
A DRAM/SRAM Memory Scheme
for Fast Packet Buffers

Jorge Garcı́a-Vidal, Member, IEEE, Maribel March, Llorenç Cerdà, Member, IEEE,

Jesús Corbal, and Mateo Valero, Fellow, IEEE

Abstract—We address the design of high-speed packet buffers for Internet routers. We use a general DRAM/SRAM architecture for

which previous proposals can be seen as particular cases. For this architecture, large SRAMs are needed to sustain high line rates and

a large number of interfaces. A novel algorithm for DRAM bank allocation is presented that reduces the SRAM size requirements of

previously proposed schemes by almost an order of magnitude, without having memory fragmentation problems. A technological

evaluation shows that our design can support thousands of queues for line rates up to 160 Gbps.

Index Terms—Router architecture, packet buffers, high-performance memory systems, storage schemes.

�

1 INTRODUCTION

A router is a network node connecting several transmis-
sion lines, whose basic function is to forward Inter-

networking Protocol (IP) packets across the lines depending
on the packet’s destination IP address and the information
stored in its routing table. The main functional units of a
router are:

1. line interfaces, which connect the router to each
transmission line,

2. packet processors, which process the packet headers,
look up routing tables, classify packets, and perform
related tasks,

3. packet buffers, which store the packets waiting to be
forwarded,

4. switch fabric, which interconnects the router’s packet
processing units, and

5. system processor, which performs the control func-
tions, such as routing table maintenance and config-
uration tasks.

A basic measure of the performance of a router is its
switching capacity, measured as the product of the line-
rates of the transmission lines times the number of line
interfaces. We can give this measurement in bits/sec or in
packets per second (for example, assuming a packet-size of
40 Bytes). Currently, the evolution of high-speed routers is
determined by the advances in optical transmission
technologies such as DWDM (Dense Wavelength-Division
Multiplexing), which makes it possible to exploit the huge
potential bandwidth of optical fibers [36]. Data carried by

optical fibers continues to double every 8-12 months, with a
single fiber capacity exceeding 10 Tbps in the near future
[39], [26], [3].

Moreover, this optical transmission technology can
already achieve 80-120 wavelengths per fiber for commer-
cial systems, while, in experimental settings, thousands of
wavelengths have been multiplexed into fiber [44]. Conse-
quently, the required switching capacity of a router
increases due to the increases in the line rates and to the
increase in the number of line interfaces (if we are using
DWDM, each wavelength is equivalent to a line interface).

A switch built with purely electronic technology cannot
deal with the rapid increases in the required switching
capacity, so it seems reasonable to consider introducing other
types of device, such as optical devices in units with all-
optical technology or hybrid electro-optical switches. How-
ever, optical technology presents a major limitation since
nothing analogous to electronic RAM exists in optics [12].
Although, there are some alternatives that use optical fiber-
delay lines with other components such as optical gate
switches, optical couplers, optical amplifiers, and wave-
length converters (see [15], [21], [32], [42], [51], [25], [24]), they
are not commercially feasible. Since the recent introduction of
the load-balanced switch described in [5], some hybrid
electro-optical switches have been proposed, but they also
have several problems that need to be solved to make them
practical (see [35], [33], [34]). Therefore, we consider that it is
interesting to explore the extent to which one can scale the
speed of high-speed electronic packet buffers.

Packet buffers are essential components in the design of
a packet switch. Their main function is to absorb surplus
traffic directed toward a given interface of the switch. The
size and other characteristics of a buffer packet have a direct
impact on the performance of the switch and the dynamics
of the congestion control mechanisms used in the network.

For a packet buffer, the required bandwidth is at least
twice the line interface transmission rates. Furthermore,
high-speed routers not only need high-speed buffers, but
they also may need large buffer storage. Usually, to
calculate the size of the packet buffer required in a packet

588 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

. J. Garcı́a-Vidal, M. March, L. Cerdà, and M. Valero are with the Computer
Architecture Department, Technical University of Catalonia, c/Jordi
Girona 1-3, 08034 Barcelona, Spain. M. Valero is also with the BSC,
Barcelona Supercomputing Center.
E-mail: {jorge, mmarch, llorenc, mateo}@ac.upc.edu.

. J. Corbal is with BSSAD, ILB, Intel, c/Jordi Girona 1-3, 08034 Barcelona,
Spain. E-mail: jesus.corbal@intel.com.

Manuscript received 29 July 2005; revised 14 Dec. 2005; accepted 3 Jan. 2006;
published online 22 Mar. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0251-0705.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

switch, manufacturers use the well-known rule-of-thumb
buffer size ¼ RTT � C, in which RTT is the round-trip
time of the Internet and C is the line rate of the line
interface, so a packet switch that uses line interfaces with
C ¼ 40 Gbps in a network with RTT ¼ 200 ms requires
packet buffers able to read/write 80 Gbps and a size of 1 GB.

