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Abstract—Fair sharing of bandwidth remains an unresolved issue for distributed systems. In this paper, the users of a distributed LAN

are modeled as selfish users with independence to choose their individual strategies. With these selfish users, the contention-based

distributed medium access scenario is modeled as a complete-information, noncooperative game, designated the “Access Game.” A

novel MAC strategy based on p-persistent CSMA is presented to achieve fairness in the “Access Game.” It is proven that there are an

infinite number of Nash Equilibria for the “Access Game,” but they do not result in fairness. Therefore, it may be beneficial for the

selfish users to adhere to a set of constraints that result in fairness in a noncooperative fashion. This leads to the formulation of a

constrained “Access Game” with fairness represented as a set of algebraic constraints. It is proven that the solution of the constrained

game, the Constrained Nash Equilibrium, is unique. Further, it is shown that, in addition to achieving fairness, this solution also

optimizes the throughput. Finally, these results are extended to a more realistic incomplete-information scenario by approximating the

incomplete-information scenario as a complete-information scenario through information gathering and dissemination.

Index Terms—Distributed systems, local area networks, fair bandwidth share, selfish users, game theory.

�

1 INTRODUCTION

BANDWIDTH is one of the primary resources in computer
communication networks and Quality of Service (QoS)

is influenced by how bandwidth is allocated (in centralized
systems) or shared (in distributed systems). As access to
bandwidth is dependent on the Medium Access Control
(MAC) protocol being used, the research on bandwidth
fairness has focused on devising efficient MAC protocols to
achieve fairness. A considerable amount of work has been
done in this regard. Here, we briefly summarize it.

1.1 Previous Work

There are two types of MAC protocols: centralized and
distributed. In centralized networks, fairness is based on the
concept of Generalized Processor Sharing (GPS). Informally,
GPS guarantees a user resource allocation proportional to
that user’s relative weightage [38]. We will follow this
simple, yet powerful definition of fairness for the present
work also. GPS cannot be implemented in practice because
it relies on bit-by-bit switching, whereas the communication
entity of interest is a packet. In [29], a practical packet-based
implementation of GPS is presented. This algorithm is
usually known as the Weighted Fair Queuing (WFQ)
algorithm. In WFQ, each arriving packet is given virtual
“start” and “finish” times based on the actual arrival time of
the packet and the length of the packet. The packet with the
smallest “finish” time is selected for transmission. A similar
technique is presented in [39]. There, the WFQ algorithm
designated Packet GPS (PGPS) is combined with a Leaky
Bucket Admission Control algorithm for a single server GPS
and it is shown that it is possible for the network to fulfill a

wide range of performance guarantees using these algo-
rithms. In [40], an improved GPS approximation algorithm,
called Worst-case Fair Weighted Fair Queuing (WF2Q), is
proposed. Using WF2Q, only packets with a virtual “start”
time that has been passed are considered for transmission.
This is a more accurate approximation of GPS, but increases
implementation complexity. In distributed systems, there
are two main problems in achieving fairness: lack of
information, i.e., users usually do not know about the
number of other users, and lack of coordination, i.e., one
user cannot determine if any other is also transmitting
simultaneously. Of these two problems, lack of coordination
is more fundamental in nature because, even if the users
know about the number of other users present in the
system, medium access and packet transmission cannot be
coordinated. Therefore, the objective of bandwidth fair
sharing in a distributed system is to resolve this contention
in such a way that users get bandwidth proportional to their
weightages. For distributed systems, most of the work
concentrates on Carrier Sense Multiple Access (CSMA)
MAC protocols. In [35], a Distributed Fair Scheduling (DFS)
scheme based on a virtual clock mechanism has been
proposed for a Wireless Local Area Network (WLAN). As
in WFQ, the “start” and “finish” times of an arriving packet
are computed and the packet with the smallest “finish” tag
is transmitted. A distributed algorithm using the back-off
interval mechanism of IEEE802.11 MAC [11], [12] is used to
determine the packet with the smallest “finish” tag.
However, in general, it is difficult to implement a “virtual
clock” mechanism in distributed systems. Another ap-
proach in differentiated bandwidth sharing in distributed
systems is the “priority-based” access schemes. One of the
earliest works incorporating priority in CSMA can be found
in [41]. There, Tobagi presented a prioritized CSMA or
P-CSMA.1 The idea behind this scheme is as follows: grant
access right exclusively to the messages of the current
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highest priority class. In [33], priority-based access schemes
using the Carrier Sense Multiple Access (CSMA) protocol
are analyzed for 1-persistent and nonpersistent modes.
p-persistence CSMA is not considered due to the difficulty
in analysis. Specifically, three schemes are considered: 1) all
packets transmitted in 1-persistent mode, 2) higher priority
packets transmitted in 1-persistent mode and lower priority
packets transmitted in nonpersistent mode, and 3) all
packets transmitted in nonpersistent mode. Assuming
Poisson packet arrival and general packet length distribu-
tions mean packet delays are computed using approximate
techniques. Another priority-based scheme for CSMA is
presented in [34]. Some other related work for distributed
systems can be found in [31] and [32]. The problem with the
“priority-based” access schemes is the lack of an explicit
relation between and priority and fairness. The medium
access strategy we proposed is philosophically similar to
the priority-based approach, but completely different in
modeling and analysis.

