can see théat,iasreases, the analysis time also
rapidly increases for the truncation and iterative methods, while it stays almost constant for the
exact method. The reason for this is thatlasncreases, the probability values of the stationary
backlog distribution spread more widely, so both approximation methods should compute the
solution for a wider range of the backlog. That is, both methods should use a larger value for the
associated control parametegsand|, in order to achieve the required accuracy level. For the
exact method, on the contrary, this spread of the stationary probability values does not affect the
analysis time, since the method originally derives a general form solution from which the SSBD
can be completely generated.

The above observation is analogously applied for the results from task sets C to C2. Due to
the increasing) m®, the SSBD spreads even more widely, so the truncation and iterative methods
should increase the associated control parameters even more in order to achieve the required
accuracy level. We can see that the analysis time taken by the exact method also increases,
but this is not because the stationary backlog distribution spreads, but because the size of the
resulting companion-form matriA becomes large due to the increasing length of the execution
time distributions.

In summary, ifU and/orU™a% s significantly high, the approximation methods require a long
computation time for high accuracy, possibly larger than that of the exact method. However, if
U is not close to 1, e.g., less than 0.8, the methods can provide highly accurate solutions at a

considerably lower complexity.

30

=2
15 15 15
1000| é i 10 /E/E/E’EE? g W 1000| /Z/Z/E/Ez‘"‘# é i
100 100] 100 / /
7 10 @ 10 //;// 7 10 o /
z W 2 z ﬁ
g T H o g e
g 1 g 1 g 1
£ o1 ,/XE/D/ﬂ o N £ o1 - £ o1
s
0.01 B 0.0L M 0.0; M
0.00: 0.001 0.001
0000 100 1000 10 00001 100 1000 10t 0000t 100 1000 10
Job index §) Job index f) Job index §)
@T=m@Um 1) (b) T =m/2 U™ ~ 2) (€) T =m/10 U™ ~ 10)

Fig. 4. Backlog analysis time

B. Complexity evaluation of the backlog and interference analysis

To evaluate the complexity of the backlog and interference analysis, we generated synthetic
systems, varying the system parametersm, and T, while fixing U. That is, each system
generated is composed of jobs with the same execution time distribution of lengthand
mean interarrival timéT. The shapes of the execution time distribution and the interarrival time
distribution of the jobs are determined in such a way that the fixed average system utilization
is maintained, even if they have no influence on the complexity of the backlog and interference
analysis (Recall that the backlog and interference analysis time is not affected by the actual values
of the probabilities composing the distributions; the probability values may only affect the analysis
time of the stationary system backlog distribution by changing the average system utilization
We do not have to specify the interference dedee¢ the synthetic system generation stage, since
it can be arbitrarily set prior to interference analysis of the resulting system.

For each system generated, we perform backlog and inteference analysis, assuming a null
backlog at the beginning of the analysis. For each ofriljebs, we measure the time taken by
backlog analysis and interference analysis separately. In this measurement, the backlog analysis
time for the j-th job is defined as the time taken by applying the convolve-shrink procedure from
the first jobJ; (with the null backlog) to johJ;.

Figure 4 shows the backlog analysis time measured for eaclijjaib seconds, while varying
m and T. Note that both the x-axis and the y-axis are in logarithmic scale. From this figure we

can see that the backlog analysis time for each job increases in polynomial @f¢fer?), as

31

1000

xO+o
EEEE

EALO D
S rn

100

10

10

[

%

Time (seconds)

o
N
\m
o
A
AR
%
o
N

Time (seconds)

00

<
g g
/ 0.01
001

0.001

0.001 0.0001¢
1 10 100 1000 100 1000 10*

Interference degreé:j Jobindex (j)

(a) effect of changes in the interference dedkeen= 20 (b) effect of changes in the length of the backlog distribution

andT =1) (k=10 andT =2)

