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Abstract

Two schemes—prefix partitioning and interval partitioning—are proposed to improve the perfor-
mance of dynamic IP router-table designs. While prefix partitioning applies to all known dynamic
router-table designs, interval partitioning applies to the alternative collection of binary search tree
designs of Sahni and Kim [16]. Experiments using public-domain IPv4 router databases indicate that
one of the proposed prefix partitioning schemes—TLDP—results in router tables that require less
memory than when prefix partitioning is not used. Further significant reduction in the time to find
the longest matching-prefix, insert a prefix, and delete a prefix is achieved.

Keywords: Packet routing, dynamic router-tables, longest-prefix matching, prefix partitioning,
interval partitioning.

1 Introduction

In IP routing, each router table has a set of rules (F,N), where F is a filter and N is the next hop for

the packet. Typically, each filter is a destination address prefix and longest-prefix matching is used to

determine the next hop for each incoming packet. That is, when a packet arrives at a router, its next hop

is determined by the rule that has the longest prefix (i.e., filter) that matches the destination address of

the packet. Notice that the length of a router-table prefix cannot exceed the length W of a destination

address. In IPv4, destination addresses are W = 32 bits long, and in IPv6, W = 128.

In a static rule table, the rule set does not vary in time. For these tables, we are concerned primarily

with the following metrics:

1. Time required to process an incoming packet. This is the time required to search the rule table for

the rule to use.

2. Preprocessing time. This is the time to create the rule-table data structure.
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3. Storage requirement. That is, how much memory is required by the rule-table data structure?

In practice, rule tables are seldom truly static. At best, rules may be added to or deleted from the

rule table infrequently. Typically, in a “static” rule table, inserts/deletes are batched and the rule-table

data structure reconstructed as needed.

In a dynamic rule table, rules are added/deleted with some frequency. For such tables, inserts/deletes

are not batched. Rather, they are performed in real time. For such tables, we are concerned additionally

with the time required to insert/delete a rule. For a dynamic rule table, the initial rule-table data

structure is constructed by starting with an empty data structures and then inserting the initial set of

rules into the data structure one by one. So, typically, in the case of dynamic tables, the preprocessing

metric, mentioned above, is very closely related to the insert time.

Ruiz-Sanchez, Biersack, and Dabbous [12] review data structures for static router-tables and Sahni,

Kim, and Lu [18] review data structures for both static and dynamic router-tables. Several trie-based

data structures for router table have been proposed [19, 1, 2, 11, 20, 13, 14]. Structures such as that of [19]

perform each of the dynamic router-table operations (lookup, insert, delete) in O(W ) time. Others (e.g.,

[1, 2, 11, 20, 13, 14]) attempt to optimize lookup time and memory requirement through an expensive

preprocessing step. These structures, while providing very fast lookup capability, have a prohibitive

insert/delete time and so, they are suitable only for static router-tables (i.e., tables into/from which no

inserts and deletes take place).

Waldvogel et al. [22] have proposed a scheme that performs a binary search on hash tables organized

by prefix length. This binary-search scheme has an expected complexity of O(log W ) for lookup. An

alternative adaptation of binary search to longest-prefix matching is developed in [7]. Using this adap-

tation, a lookup in a table that has n prefixes takes O(W + log n) = O(W ) time. Because the schemes

of [22] and [7] use expensive precomputation, they are not suited for a dynamic router-tables.

Suri et al. [21] have proposed a B-tree data structure for dynamic router tables. Using their struc-

ture, we may find the longest matching-prefix, lmp(d), in O(log n) time. However, inserts/deletes take

O(W log n) time. When W bits fit in O(1) words (as is the case for IPv4 and IPv6 prefixes) logical
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operations on W -bit vectors can be done in O(1) time each. In this case, the scheme of [21] takes

O(log W log n) time for an insert and O(W + log n) = O(W ) time for a delete. The number of cache

misses that occur when the data structure of [21] is used is O(log n) per opertion. Lu and Sahni [10] have

developed an alternative B-tree router-table design. Although the designs of [21] and [10] have the same

asymptotic complexity for each of the dynamic router-table operations, inserts and deletes access only

O(logm n) nodes using the structure of [10] whereas these operations access O(m logm n) nodes when

the structure of [21] is used. Consequently, the structure of [10] is faster for inserts and deletes and

competitive for searches.

Sahni and Kim [15, 16] develop data structures, called a collection of red-black trees (CRBT) and

alternative collection of red-black trees (ACRBT), that support the three operations of a dynamic router-

table (longest matching-prefix, prefix insert, prefix delete) in O(log n) time each. The number of cache

misses is also O(log n). In [16], Sahni and Kim show that their ACRBT structure is easily modified to

extend the biased-skip-list structure of Ergun et al. [3] so as to obtain a biased-skip-list structure for

dynamic router table. Using this modified biased skip-list structure, lookup, insert, and delete can each

be done in O(log n) expected time and O(log n) expected cache misses. Like the original biased-skip

list structure of [3], the modified structure of [16] adapts so as to perform lookups faster for bursty

access patterns than for non-bursty patterns. The ACRBT structure may also be adapted to obtain

a collection of splay trees structure [16], which performs the three dynamic router-table operations in

O(log n) amortized time and which adapts to provide faster lookups for bursty traffic.

Lu and Sahni [8] use priority search trees to arrive at an O(log n) data structure for dynamic prefix-

tables. This structure is faster than the CRBT structure of [15, 16]. Lu and Sahni [8] also propose a

data structure that employs priority search trees and red-black trees for the representation of rule tables

in which the filters are a conflict-free set of ranges. This data structure permits most-specific-range

matching as well as range insertion and deletion to be done in O(log n) time each.

In [9], Lu and Sahni develop a data structure called BOB (binary tree on binary tree) for dynamic

router-tables in which the rule filters are nonintersecting ranges and in which ties are broken by selecting
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the highest-priority rule that matches a destination address. Using BOB, the highest-priority rule that

matches a destination address may be found in O(log2 n) time; a new rule may be inserted and an old one

deleted in O(log n) time. Related structures PBOB (prefix BOB) and LMPBOB (longest matching-prefix

BOB) are proposed for highest-priority prefix matching and longest-matching prefixes. These structures

apply when all filters are prefixes. The data structure LMPBOB permits longest-prefix matching in

O(W ) time; rule insertion and deletion take O(log n) time each. On practical rule tables, BOB and

PBOB perform each of the three dynamic-table operations in O(log n) time and with O(log n) cache

misses. The number of cache misses incurred by LMPBOB is also O(log n).

Gupta and McKeown [4] have developed two data structures for dynamic highest-priority rule tables—

heap on trie (HOT) and binary search tree on trie (BOT). The HOT structure takes O(W ) time for a

lookup and O(W log n) time for an insert or delete. The BOT structure takes O(W log n) time for

a lookup and O(W ) time for an insert/delete. The number of cache misses in a HOT and BOT is

asymptotically the same as the time complexity of the corresponding operation.

In this paper, we develop two strategies to improve the performance of already known data structures

for dynamic router-tables–prefix partitioning (Section 2) and interval partitioning (Section 4). Prefix

partitioning is quite general and may be used in conjunction with all known dynamic IP router-table

designs. However, interval partitioning applies only to the interval-based designs of Sahni and Kim [16].

Experimental results are presented in Section 5.

2 Prefix Partitioning

2.1 Static Router-Tables

Lampson et al.[7] propose a prefix partitioning scheme for static router-tables. This scheme partitions

the prefixes in a router table based on their first s, s ≤ W , bits. Prefixes that are longer than s bits and

whose first s bits correspond to the number i, 0 ≤ i < 2s are stored in a bucket partition[i].bucket using

any data structure suitable for a static router-table. Further, partition[i].lmp, which is the longest prefix

for the binary representation of i (note that the length of partition[i].lmp is at most s) is precomputed

from the given prefix set. For any destination address d, lmp(d), is determined as follows:
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1. Let i be the integer whose binary representation equals the first s bits of d. Let Q equal null if no

prefix in partition[i].bucket matches d; otherwise, let Q be the longest prefix in partition[i].bucket

that matches d.

2. If Q is null, lmp(d) = partition[i].lmp. Otherwise, lmp(d) = Q.

Note that the case s = 0 results in a single bucket and, effectively, no partitioning. As s is increased,

the average number of prefixes per bucket as well as the maximum number in any bucket decreases.