1.2 Motivation and Contribution

The drawbacks of both the “virtual clock” and “priority-
based” schemes have been indicated. Here, we present a
novel approach for contention resolution by modeling the
contention for medium access as a Non-Cooperative Game,
the “Access Game.” The “Access Game” model is pre-
dicated on an explicit relation between priority and fairness.
Therefore, the solution of the “Access Game” satisfies the
fairness definition as enunciated by GPS. Game Theory has
been extensively used in other areas of computer commu-
nication [15], [16], [17], [18], [19], [20], [21]. However, there
has been only limited application of Game Theory for
designing distributed MAC protocols. It was recently
introduced in [13]. To the best of the authors’ knowledge,
the present work is the first attempt to formulate the
fairness problem in a Game-Theoretic framework. There are
two reasons why Game Theory is a suitable tool for
analyzing distributed medium access. First, the conten-
tion-based nature of medium access presents a natural
application domain for Non-Cooperative Game Theory.
Second, it is possible to conceive of “selfish” users in the
future choosing their individual access strategies to
optimize their own selfish interests [13], [37], [30]. The
“virtual time”-based or “static priority”-based approaches
described above are not suited for such situations. The
“Access Game” model provides a theoretical formulation
for achieving fair bandwidth sharing in the presence of
“selfish” users. In addition to resolving the fairness
problem, we also investigate in detail the interaction
between the optimal “selfish” user strategies and the
overall system performance.

1.3 Organization

The rest of the paper is organized as follows: Section 2
briefly describes some Game-Theoretic concepts and pro-
vides the “Access Game” model for the contention-based
medium access, Section 3 analyzes a hypothetical complete-
information scenario and proves the uniqueness of trans-
mission strategies achieving fairness, Section 4 provides
techniques to approximate an incomplete information
scenario to a complete information scenario and shows that

fair bandwidth share is achieved in this approximate case
also, and Section 5 concludes this paper.

2 MODELING THE ACCESS GAME

Formally, a finite game G consists of a nonempty finite set I
of players. A player, say i, has a set of possible strategies/
actions Ai. In order to play the game, all the players choose
an action from the respective strategy sets simultaneously.
At the end of the game, there is an outcome. Clearly, the
outcome space is given by S ¼ �iAi. Let s 2 S be a generic
outcome of the game G. Associated with the outcome, s, is a
payoff to each of the players. Let us designate by ui ¼ uiðsÞ
the payoff function for the ith user. The payoff function of
the game is an ordered tuple of payoffs to individual users
and is given by uðsÞ ¼ ðu1ðsÞ:::unðsÞÞ. Initially, Game Theory
concentrated on games of pure strategy, i.e., user i taking
only one action with probability “1” to play the game. Nash
introduced the concept of mixed strategy. The concept of
“mixed strategy” is that, instead of deciding for a particular
action with certainty, a user i randomizes its decision and
chooses a particular action from Ai with a probability (may
be zero). Consequently, the elements of the outcome set S
also become probabilistic in nature. As the payoffs are
associated with the outcome of the game, it follows that, in a
mixed strategy game, there is a nonnegative probability
attached to the value of the payoff a user receives by
playing the game. This entails the formulation of utility
function �uui for each player i. In a mixed strategy game G,
utility function �uui is the expected payoff for player i. We
consider two solution concepts of a Non-Cooperative Game:
Nash Equilibrium [26] and Constrained Nash Equilibrium
[28]. For detailed discussion on these topics, see [14].

2.1 Access Game

Examples of distributed MAC protocols are ALOHA [3],
Carrier Sense Multiple Access/Collision Detection (CSMA/
CD) [5], [6], [7], [8], [9], and Carrier Sense Multiple Access/
Collision Avoidance (CSMA/CA) [10], [11], [12], whereas an
example of centralized MAC protocol is HIPERLAN [1], [2].
For the present work, a p-CSMA type access strategy for
medium access is considered. Before proceeding further, a
brief description on the p-CSMA protocol is in order.
Consider a MAC protocol using CSMA. When a user has a
packet to send, it senses the medium and, if the medium is
sensed busy, it can take several actions and, depending on
these actions, CSMAprotocols can be classified as follows [4]:

1. 1-persistent: Keep on sensing the medium and
transmit the packet when the channel becomes idle.

2. Non-persistent: Do not sense the medium for some
time (i.e., back-off).

3. p-persistent: Keep on sensing the medium as long as
the medium is busy and when the medium becomes
idle, transmit with probability p and wait with
probability (1-p).

We provide the following diagram (Fig. 1) for a schematic
representation of p-CSMA.

It can be observed from Fig. 1 that, at the end of a
transmission period, there is a brief idle period. The idle
period essentially signals the end of the previous

RAKSHIT AND GUHA: FAIR BANDWIDTH SHARING IN DISTRIBUTED SYSTEMS: A GAME-THEORETIC APPROACH 1385



transmission period. After this brief idle period, users
contend with each other to access the medium. Contention
is eventually resolved in one user’s favor and the
successful user transmits next.