The validity of the previous dimensioning rule in very
high capacity links has recently been questioned. In [2], [48],
it is argued that, in backbone routers that switch thousands
of TCP flows, the phenomenon of flow synchronization
does not occur when there is congestion ([19], [9]), so we
can drastically reduce the packet buffer size, using, as a
dimensioning rule, buffer size ¼ RTT�C

ffiffiffi

N
p , where N is the

number of active TCP flows in the link. On the other hand,
in [11], it is argued that this dimensioning rule, which
focuses on maintaining a high link utilization and low
delay, can lead to high loss rate and poor performance for
many applications. Another dimensioning rule, which, in
fact, can give buffer size values even larger than the ones
obtained with the bandwidth-RTT rule, is derived. Given
the lack of accurate models for Internet traffic and the
closed-loop nature of TCP, analytical or simulation models
cannot give the final answer to the buffer dimensioning
question and, thus, real measurements in congested Internet
links are needed. None of the alternative dimensioning
rules have been extensively tested to date in real scenarios
and buffer sizing of Internet routers remains an open
question. Today, routers manufacturers seem to favor the
use of large buffers. For instance, the Cisco CRS-1 modular
service card with a 40 Gbps line rate incorporates a 2 GB
packet buffer memory per line card and side, ingress, and
egress (see [7]).

The problem of packet storage is not only related to the
absorption of traffic peaks. As an interesting example, we
might mention the case of the packet buffers used in OBS
(Optical Burst Switching) edge routers. Optical Burst Switch-
ing (OBS) is assumed to be the most practical solution in the
near future [6], [45], [38], [50], [31] for efficiently using the
huge potential bandwidth of optical fibers that the advances
in DWDM technology have made possible. In OBS, packets
from various sources are aggregated into bursts at the ingress
edge of an OBS network and disassembled at the egress edge
router. A control packet is sent first to set up a connection (by
reserving the appropriate amount of bandwidth and config-
uring the switch fabric along a path), followed by the burst of
data. This signaling process implies that packets from a burst
should be stored at the edge routers during timescales of
milliseconds, which means that edge OBS routers may
require buffer sizes in the order of Giga bytes of data.

Traditionally, fast packet buffers were built using low-
latency SRAM. However, with the increasing capacity
requirements, high density DRAMs have become the
preferred choice. DRAM-based packet buffers can easily
provide a bandwidth of up to around 1 Gbps, but, if we
increase the required bandwidth to several Gbps, the design
becomes difficult. For instance, [20] addresses the design of
a packet buffer using a single-chip 16 Mb SDRAM with a
16 bit data interface and a 100 MHz clock. Even though the
peak bandwidth is 1.6 Gbps, the guaranteed bandwidth
drops to 1.2 Gbps due to the activate and precharge

overhead. A multiple chip design would increase the buffer
bandwidth, but the increase in bandwidth would not be
proportional to the total number of chips. Using, for
instance, the same SDRAM parameters, an 8-chip config-
uration with an 8x wider bus would provide a guaranteed
bandwidth of only 5.12 Gbps. Increasing the number of
chips and widening the data bus therefore yields diminish-
ing returns, while creating problems [13] such as higher
memory granularity, more memory components in the line
card, and wider data paths.

The low efficiency of multichip DRAM buffers can be
improved by using some special techniques aimed at
reducing bank conflicts in a DRAM buffer such as
pipelining and out-of-order access techniques [47], [46],
[37] or exploiting row locality whenever possible in order to
enhance average-case DRAM bandwidth [8], [22]. Using
faster DRAM components (e.g., RLDRAM [28], FCDRAM
[14], etc.) would also lead to faster buffers. However, from
the previous discussion, it is clear that, to support a line-rate
as high as OC-3072, alternatives to DRAM-only buffers
should not be considered.

Taking these facts into account, the fastest packet buffers
with worst-case bandwidth guarantees that can be found in
the literature are hybrid SRAM/DRAM designs, first
described in [29]. In these, Virtual Output Queuing and a
combined SRAM/DRAM packet buffer architecture are
used. SRAM only stores the tail and head of queues in order
to ensure the line rate and DRAM stores the rest of them in
order to ensure the large storage that is needed. To our
knowledge, the hybrid design proposals made in this field
are [29], [17], and [18].

Our novel proposal presented in this paper maintains the
hybrid SRAM/DRAM design of [29], but introduces the
following changes: 1) We redesign the functional blocks that
govern SRAM/DRAM memory transfers to obtain a general
hybrid SRAM/DRAM design, for which the schemes of [29]
and [17] can be seen as particular cases. 2) We propose a
new algorithm that reduces the SRAM size of the scheme
proposed in [29] almost by an order of magnitude.
Furthermore, this new algorithm avoids the memory
fragmentation problem of the scheme proposed in [17]. To
the best of our knowledge, the design proposed in this
paper is the fastest that has been published to date for large
packet buffers.