Both the average-case and worst-case time to find lmp(d) decrease as we increase s. However, the

storage needed for the array partition[] increases with s and quickly becomes impractical. Lampson et

al. [7] recommend using s = 16. This recommendation results in 2s = 65,536 buckets. For practical

router-table databases, s = 16 results in buckets that have at most a few hundred prefixes; non-empty

buckets have less than 10 prefixes on average. Hence the worst-case and average-case time to find lmp(d)

is considerably improved over the case s = 0.

2.2 Dynamic Router-Tables

The prefix partitioning scheme of Lampson et al. [7] is, however, not suited for dynamic router-tables.

This is so because the insertion or deletion of a prefix may affect all partition[i].lmp, 0 ≤ i < 2s

values. For example, the insertion of the default prefix * into an initially empty router table will require

all 2s partition[i].lmp values to be set to *. The deletion of a length p ≤ s prefix could affect 2s−p

partition[i].lmp values.

For dynamic router-tables, we propose multilevel partitioning. The prefixes at each node of the

partitioning tree are partitioned into 2s + 1 partitions using the next s bits of the prefixes. Prefixes

that do not have s additional bits fall into partition −1; the remaining prefixes fall into the partition

that corresponds to their next s bits. Prefix partitioning may be controlled using a static rule such

as “partition only at the root” or by a dynamic rule such as “recursively partition until the number

of prefixes in the partition is smaller than some specified threshold”. In this paper, we focus on two

statically determined partitioning structures—one level and two level.
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2.2.1 One-Level Dynamic Partitioning (OLDP)

OLDP is described by the partitioning tree of Figure 1. The root node represents the partitioning of the

router-table prefixes into 2s + 1 partitions. Let OLDP [i] refer to partition i. OLDP [−1] contains all

prefixes whose length is less than s; OLDP [i], i ≥ 0 contains all prefixes whose first s bits correspond

to i. The prefixes in each partition may be represented using any of the dynamic router-table data

structures mentioned in Section 1. In fact, one could use different data structures for different partitions.

For example, if we knew that certain partitions will always be small, these could be represented as linear

lists while the remaining partitions are represented using PBOB (say).� � � � � � � � � � � � � � �
� � � � � �

� � 	 


Figure 1: One-level dynamic partitioning

The essential difference between OLDP and the partitioning scheme of [7] is in the treatment of prefixes

whose length is smaller than s. In OLDP, these shorter prefixes are stored in OLDP [−1]; in the scheme of

[7] these shorter prefixes (along with length s prefixes) are used to determine the partition[i].lmp values.

It is this difference in the way shorter length prefixes are handled that makes OLDP suitable for dynamic

tables while the scheme of [7] is suitable for static tables. Table 1 gives the results of partitioning four

IPv4 router tables using OLDP with s = 16 and Figure 2 histograms the number of partitions (excluding

partition −1) of each size. These router tables were obtained from [6]. As can be seen, OLDP with

s = 16 is quite effective in reducing both the maximum and the average partition size. In all of our

databases, partition −1 is substantially larger than the remaining partitions.

Figures 3–5 give the algorithms to search, insert, and delete into an OLDP router table. OLDP[i]->x()

refers to method x performed on the data structure for OLDP[i], first(d, s) returns the integer that
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Database Paix Pb Aads MaeWest

# of prefixes 85988 35303 31828 28890

# of nonempty partitions 10443 6111 6363 6026

|OLDP [−1]| 586 187 188 268

Max size of remaining partitions 229 124 112 105

Average size of nonempty partitions (excluding OLDP [−1]) 8.2 5.7 5.0 4.8

Table 1: Statistics of one level partition (s = 16)
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Figure 2: Histogram of partition size for OLDP (excludes OLDP [−1])

corresponds to the first s bits of d, and length(thePrefix) returns the length of thePrefix. It is easy

to see that when each OLDP partition is represented using the same data structure (say, PBOB), the
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Algorithm lookup(d){

// return the lmp(d)

if(OLDP[first(d, s)] != null && lmp = OLDP[first(d, s)]->lookup(d)){

// found matching prefix in OLDP[first(d, s)]

return lmp;

}

return OLDP[-1]->lookup(d);

}

Figure 3: OLDP algorithm to find lmp(d)

Algorithm insert(thePrefix){

// insert prefix thePrefix

if(length(thePrefix) >= s)

OLDP[first(thePrefix, s)]->insert(thePrefix);

else

OLDP[-1]->insert(thePrefix);

}

Figure 4: OLDP algorithm to insert a prefix

Algorithm delete(thePrefix){

// delete prefix thePrefix

if (length(thePrefix) >= s)

OLDP[first(thePrefix, s)]->delete(thePrefix);

else

OLDP[-1]->delete(thePrefix);

}

Figure 5: OLDP algorithm to delete a prefix

asymptotic complexity of each operation is the same as that for the corresponding operation in the

data structure for the OLDP partitions. However, a constant factor speedup is expected because each

OLDP [i] has only a fraction of the prefixes.

2.2.2 Two-Level Dynamic Partitioning (TLDP)

Figure 6 shows the partitioning structure for a TLDP. In a TLDP, the root partitions the prefix set

into the partitions OLDP [i], −1 ≤ i < 2s by using the first s bits of each prefix. This partitioning is

identical to that done in an OLDP. Additionally, the set of prefixes OLDP [−1] is further partitioned at

node TLDP into the partitions TLDP [i], −1 ≤ i < 2t using the first t, t < s, bits of the prefixes in
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OLDP [−1]. This partitioning follows the strategy used at the root. However, t rather than s bits are

used. The prefix partitions OLDP [i], 0 ≤ i < 2s and TLDP [i], −1 ≤ i < 2t, may be represented using

any dynamic router-table data structure. Note that the OLDP [i] partitions for i ≥ 0 are not partitioned

further because their size is typically not too large (see Table 1).

� � � � � � � � � � � � � � �� � 	 

� � � � � �

� � � � � � � � � � � � � � �
 � 	 

� � � � � �

Figure 6: Two-level dynamic partitioning

Table 2 gives statistics for the number of prefixes in TLDP [i] for our four sample databases. Since

the number of prefixes in each TLDP [i] is rather small, we may represent each TLDP [i] using an array

linear list in which the prefixes are in decreasing order of length.

Database Paix Pb Aads MaeWest

|OLDP [−1]| 586 187 188 268

# of nonempty TLDP partitions 91 57 53 67

|TLDP [−1]| 0 0 0 0

max{|TLDP [i]|} 33 12 15 15

Average size of nonempty TLDP partitions 6.4 3.3 3.5 4.0

Table 2: Statistics for TLDP with s = 16 and t = 8

Figures 7 and 8 give the TLDP search and insert algorithms. The algorithm to delete is similar to

the insert algorithm. It is easy to see that TLDP doesn’t improve the asymptotic complexity of the

lookup/insert/delete algorithms relative to that of these operations in an OLDP. Rather, a constant

factor improvement is expected.

9



Algorithm lookup(d){

// return lmp(d)

if (OLDP[first(d, s)] != null && lmp = OLDP[first(d, s)]->lookup(d)){

// found lmp in OLDP[first(d, s)]

return lmp;

}

if (TLDP[first(d, t)] != null && lmp = TLDP[first(d, t)]->lookup(d)){

// found lmp in TLDP[first(d, t)]

return lmp;

}

return TLDP[-1]->lookup(d);

}

Figure 7: TLDP algorithm to find lmp(d)

Algorithm insert(thePrefix){

// insert prefix thePrefix

if (length(thePrefix) >= s)

OLDP[first(thePrefix, s)]->insert(thePrefix);

else if (length(thePrefix) >= t)

TLDP[first(thePrefix, t)]->insert(thePrefix);

else

TLDP[-1]->insert(thePrefix);

}

Figure 8: TLDP algorithm to insert a prefix

2.2.3 Extension to IPv6

Although OLDPs with s = 16 and TLDPs with s = 16 and t = 8 seem quite reasonable for IPv4 router

tables, for IPv6 router tables, we expect better performance using OLDPs with s = 64 (say) and TLDPs

with s = 64 and t = 32 (say). However, maintaining the OLDP and TLDP nodes as arrays as in

Sections 2.2.1 and 2.2.2 is no longer practical (e.g., the OLDP array will have 2s = 264 entries). Notice,

however, that since most of the the OLDP and TLDP partitions are expected to be empty (even in IPv6)1,

the OLDP and TLDP nodes may be efficiently represented as hash tables. A similarly memory-efficient

hash table representation of the partition array of the scheme of [7] isn’t possible because virtually all of

the partition[i].lmp values are non-null.