Fig. 5. Interference analysis time

analyzed in the previous section. However, note that, due to the backlog dependencies, the backlog
analysis for thej-th job may be efficiently performed in a real system by reusing the result of
the backlog analysis for some close preceding Jolfi < j). So, the backlog analysis time for
real jobs may be significantly lower than that expected from the figure. Moreover, also note that
in the case wherd = m, the backlog analysis time slowly increases as the valug intreases,
since the backlog distribution length rarely grows due to the large interarrival times of the jobs.
Figure 5(a) shows the interference analysis times measured for the 100th, 250th, 500th, and
1000th jobs in seconds, while only varying the interference defgrd¢ote that both the x-axis
and the y-axis are still in logarithmic scale. From this figure, we can see that the interference
analysis time for a single job also increases in polynomial o@&?n?) as the interference
degree increases. Note, however, that the interference degree considered before the deadline is
usually very small in practice. On the other hand, Figure 5(b) shows the interference analysis
times measured for each jdip while fixing all the other system parameters. In this figure, we can
indirectly see the effect of the length of tipg-backlog distribution for thej-th job to which the
interference analysis is applied. As tipg-backlog distribution length increases, the interference

analysis time also increases, but slowly.

VIII. CONCLUSIONS AND FUTURE WORK

32

In this paper we have proposed a stochastic analysis framework to accurately compute the
response time distributions of tasks for general priority-driven periodic real-time systems. We
have shown that the proposed analysis framework can be uniformly applied to general priority-
driven system including both fixed-priority systems such as RM and DM, and dynamic-priority
systems such as EDF, by proving the backlog dependency relations between all the jobs in a
hyperperiod. In our framework, the system is modeled as a Markov chain, and the stationary
backlog distribution is computed by solving the Markov matrix, which is used as input to the formal
structure encapsulating the backlog dependencies. This approach greatly reduces the complexity
of the whole steady-state analysis. It has also been shown that the complexity of the exact
method to compute the stationary backlog distribution and thus the response time distributions
is O(n®m?), and that the approximation methods can significantly reduce the complexity, without
loss of accuracy, e.g., when the average system utilizafide less than 0.8. For future work,
we aim to develop a strategy to choose an appropriate value for the control parameters of the
approximation methods, in particular investigating the relationship between the system utilization

and the convergence rate of the stationary backlog distribution.

APPENDIX

Proof of Theorem 1

(&) Assume that all the jobs have distinct priority values. If there exist jobs with the same
priority value, they can always be reassigned distinct priority values while respecting the FCFS
(First Come First Serve) principle or a user-defined principle. Then for any hypergerical,
[t+kTh,t+ (k+1)TH), we can find a jobJ; with the maximum priority valuepmax in the hy-
perperiod. This guarantees thyit has a higher priority value (or a lower priority) than all the
preceding jobs released [h+kTy,A;j). Then, since the previous instance Jfreleased at time
Aj—Th has a lower priority value thadj, and any job released iAj — Ty,t+kTy) has a lower
priority value than the previous instance, it follows tliateven has a higher priority value than
all the jobs released ifA\j — Ty, Aj). Likewise, it can be shown thaf has a higher priority value

than all the jobs released iA; — 2Tn,Aj), [Aj — 3TH,Aj), and so on. Therefore]; is a ground

33

job, and for any hyperperiod, there exists at least one ground job.

(b) This is straightforward from the proof of (a).

Proof of Theorem 2

Since it is trivial to show that the base job of a ground job can always be found among the
preceding ground jobs (actually the base job is the immediately preceding ground job), we focus
only on the base job for a non-ground job.

Let us assume a case where the base job for a non-grounﬂfr])ots not found in the same
hyperperiodn, and IetJi(”) be a ground job in the hyperperiod that has a higher priority value than
the jobJ{". That is,J™ is not the base job o{"). Then we can always find a previous instance

J® of 3" in a preceding hyperperioki< n) such thatp® < o

n), by choosing an appropriate

valuek that satisfies the inequality — k > (pi(n) - pgn))/A. Since pi(”) = pi(k) + (n—Kk)4A, such a
valuem always satisfie$)i(k) < pgn). Then, since]i(") is also a ground job (Recall Theorem 1(b)),
it can be taken as the base job:[f)'l‘) if no other eligible ground job is found. Therefore, for any

non-ground johJ;, we can always find the base job among the preceding ground jobs.

Proof of Theorem 3

Let 1; be the task wittD; = D™ and Jk an instance of;. ThenJy is a ground job, since the
priority value py is Ax+ D™ and all the previously released jobs have lower priority values. Let
J; be a non-ground job arriving at the beginning of the hyperpefigd- DM A+ D™+ Ty].
Then J can be taken as the base jobJypfin the worst case, sincd is a preceding ground job
that has a lower priority value thal). Even if we assume that the non-ground jgbarrives at
the end of the hyperperiod, i.e., at timg+ D™®+ Ty, Ji can still be taken as the base jobJf
in the worst case. Therefore, the maximum distance between any non-groudgdgal its base

job cannot be greater thdd™®+ T.