The MAC strategy presented for the “Access Game” is
similar to the p-CSMA. The significant difference is that the
value of “p” is not constant in the proposed protocol. Users
compute appropriate values of p, based on the state of the
system. More specifically, users transmit with different
probabilities depending on the number of users present in
the system. These are the players of the “Access Game.” At
the beginning of each contention period, each player has
two actions to choose from: “transmit” and “wait.” User i
transmits with probability pi. The game has three outcomes:
“success,” “failure,” and “waste.” The outcomes and pay-
offs of the game are as follows:

1. If no user transmits, the game’s outcome is “waste”
and all the users receive a payoff of “0.”

2. If exactly one user transmits (say user i), then the
outcome of the game is “success.” User i receives a
payoff of “1” and all the other users receive a payoff
of “0.”

3. If more than one user transmits, collision occurs and
the outcome of the game is “failure.” Every user
receives a payoff of “0.”

Note that if a user decides to “wait,” irrespective of the
game’s outcome, it receives a payoff of “0.” This choice of
payoff is justified by the selfish nature of the users. Let us
give a simple example regarding the payoff: Consider two
users A and B contending for transmission. If both of them
transmit, there is a collision and nobody benefits; hence, a
payoff of “0” is assigned to both the users. If A (or B)
decides to wait, it may so happen that B (or A) transmits
and benefits. However, no benefit is accrued to A (or B).
Therefore, A (or B) receives a payoff of “0.” The payoff of
“1” for success is self-explanatory.

Following the above discussion, the utility function or
the expected payoff function can be expressed as:

�uui ¼ PrðsuccessÞ � 1: ð1Þ

From here on, we drop the “bar” in �uui and denote the payoff
function of user i as simply ui. The main results are now
presented in the following section.

2.2 Social Welfare

We have modeled the medium access as a Non-Cooperative

Game. In the next section, solutions to the “Access Game”

are provided. Before presenting these solutions, we briefly

discuss some desirable qualities of these solutions in terms

of Social Welfare and Pareto Optimality. Social Welfare

(SW) is a concept from economics dealing with the

distribution of resources in the society. Interestingly, this

concept can be applied in the present context of medium

access also, with the resource in question being the

bandwidth. We have previously argued that each user

should receive their fair share of bandwidth. Therefore, SW

for the “Access Game” is achieved if these fairness criteria

are satisfied. Associated with the concept of social welfare is

the concept of Pareto-Optimality (PO) of a resource

allocation. Informally, PO is achieved if nobody can be

made better off without making somebody else worse off.

All PO solutions do not result in SW, but all the allocations

resulting in SW are PO. Whether the PO solutions satisfy

the condition of SW depends on how SW is defined in a

particular context. As the solutions in the next section

satisfy SW within the present context, the solutions are PO

in nature as well.

3 ANALYSIS OF THE ACCESS GAME

From the discussion in the previous section, it is clear that
each user has only one decision variable: the probability to
transmit. In this section, we present the main results
regarding these decision variables. First, the assumptions
for the analysis conducted in this section are specified.

3.1 Assumptions

A1. Each user has complete information about all the other
users. Although this assumption is quite restrictive for a
distributed system, it is made to provide a sharp analysis.
This assumption is later relaxed.

A2. All the users have packets to transmit. This
assumption is made for the sake of simplicity. We also
relax this assumption in the next section.

A3. Packets are of equal length. This assumption is again
made for simplicity.

A4. The number of users playing the game is n and this
number does not change. As n ¼ 1 presents a trivial case,
n > 1 is assumed.

A5. The system is stable.
Assumptions 4and5are related. In this section,wepresent

the results for a fixed number of users. In the next section, we
relax this assumptionandallowforvaryingnumbersofusers.
Forour analysis tohold for thegeneral case in thenext section,
the system needs to be stable. The stability assumption has
been maintained throughout this paper.

3.2 Nash Equilibrium

We first prove that the Nash Equilibria for the “Access
Game” is inefficient.

Theorem 1. In the Nash Equilibrium for the Access Game, there
is at least one user i such that pNE

i ¼ 1.

Proof. Reproducing the utility function of user i from (1),
we have

ui ¼ pi
Yn
j 6¼i

ð1� pjÞ: ð2Þ

Of interest is the expression
Qn

j 6¼i ð1� pjÞ. Let us call it �i:

�i ¼
Yn
j6¼i

ð1� pjÞ: ð3Þ
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Clearly,

�i � 0 8i:

Observing (2) and following the example in the
Appendix, which can be found on the Computer Society
Digital Library at http://computer.org/tc/archives.htm,
it can be said that

when �i > 0; i:e:; pj 6¼ 18j 6¼ i; ui is maximized by pi ¼ 1

ð4:aÞ

when �i ¼ 0; i:e:; 9j 6¼ i : pj ¼ 1;

ui is maximized by pi ¼ fx : x 2 ð0; 1Þg
ði:e:; any value in the range between 0 and 1Þ:

ð4:bÞ

Note that the noncooperative users do not commu-
nicate with each other about their strategy. An NE is
achieved when users simultaneously maximize their
utility functions in such a noncooperative fashion.

