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Abstract—This paper presents a general approach for designing array and tree

integer multipliers with overflow detection. The overflow detection techniques are

based on an analysis of the magnitudes of the input operands. The overflow

detection circuits operate in parallel with a simplified multiplier to reduce the overall

area and delay.

Index Terms—Computer arithmetic, high-speed arithmetic algorithms,

combinational logic, overflow detection, multiplication.
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1 INTRODUCTION

OVERFLOW occurs when an arithmetic operation produces a result
outside of the range of representable numbers. Often, an error flag
is generated to indicate that overflow has occurred. Although
multiplication of two n-bit integers produces a 2n-bit product,
many architectures only return the n least significant bits of the
product and an overflow flag, which is set when the product
cannot be represented correctly with only n bits [1], [2], [3]. For
example, IBM’s PowerPC microprocessor family supports a 32-bit
by 32-bit two’s complement multiply instruction which returns the
least significant 32 bits of the 64-bit product and an overflow flag
[4]. The Java Virtual Machine supports two integer multiplication
instructions; a 32-bit by 32-bit imul instruction, which returns the
32 least significant bits of the product, and a 64-bit by 64-bit lmul
instruction, which returns the 64 least significant bits of the
product [5].

Recently, several techniques for overflow detection have been
proposed to eliminate the need to compute all 2n bits of the
product [6], [7], [8], [9], [10], [11]. Instead, they compute
approximately n least significant product bits and have overflow
detection logic that executes in parallel with the multiplication. In
[6], overflow detection circuits for tree multipliers are presented.
These circuits require the multiplier to generate 2n-bit sum and
carry vectors and then use the most significant bits of these vectors
to detect overflow in parallel with the final carry propagate
addition. Although this approach has less delay than conventional
methods for overflow detection, it does not provide a significant
reduction in area.

In [10], overflow detection is performed on two’s complement
operands by counting the leading sign bits. The overflow detection
method in [10] is only developed for two’s complement multi-
plication and cannot be used for unsigned multiplication and
combined unsigned and two’s complement multiplication.
Furthermore, the method presented in [10] has Oðn2Þ gates, while
the methods presented in this paper have OðnÞ gates.

In [11], methods are presented for detecting overflow in
unsigned, two’s complement, and combined multipliers. Com-
pared to the methods presented in this paper, the methods in [11]

require more complex conditions to be tested to determine if

overflow has occurred. Furthermore, [11] does not describe how

their overflow detections methods are implemented and does not
provide area and delay estimates for their overflow detection

circuits.
In [7], overflow detection circuits and saturation logic are

presented for unsigned and two’s complement array and tree

multipliers. Although these designs have less area and delay than

the designs presented in [6], [10], they have more area and delay
than the designs presented in this paper and cannot be readily

extended to combined multipliers that work on both unsigned and

two’s complement operands.
In [8], methods are presented that allow a single multiplier to

perform both unsigned and two’s complement multiplication with

overflow detection and saturation. The overflow detection meth-
ods presented in [8] work well for array multipliers, but can

increase the worst-case delay path of tree multipliers since they

have linear delay. In [9], overflow detection methods that have
logarithmic delay and work well for combined unsigned and two’s

complement tree multipliers are presented.
This paper presents a general approach for designing integer

multipliers with overflow detection. This general approach is

applied to unsigned, two’s complement, and combined integer

multipliers. A block diagram of the general design approach is
shown in Fig. 1. In this diagram, the simplified integer multiplier,

multiplies an n-bit multiplicand, A, by an n-bit multiplier, B, and

produces an ðnþ 1Þ-bit product, P ¼ pnpn�1 � � � p1p0. In parallel

with the simplified multiplication, preliminary overflow detection
logic generates a preliminary overflow flag, V 0, using only operand

bits from A and B as inputs. The final overflow detection logic

generates an overflow flag, V , using V 0, pn, and pn�1 as inputs.
Our approach works well in systems that require only the

n least significant product bits, such as hardware implementations

of the Java Virtual Machine. Compared to previous techniques for
overflow detection, our approach requires less area and delay. It

also works well for both array and tree multipliers and does not

depend on the internal architecture of the simplified multiplier.
This paper is an extension of our research presented in [8] and [9].