REFERENCES

[1] L. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environmédoti’nal of ACM
vol. 20, no. 1, pp. 4661, 1973.

34

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate-Monotonic Scheduling Algorithm: Exact Characterization and Average Case
Behavior,” inProc. of the 10th IEEE Real-Time Systems Sympqdien. 1989.

J. P. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary DeadlinesPrae. of the 11th IEEE
Real-Time Systems Symposiubec. 1990, pp. 201-209.

G. Bernat, A. Colin, and S. Petters, “WCET Analysis of Probabilistic Hard Real-Time SystemBrom of the 23rd IEEE
Real-Time Systems Symposiubec. 2002.

T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.-S. Liu, “Probabilistic Performance Guarantee for Real-
Time Tasks with Varying Computation Times,” Rroc. of the Real-Time Technology and Applications Sympo<iinicago,

lllinois, May 1995, pp. 164-173.

M. K. Gardner and J. W. Liu, “Analyzing Stochastic Fixed-Priority Real-Time SystemsPrat. of the 5th International
Conference on Tools and Algorithms for the Construction and Analysis of Sy8tamd 999.

M. K. Gardner, “Probabilistic Analysis and Scheduling of Critical Soft Real-Time Systems,” Ph.D. dissertation, School of
Computer Science, University of lllinois, Urbana-Champaign, 1999.

J. P. Lehoczky, “Real-Time Queueing Theory,” Rroc. of the 17th IEEE Real-Time Systems Sympqsiden. 1996, pp.
186-195.

——, “Real-Time Queueing Network Theory,” iRroc. of the 18th IEEE Real-Time Systems Sympqsides. 1997, pp.
58-67.

L. Abeni and G. Buttazzo, “Stochastic Analysis of a Reservation Based SysteRrdn of the 9th International Workshop

on Parallel and Distributed Real-Time SystemApr. 2001.

A. K. Atlas and A. Bestavros, “Statistical Rate Monotonic Scheduling,Pioc. of the 19th IEEE Real-Time Systems
SymposiumDec. 1998, pp. 123-132.

J. Leung and J. Whitehead, “On the Complexity of Fixed Priority Scheduling of Periodic Real-Time TRsi#ermance
Evaluation vol. 2, no. 4, pp. 237-250, 1982.

S. Manolache, P. Eles, and Z. Peng, “Memory and Time-Efficient Schedulability Analysis of Task Sets with Stochastic
Execution Times,” inProc. of the 13th Euromicro Conference on Real-Time Systéuams 2001, pp. 19-26.

A. Leulseged and N. Nissanke, “Probabilistic Analysis of Multi-processor Scheduling of Tasks with Uncertain Parameter,”
in Proc. of the 9th International Conference on Real-Time and Embedded Computing Systems and Appkediti@g03.

A. Terrasa and G. Bernat, “Extracting Temporal Properties from Real-Time Systems by Automatic Tracing Analysis,” in
Proc. of the 9th International Conference on Real-Time and Embedded Computing Systems and Apphedtidto3.

J. W. S. Liu,Real-Time Systems Prentice Hall, 2000.

J. L. Diaz, J. M. IOpez, and D. F. Gara; “Stochastic Analysis of the Steady-State Backlog in Periodic Real-Time Systems,”
Departamento de Inforatica, University of Oviedo, Tech. Rep., 2003, also available at http://www.atc.uniovi.es/research/
SASS03.pdf.

J. L. Diaz, D. F. Gar@, K. Kim, C.-G. Lee, L. LoBello, J. M. bpez, S. L. Min, and O. Mirabella, “Stochastic Analysis

of Periodic Real-Time Systems,” iRroc. of the 23rd Real-Time Systems Sympasiustin, TX, USA, Dec. 2002, pp.
289-300.

G. H. Golub and C. F. V. LoanMatrix Computations3rd ed., ser. Johns Hopkins Studies in the Mathematical Sciences.
Baltimore, MD, USA: The Johns Hopkins University Press, 1996.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. FlannBlymerical Recipes in @nd ed. Cambridge University
Press, 1992.

Intel, “Intel Math Kernel Library: Reference Manual,” 2001, http://developer.intel.com/software/products/mkI.

35