1Note that the number of non-empty partitions is O(n).
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3 OLDP and TLDP Fixed-Stride Tries

3.1 Fixed-Stride Tries

A trie node whose stride is s has 2s subtries, some or all of which may be empty. A fixed-stride trie

(FST) [18, 20] is a trie in which all nodes that are at the same level have the same stride. The nodes

at level i of an FST store prefixes whose length, length(i), is
∑i

j=0 sj, where sj is the stride for nodes

at level j. Suppose we wish to represent the prefixes of Figure 9(a) using an FST that has three levels.

Assume that the strides are 3, 2, and 2. The root of the trie stores prefixes whose length is 3; the level

one nodes store prefixes whose length is 5 (3 + 2); and the level two nodes store prefixes whose length

is 7 (3 + 2 + 2). This poses a problem for the prefixes of our example, because the length of some of

these prefixes is different from the storeable lengths. For instance, the length of P3 is 2. To get around

this problem, a prefix with a nonpermissible length is expanded to the next permissible length [20]. For

example, P3 = 11* is expanded to P3a = 110* and P3b = 111*. If one of the newly created prefixes

is a duplicate, natural dominance rules are used to eliminate all but one occurrence of the prefix. For

instance, P7 = 110000* is expanded to P7a = 1100000* and P7b = 1100001*. However, P8 = 1100000*

is to be chosen over P7a = 1100000*, because P8 is a longer match than P7. So, P7a is eliminated.

Because of the elimination of duplicate prefixes from the expanded prefix set, all prefixes are distinct.

Figure 9(b) shows the prefixes that result when we expand the prefixes of Figure 9(a) to lengths 3, 5,

and 7. Figure 10 shows the corresponding FST whose height is 2 and whose strides are 3, 2, and 2.

Since the trie of Figure 10 can be searched with at most 3 memory references, it represents a time

performance improvement over a 1-bit trie (this is an FST in which the stride at each level is 1), which

requires up to 7 memory references to perform a search for our example prefix set. For any given set of

prefixes, the memory required by an FST of whose height is at most k depends on the strides of the up

to k + 1 levels in the FST. [20, 13] develop efficient algorithms to find the up to k + 1 strides that result

in the most memory efficient FSTs. For dynamic router-tables, however, the optimal strides change with

each insert and delete operation. So, instead of maintaining optimality of strides dynamically, we must

fix the strides based on expected characteristics of the prefix set. The use of expected characteristics
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P1 = 0∗ 000 ∗ (P1a)
P2 = 1∗ 001 ∗ (P1b)
P3 = 11∗ 010 ∗ (P1c)
P4 = 101∗ 011 ∗ (P1d)
P5 = 10001∗ 100 ∗ (P2)
P6 = 1100∗ 101 ∗ (P4)
P7 = 110000∗ 110 ∗ (P3a)
P8 = 1100000∗ 111 ∗ (P3b)

10001 ∗ (P5)
11000 ∗ (P6a)
11001 ∗ (P6b)
1100000 ∗ (P8)
1100001 ∗ (P7)

(a) Original prefixes (b) Expanded prefixes

Figure 9: A prefix set and its expansion to three lengths
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Figure 10: FST for expanded prefixes of Figure 9(b)

precludes the use of variable-stride tries [20, 14].

To determine the strides of the FST for dynamic tables, we examine the distribution of prefixes in

our Paix database (Table 3). Fewer than 0.7% of the Paix prefixes have length < 16. Hence using a root

stride of 16 will require us to expand only a small percentage of the prefixes from length < 16 to length

16. Using a larger stride for the root will require us to expand the 6606 prefixes of length 16. So, we set

the root stride at 16. For the children and grandchildren of the root, we choose a stride of 4. This choice

requires us to expand prefixes whose length is 17, 18, and 19 to length 20 and expand prefixes of length
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Len Num of % of Cum % of Len Num of % of Cum % of
prefixes prefixes prefixes prefixes prefixes prefixes

1 0 0.0000 0.0000 17 918 1.0714 9.4652
2 0 0.0000 0.0000 18 1787 2.0856 11.5509
3 0 0.0000 0.0000 19 5862 6.8416 18.3924
4 0 0.0000 0.0000 20 3614 4.2179 22.6103
5 0 0.0000 0.0000 21 3750 4.3766 26.9870
6 0 0.0000 0.0000 22 5525 6.4483 33.4353
7 0 0.0000 0.0000 23 7217 8.4230 41.8583
8 22 0.0267 0.0257 24 49756 58.0705 99.9288
9 4 0.0047 0.0303 25 12 0.0140 99.9428

10 5 0.0058 0.0362 26 26 0.0303 99.9732
11 9 0.0105 0.0467 27 12 0.0140 99.9872
12 26 0.0303 0.0770 28 5 0.0058 99.9930
13 56 0.0654 0.1424 29 4 0.0047 99.9977
14 176 0.2054 0.3478 30 1 0.0012 99.9988
15 288 0.3361 0.6839 31 0 0.0000 99.9988
16 6606 7.7099 8.3938 32 1 0.0012 100.0000

Table 3: Distribution of prefixes in Paix

21, 22, and 23 to length 24. The level 4 nodes may be given a stride of 8, requiring the expansion of the

very few prefixes whose length is between 25 and 31 to a length of 32. These stride choices result in a

16-4-4-8-FST (root stride is 16, level 1 and level 2 stride is 4, level 3 stride is 8). Since a 16-4-4-8-FST

has 4 levels, lmp(d) may be found with at most 4 memory accesses. Other reasonable stride choices

result in a 16-8-8-FST and a 16-4-4-4-4-FST.

FST Operations

To find lmp(d) using an FST, we simply use the bits of d to follow a path from the root of the FST toward

a leaf. The last prefix encountered along this path is lmp(d). For example, to determine lmp(1100010)

from the 3-2-2-FST of Figure 10, we use the first 3 bits (110) to get to the left level 1 node. The next

2 bits 00 are used to reach the level 2 node. Finally, using the last 2 bits 10, we fall off the trie. The

prefixes encountered on this path are P3 (in the root) and P6 (in the level 1 node; node that no prefix is

encountered in the 10 field of the level 2 node). The last prefix encountered is P6. Hence, lmp(1100010)

is P6.

To insert the prefix p, we follow a search path determined by the bits of p until we reach the level i node
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N with the property length(i−1) < length(p) ≤ length(i) (for convenience, assume that length(−1) = 0;

note that it may be necessary to add empty nodes to the trie in case such an N isn’t already in the

trie). The prefix p is expanded to length length(i) and stored in the node slots for each of the expanded

prefixes (if a slot is already occupied, p is stored in the occupied slot only if it is longer than the prefix

occupying that spot).

To facilitate the delete operation, each node M of an FST maintains an auxilliary Boolean array

M.prefixes[0 : 2s − 1], where s is the stride of M . This array keeps track of the prefixes inserted at

node M . When prefix p is inserted, N.prefixes[q] is set to true. Here N is as described above and q is

determined as follows. Let number(i, p) be the number represented by bits length(i−1) · · · length(p)−1

of p (the bits of p are indexed from left to right beginning with the index 0). So, for example, the bit-

sequence 010 represents the number 2. q equals 2length(p)−length(i−1) + number(i, p) − 2. An alternative

to the array M.prefixes[] is to keep track of the prefixes inserted at node M using a trie on bits

length(i − 1) · · · of the inserted prefixes. Since our implementation doesn’t use this alternative, we do

not consider the alternative further.

To delete the prefix p, we find the node N as for an insert operation. N.prefixes[q] is set to false, where

q is computed as above. To update the prefix slots of N that contain p, we need to find the longest proper

prefix of p that is in N.prefixes. This longest proper prefix is determined by examining N.prefixes[j]

for j = 2r−length(i−1) + number(i, pr) − 2, r = length(p) − 1, length(p) − 2, · · ·, length(i − 1) + 1, where

pr is the first r bits of p. The examination stops at the first j for which N.prefixes[j] is true. The

corrsponding prefix replaces p in the prefix slots of N . If there is no such j, the null prefix replaces p.

3.2 OLDP and TLDP FSTs

Since the root stride is 16 for the recommended IPv4 FSTs (16-4-4-8, 16-4-4-4-4, and 16-8-8) of Section 3.1

and since s = 16 is recommended for IPv4, an OLDP 16-4-4-4-4-FST (for example) has the structure

shown in Figure 1 with each OLDP [i], i ≥ 0 being a 4-4-4-4-FST; OLDP [−1] is a 4-4-4-3-FST. The root

of each 4-4-4-4-FST, while having a stride of 4 needs to account for prefixes of length 16 through 20. A

TLDP 16-4-4-4-4-FST has the structure of Figure 6 with each OLDP [i], i ≥ 0 being a 4-4-4-4-FST; each
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Prefix Name Prefix Range Start Range Finish

P1 * 0 31
P2 0101* 10 11
P3 100* 16 19
P4 1001* 18 19
P5 10111 23 23

Table 4: Prefixes and their ranges, W = 5
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Figure 11: Pictorial representation of prefixes and ranges

TLDP [i], i ≥ 0 is a 4-3-FST; and TLDP [−1] is a 4-3-FST. The root of each TLDP [i] 4-3-FST, while

having a stride of 4 needs to account for prefixes of length 8 through 12.