2 UNSIGNED MULTIPLIERS

With our proposed overflow detection technique for unsigned
integer multiplication, only the nþ 1 least significant product bits,

p0 to pn, are computed. Overflow, which occurs when P � 2n, is

detected by testing pn and the total number of significant bits in A

and B. For unsigned numbers, the significant bits include the

leftmost 1 and all the bits to its right. For example, A ¼ 00010001

has five significant bits and B ¼ 00000110 has three significant bits.
The number of significant bits determines the bounds for A, B, and

P . If A has SA significant bits and B has SB significant bits, A, B,

and P are bounded by

2SA�1 � A � 2SA � 1; ð1Þ

2SB�1 � B � 2SB � 1; ð2Þ

2SAþSB�2 � P � 2SAþSB � 2SA � 2SB þ 1: ð3Þ

The left side of (3) provides the lower bound on the product.
Overflow occurs for unsigned multiplication if 2n � 2SAþSB�2 or,

equivalently, if

nþ 2 � SA þ SB: ð4Þ

Thus, overflow always occurs if A and B together have at least

nþ 2 significant bits since this implies that P � 2n.
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The right side of (3) gives the upper bound on the product. The

product is guaranteed not to overflow when

2SAþSB � 2SA � 2SB þ 1 � 2n � 1: ð5Þ

Since

� 2SA � 2SB þ 1 � �1; ð6Þ

(5) simplifies to 2SAþSB � 2n or, equivalently,

SA þ SB � n: ð7Þ

Thus, overflow never occurs when A and B together have n or

fewer significant bits since this implies that P < 2n.
When SA þ SB ¼ nþ 1, (3) simplifies to

2n�1 � P � 2nþ1 � 2SA � 2SB þ 1 � 2nþ1 � 1: ð8Þ

Expression (8) implies that, when SA þ SB ¼ nþ 1, the product

may overflow, but is less than 2nþ1. Thus, only product bits p0 to pn
are needed to represent the product. Overflow occurs in this case if

and only if pn ¼ 1.
As shown in [12], the condition given in (4) is detected as

V 0u ¼
Xn�1

i¼1

Xi
j¼1

an�j � bi; ð9Þ

where bit summations and bit multiplications correspond to

logical ORs and ANDs, respectively. This equation can also be

rewritten in long form as

V 0u ¼ an�1 � b1 þ ðan�1 þ an�2Þ � b2 þ . . .þ
ðan�1 þ . . .þ a1Þ � bn�1:

ð10Þ

Equations (9) and (10) test if the total number of significant bits in

the input operands is at least nþ 2, which indicates that overflow

must occur. For example, if an�1 � b1 is one, then the total number of

significant bits is at least nþ 2 since A has n significant bits and B

has at least two significant bits. Similarly, if ðan�1 þ an�2Þ � b2 is one,

then the total number of significant bits is at least nþ 2 since A has

at least n� 1 significant bits and B has a least three significant bits.

Testing continues until all the bit combinations that are guaranteed

to cause overflow are evaluated.
The preliminary overflow flag, V 0u, and the product bit, pn are

ORed to generate the overflow flag Vu, where

Vu ¼ V 0u þ pn ð11Þ

since overflow occurs if and only if the total number of significant

bits in both operands is at least nþ 2 or pn is one. The next two

sections show how these results are used to design unsigned array
and tree multipliers with overflow detection.

2.1 Unsigned Array Multipliers

When implementing the proposed overflow detection method for
unsigned array multipliers, directly computing (10) requires n �
ðn� 1Þ=2 2-input AND gates and n � ðn� 1Þ=2� 1 2-input OR gates.
Instead, a significant hardware reduction is achieved by using the
following iterative equations [8]:

oiþ1 ¼ oi þ an�i and viþ1 ¼ vi þ oiþ1 � bi ð12Þ

for 2 � i � n� 1, where oi is a temporary OR bit and vi is a
temporary overflow bit. Initially, o2 ¼ an�1 and v2 ¼ an�1 � b1. After
ðn� 2Þ iterations of (12), V

0

u ¼ vn is generated and then Vu is
computed as shown in (11).