A technological evaluation presented in this paper shows
that our design can support thousands of queues for line
rates of 160 Gbps using commodity DRAM.

The rest of the paper is organized as follows: In Section 2,
we explain the system assumptions for the paper. In
Sections 3 and 4, we describe our proposal and we argue
that the previous ones are particular cases of our design. We
then discuss some implementation issues. Section 9 is
devoted to previous work on VOQ buffer design and
Section 10 gives some concluding remarks.

2 SYSTEM ASSUMPTIONS

During the next few years, aggregate router throughput will
probably grow by increasing the number of interfaces rather
than increasing line rates [36]. Although line rates have
increased rapidly over the past years (up to OC-192 or

GARC�IIA-VIDAL ET AL.: A DRAM/SRAM MEMORY SCHEME FOR FAST PACKET BUFFERS 589

OC-768 [30], [7]), it seems that this increase is close to its
electronic limits: around OC-3072 [36].

The use of Dense Wavelength-Division Multiplexing
(DWDM), however, increases the number of channels
available on a single fiber (without increasing the indivi-
dual line rates), leading to a number of interfaces on the
order of several hundred.

Our target design is to support line rates as high as
OC-3072, a number of line interfaces in the order of
thousands, with the capacity of grouping cells into a
number of internal logical queues (e.g., using Virtual
Output Queuing, as we explain below). We can therefore
set several parameters that are of utmost importance in the
packet buffer design: required bandwidth, buffer size, basic
time-slot, and number of internal data structures internal to
the buffer.

Required bandwidth. For input-queuing architecture,
the required packet buffer bandwidth is twice the line rate
as every packet must be both written and read from
memory before being forwarded. In a shared memory
buffering, packets continue to recirculate through the
switch fabric in a common buffer pool, with each output
removing one packet from the group each time slot, so the
required total buffer is twice the line rate per number of
input interfaces. In the numerical examples that we use in
this paper, we do not consider any further speeding up.
Note, however, that, in practice, a speed-up of 1.5-2 is
commonly used to compensate for the allocation and
scheduling conflicts.

Buffer size. As we discussed in the previous section,
router manufacturers usually employ packet buffers of a
size equal to an estimate of a typical packet round-trip time
over the Internet times the line rate [13]. Taking a typical
round-trip time of 0.2 sec, the required buffer size for a line
rate of 160 Gbps is 4 GB.

Basic time-slot. We assume that packets in the router are
internally fragmented into units that we will call cells. We will
take a fixed-length of 64 bytes [4]. Cells are handled as
independent units, although they are reassembled at the
output port before packet transmission. The system operates
synchronously into fixed time-slots, which correspond to the
transmission time of a cell at the line rate. For example, for a
line rate of 160 Gbps, the basic time-slot is of 3.2 ns.

Number of internal data structures. As is well known, in
order to achieve full link utilization, input-buffered routers
require the use of Virtual Output Queuing (VOQ) [43]. In
VOQ, (see Fig. 1), the input buffer maintains Q separate
logical FIFO queues. Each logical queue corresponds to an
output line interface and a class of service. When a cell

reaches the input line interface, it is placed at the tail of the
queue corresponding to its outgoing interface. When an
input port receives a request for a cell addressed to a given
output, the cell is taken from the head of the corresponding
queue in the VOQ buffer. We will assume that our packet
buffer incorporates this mechanism. We assume that the
number of Virtual Output Queues to be supported is
around 1,000.

DRAM bank interleaving. In response to the growing
gap between processor and memory speed, DRAM manu-
facturers have created several new architectures that
address the problem of latency, bandwidth and cycle time
(e.g., DDR-SDRAM [23]or RAMBUS DRDRAM [10]). All of
these commercial DRAM solutions implement a number of
memory banks—as many as 512—that can be addressed
independently. Banking in DRAM allows an access to one
bank to begin while the other is still busy. Thus, by
performing several on-the-fly requests to different banks,
we can reduce the “random” access time of a DRAM
memory system that implies a reduction in the SRAM size
needed by a hybrid DRAM/SRAM architecture, as is shown
in [16].

Fig. 2 illustrates the concept of a memory bank and an
interleaved memory system. A memory bank is a set of
memory modules that are always accessed in parallel with
the same memory address. The number of memory
modules grouped in parallel is dictated by the size of the
data element we want to address. This size in cells is the
data granularity. In the following, we shall refer to the data
granularity used as b. Furthermore, in a conventional
DRAM memory system, the data is interleaved across all
memory banks using a specific policy and the memory
controller is simply in charge of broadcasting the addresses
to them. Each memory bank has a special logic that
determines whether or not the address identifies a data
item that the bank contains. We will assume that our packet
buffer incorporates DRAM bank interleaving.