4 Interval Partitioning

Table 4 gives a set of 5 prefixes along with the range of destination addreses matched by each prefix. This

table assumes that W = 5. Figure 11 gives the pictorial representation of the five prefixes of Table 4.

The end points of the 5 prefixes of Table 4 are (in ascending order) 0, 10, 11, 16, 18, 19, 23, and 31.

Two consecutive end points define a basic interval. So, the basic intervals defined by our 5 prefixes are

r1 = [0, 10], r2 = [10, 11], r3 = [11, 16], r4 = [16, 18], r5 = [18, 19], r6 = [19, 23], and r7 = [23, 31]. In

general, n prefixes may have up to 2n distinct end points and 2n − 1 basic intervals.

For each prefix and basic interval, x, define next(x) to be the smallest range prefix (i.e., the longest

prefix) whose range includes the range of x. For the example of Figure 11, the next() values for the basic

intervals r1 through r7 are, respectively, P1, P2, P1, P3, P4, P1, and P1.
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Figure 12: ACBST of [16]. (a) Alternative basic interval tree (b) prefix tree for P1 (c) prefix tree for P2
(d) prefix tree for P3 (e) prefix tree for P4 (f) prefix tree for P5

The dynamic router-table structures of Sahni and Kim [15, 16] employ a front-end basic-interval tree

(BIT) that is used to determine the basic interval that any destination address d falls in. The back-end

structure, which is a collection of prefix trees (CPT), has one prefix tree for each of the prefixes in the

router table. The prefix tree for prefix P comprises a header node plus one node, called a prefix node,

for every nontrivial prefix (i.e., a prefix whose start and end points are different) or basic interval x such

that next(x) = P . The header node identifies the prefix P for which this is the prefix tree. The BIT as

well as the prefix trees are binary search trees.

Figure 12(a) shows the BIT (actually, alternative BIT, ABIT) for our 5-prefix example and Fig-

ures 12(b)-(f) show the back-end prefix trees for our 5 prefixes. Each ABIT node stores a basic interval.

Along with each basic interval, a pointer to the back-end prefix-tree node for this basic interval is stored.

Additionally, for the end points of this basic interval that correspond to prefixes whose length is W ,
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a pointer to the corresponding W -length prefixes is also stored. In Figure 12(a), the end point prefix

pointers for the end point 23 are not shown; remaining end point prefix pointers are null; the pointers

to prefix-tree nodes are shown in the circle outside each node.

In Figures 12(b)-(f), notice that prefix nodes of a prefix tree store the start point of the range or prefix

represented by that prefix node. The start points of the basic intervals and prefixes are shown inside the

prefix nodes while the basic interval or prefix name is shown outside the node.

To find lmp(9), we use the ABIT to reach the ABIT node for the containing basic interval [0, 10].

This ABIT node points us to node r1 in the back-end tree for prefix P1. Following parent pointers from

node r1 in the back-end tree, we reach the header node for the prefix tree and determine that lmp(9) is

P1. When determining lmp(16), we reach the node for [16, 18] and use the pointer to the basic interval

node r4. Following parent pointers from r4, we reach the header node for the prefix tree and determine

that lmp(16) is P3. To determine lmp(23), we first get to the node for [23, 31]. Since this node has a

pointer for the end point 23, we follow this pointer to the header node for the preifx tree for P5, which

is lmp(23).

The interval partitioning scheme is an alternative to the OLDP and TLDP partitioning schemes that

may be applied to interval-based structures such as the ACBST. In this scheme, we employ a 2s-entry

table, partition, to partition the basic intervals based on the first s bits of the start point of each basic

interval. For each partition of the basic intervals, a separate ABIT is constructed; the back-end prefix

trees are not affected by the partitioning. Figure 13 gives the partitioning table and ABITs for our

5-prefix example and s = 3.

Notice that each entry partition[i] of the partition table has four fields– abit (pointer to ABIT for

partition i), next (next nonempty partition), previous (previous nonempty partition), and start (smallest

end point in partition). Figure 14 gives the interval partitioning algorithm to find lmp(d). The algorithm

assumes that the default prefix * is always present, and the method rightmost returns the lmp for the

rightmost basic interval in the ABIT.

The insertion and deletion of prefixes is done by inserting and removing end points, when necessary,
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Figure 13: Interval-partitioned ABIT structures corresponding to Figure 12

Algorithm lookup(d){

// return lmp(d)

p = first(d,s);

if (partition[p].abit != null && partition[p].start <= d)

// containing basic interval is in partition[p].abit

return partition[p].abit->lookup(d);

else return partition[partition[p].previous].abit->rightmost();

}

Figure 14: Interval partitioning algorithm to find lmp(d)

from the ABIT and adding/removing a back-end prefix tree. The use of interval partitioning affects only

the components of the insert/delete algorithms that deal with the ABIT. Figures 15 and 16 give the

algorithms to insert and delete an end point. rightPrefix refers to the prefix, if any, associated with

the right end point stored in a node of the ABIT.

Although the application of interval partitioning doesn’t change the asymptotic complexity, O(log n),

of the ACBST algorithm to find the longest matching-prefix, the complexity of the algorithms to insert

and delete change from O(log n) to O(log n+2s). Since interval partitioning reduces the size of individual

ABITs, a reduction in observed runtime is expected for the search algorithm. The insert and delete

algorithms are expected to take less time when the clusters of empty partitions are relatively small

(equivalently, when the non-empty partitions distribute uniformly across the partition table).
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Algorithm insert(e){

// insert the end point e

p = first(e,s);

if (partition[p].abit == null){

// rn has interval that is split by e

rn = partition[partition[p].previous].abit->rightmostNode();

// split into 2 intervals

partition[p].abit->new Node(e, rn->rightKey, rn->rightPrefix);

rn->rightKey = e; rn->rightPrefix = null;

// update next and previous fields of the partition table

for (i=partition[p].previous; i<p; i++) partiton[i].next = p;

for (i=p+1; i<=partition[p].next; i++) partiton[i].previous = p;

}

else{

if (partition[p].start > e){

rn = partition[partition[p].previous].abit->rightmostNode();

rn->rightKey = e; rn->rightPrefix = null;

}

partition[p].abit->insert(e);

}

}

Figure 15: Interval partitioning algorithm to insert an end point

Algorithm delete(e){

// delete the end point e

p = first(e,s);

if (partition[p].abit != null){

if (partition[p].start == e){

// combine leftmost interval of p with rightmost of previous

ln = partition[p].abit->leftmostNode();

rn = partition[partition[p].previous].abit->rightmostNode();

rn->rightKey = ln->rightKey; rn->rightPrefix = ln->rightPrefix;

}

partition[p].abit->delete(e);

if (partition[p].abit == null){

// update next and previous fields of the partition table

for (i=partition[p].previous; i<p; i++)

partiton[i].next = partiton[p].next;

for (i=p+1; i<=partition[p].next; i++)

partiton[i].previous = partiton[p].previous;

}

}

}

Figure 16: Interval partitioning algorithm to delete an end point
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5 Experimental Results

To assess the efficacy of the proposed prefix- and interval-partitioning schemes, we programmed these

schemes in C++. For prefix-partitioning, we experimented with using the following dynamic router-

table structures as the OLDP [i], i ≥ 0 structure (as well as the OLDP [−1] structure in case of one-level

dynamic partitioning): ACRBT (the ACBST of [16] with each search tree being a red-black tree), CST

(the ACBST of [16] with each search tree being a splay tree), MULTIBIT (16-4-4-4-4 FST; in OLDP

applications, 4-4-4-4-FSTs are used for OLDP [i], i ≥ 0 and a 4-4-4-3-FST is used for OLDP [−1]; in

TLDP applications, 4-4-4-4-FSTs are used for OLDP [i], i ≥ 0, 4-3-FSTs for TLDP [i], i ≥ 0, and a 4-3-

FST for TLDP [−1]), MULTIBITb (16-8-8 FST; in OLDP applications, 8-8-FSTs are used for OLDP [i],

i ≥ 0 and an 8-7-FST is used for OLDP [−1]; in TLDP applications, 8-8 FSTs are used for OLDP [i],

i ≥ 0, 8-FSTs for TLDP [i], i ≥ 0, and a 7-FST is used for TLDP [−1]), PST (the prefix search trees

of [8]), PBOB (the prefix binary tree on binary tree structure of [9]), TRIE (one-bit trie) and ARRAY

(this is an array linear list in which the prefixes are stored in a one-dimensional array in non-decreasing

order of prefix length; the longest matching-prefix is determined by examining the prefixes in the order

in which they are stored in the one-dimensional array; array doubling is used to increase array size, as

necessary, during an insertion).