We now prove the theorem by contradiction. Let us
assume that, at the NE,

pNE
i 6¼ 1 8i: ð5:aÞ

It immediately follows that, at the NE, �i > 0 8i and,
by (4.a),

pNE
i ¼ 1 8i: ð5:bÞ

It is easy to see that (5.a) and (5.b) are clear contra-
dictions. Therefore, our assumption that pNE

i 6¼ 1 8i is not
correct. tu
We now explain Theorem 1 with the help of the n ¼ 2

case. Following (4.a) and (4.b), we have plotted the best
response in p1 as a function of p2 in Fig. 2a. As a way of
explanation, let us start at p2 ¼ 0. The value of p1 is “1” at
p2 ¼ 0. The value of p1 remains “1” as long as p2 < 1. At
p2 ¼ 1, the best response in p1 is any value in the interval

ð0; 1Þ, i.e., there are an infinite number of best responses in
p1 for p2 ¼ 0. This is represented by the straight line joining
ð1; 1Þ and ð0; 1Þ.

In Fig. 2b, we have plotted the best response in p2 as a
function of p1. It can clearly be seen that the best response
plots of the two players completely overlap. As the NE are
given by the intersections of the best response correspon-
dences, there is an infinite number of NE for the “Access
Game.” It is not difficult to compute the various Nash
Equilibriums of the “Access Game.” For the example of n ¼
2 users, if user 1 is transmitting at p1 ¼ 1, user 2 can
transmit with any probability from 0 to 1 in order to
maximize its own utility function. On the other hand, if
user 2 is transmitting with any probability from 0 � p2 < 1,
the utility function of user 1 is maximized by p1 ¼ 1.
Therefore, one set of NE is given by fð1; p2Þ : 0 � p2 < 1g.
Similarly, if p2 ¼ 1, the utility of the user is maximized by
0 � p1 < 1. Therefore, the other set of NE is given by
fðp1; 1Þ : 0 � p1 < 1g. Finally, we have ð1; 1Þ as an NE also.

From this discussion, it can be noted that there is an
infinite number of NE and, for each of the NE, at least one
of the users has a transmission probability of 1. It follows
that the success probability of at least one of the users
would be “0.”

Corollary 2. There are infinite numbers of NE for the “Access
Game.”

Proof. Follows from Theorem 1 and the discussion
presented for n ¼ 2. tu

Definition 1. A solution of the Access Game is acceptable if and
only if the probability of success is nonzero for all the users.

Using Definition 1, we have the following result:

Corollary 3. Nash Equilibria for the Access Game are not
acceptable.

Proof. There are two possible cases.
Case 1: Only one user i is transmitting with pi ¼ 1.

Prfsuccessg ¼ 0 for all the other users.
Case 2: More than one user is transmitting with

probability “1.” Hence, Prfsuccessg ¼ 0 for all the
users. tu

From the above results, we see that, although an infinite
number of Nash Equilibria exist, they are inefficient.
Therefore, the rational users would be willing to adhere to
a set of constraints if these constraints benefit them.

3.3 Constrained Nash Equilibrium

Our objective here is to achieve fairness in bandwidth
sharing and, from a selfish user’s point of view, it will be an
attractive proposition if some set of constraints leads to
fairness in accessing the medium; more so because
completely independent actions produce inefficient equili-
bria (as proven above). We now investigate the feasibility of
solution with a set of constraints [42].

Before proceeding further, we reproduce Theorem 1 of
[28] for completeness and ready reference.

Theorem 4. An equilibrium exists for every concave n-person
game.
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For Theorem 4 to hold, the utility functions of all the

users should be concave in nature with respect to their

respective strategies. The striking characteristic of this

theorem is that the strategy spaces of different users need

not be orthogonal (independent). For such strategies,

Theorem 4 ensures an equilibrium if the utility functions

are concave. From (1), we have @2ui
@p2i

¼ 0. Therefore, ui is

concave in pi and we can apply Theorem 4 to our problem.
In order to derive our following results, we now present

the concept of fairness as a precise set of constraints. In the
present context of distributed medium access, the fairness is

defined as follows [24]:

Definition 2. Fairness is achieved if the probability that user i

accesses the medium is proportional to its weightage wi (> 0).

Hence, fairness can be quantitatively expressed as

p1
Qn

j6¼1 ð1� pjÞ
w1

¼ . . .
pi
Qn

j6¼i ð1� pjÞ
wi

¼ . . . :
pn
Qn�1

j¼1 ð1� pjÞ
wn

:

ð6Þ

As we are interested in only nontrivial and acceptable

solutions,

pi 6¼ 0; 1 8i: ð7Þ

It should be noted that the CNEs can be computed without

the condition in (7), but we are interested only in the
solutions satisfying (7).