3 GENERAL HYBRID SRAM/DRAM
ARCHITECTURE (GHDS)

Our proposal is a general hybrid SRAM/DRAM design of
which the schemes of [29] and [17] are particular cases, as
we assess in the following section.

Fig. 3 shows the GHDS architecture. The system consists
of 1) two fast but costly SRAM memory modules (t-SRAM
and h-SRAM), 2) a slow but low-cost DRAM memory, and
3) the functional blocks that govern the transfers between

590 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 1. Input-queuing router architecture using VOQ buffer.
Fig. 2. Organization of a DRAM in banks: configuration of a DRDRAM-

style memory and internal structure of a memory bank.

DRAM/SRAM memory modules (indicated as Memory
Management in Fig. 3).

In the scheme shown in Fig. 3, we maintain the hybrid
SRAM/DRAM memory organization of [29] with the addi-
tion of units for DRAM bank allocation and DRAM schedul-
ing. These units are key to obtaining a system which can fully
exploit the capabilities of interleaved memory access.

The DRAM memory is organized in M banks and data
are interleaved among them. However, note that there are
two fundamental limits to using bank interleaving. The first
is the bus address speed, that is, the cycle time required to
rebroadcast an address to all memory banks. The second is
the problem of bank collisions. In order to fully exploit the
potential bandwidth of an interleaved memory system, we
need to guarantee that the same bank is not accessed twice
within its random access time (T). A bank conflict occurs
when this constraint cannot be fulfilled. The implementa-
tion of conflict-free mechanisms is especially relevant in the
context of fast packet buffering because a collision would
result in the loss of a packet. In proposals [29] and [17], no
bank collision ever takes place. We present in this paper an
alternative system for which collisions only occur with a
very small probability, independently of the traffic patterns.

The t-SRAM and h-SRAM, respectively, cache the tail
and head of each VOQ logical queue. The rest is stored in
DRAM. Cells that come into the buffer are placed in the
t-SRAM, whereas cells that will leave the system in the near
future are placed in the h-SRAM. Since the SRAM memory
bandwidth must fit the line rate, the SRAM access time
must be less than or equal to the transmission time of a cell
(that is the time slot). The availability of room in the t-SRAM
and the availability of cells to be served in the h-SRAM is
controlled using two Memory Management Algorithms: the

tail Memory Management Algorithm (t-MMA) and the head
Memory Management Algorithm (h-MMA), respectively,
which must guarantee that there is always room in the
t-SRAM for an incoming packet and that any packet to be
output is always present in the h-SRAM before the
outputting needs to be done (i.e., the cache never misses).

Therefore, the accesses to DRAM are managed by the
t-MMA and the h-MMA. When the occupancy of the
t-SRAM reaches a given threshold, a transfer from t-SRAM
to DRAM of a group of cells addressed to the same output
interface is ordered by the t-MMA. Conversely, when the
h-SRAM needs to serve a cell that currently resides in
DRAM, the h-MMA orders a group transfer from DRAM to
h-SRAM. In order to match DRAM/SRAM access times,
transfers between DRAM and SRAM occur in batches of
b cells. Note that these transfers have a size in cells that
should be set to the ratio of DRAM random access time to
the transmission time of a cell. In the following two
subsections, we describe these algorithms in depth.

3.1 Tail Memory Management Algorithm

Every b time-slots, the tail Memory Management Algorithm
(t-MMA) selects a queue and a memory bank from which
b cells must be transferred from t-SRAM to DRAM. These
transfers should guarantee that the t-SRAM does not fill up
before DRAM. Otherwise, losses would occur before the
DRAM is full.

The t-MMA module consists of (see Fig. 4): a Queue
Transfer Requester module (t-QTR), a Request Register (t-RR),
and a DRAM Scheduler Algorithm module (t-DSA). Two
additional modules, a Bank Allocation Unit (BAU) and the
Ongoing Request Register (ORR), described later in this
section, are shared by both t-MMA and h-MMA.

GARC�IIA-VIDAL ET AL.: A DRAM/SRAM MEMORY SCHEME FOR FAST PACKET BUFFERS 591

Fig. 3. General hybrid DRAM/SRAM memory architecture (GHDS).

Fig. 4. Memory management of GHDS.

The functional blocks of the t-MMA work as follows:
When a cell for queue i arrives to be stored in the t-SRAM,
the t-QTR decides whether a transfer from the t-SRAM to
DRAM has to be scheduled for this queue. Since the
t-SRAM has to be emptied as soon as possible, the t-QTR
schedules a transfer whenever it is able to do so, i.e., when
b cells of queue i are standing in the t-SRAM. Equivalently,
let Ct

i be a counter of the number of cells arriving at queue i
(Ct

i is initialized to 0). Each time a cell arrives for queue i, Ct
i

is increased and the t-QTR issues a transfer request for
queue i if ðCt

i mod bÞ ¼ 0.
The request issued by the t-QTR is processed by a Bank

Allocation Unit (BAU), which in turn chooses the bank in
which cells should be allocated (the algorithm will be
discussed in Section 5). The request issued by the BAU
contains the queue from which b cells must be transferred
and the bank in which these cells will be placed.