We use the notation ACRBT1p (ACRBT1 pure), for example, to refer to OLDP with ACRBTs.

ACRBT2p refers to TLDP with ACRBTs. ACRBTIP refers to interval partitioning applied to ACRBTs

and CSTIP refers to interval partitioning applied to CSTs.

The schemes whose name end with an “a” (for example, ACRBT2a) are variants of the corresponding

pure schemes. In ACRBT2a, for example, each of the TLDP codes, TLDP [i] was implemented as an

array linear list until |TLDP [i]| > τ , where the threshold τ was set to 8. When |TLDP [i]| > τ for

the first time, TLDP [i] was transformed from an array linear list to the target dynamic router-table

structure (e.g., PBOB in the case of PBOB2). Once a TLDP [i] was transformed into the target dynamic

router-table structure, it was never transformed back to the array linear list structure no matter how

small |TLDP [i]| became. Similarly, OLDP [i], i ≥ 0 for TLDPs were implemented as array linear lists
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until |OLDP [i]| > τ for the first time. A similar use of array linear lists was made when implementing

the OLDP codes.

Note that when τ = 0, we get the corresponding pure scheme (i.e., when τ = 0, ACRBT1a is equivalent

to ACRBT1p and PBOB2a is equivalent to PBOB2p, for example) and when τ = ∞, we get one of the

two partitioned ARRAY schemes (i.e., ACRBT1a, CST1a, PST1a, PBOB1a, etc. are equivalent to

ARRAY1p while ACRBT2a, CST2a, MULTIBIT2a, etc. are equivalent to ARRAY2p). By varying the

threshold τ between the two extremes 0 and ∞ the performance of hybrid schemes such as ACRBT1a,

MULTIBIT2a, etc. can be varied between that of a pure partitioned scheme and that of ARRAY1p and

ARRAY2p.

ACRBT2aH refers to ACRBT2a in which the root-level partitioning node is represented using a hash

table rather than an array. The remaining acronymns used by us are easy to figure out. For the OLDP

and interval partitioning schemes, we used s = 16 and for the TLDP schemes, we used s = 16 and t = 8.

Note that the combinations ARRAY1a and ARRAY2a are the same as ARRAY1p and ARRAY2p. Hence,

ARRAY1a and ARRAY2a do not show up in our tables and figures.

Our codes were run on a 2.26GHz Pentium 4 PC that has 500MB of memory. The Microsoft Visual

C++ 6.0 compiler with optimization level -O2 was used. For test data, we used the four IPv4 prefix

databases of Table 1.

Total Memory Requirement

Tables 5 and 6 and Figure 17 show the amount of memory used by each of the tested structures2. In the

figure, OLDPp refers to the pure one-level dynamic prefix partitioning versions of the base schemes and

INTP refers to the interval partitioning versions. Notice that the amount of memory required by a base

data structure (such as ACRBT) is generally less than that required by its OLDP version (ACRBT1p

and ACRBT1a) and by its interval partitioning version (where applicable). ACRBT1a, ACRBT1p,

CST1p, ACRBTIP, and CSTIP with Paix are the some of the exceptions. In the case of MaeWest,

for example, the memory required by PBOB1p is about 39% more than that required by PBOB. The

2We did not experiment with the base ARRAY structure, because its run time performance, O(n), is very poor on
databases as large as our test databases. As we shall see later, the measured performance of partitioned structures that use
ARRAY as a base structure is very good.
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TLDP structures (both with an array for the OLDP node and with a hash table for this node) took

considerably less memory than did the corresponding base structure. For example, MULTIBIT2a with

MaeWest required only 45% of the memory taken by MULTIBIT and MULTIBITb2a with MaeWest

took 23% of the memory taken by MULTIBITb. So, although the partitioning schemes were designed so

as to reduce run time, the TLDPa schemes also reduce memory requirement! Of the tested structures,

ARRAY1p and ARRAY2p are the most memory efficient. However, since the worst-case time to search,

insert, and delete in these structures is O(n) (in practice, the times are quite good, because the prefixes

in our test databases distribute quite well and the size of each OLDP [i] and TLDP [i] is quite small), we

focus also on the best from among the structures that guarantee a good worst-case performance. Of these

latter structures, PBOB is the most memory efficient. On the Paix database, for example, PBOB1a takes

only 19% of the memory taken by ACRBT1a and only 79% of the memory taken by TRIE1a; PBOB

takes 16% of the memory taken by ACRBT and 75% of the memory taken by TRIE.

BASE OLDPp OLDPa TLDPp TLDPa TLDPH INTP 
0

5

10

15

20

25

30

35

40

45

Scheme

T
ot

al
 M

em
or

y 
(M

B
)

ACRBT
CST
MULTIBIT
MULTIBITb
PST
PBOB
TRIE
ARRAY

Figure 17: Total memory requirement (in MB) for Paix

Search Time

To measure the average search time, we first constructed the data structure for each of our four prefix

databases. Four sets of test data were used. The destination addresses in the first set, NONTRACE,

comprised the end points of the prefixes corresponding to the database being searched. These end points
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Scheme Paix Pb Aads MaeWest

ACRBT 12360 5102 4587 4150
CST 10800 4457 4008 3636
MULTIBIT 7830 4939 4982 4685
MULTIBITb 21778 16729 19177 17953
PST 4702 1930 1740 1579
PBOB 1961 811 729 661
TRIE 2622 1091 980 890

ACRBT1p 12211 5479 5023 4638
CST1p 10708 4846 4451 4115
MULTIBIT1p 8848 5087 5098 4731
MULTIBITb1p 42845 25368 27278 24920
PST1p 4958 2186 1996 1835
PBOB1p 2219 1067 985 917
TRIE1p 2799 1279 1163 1075
ARRAY1p 632 417 405 392

ACRBT1a 10361 3736 3151 2787
CST1a 9079 3306 2799 2481
MULTIBIT1a 5884 2644 2439 2119
MULTIBITb1a 10605 4862 5588 4183
PST1a 4209 1603 1377 1237
PBOB1a 1928 851 757 697
TRIE1a 2457 1021 893 815

ACRBT2p 12212 5482 5027 4641
CST2p 10711 4849 4455 4119
MULTIBIT2p 8891 5104 5113 4752
MULTIBITb2p 43068 25503 27391 25065
PST2p 4959 2187 1997 1836
PBOB2p 2220 1068 986 918
TRIE2p 2799 1279 1163 1075
ARRAY2p 634 418 406 393

ACRBT2a 10337 3720 3137 2767
CST2a 9060 3292 2786 2463
MULTIBIT2a 5858 2621 2414 2088
MULTIBITb2a 10514 4778 5498 4075
PST2a 4201 1597 1372 1229
PBOB2a 1926 850 755 695
TRIE2a 2452 1018 890 811

ACRBTIP 12218 5344 4856 4453
CSTIP 10658 4699 4277 3928

Table 5: Memory requirement (in KB)
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Scheme Paix Pb Aads MaeWest

ACRBT2aH 10407 3656 3080 2699
CST2aH 9130 3228 2730 2397
MULTIBIT2aH 5928 2557 2359 2022
MULTIBITb2aH 10584 4714 5443 4009
PST2aH 4101 1498 1272 1129
PBOB2aH 1826 750 656 595
TRIE2aH 2353 919 790 711

Table 6: Memory requirement (in KB) (hash schemes)

were randomly permuted. The data set, PSEUDOTRACE, was constructed from NONTRACE by se-

lecting 1000 destination addresses. A PSEUDOTRACE sequence comprises 1,000,000 search requests.

For each search, we randomly chose a destination from the selected 1000 destination addresses. The data

set PSEUDOTRACE100 is similar to PSEUDOTRACE except that only 100 destination addresses were

selected to make up the 1,000,000 search requests. Our last data set, PSEUDOTRACE100L16 differs

from PSEUDOTRACE100 only in that the 100 destination addresses were chosen so that the length

of the longest matching prefix for each is less than 16. So, every search in PSEUDOTRACE100L16

required a search in OLDP [−1]. The NONTRACE, PSEUDOTRACE, and PSEUDOTRACE100 data

sets represent different degrees of burstiness in the search pattern. In NONTRACE, all search addresses

are different. So, this access pattern represents the lowest possible degree of burstiness. In PSEUDO-

TRACE, since destination addresses that repeat aren’t necessarily in consecutive packets, there is some

measure of temporal spread among the recurring addresses3. PSEUDOTRACE100 has greater burstiness

than does PSEUDOTRACE.