Combining (6) and (7), we have

p1=ð1� p1Þ
w1

¼ . . .
pi=ð1� piÞ

wi
¼ . . .

pn=ð1� pnÞ
wn

¼ 1

K
; ð8Þ

where K is a positive constant, i.e.,

K > 0; ð9Þ

therefore
1

pi
� 1

� �
¼ wj

wi

1

pj
� 1

� �
8i; j: ð10Þ

From the above discussions and Theorem 4, we have the
following lemma:

Lemma 5. A CNE exists for the Access Game satisfying the

fairness condition in (8).

With the previous formulation, the following theorem is

proven.

Theorem 6. At the CNE satisfying the fairness conditions in (8),

the transmission probabilities satisfy the following:

Xn
i¼1

pi ¼ 1:

Proof. Using (2) and (7), we have

ui ¼ pi
Yn
j 6¼i

ð1� pjÞ ¼
pi

1� pi
g; ð11Þ

where g ¼
Qn

j¼1 ð1� pjÞ and, from (7),

g ¼
Yn
j¼1

ð1� pjÞ 6¼ 0: ð12Þ

For the “Access Game” CNE satisfying the fairness
conditions, we have @ui

@pi
¼ 0 [28] and the fairness

conditions:

p1=ð1� p1Þ
w1

¼ . . .
pi=ð1� piÞ

wi
¼ . . .

pn=ð1� pnÞ
wn

¼ 1

K
:

From @ui
@pi

¼ 0, we have, using (11),

g
@ð pi

1�pi
Þ

@pi
þ pi
1� pi

@g

@pi
¼ 0: ð13Þ

From (10), we have pi=1�pi
wi

¼ pj=1�pj
wj

8i; j.
It follows that

@pj
@pi

¼ p2j
p2i
� wi

wj
¼ p2j

p2i
� pi

1�pi
� 1�pj

pj
:

therefore
@pj
@pi

¼ pj
1� pi

� 1� pj
pi

: ð14Þ

We compute @g
@pi

by using (14).
In order to demonstrate how the proof works, we first

prove the case of two users. We have

g
@ p1

1�p1

h i
@p1

þ p1
1� p1

@g

@p1
¼ 0; ð15Þ

g ¼ ð1� p1Þð1� p2Þ
@g

@p1
¼ �½ð1� p2Þ� þ ð1� p1Þ

@

@p1
ð1� p2Þ

� �
:

The chain partial differentiation in the next step is the
“trick” in this proof:

@g

@p1
¼ �½ð1� p2Þ þ ð1� p1Þ

@

@p2
ð1� p2Þ

� �
@p2
@p1

� �
:

From (14), @p2
@p1

¼ p2
1�p1

� 1�p2
p1

,

therefore
@g

@p1
¼ � ð1� p2Þ þ ð1� p1Þ

p2ð1� p2Þ
p1ð1� p1Þ

� �

or

@g

@p1
¼ � ð1� p2Þ

p1
p1

þ p2ð1� p2Þ
p1

� �
¼ �ð1� p2Þ

p1
½p2 þ p1�;

therefore
@g

@p1
¼ � g

p1ð1� p1Þ
½p2 þ p1� ¼ � g

p1ð1� p1Þ
X2
i¼1

pi:

ð16Þ

Using (16) in (15) and the fact that @ðpi=1�piÞ
@pi

¼ 1
ð1�piÞ2

, we
have

g

ð1� p1Þ2
� p1
1� p1

� g

p1ð1� p1Þ
�

X2
i¼1

pi

 !
¼ 0: ð17Þ
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From (12), g 6¼ 0,

therefore
X2
i¼1

pi ¼ 1:

For a general case involving n users, following the
exact same steps and the chain differentiation trick, we
have

g
@ð pi

1�pi
Þ

@pi
þ pi
1� pi

@g

@pi
¼ 0

and

@g

@pi
¼ � g

pið1� piÞ
Xn
i¼1

pi:

Hence, we have

Xn
i¼1

pi ¼ 1: ð17Þ

tu

We now prove that there is a unique solution for

probabilities satisfying (8) and (17).

Theorem 7. The CNE for the Access Game satisfying the fairness

conditions in (8) is unique.

Proof. From (8), we have

pi ¼
wi

K þ wi
8i: ð18Þ

Using (17) and (18), we have

Xn
i¼1

wi

K þ wi
¼ 1: ð19Þ

We show that the solution for K in (19) is unique. We

prove the uniqueness of the solution in three parts.

1. All the solutions of K in (19) are real.
Proof. Let there be complex solution for K;

��
ffiffiffiffiffiffiffi
�1

p
�. We then have

Xn
i¼1

wi

�þ
ffiffiffiffiffiffiffi
�1

p
� þ wi

¼ 1 and
Xn
i¼1

wi

��
ffiffiffiffiffiffiffi
�1

p
� þ wi

¼ 1

therefore
Xn
i¼1

wi

�þ
ffiffiffiffiffiffiffi
�1

p
� þ wi

� wi

��
ffiffiffiffiffiffiffi
�1

p
� þ wi

� �

¼ 0

therefore � 2wi

ffiffiffiffiffiffiffi
�1

p
�
Xn
i¼1

1

ð�þ wiÞ2 þ �2
¼ 0:

As
Pn

i¼1
wi

ð�þwiÞ2þ�2
6¼ 0,

� ¼ 0: ð20Þ

2. There is at least one positive root for K.
Proof. Equation (19) has n solutions in K. Let

these roots be r1 . . . rn.