In order to avoid DRAM bank conflicts, a tail DRAM
Scheduler Algorithm (t-DSA) is used. It takes into account
two registers: the Tail Requests Register (t-RR) and the
Ongoing Requests Register (ORR). The t-RR is a shift register
that stores the t-SRAM requests processed by the BAU that
have not yet been fulfilled. Every b slots, the t-DSA selects
one of the transfer requests pending on the t-RR, which can
be located at any position of the register, and issues a write
transfer to DRAM. To choose it, the t-DSA may take into
account the information stored in the Ongoing Requests
Register (ORR). The ORR is a shift register that stores the
identifiers of the banks that are currently being accessed. If
a new request were issued to any of these banks, a bank
conflict would arise. Hence, the banks with identifiers
stored in the ORR are locked. Therefore, the t-DSA chooses
the oldest request in the t-RR addressed to a bank which is not
locked, starting a new transfer of b cells and placing the
memory bank identifiers at the tail of the ORR.

3.2 Head Memory Management Algorithm

The transfers between the h-SRAM and DRAM are
managed by the head Memory Management Algorithm
(h-MMA). Now, the h-MMA has to guarantee that cells
transferred between DRAM and h-SRAM can accommodate
the sequence of cells requested, for example, by the switch
fabric scheduler in an input-queuing switch. Otherwise, the
cell requested may not be present in the h-SRAM because it
may not have been transferred from the DRAM yet. We
shall refer to this condition as a miss.

Again, the h-MMA algorithm is simple: Schedule a
transfer for queue i whenever the number of requests for
cells belonging to queue i exceeds the number of cells from
this queue present in the h-SRAM. Equivalently, let Ch

i be a
counter of the number of cells requested from queue i (Ch

i is
initialized to 0). Each time a cell from queue i is requested,
Ch
i is increased and the head Queue Transfer Requester

module (h-QTR) issues a transfer request for queue i if
ðCh

i mod bÞ ¼ 1. We shall refer to the delay as the h-MMA
response time since the h-QTR schedules a transfer until the
corresponding download of b cells from DRAM to h-SRAM
is finished. Analogously, we define the t-MMA response time
as the delay from when the t-QTR schedules a transfer until
the corresponding upload of b cells from t-SRAM to DRAM
is finished.

The rest of the functional blocks of the h-MMA works
analogously to those of the t-MMA. Nevertheless, we need
an additional latency register (see Fig. 4). This register
introduces a delay since a request is issued until the
h-SRAM is accessed to grant the corresponding cell. This
delay is necessary to cope with the response time of the
h-MMA. Furthermore, note that, in order to have a zero
miss probability, the delay introduced by the latency
register should be equal to the maximum response time of
the h-MMA.

4 EXTENSION OF THE GENERAL MODEL TO

PREVIOUS DRAM/SRAM SCHEMES

In this section, we show that previously proposed DRAM/
SRAM schemes, such as [29] and [17], are particular cases of
the general model introduced in Section 3.

4.1 Random Access DRAM System (RADS)

In this paper, we shall refer to the hybrid DRAM/SRAM
scheme proposed in [29] as the Random Access DRAM
System (RADS). This scheme is shown in Fig. 5. Since
DRAM bank interleaving is not exploited, this memory
system cannot take advantage of banks. Let us define B as
the minimum granularity that can be used if we require a
random transfer from any SRAM and any DRAM memory
bank. In this case, B is limited by the random access time of
the DRAM (T), e.g., if the link rate is R bps and the cell size
is C bits, we would have: B � 2T R=C (we use 2T since,
each B time slots, we have to do a read and a write transfer
to DRAM). Therefore, to analyze this proposal, we are
forced to rely on the worst-case scenario, so the data
granularity is given by the DRAM random access of a single
bank (b ¼ B). In this case, no specific BAU is needed (i.e.,
consecutive accesses to DRAM can be done to any bank).
The DSA can be seen as a FIFO scheduler, which
alternatively chooses the oldest write and the oldest read
stored into the t-RR and the h-RR, respectively. This scheme
is equivalent to the so-called Early Critical Queue First
(ECQF) proposed in [29]. It can be shown, using a worst-
case pattern argument, that the required h-SRAM, t-SRAM,
and latency register size in cells is Q ðB� 1Þ þ 1. Shorter
sizes would lead to miss probabilities that could be large for
some specific traffic patterns.