Fig. 2 shows a block diagram of the proposed unsigned 8-bit
array multiplier with overflow detection. In this diagram, a
modified half adder (MHA) cell consists of an AND gate and a half
adder (HA). The AND gate generates the partial product bit and the
HA adds the generated partial product bit with a partial product bit
from the previous row to produce sum and carry bits. Similarly, a
modified full adder (MFA) consists of an AND gate and a full adder
(FA). The AND gate generates a partial product bit and the FA adds
the generated bit with sum and carry bits from the previous row.

The simplified unsigned array multiplier computes the least
significant product bits, p0 to pn. The rest of the multiplier hardware
is replaced by overflow detection logic, which operates in parallel
with the simplified multiplier. Since the carries generated by
additions performed in the nth column of the partial-product
matrix are no longer needed, the MFAs along the diagonal that
produce pn are replaced by A2X cells and the HA in the bottom right
corner is replaced by an exclusive-or (XOR) gate. Each A2X cell
contains one AND gate, which generates a partial product bit, and
two XOR gates, which compute the sum of the generated partial
product bit and sum and carry bits from the previous row. The logic
equation for the A2X cell is si;j ¼ ðai � bjÞ � siþ1;j�1 � ci;j�1, where si;j
and ci;j are sum and carry bits from the cell in column i and row j

of the multiplication array, respectively. Column 0 is the rightmost
column of the array and row 0 is the top row of the array.

The unsigned overflow detection circuit consists of one OR gate
and ðn� 2Þ overflow detection (OVD) cells. Each OVD cell contains
one AND gate and two OR gates, which compute oiþ1 and viþ1 based
on (12). Since the overflow detection circuit replaces the more
significant half of the multiplier and operates in parallel with the
simplified multiplier, large reductions in area and delay are
achieved.

2.2 Unsigned Tree Multipliers

A dot diagram for our proposed 8-bit unsigned Dadda tree
multiplier is shown in Fig. 3. Dadda multipliers are used because
the number of gates for Dadda multipliers can easily be formulated
based on n, but the techniques presented in this section work well
with other types of multipliers that have logarithmic delay. In
Fig. 3, an FA is represented by a diagonal line, an HA is represented
by a crossed diagonal line, a 3-input XOR gate is represented by a
diagonal line with an x at the bottom, and a 2-input XOR gate is
represented by a crossed diagonal line with an x at the bottom. In
Fig. 3, partial product bits in columns ðnþ 1Þ to ð2n� 1Þ are not
generated and all the hardware that sums these bits and detects
overflow is replaced by a simple overflow detection circuit.

Since tree multipliers have logarithmic delay, we modify our
implementation of the overflow detection circuit to also have
logarithmic delay. As shown in [9], the delay of the unsigned
overflow detection circuit is reduced by rewriting (10) as

V 0u ¼ An�1 � b1 þ An�2 � b2 þ . . .þA1 � bn�1; ð13Þ
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Fig. 1. Proposed integer multiplication with overflow detection.



where Ai =
Pn�1

k¼i ak is computed using a parallel prefix algorithm.
In a size n prefix computation, n inputs, x0; x1; . . . ; xn�1, and an

associative operation, �, are used to compute n outputs,

y0; y1; . . . ; yn�1 [13]. Each output yi is dependent on all xj inputs

(j � i) as follows:

yi ¼ x0 � x1 � . . . ; xi�1 � xi: ð14Þ

Equation (14) can be used to sequentially compute yi for 0 � i �
n� 1 using ðn� 1Þ “�” operations, which is called a serial-prefix

computation. Since “�” is an associative operation, operations in

(14) can be performed in any order. For example, x0 � x1 and xi�1 �
xi can be computed in parallel, which is called a parallel-prefix

computation [14].
Various parallel prefix algorithms have been developed for high-

speed computations [14], [15], [16], [17]. We use the Brent-Kung

algorithm [17] for our proposed overflow detection circuits since it

has OðnÞ gates, while most other parallel prefix algorithms have

Oðn lognÞ gates. It also has a regular layout and maximum fan-in

and fan-out of two. Although the delay of the Brent-Kung

algorithm is greater than the delay of other parallel prefix

algorithms, it is still fast enough not to adversely affect the

worst-case delays of our designs.
Fig. 4 shows the block diagram of the proposed overflow

detection circuit for an 8-bit unsigned Dadda multiplier. The

proposed overflow detection circuit for an n-bit unsigned Dadda

multiplier uses an ðn� 1Þ-bit parallel prefix circuit, followed by

ðn� 1Þ parallel AND gates, followed by a tree of ðn� 2Þ OR gates to

compute V 0u based on (13). Vu is then computed based on (11).
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Fig. 2. 8-bit unsigned array multiplier with overflow detection.