For the NONTRACE, PSEUDOTRACE, PSEUDOTRACE100, and PSEUDOTRACE100L16 data

sets, the total search time for each data set was measured and then averaged to get the time for a single

search. This experiment was repeated 10 times and 10 average times were obtained. The average of these

averages is given in Tables 7 through 12. For the PSEUDOTRACE100 and PSEUDOTRACE100L16

3By analyzing trace sequences of wide-area traffic networks, we found that the number of different destination addresses
in the trace data is 2 to 3 orders of magnitude less than the number of packets. These traces represent a high degree of
burstiness. Since there are no publically available traces from a router whose routing table is also available, we simulate
real-world searches using the PSEUDOTRACE and PSEUDOTRACE100 search sequences.
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data sets, the times are presented only for the base and pure one-level and two-level partitioning schemes.

Figures 18 through 21 histogram the average times for Paix. Since the standard deviation in the measured

averages was insignificant, we do not report the standard deviations.
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Figure 18: Average NONTRACE search time for Paix
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Figure 19: Average PSEUDOTRACE search time for Paix

First, consider measured average search times for only the NONTRACE and PSEUDOTRACE data

sets. Notice that the use of the OLDP, TLDP, and INTP schemes reduces the average search time in all

cases other than MULTIBIT1p, MULTIBITb1p, MULTIBIT2p, MULTIBITb2p and MULTIBITb2aH,

and some of the remaining MULTIBIT cases. For Paix, for example, the MULTIBITb1a search time is

25



Scheme Paix Pb Aads MaeWest

ACRBT 1.31 0.98 0.94 0.92
CST 2.18 1.65 1.57 1.54
MULTIBIT 0.50 0.42 0.42 0.41
MULTIBITb 0.28 0.24 0.26 0.25
PST 1.09 0.80 0.75 0.70
PBOB 0.82 0.48 0.45 0.38
TRIE 1.12 0.82 0.75 0.68

ACRBT1p 1.13 0.90 0.87 0.85
CST1p 1.83 1.42 1.35 1.31
MULTIBIT1p 0.61 0.50 0.51 0.51
MULTIBITb1p 0.41 0.35 0.39 0.38
PST1p 0.76 0.59 0.55 0.51
PBOB1p 0.59 0.42 0.39 0.35
TRIE1p 0.80 0.60 0.56 0.51
ARRAY1p 0.19 0.10 0.10 0.09

ACRBT1a 0.97 0.66 0.60 0.57
CST1a 1.63 1.04 0.91 0.85
MULTIBIT1a 0.54 0.36 0.34 0.32
MULTIBITb1a 0.32 0.20 0.22 0.20
PST1a 0.70 0.45 0.39 0.34
PBOB1a 0.52 0.30 0.25 0.20
TRIE1a 0.69 0.41 0.36 0.31

ACRBT2p 1.13 0.89 0.87 0.86
CST2p 1.82 1.41 1.33 1.30
MULTIBIT2p 0.61 0.50 0.52 0.51
MULTIBITb2p 0.41 0.35 0.38 0.37
PST2p 0.76 0.59 0.55 0.50
PBOB2p 0.58 0.41 0.39 0.34
TRIE2p 0.79 0.60 0.56 0.50
ARRAY2p 0.19 0.11 0.10 0.09

ACRBT2a 0.97 0.66 0.60 0.57
CST2a 1.63 1.04 0.90 0.85
MULTIBIT2a 0.50 0.33 0.32 0.30
MULTIBITb2a 0.32 0.21 0.22 0.20
PST2a 0.70 0.45 0.39 0.34
PBOB2a 0.52 0.29 0.25 0.21
TRIE2a 0.68 0.41 0.35 0.30

ACRBTIP 0.87 0.67 0.62 0.61
CSTIP 1.42 1.05 0.96 0.93

Table 7: Average search time (in µsec) for NONTRACE
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Scheme Paix Pb Aads MaeWest

ACRBT2aH 1.10 0.75 0.69 0.65
CST2aH 1.75 1.13 0.99 0.93
MULTIBIT2aH 0.63 0.43 0.42 0.39
MULTIBITb2aH 0.39 0.27 0.28 0.26
PST2aH 0.83 0.57 0.48 0.41
PBOB2aH 0.68 0.41 0.33 0.27
TRIE2aH 0.79 0.55 0.45 0.38

Table 8: Average search time (in µsec) (hash schemes) for NONTRACE

14% larger than that for MULTIBIT on the NONTRACE data set and 50% larger on the PSEUDO-

TRACE data set. The average search for MULTIBIT2a on the MaeWest database is 27% less than that

for MULTIBIT when either the NONTRACE or PSEUDOTRACE data set is used.

The deterioration in performance when partitioning is applied to MULTIBIT and MULTIBITb is

to be expected, because partitioning does not reduce the number of cache misses for any search. For

example, the height of MULTIBIT is 4 and that of MULTIBITb is 3. So, no search in MULTIBIT results

in more than 5 cache misses and in MULTIBITb, no search causes more than 4 cache misses. To search

MULTIBIT1p, for example, in the worst case, we must search OLDP [i] (5 cache misses including one to

examine the overall root) as well as OLDP [−1] (4 cache misses).

For the Paix database and the NONTRACE data set, PBOB1a and PBOB2a both have a search time

that is 37% less than that of PBOB. Although the search time for PBOB2aH is 31% larger than that

for PBOB2a, the time is 17% less than that for PBOB. This finding is important, because it shows the

efficacy of the hashing scheme for situations (such as IPv6 with s = 64) in which it isn’t practical to use

an array for the OLDP node.

Another interesting observation is that the average search time is considerably lower for the PSEUDO-

TRACE data set than for the NONTRACE data set. This is because of the reduction in average number

of cache misses per search when the search sequence is bursty. In fact, increasing the burstiness further

using PSEUDOTRACE100 reduces the average search time even further (Table 11 and Figure 20).

For the NONTRACE data set, ARRAY1p and ARRAY2p had the best search time. For the PSEU-

DOTRACE and PSEUDOTRACE100 data sets, MULTIBITb was fastest and ARRAY1p and ARRAY2p
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Scheme Paix Pb Aads MaeWest

ACRBT 1.18 0.85 0.83 0.81
CST 0.46 0.42 0.42 0.41
MULTIBIT 0.27 0.24 0.23 0.22
MULTIBITb 0.10 0.09 0.10 0.09
PST 0.83 0.60 0.55 0.50
PBOB 0.59 0.34 0.34 0.29
TRIE 0.85 0.63 0.56 0.50

ACRBT1p 1.02 0.79 0.75 0.74
CST1p 0.47 0.40 0.41 0.41
MULTIBIT1p 0.36 0.29 0.34 0.31
MULTIBITb1p 0.20 0.17 0.18 0.19
PST1p 0.46 0.33 0.28 0.28
PBOB1p 0.29 0.19 0.17 0.17
TRIE1p 0.48 0.34 0.33 0.30
ARRAY1p 0.14 0.13 0.11 0.13

ACRBT1a 0.79 0.45 0.40 0.34
CST1a 0.34 0.24 0.21 0.19
MULTIBIT1a 0.29 0.18 0.17 0.16
MULTIBITb1a 0.15 0.12 0.12 0.11
PST1a 0.42 0.23 0.18 0.19
PBOB1a 0.26 0.17 0.16 0.14
TRIE1a 0.40 0.24 0.24 0.21

ACRBT2p 1.01 0.78 0.75 0.74
CST2p 0.47 0.40 0.42 0.42
MULTIBIT2p 0.37 0.31 0.33 0.32
MULTIBITb2p 0.21 0.18 0.19 0.19
PST2p 0.45 0.32 0.28 0.27
PBOB2p 0.28 0.17 0.18 0.16
TRIE2p 0.48 0.31 0.33 0.28
ARRAY2p 0.15 0.12 0.10 0.12

ACRBT2a 0.79 0.47 0.40 0.37
CST2a 0.33 0.24 0.21 0.21
MULTIBIT2a 0.29 0.19 0.17 0.16
MULTIBITb2a 0.15 0.11 0.12 0.11
PST2a 0.42 0.23 0.19 0.19
PBOB2a 0.26 0.16 0.15 0.14
TRIE2a 0.39 0.24 0.22 0.21