Note that, in this hybrid architecture scheme, the
transfers between SRAM and DRAM have a size in cells
that should be set to the ratio of DRAM random access time
to the transmission time of a cell. As this factor directly
influences the SRAM size, large SRAMs are needed to
sustain high line rates and a large number of interfaces.

592 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 5. Hybrid memory architecture.

This, in turn, limits what access times are attainable. This
buffer design would support line rates of up to OC-3072,
but only for a reduced number of interfaces. Thus, although
the scheme proposed in [29] ensures zero loss probability
for cells coming to a nonfull buffer, the required SRAM size
for a large number of interfaces becomes too large.

4.2 Conflict-Free DRAM System (CFDS)

In [17], we described a scheme which aims at reducing the
SRAM size of [29] while supporting a larger number of
interfaces. The scheme we proposed in [17] is based on the
observation that the effective DRAM access time can be
reduced by overlapping multiple accesses to different
banks, that is, by exploiting the potential DRAM bank
interleaving. This allows us to reduce the granularity of the
accesses, thereby also reducing the SRAM size.

Fig. 6 summarizes the Conflict-Free DRAM System
(CFDS) memory architecture. In this proposal, we maintain
the same hybrid SRAM/DRAM structure and MMA
subsystem as [29], but we completely redesign the DRAM
system. We propose a DRAM storage scheme and its

associated access method that achieves a conflict-free access
memory organization with a reduction in the granularity of
DRAM accesses.

Note that if we use a DRAM of M memory banks and a
random cycle time of T seconds per bank, it is theoretically
possible to initiate a new memory access every T=M seconds.
Therefore, the data granularity can be potentially reduced
by a factor of M (as we can perform sequential accesses at
an M times faster rate). However, remember from Section 2
that we need to guarantee that the same bank is not
accessed twice within its random access time. Otherwise, a
bank conflict occurs.

The DRAM memory organization is as follows: Let M be
the number of DRAM banks. We organize these banks into

G ¼M=ðB=bÞ groups of B=b banks per group (see Fig. 7).
Each group stores cells of Q=G queues. Banks are accessed
by transferring b cells from the same queue. In order to
avoid bank conflicts, the cells in each queue are stored in
blocks of b cells following a round-robin configuration
among all the banks belonging to the same group in which
the queue was assigned (block-cyclic interleaving).

The transfers between the DRAM and SRAM are
managed by the DRAM Scheduler Subsystem (DSS) shown
in Fig. 6. It hides the DRAM bank organization from the
former MMA Subsystem, which operates under the illusion
that the DRAM access time is b time-slots, even though the
actual DRAM access time is B time-slots. This is the main
difference between [29] and [17]: b < B cells are transferred
between DRAM and SRAM every DRAM memory access
time. However, in reality, the DRAM access time remains
B time slots. It is this illusion that reduces the SRAM size.

The DSS uses a DRAM Scheduler Algorithm (DSA) to
avoid bank conflicts, using two registers: the Requests
Register (RR) and the Ongoing Requests Register (ORR). The
behavior of the DSA is analogous to that explained in
Section 3 for the GHDS model. The DSA must thereby
choose the oldest eligible request in the RR and, then, issue
the write or read transfer to or from DRAM.

This implies that the DRAM subsystem may deliver cells
out of order. Reordering these cells implies an additional
cost in terms of latency and SRAM size. The additional
delay, equal to the maximum delay that a replenish request
can suffer due to the DSA reordering, is introduced by the
latency shift register shown in Fig. 6. However, analysis in
[16] shows that this reordering is bounded and that a zero
miss condition can be guaranteed. Moreover, the benefits of
decreasing the granularity outweigh the additional cost
introduced by the reordering process.

This memory scheme has the drawback of DRAM—
memory fragmentation, i.e., certain traffic patterns would lead
to a situation in which only a fraction of DRAM memory
can be used, depending on the assignment of queues to
memory groups.

In [17], we alleviated this by using a renaming of queues
mechanism that reduces the probability of DRAM memory
fragmentation. It consists of associating each logical queue
name Ql, used internally for identifying queues assigned to
a certain group, to more than one physical queue name (Qp).
Initially, when no cells from Ql

i are stored in DRAM, a free
Qp
j identifier from the group with the fewest cells is

assigned to it. If cells reaching this queue find that the
DRAM assigned to the group is full, a new Qw

k will be
chosen from another group that could offer free DRAM
space. By doing this, cells from a given logical queue can
reside in more than one memory group and can potentially
occupy the whole DRAM system. Renaming of queues

GARC�IIA-VIDAL ET AL.: A DRAM/SRAM MEMORY SCHEME FOR FAST PACKET BUFFERS 593

Fig. 6. CFDS memory architecture of the packet buffer.