Fig. 3. 8-bit unsigned dadda multiplier with overflow detection. Fig. 4. Overflow detection circuit for an 8-bit unsigned Dadda multiplier.



3 TWO’s COMPLEMENT MULTIPLIERS

With our proposed overflow detection method for two’s comple-

ment multiplication, only p0 to pn are computed [12]. Overflow,

which occurs when P � 2n�1 or P < �2n�1, is detected by

comparing pn and pn�1 and testing the total number of significant

bits in A and B. For two’s complement numbers, the significant

bits include the rightmost bit that differs from the sign bit and all

the bits to its right. For example, A ¼ 11100110 has five significant

bits and B ¼ 00000110 has three significant bits. The number of

significant bits determines the bounds for the magnitudes of A, B,

and P . If A has SA significant bits and B has SB significant bits,

then A, B, and P are bounded by

2SA�1 � Aj j � 2SA ; ð15Þ

2SB�1 � Bj j � 2SB ; ð16Þ

2SAþSB�2 � Pj j � 2SAþSB : ð17Þ

The left side of (17) provides the lower bound on the product.

Overflow always occurs for two’s complement multiplication if

2n�1 � 2SAþSB�2 or, equivalently, if

nþ 1 � SA þ SB: ð18Þ

Thus, overflow always occurs when A and B together have at least

nþ 1 significant bits. The condition given in (18) is detected as

V 0t ¼ ban�2 � bb1 þ
Xn�2

i¼2

Xiþ1

j¼2

ban�j � bbi; ð19Þ

where bai ¼ ai � an�1, bbi ¼ bi � bn�1, and V 0t ¼ 1 when (18) is true.

This equation can also be rewritten as

V 0t ¼ ban�2 � bb1 þ ðban�2 þ ban�3Þ � bb2 þ . . .þ
ðban�2 þ . . .þ ba1Þ � bbn�2:

ð20Þ

The right side of (17) gives the upper bound on the product. The

product is guaranteed not to overflow when 2SAþSB < 2n�1 or,

equivalently, when

SA þ SB < n� 1: ð21Þ

Thus, overflow never occurs if A and B together have less than

n� 1 significant bits.
When SA þ SB ¼ n, (17) simplifies to

2n�2 � Pj j � 2n: ð22Þ

Expression (22) implies that, when SA þ SB ¼ n, the product may

overflow, but its magnitude does not exceed 2n. Thus, only p0 to pn
need to be computed to determine if overflow has occurred. When

SA þ SB ¼ n� 1, (17) simplifies to

2n�3 � Pj j � 2n�1: ð23Þ

Expression (23) implies that, when SA þ SB ¼ n� 1, the product

may overflow but it does not exceed 2n�1.
When SA þ SB ¼ n� 1 or SA þ SB ¼ n, three cases need to be

considered based on the signs of the input operands:

1. If both operands are positive, then P < 2n, which means
pn ¼ 0 always and pn�1 ¼ 1 only when overflow occurs.

2. If both operands are negative, then P � 2n, which means
pn ¼ 0 always and pn�1 ¼ 1 only when overflow occurs.
The one exception is when P ¼ 2n and then pn ¼ 1 and
pn�1 ¼ 0.

3. If the operands have different signs, then �2n < P , which
means pn ¼ 1 always and pn�1 ¼ 0 only when overflow
occurs.

For all three cases, overflow occurs if and only if pn � pn�1 ¼ 1.

Thus, the preliminary overflow flag, V 0t , and pn � pn�1 are

computed in parallel and then ORed to generate Vt as

Vt ¼ V 0t þ pn � pn�1: ð24Þ

These results can be applied to both two’s complement array

and tree multipliers [12]. As shown in [9], an overflow detection

circuit for tree multipliers can be obtained by rewriting (20) as:

V 0t ¼ bAn�2 � bb1 þ bAn�3 � bb2 þ . . .þ bA1 � bbn�2; ð25Þ

where bAi ¼
Pn�2

k¼i bak is computed using the Brent-Kung parallel-

prefix algorithm [17].
Fig. 5 shows the proposed overflow detection circuit for an 8-bit

two’s complement tree multiplier. This circuit is similar to the

unsigned overflow detection logic shown in Fig. 4, except ð2n� 4Þ
XOR gates compute ba1 to ban�2 and bb1 to bbn�2, the size of the parallel-

prefix circuit is one bit smaller, and one XOR gate is used to

compute pn � pn�1, as expressed in (24).