By expanding (19), it can be clearly seen that

some of the coefficients are negative. Hence, there

is at least one positive root. Formally,

9k : rk > 0: ð21Þ

3. If the number of positive roots in (19) is more than
one, they are equal.

Proof. Let there be more than one positive root;

�1; �2. From (19), we have:

Xn
i¼1

wi

�1 þ wi
� wi

�2 þ wi

� �
¼ 0

therefore ð�2 � �1Þ
Xn
i¼1

wi

ð�1 þ w1Þð�2 þ wiÞ
¼ 0

or

�2 ¼ �1: ð22Þ

From (20)-(22), we have that the solution of K in

(19) is unique. Hence, from (18), the CNE is

unique. tu

A closed form solution for K in
Pn

i¼1
K

Kþwi
¼ 1 cannot be

obtained for n � 5 (Abel’s Impossibility Theorem). Values

of K are provided for some special cases given below:

1. Two users: K ¼ ffiffiffiffiffiffiffiffiffiffiffi
w1w2

p
.

2. n identical users: K ¼ ðn� 1Þw.
3. Two classes (1, 2) of users and class i has ni users.

Each user of class i has weight wi: K ¼
ffiffiffiffiffiffiffiffiffiffiffi
b2þ4ac

p
�b

2a ,

where

a ¼ ðn1 þ n2 � 1Þ; b ¼ w2ðn1 � 1Þ þ w1ðn2 � 1Þ;
c ¼ w1w2:

3.4 Throughput

Next, we prove that the throughput is also optimized at the

CNE. The following result is useful in that regard.

Lemma 8. At the CNE satisfying fairness conditions in (8), @ui@pj
¼

0 8i; j.
Proof. For CNE, @ui

@pi
¼ 0 8i and pi=ð1�piÞ

wi
¼ pj=ð1�pjÞ

wj
8i; j.

We have ui ¼ pi
1�pi

g.

It follows that, at CNE, ui ¼ wi

wj

pj
1�pj

g ¼ wi

wj
uj.

But, at CNE,
@uj
@pj

¼ 0 8j:

therefore
@ui

@pj
¼ wi

wj

@uj

@pj
¼ 0 8i; j: ð23Þ

tu

We now use Lemma 8 to prove that the throughput is

optimized at the CNE.

Theorem 9. CNE satisfying fairness maximizes the system

throughput.
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Proof. By throughput, we mean the probability that any
user succeeds in contention. Then, the system through-
put � can be given as

� ¼
Xn
i¼1

pi �
Yn
j6¼i

ð1� pjÞ:

From (7), � ¼
Pn

i¼1
pi

1�pi
� g.

From (11),

� ¼
Xn
i¼1

ui: ð24Þ

For throughput maximization, @�
@pj

¼ 0 8j.
From (24),

@�

@pj
¼
Xn
i¼1

@ui

@pj
: ð25Þ

Following Lemma 8 (23), we have

@�

@pj
jCNE ¼ 0 8j:

ut

It is interesting to note that the transmission probabilities
at the CNE have the dual properties of satisfying the
fairness conditions and optimizing the throughput. We now
discuss this characteristic in some detail. It can be said that
the formulation of the “Access Game” in this paper has a
fairness-bias, i.e., achieving fairness in a distributed
medium access scenario is the primary concern and this
concern has been incorporated in the form of the fairness
conditions in (8). Therefore, it is no surprise that the
proposed solution does indeed result in fairness. What
seems a little counterintuitive and surprising is the fact that
the throughput is also optimized. It should be noted that the
trivially maximal value for the throughput would be “1,”
but, in such a scenario, fairness would probably be
adversely affected. Therefore, in this paper, the throughput
is optimized within the constraints of fairness. The
qualitative reason behind the optimization is the judicious
use of the channel by the users. Analytically, let us look the
expression for the throughput: � ¼

Pn
i¼1 ui. The solution

proposed in this paper (i.e., the CNE) simultaneously
optimizes the utility function of all the users within the
constraints of the fairness conditions. Therefore, it naturally
follows that the throughput would also be similarly
optimized. Finally, we state, without proof, that there is a
unique set of transmission probabilities that satisfies the
fairness conditions and optimize the throughput. It follows
that this set of transmission probabilities is identical to the
CNE of the “Access Game.”

3.5 Generalized Payoff Scheme

While formulating the “Access Game” in Section 2, we had
assigned a nonzero payoff to “success” only. It was justified
because of the selfish nature of the users and no other issue
was considered. However, it is plausible that there can be
other considerations, e.g., battery power consumption for
communication purposes. Consequently, there can be
nonzero payoffs associated with other outcomes also. A

general framework for such cases is now provided. As
before, there are three outcomes for each individual user:
“success,” “failure,” and “waste.” Let us designate by c1;i,
c2;i, and c3;i the payoffs to user i for “success,” “wait,” and
“failure,” respectively. In order to distinguish the utility
function for the general case, we use the subscript
“general.”