ACRBTIP 0.71 0.53 0.49 0.48
CSTIP 0.18 0.17 0.16 0.17

Table 9: Average search time (in µsec) for PSUEDOTRACE
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Scheme Paix Pb Aads MaeWest

ACRBT2aH 0.89 0.51 0.45 0.41
CST2aH 0.39 0.29 0.25 0.24
MULTIBIT2aH 0.36 0.23 0.21 0.20
MULTIBITb2aH 0.18 0.14 0.15 0.14
PST2aH 0.52 0.33 0.26 0.25
PBOB2aH 0.38 0.23 0.20 0.19
TRIE2aH 0.48 0.34 0.28 0.27

Table 10: Average search time (in µsec) (hash schemes) for PSUEDOTRACE

Scheme Paix Pb Aads MaeWest

ACRBT 0.38 0.31 0.30 0.32
CST 0.22 0.21 0.21 0.25
MULTIBIT 0.14 0.13 0.13 0.13
MULTIBITb 0.07 0.07 0.07 0.07
PST 0.33 0.31 0.29 0.30
PBOB 0.33 0.27 0.27 0.26
TRIE 0.47 0.43 0.42 0.40

ACRBT1p 0.30 0.25 0.24 0.23
CST1p 0.17 0.16 0.16 0.16
MULTIBIT1p 0.16 0.14 0.15 0.14
MULTIBITb1p 0.12 0.11 0.11 0.11
PST1p 0.17 0.15 0.16 0.17
PBOB1p 0.16 0.13 0.13 0.15
TRIE1p 0.27 0.24 0.24 0.24
ARRAY1p 0.12 0.10 0.09 0.11

ACRBT2p 0.30 0.26 0.26 0.25
CST2p 0.18 0.16 0.17 0.16
MULTIBIT2p 0.16 0.15 0.15 0.15
MULTIBITb2p 0.12 0.11 0.11 0.11
PST2p 0.18 0.15 0.17 0.18
PBOB2p 0.16 0.13 0.12 0.15
TRIE2p 0.26 0.24 0.23 0.24
ARRAY2p 0.12 0.11 0.10 0.09

Table 11: Search time (in µsec) for PSUEDOTRACE100

came in next. Although the base ARRAY structure has an O(n) search time complexity, which makes

the base ARRAY structure highly non-competitive with the remaining base schemes considered in this

paper, the use of partitioning enables the (partitioned) ARRAY scheme to be highly competitive.

Notice that for the NONTRACE, PSEUDOTRACE and PSEUDOTRACE100 data sets, X1p and X2p
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Figure 20: Average PSEUDOTRACE100 search time for Paix
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Figure 21: Average PSEUDOTRACE100L16 search time for Paix

have similar average search times. The same is true for X1a and X2a (the PSEUDOTRACE100 times for

X1a and X2a are not reported). This result is not surprising since less than 1% of the prefixes have length

less than 16. Hence, there is only a small probability that a destination address in NONTRACE and

PSEUDOTRACE will require us to examine OLDP [−1]. To demonstrate the effectiveness of the TLDP

scheme, we use the search sequence PSEUDOTRACE100L16 in which search requires the examination of

OLDP [−1]. The experimental data of Table 12 and Figure 21 show that the X2p schemes significantly

outperform their X1p counterparts. For the Paix database, the average search time for ARRAY2p is
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Scheme Paix Pb Aads MaeWest

ACRBT 0.47 0.40 0.38 0.36
CST 0.22 0.21 0.21 0.26
MULTIBIT 0.06 0.06 0.05 0.06
MULTIBITb 0.06 0.04 0.05 0.05
PST 0.38 0.28 0.28 0.27
PBOB 0.32 0.21 0.25 0.24
TRIE 0.39 0.35 0.34 0.33

ACRBT1p 0.33 0.25 0.26 0.23
CST1p 0.28 0.26 0.28 0.27
MULTIBIT1p 0.17 0.15 0.16 0.16
MULTIBITb1p 0.11 0.11 0.11 0.11
PST1p 0.22 0.18 0.18 0.18
PBOB1p 0.24 0.19 0.19 0.19
TRIE1p 0.36 0.30 0.31 0.29
ARRAY1p 0.73 0.30 0.29 0.38

ACRBT2p 0.30 0.25 0.24 0.23
CST2p 0.23 0.22 0.22 0.21
MULTIBIT2p 0.16 0.14 0.14 0.14
MULTIBITb2p 0.11 0.11 0.10 0.10
PST2p 0.16 0.13 0.13 0.13
PBOB2p 0.14 0.13 0.12 0.12
TRIE2p 0.25 0.21 0.22 0.21
ARRAY2p 0.10 0.08 0.08 0.09

Table 12: Search time (in µsec) for PSUEDOTRACE100L16

14% that for ARRAY1p whereas for PBOB2p, the time is 67% that for PBOB1p. As was the case for

the the other search sequences, the run time of MULTIBIT and MULTIBITb are not improved using our

partitioning schemes.

Insert Time

To measure the average insert time for each of the data structures, we first obtained a random permutation

of the prefixes in each of the databases. Next, the first 75% of the prefixes in this random permutation

were inserted into an initially empty data structure. The time to insert the remaining 25% of the prefixes

was measured and averaged. This timing experiment was repeated 10 times. Tables 13 and 14 show the

average of the 10 average insert times. Figure 22 histograms the average times of Tables 13 and 14 for

Paix. Once again, the standard deviation in the average times was insignificant and so isn’t reported.

Our insert experiments show that ARRAY1p and ARRAY2p take the least time. When we limit
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oursleves to partitioning using base structures whose worst-case performance is better than O(n), we

see that the PBOB2a, MULTIBIT2a and MULTIBITb2a structures are competitive and do best for this

operation. For example, while an insert in the Paix database takes 19% less time when MULTIBIT2a

is used than when a PBOB2a is used, that in the MaeWest takes 15% more time. Generally, the use of

OLDP, TLDP, and INTP reduces the insert time. MULTIBIT1p, MULTIBITb1p, MULTIBIT2p, and

MULTIBITb2p are exceptions, taking more time for inserts in each of the four databases. MULTIBIT1a,

MULTIBITb1a, MULTIBIT2a, and MULTIBITb2a took more time than their base structures on some

of the databases and less on others. The insert time for MULTIBIT is about 20% less than that for

MULTIBIT1a. On the other hand, the insert time for PBOB2a is between 29% and 39% less than that

for PBOB.
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Figure 22: Average prefix insertion time for Paix

Delete Time

To measure the average delete time, we started with the data structure for each database and removed

25% of the prefixes in the database. The prefixes to delete were determined using the permutation

generated for the insert time test; the last 25% of these were deleted. Once again, the test was run 10

times and the average of the averages computed. Tables 15 and 16 show the average time to delete a
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Scheme Paix Pb Aads MaeWest

ACRBT 9.86 10.73 10.37 10.20
CST 7.76 6.35 5.95 5.90
MULTIBIT 0.88 0.95 0.97 0.96
MULTIBITb 0.73 1.07 1.22 1.26
PST 3.13 2.60 2.45 2.05
PBOB 1.83 1.54 1.48 1.23
TRIE 2.82 2.31 2.27 2.02

ACRBT1p 6.24 4.96 4.70 4.69
CST1p 5.18 4.16 3.98 4.00
MULTIBIT1p 1.10 1.17 1.24 1.13
MULTIBITb1p 1.40 2.33 2.58 2.52
PST1p 2.35 1.93 1.77 1.52
PBOB1p 1.44 1.17 1.10 0.94
TRIE1p 2.02 1.61 1.51 1.36
ARRAY1p 0.30 0.26 0.28 0.27

ACRBT1a 5.21 3.23 2.90 2.86
CST1a 4.52 2.77 2.40 2.38
MULTIBIT1a 1.06 0.88 0.98 0.75
MULTIBITb1a 0.95 0.91 1.01 0.90
PST1a 2.17 1.67 1.52 1.32
PBOB1a 1.31 0.98 0.91 0.76
TRIE1a 1.91 1.47 1.34 1.18

ACRBT2p 6.27 4.95 4.67 4.69
CST2p 5.21 4.12 3.95 4.00
MULTIBIT2p 1.15 1.26 1.29 1.26
MULTIBITb2p 1.46 2.50 2.64 2.56
PST2p 2.30 1.92 1.76 1.50
PBOB2p 1.37 1.15 1.08 0.93
TRIE2p 1.95 1.60 1.48 1.35
ARRAY2p 0.32 0.24 0.29 0.25