Fig. 7. Proposed memory bank interleaving. The example on the left

illustrates the block-cyclic interleaving using B=b ¼ 2 banks per group.

makes it much more difficult for memory fragmentation to
arise. However, for some traffic patterns, fragmentation
cannot be avoided.

5 RANDOM BAU SCHEME (RBAU)

In this section, we describe a scheme, first presented in [18],
that exploits DRAM bank organization as in [17] (see
Section 4). It allows a data granularity of b < B and, thus,
reduces the SRAM size. Moreover, the scheme described in
this section does not have the memory fragmentation
problem of [17].

The BAU we propose randomly chooses a DRAM memory

bank for every transfer request issued by the QTR. This

random selection is done as follows: Let rin be the nth request

for the ith queue issued by the t-QTR. Then, the DRAM

memory bank allocated to rin is randomly chosen among all

the banks, provided that requests ri
n�Bbþ1

; . . . ; rin�1; r
i
n are

always addressed to different banks (i.e., different banks are

chosen for anyB=b consecutive requests for the same queue).

As the queues are FIFO, consecutive h-QTR requests for the

same queue will also correspond to different bank accesses. In

this way, we avoid bank conflicts in transfers of cells from the

same queue (as we see in Section 3, we can only access the

same bank every B time slots and we access DRAM every b

time slots).
The associated DSA chooses the oldest eligible request in

the RR, i.e., the oldest request that can be issued to DRAM
without suffering bank conflict. This RBAU scheme could
be easily implemented as a Linear Feedback Shift Register
(LFSR) or Tauseworth generator (e.g., [49], [1]).

6 SRAM DIMENSIONING

In this section, we describe some dimensioning guidelines
for the SRAM modules used in our GHDS Architecture for
the RBAU mechanism explained in Section 5.

Let us first assume b ¼ B. As we explained in Section 4,
there are never bank conflicts and the scheme is equivalent
to the ECQF mechanism proposed in [29], thus requiring
sizes for both SRAM and the latency register of
Q ðB� 1Þ þ 1.

Now, let us consider a scenario with a granularity b < B,
in which bank conflicts may occur. A miss occurs when all
the transfer requests stored in the t-RR or in the h-RR are
addressed to banks that are busy at that moment, so the
t-DSA or the h-DSA, respectively lose the chance of issuing
a read or write request to DRAM. In the following, we
outline the dimensioning of both t-SRAM and h-SRAM.

For the t-SRAM, a miss on the t-DSA implies that no
write request will be served for the next B slots. Therefore,
the t-SRAM will increase its maximum size in b cells.
Furthermore, as the t-RR can receive requests every slot and
the t-DSA only runs every b slots, the system cannot recover
from this loss. Fig. 8 shows this behavior.

In order to overcome this problem, we should introduce
a small speed-up in the t-DSA. This speed-up consists of
adding extra read cycles in the t-DSA. During these extra
cycles, the t-DSA can serve requests accumulated when
misses occur, thus making the system recovery feasible
from this situation. In the next section, we show that, for
practical purposes, the t-SRAM size can be given by
Qðb� 1Þ þ 1.

Let us now consider the h-SRAM case. If the h-DSA
cannot issue any read request to DRAM because of a
miss, there will not be any read transfer between DRAM
and h-SRAM after B slots. For this reason, when its
associated cell reaches the head of the latency register, the
h-SRAM will not be able to serve it. Hence, the maximum
response time could be as high as Q ðB� 1Þ þ 1. This
response time would occur if the scheduler issued Q
consecutive requests addressed to different queues and all
the requested cells were stored in the same DRAM
memory bank. If we want to guarantee a zero miss
probability, we would need an h-SRAM, t-SRAM, and
Latency Register of size Q ðB� 1Þ þ 1. This maximum
value would be needed in the event that all requests are
addressed to cells stored in the same bank. However, given
the random bank assignment policy used by the RBAU
scheme, we expect the probability of the former event to be
extremely low (on the order of 1

MQ), independently of the
traffic pattern. In other words, it is plausible to assume that
the event leading to the maximum response time Q ðB�
1Þ þ 1 using the RBAU scheme is very unlikely to happen.
In fact, in the next section, we show that, for practical
purposes and realistic values of M, the system can be

594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 8. Example of the h-SRAM occupancy with the RBAU scheme when (a) a first miss and (b) a second miss occurs and no speed-up is introduced

(for M ¼ 32, Q ¼ 512 and B ¼ 32 and b ¼ 8).

dimensioned as if no bank conflicts occur, i.e., assuming a
MMA maximum response time of Q ðb� 1Þ þ 1.