The utility function ui;general for i is given by

ui;general ¼ pi �
Yn
j 6¼i

ð1� pjÞ � c1;i

þ pi 1� pi �
Yn
j6¼i

ð1� pjÞ
" #

� c3;i þ ð1� piÞ � c2;i:

ð26Þ

Equation (26) can be rewritten as follows:

ui;general ¼ pi �
Yn
j6¼i

ð1� pjÞ � c1;i

"

þ 1� pi �
Yn
j6¼i

ð1� pjÞ � c3;i

( )
� c2;i

#
þ c2;i:

ð27Þ

The quantity within the square brackets is independent of
pi. Hence, the utility function is concave with respect to pi.
Using Theorem 4, we have the following lemma.

Lemma 10. A CNE satisfying the fairness criterion of (8) exists
for the general payoff scenario described in (27).

A detailed analysis for the general formulation is beyond
the scope of this paper. An analysis in the context of
wireless networks has been presented in [36].

4 IMPLEMENTATION

The results of the previous section were derived under
assumptions A1-A5. In this section, most of these assump-
tions are relaxed.

4.1 Incomplete Information

We assumed that the number of users in the system remains
fixed. However, in practice, the number of users varies in a
LAN. Therefore, we relax this assumption in this section.
We also assumed that the users in the system always have
packets. However, this is not realistic. We relax this
assumption also. As mentioned before, the assumption of
stability remains in place.

Finally, we assumed that the “Access Game” is a
complete information game. The implication of this
assumption was that a user knew about the presence of
the other users and their weightages. In a realistic
distributed network, this implication will not hold true
and, strictly speaking, the “Access Game” should be treated
as an incomplete information game [27]. However, the
solutions of a complete information game are more efficient
in nature. Consequently, we have proposed a simple
technique that will make users aware of the number of
users present in the system and their weightages. This
technique would enable us to approximate an incomplete
information scenario as a complete information one.
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4.2 Approximation Scheme

The key to our approximation process is as follows: In most

of the distributed systems, there is usually a registration

authority2 (henceforth designated by R) that performs

several accounting functions. We use R to gather and

disseminate information. It should be noted that using R

does not dilute the distributed nature of the medium access

in the system. R plays no direct role in medium access by

users; it only helps users to make informed decisions.

4.2.1 Information Gathering and Dissemination

Let us call the approximation scheme appxm. There are two

conceptual steps in appxm. Information is sent to R by users

(information gathering) and the information accumulated

from all the users is broadcast over the network by R

(information dissemination). There is a wide body of work

dealing with information gathering and dissemination. Our

objective is to provide a simple, case-specific mechanism to

achieve approximation. The particulars of the mechanism

are as follows:

1. Users are divided into C classes. Associated with a
class c are two parameters: weightage, wc, and the
probability of having a packet at the beginning of a
transmission slot, pp;c 6¼ 0; 1. Users know these
parameters a priori.

2. R maintains a table containing the number of
different classes of users in the system.

3. When a user enters the system, it is assigned a class
and the number of users in the corresponding class
is increased by one. Similarly, when a user leaves the
system, it informs R about its decision to leave. The
number of users in the corresponding class of users
is decreased by one. Separate control channels
should be used for the registration and deregistra-
tion process.

4. Before the beginning of each transmission slot, R
broadcasts the number of users of each class present
in the system.

The steps are depicted in Fig. 3.

4.3 Analysis

Although we could have introduced the class-specific

notations for the following analysis, we have followed the

notation of Section 3 to show the equivalence of the
approximate scenario with a complete information scenario.

When appxm is used, a user knows about the number of
other users present in the system. In other words, a user
also knows about the values of wis and pp;is.

The utility function of user i can be given as (from (1))

ui ¼ pi �
Y
j 6¼i

pW;j; ð28Þ

where pW;j is the probability that user j does not transmit a
packet. Note that a user j does not transmit if

1. it does not have a packet to transmit OR
2. it has a packet to transmit, but decides not to

transmit.

Therefore, pW;j can be computed as follows:

pW;j ¼ pp;j � ð1� pjÞ þ ð1� pp;jÞ ¼ 1� pp;j � pj

therefore ui ¼ pi �
Yn
j 6¼i

pw;j ¼
pi

1� Pp;i � pi
�
Yn
j¼i

pw;j:
ð29Þ

It is clear that the probability of a user i accessing the
medium successfully is

PrðsuccessÞi ¼ ð1� pp;iÞ � 0þ pp;i � pi
ð1� pi � pp;iÞ

�
Yn
j¼1

pW;j:

Introducing p̂pi ¼ pipp;i and ĝg ¼
Qn

j¼1 pW;j ¼
Qn

i¼1 ð1� ~ppiÞ.
Note that, from (7) and pp;i 6¼ 0; 1, it follows that

p̂pi 6¼ 0; 1 8i

PrðsuccessÞi ¼
p̂pi

1� p̂pi
ĝg:

ð30:aÞ

Consequently, the fairness constraints can be represented as

PrðsuccessÞ1
w1

¼ . . .
PrðsuccessÞi

wi
¼ . . . ¼ PrðsuccessÞn

wn
;

therefore
p̂p1=ð1� p̂p1Þ

w1
¼ . . .

p̂pj=ð1� p̂pjÞ
wj

¼ . . . ¼ p̂pn=ð1� p̂pnÞ
wn

:

ð30:bÞ

The utility functions can also be rewritten as

ui ¼
1

pp;i
� ~ppi
1� ~ppi

� ĝg: ð30:cÞ

Equations (30.a) and (30.b) are equivalent to (7) and (8),
respectively. Equation (30.c) is equivalent to (11) due to the
fact that pp;i is a positive constant. Therefore, from
Theorem 7, we have that there is a unique set of solutions
(in p̂pis) solving

@ui

@p̂pi
¼ 0 8i

and

p̂p1=ð1� p̂p1Þ
w1

¼ . . .
p̂pj=ð1� p̂pjÞ

wj
¼ . . . ¼ p̂pn=ð1� p̂pnÞ

wn
:

As p̂pi ¼ pipp;i, it follows that there is unique set of pis that

will satisfy @ui
@p̂pi

¼ 0 and (30.b).
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Fig. 3. Approximation scheme appxm.

2. This does not hold for ad hoc networks.



Therefore, from Theorems 6 and 7, we have the following
lemma:

Lemma 11. CNE for (30.a)-(30.c) is unique.

We now consider the throughput for this approximate
case.

Lemma 12. Throughput is also optimized for the approximate case.

Proof. The throughput can be represented as

�̂� ¼
Xn
i¼1

pp:i � pi �
Yn
j6¼i

pW;j ¼
Xn
i¼1

pp:i � ui:

As pp;i is constant, the proof follows exactly along the
lines of Theorem 9. tu
In this section, it was shown that the results for the

complete information “Access Game” can be easily ex-
tended to the incomplete information “Access Game.”
Consequently, we can design a realistic medium access
protocol as proposed in this paper. As shown, this protocol
will guarantee fair share of bandwidth and optimal
throughput.

5 CONCLUSIONS

We used Game Theory to address the issue of fair sharing of
bandwidth in a distributed system with competitive users.
The medium access was modeled as a noncooperative
game, designated as the “Access Game.” First, the “Access
Game” for the complete information scenario was analyzed.
It was proven that the CNE satisfying fairness is unique for
the “Access Game” and this CNE optimizes the system
throughput. Later, a simple mechanism was proposed to
approximate an incomplete information scenario as a
complete information scenario. The uniqueness and optim-
ality of the CNE were proven for the approximate case also.

The proposed MAC scheme can be suitably applied for
both wired and wireless local area networks. In busy
systems like WLANs, the number of users changes
frequently. Therefore, the optimal strategies for such
systems would vary from one transmission slot to another.
The proposed protocol computes optimal transmission
probability for each slot. Therefore, it is an appropriate
choice for WLANs. Moreover, for the approximation
scheme presented in Section 4, we proposed that R should
broadcast the number of users present in the system at the
beginning of a transmission slot. This technique can be
incorporated with ease for the IEEE WLAN 802.11 MAC
scenario. In wired LANs, the number of users does not
change frequently and the assumption of complete in-
formation can be more easily applied. However, as our
protocol computes optimal transmission strategies at the
beginning of each transmission slot, there will be unneces-
sary computations for users. With small changes, the
protocol can be applied in wired local area networks.

In all of the above discussions and analysis, it was
assumed that the system is stable. However, the stability of
the system would depend on the interaction between the
packet arrival process and the performance of the MAC
protocol [25]. Simply put, for stability, the number of

unsuccessful packets should not become very large. The

notion of stability has a direct bearing on the analysis and

application of the protocol. As users choose a probabilistic

transmission strategy in a given state, they would expect

that state to repeat itself (assuming that the users play the

“Access Game” a sufficient number of times). In other

words, for the protocol to run correctly, the system should

be ergodic. We are presently investigating this issue.
Most of the CSMA protocols in application today use

window-based transmission strategies. The CSMA/CD

version used by the Ethernet has a one persistent strategy

for transmission and adopts a random exponential backoff

strategy when collision occurs. The CSMA/CA strategy

adopted for IEEE802.11 also uses a window-based strategy,

but, philosophically, it is closer to the p-CSMA strategy as it

does not transmit with probability “1” after sensing the

medium idle. It would be useful to investigate whether the

results of this paper can be extended to window-based

schemes. Similar work has recently been published [37].
Finally, the issue of “cheating” users needs to be

analyzed. If some users decide to deviate from the CNE

operating point to some other selfishly beneficial operating

point, what punitive strategies can other users take to bring

the errant users back to the CNE operating point? We have

formulated the problem in hybrid-control theoretic frame-

work and are currently investigating suitable strategies to

be adopted by users.
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