ACRBT2a 5.35 3.28 2.81 2.80
CST2a 4.42 2.73 2.41 2.34
MULTIBIT2a 1.06 0.97 0.96 0.92
MULTIBITb2a 0.98 1.00 1.10 0.98
PST2a 2.18 1.64 1.50 1.29
PBOB2a 1.30 1.00 0.90 0.75
TRIE2a 1.90 1.43 1.34 1.17

ACRBTIP 9.01 7.98 7.53 7.45
CSTIS 6.21 5.19 4.90 4.81

Table 13: Average time to insert a prefix (in µsec)

33



Scheme Paix Pb Aads MaeWest

ACRBT2aH 5.53 3.54 3.10 3.01
CST2aH 4.67 2.98 2.60 2.54
MULTIBIT2aH 1.13 1.09 1.04 0.99
MULTIBITb2aH 1.10 1.08 1.17 1.06
PST2aH 2.29 1.75 1.59 1.42
PBOB2aH 1.42 1.08 0.97 0.85
TRIE2aH 1.99 1.53 1.42 1.25

Table 14: Average time to insert a prefix (in µsec) (hash schemes)

prefix over the 10 test runs. Figure 23 histograms the average times of Tables 15 and 16 for Paix. The

standard deviations in the average times are not reported as these were insignificant.

As can be seen, the use of OLDP, TLDP, and interval partitioning generally resulted in a reduction

in the delete time. The exceptions being MULTIBITb1p and MULTIBITb2p with Paix and Pb. TLDP

with array linear lists (i.e., the schemes X2a where X denotes a base scheme such as ACRBT) resulted in

the smallest delete times for each of the tested base data structures. The delete time for MULTIBIT2a

was between 19% and 62% less than that for MULTIBIT; for PBOB2a, the delete time was between 30%

and 39% less than that for PBOB. As was the case for the the search and insert operations, ARRAY1p

and ARRAY2p have the least measured average delete time. From among the remaining structures,

the delete time is the least for MULTIBIT1a, MULTIBIT2a and PBOB2a. For example, on the Paix

database, a delete using MULTIBIT2a takes about 6% less time than when PBOB2a is used; on the

MaeWest database, a delete using MULTIBIT2a takes about 12% more time than when PBOB2a is

used.
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Scheme Paix Pb Aads MaeWest

ACRBT 9.86 10.73 10.37 10.20
CST 6.34 5.09 4.98 4.84
MULTIBIT 1.34 1.80 2.09 2.06
MULTIBITb 1.46 2.01 2.43 2.44
PST 2.74 2.27 2.12 1.74
PBOB 1.67 1.40 1.31 1.10
TRIE 2.30 1.81 1.75 1.58

ACRBT1p 5.64 4.33 4.03 3.97
CST1p 3.89 3.04 2.98 2.84
MULTIBIT1p 1.25 1.30 1.27 1.37
MULTIBITb1p 1.67 2.03 2.18 2.13
PST1p 2.01 1.69 1.55 1.33
PBOB1p 1.33 1.14 1.06 0.91
TRIE1p 1.67 1.27 1.18 1.11
ARRAY1p 0.30 0.24 0.20 0.22

ACRBT1a 5.10 3.31 2.68 2.71
CST1a 3.57 2.20 2.04 1.97
MULTIBIT1a 1.09 0.88 0.71 0.75
MULTIBITb1a 1.29 1.03 1.04 0.97
PST1a 1.88 1.41 1.27 1.14
PBOB1a 1.21 0.90 0.79 0.70
TRIE1a 1.55 1.14 1.05 0.90

ACRBT2p 5.60 4.20 3.92 3.92
CST2p 3.97 3.00 2.91 2.87
MULTIBIT2p 1.27 1.29 1.29 1.30
MULTIBITb2p 1.70 2.06 2.22 2.16
PST2p 2.00 1.69 1.56 1.32
PBOB2p 1.30 1.13 1.04 0.90
TRIE2p 1.68 1.26 1.18 1.08
ARRAY2p 0.28 0.24 0.21 0.22

ACRBT2a 5.02 3.09 2.75 2.67
CST2a 3.51 2.15 2.03 1.98
MULTIBIT2a 1.10 0.84 0.79 0.76
MULTIBITb2a 1.30 1.00 0.98 0.95
PST2a 1.83 1.40 1.29 1.11
PBOB2a 1.17 0.88 0.80 0.68
TRIE2a 1.57 1.14 1.04 0.86

ACRBTIP 8.13 7.17 6.76 6.65
CSTIP 5.06 4.26 4.16 4.09

Table 15: Average time to delete a prefix (in µsec)
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Scheme Paix Pb Aads MaeWest

ACRBT2aH 5.14 3.18 2.81 2.77
CST2aH 3.67 2.25 2.08 2.03
MULTIBIT2aH 1.18 0.91 0.87 0.84
MULTIBITb2aH 1.35 1.07 1.05 0.97
PST2aH 2.01 1.50 1.37 1.18
PBOB2aH 1.30 0.97 0.97 0.77
TRIE2aH 1.67 1.23 1.13 1.00

Table 16: Average time to delete a prefix (in µsec) (hash schemes)
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Figure 23: Average deletion time for Paix

6 Conclusion

We have developed two schemes—prefix partitioning and interval partitioning—that may be used to

improve the performance of known dynamic router-table structures. The two-level prefix partitioning

scheme TLDP also results in memory saving. Although the prefix partitioning schemes were discussed

primarily in the context of IPv4 databases, through the use of hashing, the schemes may be effectively

used for IPv6 databases. Our experiments with IPv4 databases indicate that the use of hashing degrades

the performance of TLDP slightly. However, when s is large (as will be desired for IPv6 databases), the

use of an array for the OLDP node is not an option. A similar adaptation of the partition array of [7]

to employ a hash table isn’t possible.

As indicated by our experiments, our proposed partitioning schemes significantly improve the run

time performance of all tested base schemes other than MULTIBIT and MULTIBITb. As an extreme

example of this, the performance of the base scheme ARRAY, which is highly impractical for databases of

the size used in our test, is enhanced to the point where it handily outperforms the base and partitioned

versions of superior base schemes. Although the partitioned array schemes ARRAY1p and ARRAY2p
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have unacceptible worst-case performance, our hybrid partitioned schemes that employ array linear lists

for small partitions and a structure with good worst-case performance for large partitions provide both

a good average and worst-case performance.

In our experiments with the hybrid schemes, we used τ = 8 as the threshold at which we switch from

an array linear list to an alternative structure with good worst-case performance. As noted earlier, when

τ = 0, we get the corresponding pure scheme and when τ = ∞, we get one of the two partitioned ARRAY

schemes ARRAY1p and ARRAY2p. By varying the threshold τ between the two extremes 0 and ∞ the

performance of hybrid schemes such as ACRBT1a, MULTIBIT2a, etc. can be varied between that of

a pure partitioned scheme and that of ARRAY1p and ARRAY2p. It is anticipated that using τ = 128

(say) would improve the average performance of our hybrid schemes, bringing this average performance

close to that of the pure schemes ARRAY1p and ARRAY2p. However, with τ = 128, the worst-case

search, insert, and delete times would likely be larger than with τ = 8. The parameter τ may be tuned

to get the desired average-case vs. worst-case tradeoff.

The search time for our OLDP and TLDP schemes may be improved by precomputing bestSmall[i]

for each nonempty OLDP [i] and each nonempty TLDP [i], i ≥ 0. For OLDP [i], bestSmall[i] =

OLDP [−1]− > lookup(i) and for TLDP [i], bestSmall[i] = TLDP [−1]− > lookup(i). With bestSmall

precomputed in this way, the invocation of OLDP [−1]− > lookup(d) in Figure 3 and of TLDP [−1]− >

lookup(d) in Figure 7 may be eliminated. The major difference between our precomputation of bestSmall[i]

and a similar precomputation done for the scheme of Lampson et. al [7] is that we precompute only for

nonempty OLDP [i]s and TLDP [i]s, whereas Lampson et al. [7] precompute for every position of their

table. Because of this difference, our precomputation also may be employed in conjunction with our

proposed hash table scheme to extend our partitioning schemes to IPv6 databases. Note that although

the recommended precomputation reduces the search time, it degrades the update time. For OLDPs,

for example, whenever we insert/delete a prefix into OLDP [−1], we would need to update up to 2s

bestSmall[i] values. Of course, the number of bestSmall[i] values that are to be updated also is bounded

by the number of nonempty OLDP [i]s, which, in practice, would be much smaller than 2s.
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