4 COMBINED OVERFLOW DETECTION

The proposed unsigned and two’s complement multipliers with

overflow detection have similar structures. Consequently, a single

multiplier can be designed to perform either unsigned or two’s

complement multiplication with overflow detection. The type of

the multiplication performed is based on an input control signal, t,

which is one when two’s complement multiplication is performed

and zero when unsigned multiplication is performed.
Our proposed overflow detection method for combined

unsigned and two’s complement multiplication unifies the over-

flow detection equations for unsigned and two’s complement

multiplication by defining

�ai ¼ ai � ðt � an�1Þ and �bi ¼ bi � ðt � bn�1Þ ð26Þ

for 1 � i � n� 2. This gives ai and bi when t ¼ 0, and âi and b̂i
when t ¼ 1. Equations (9) and (19) are merged to generate a

combined preliminary overflow flag V 0c , which is optimized for
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Fig. 5. Overflow detection circuit for an 8-bit two’s complement Dadda multiplier.



either array or tree multiplier implementations. The overflow flag

is then computed as

Vc ¼ V 0c þ pn � tþ ðpn � pn�1Þ � t: ð27Þ

The implementation details for combined array and tree multi-

pliers are given in [12].

5 RESULTS AND COMPARISONS

Table 1 gives area and delay estimates for our proposed 32-bit

multipliers and the 32-bit multipliers proposed by Schulte et al. in

[7], when both types of multipliers are implemented using the

TMSC25 0.25 micron CMOS standard cell library and the Leonardo

Spectrum Synthesis Tool. For unsigned multipliers, the technique

in [7] signals overflow if it detects a logical 1 among any of the

partial product bits in the n� 1 most significant columns of the

partial-product matrix or a carry bit equal to 1 into column n. For

two’s complement multiplication, the overflow detection techni-

que in [7] multiplies the magnitudes of the operands by using XOR

gates to modify some of the partial product bits when an operand’s

sign bit is one and then detects overflow using a technique similar

to the one used for unsigned multiplication. After multiplying the

magnitudes of the operands, their product is complemented if the

signs of the input operands differ. The techniques presented in [7]

do not work well for designing combined multipliers due to

significant differences in the structures for their unsigned and

two’s complement multipliers with overflow detection.
As demonstrated in Table 1, the unsigned array multipliers in

[7] have slightly less area and delay than our proposed unsigned

array multipliers since they only compute the n least significant

product bits and use an efficient mechanism to determine if any of

the partial product bits in the n� 1 most significant columns are 1.

Our proposed unsigned tree multipliers have less area and delay

than the unsigned tree multipliers in [7] since they use a more

efficient technique to determine if overflow has occurred. Our

two’s complement array and tree multipliers have much less area

and less delay than those presented in [7] since they avoid the

overhead of conditionally complementing the multiplier input and

output operands to correctly handle negative numbers.
Our methods for designing multipliers with overflow detection

have the following advantages over the methods presented in [7]:

. Our overflow detection circuits do not rely on internal
carries generated by the multiplier and do not require the
partial-product matrix of the multiplier to be modified.
Thus, they can be applied to any type of simplified
multiplier that produces nþ 1 product bits.

. Our methods for detecting overflow on unsigned tree
multipliers and two’s complement array and tree multi-
pliers have less area and delay than those presented in [7].

. Our methods can also be used to design efficient combined
multipliers that operate on both unsigned and two’s
complement operands.

6 CONCLUSIONS

A general approach for overflow detection is developed for
unsigned and two’s complement integer multiplication. Our
proposed integer multipliers with overflow detection have less
area and delay than previous designs. Similarities between
unsigned and two’s complement multipliers with overflow
detection are utilized to design efficient combined unsigned and
two’s complement multipliers. Depending on the system require-
ments, the proposed methods can be further optimized for area,
delay, or power.
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Comparison of 32-Bit Multipliers with Overflow Detection
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