7 NUMERICAL RESULTS

In this section, we analyze the RBAU Scheme described in
Section 5. For the results shown here, we use the following
scenario: The t-MMA and h-MMA, respectively, receive a
sequence of cell arrivals and scheduler requests in a round-
robin for queues 1; 2; . . . ; Q. In response to this pattern, the
t-QTR and the h-QTR generate periodic bursts of transfer
requests for queues 1; 2; . . . ; Q. Note, however, that the
random bank assignment performed by the BAU makes the
exact sequence of cell arrivals and scheduler requests
irrelevant.

For h-SRAM dimensioning purposes, the key parameter
to study is the h-MMA maximum response time (see
Section 6). Remember from Section 6 that it would be the
same for the t-MMA. Fig. 9a shows the Complementary
Cumulative Distribution Function (Complementary CDF)
of the MMA response time under the load conditions
previously described for M ¼ 32, B ¼ 32, b ¼ 1, and
different values of Q. The three lines are almost coincident,
indicating that, in this case, the delay is almost independent
of Q. When b > 1, the response time is very much
dependent of Q, as is clearly shown in the results in
Fig. 9b for b ¼ 8 and different values of Q. It is easy to check
that the complementary CDF of the delay has a sharp
decreasing for a delay of Q ðb� 1Þ þ 1 time-slots.

Fig. 10 shows the results obtained for a fixed value of Q
and different values of b. We can see again that, for values
of b higher than 2, the curves have a sharp decrease at point
Q ðb� 1Þ þ 1.

The influence of M, the number of memory banks, is
easily assessed in Fig. 11. The curves were obtained for
Q ¼ 1; 024, B ¼ 32, and b ¼ 8. As we can see, the lines
associated with values between 256 and 8 are almost
coincident, indicating that the delay is essentially indepen-
dent of the number of banks used when we have more than
four banks. Similar conclusions are drawn from Fig. 11b for
b ¼ 2. In this case, the number of banks required for
achieving this insensitivity is M ¼ 16.

The previous numerical results show that Q ðb� 1Þ þ 1 is
a plausible dimensioning rule for the t-SRAM, h-SRAM,

and the latency register in the Random BAU Scheme for
realistic values of M and b. As a consequence, provided that
we can build a fast enough MMA unit, the SRAM size can be
almost an order of magnitude lower than the one that would
be required using the design given in [29]. Furthermore, the
RBAU Scheme does not have the DRAM fragmentation
problem of the design we proposed in [17]. It is clear that
increasing the value M will lead to a lower collision
probability when the previous dimensioning rule is used.
Although we do not have available analytical expressions or
bounds for this collision probability, we can expect that large
values ofM (e.g.,M ¼ 128) will lead to tiny values of collision
probabilities, even for low values of b.

Additional numerical results can be found in [18].

8 EVALUATION OF THE GHDS MEMORY

ARCHITECTURE

In this section, we will extend the scope of the study of the
RADS, CFDS, and RBAU systems to design and implemen-
tation issues, taking into account technological constraints.

We call RADS to the hybrid DRAM/SRAM scheme
proposed in [29] based on determinist worst case and access
granularity matching the DRAM random access time (see
Section 4.1). We call CFDS to the variation proposed in [17],
where we combined a specific bank interleaving scheme with
a memory reordering system that allowed us to leverage zero
packet lossed with a granularity lower than the DRAM
random access time (see Section 4.2). We finally, as shown in

GARC�IIA-VIDAL ET AL.: A DRAM/SRAM MEMORY SCHEME FOR FAST PACKET BUFFERS 595

Fig. 9. Complementary CDF of the MMA response time for different values of Q, M ¼ 32, and B ¼ 32. In (a), b ¼ 1, whereas, in (b), b ¼ 8.

Fig. 10. Complementary CDF of the MMA response time for Q ¼ 128,

M ¼ 32, and different values of b.

Section 5, call RBAU to our general GHDS hybrid SRAM/

DRAM architecture with Random BAU scheme.
We pose the problem of implementing an SRAM

structure able to handle several queues and we propose

two design alternatives: one targeted at low cost (area and

power) and one targeted at high performance. We finally

estimate the area and access time and determine the

viability of the proposed SRAM design. We show how

RBAU helps to alleviate the limits of technology by

requiring smaller SRAMs (to an even greater extent than

previous systems such as CFDS), thus allowing simpler

designs to accomplish the area and time restrictions.
Throughout this section, we shall assume OC768 and

OC3072 links, each with 128 and 512 queues, respectively.

8.1 Design of SRAM Buffers

The main focus of this section is to establish the possible

technological barriers in the near future for the RADS/

CFDS/RBAU SRAM buffer schemes. We have used

CACTI 3.0 [41] to estimate the access time (in ns) and the

area (in cm2) of different implementations of the t-SRAM

and h-SRAM buffers using a 130 nm technological process

as a baseline. We have also evaluated capability limits for

near-future technological processes: 65 and 45 nm. CACTI is

an integrated cache access time, cycle time, area, aspect

ratio, and power analytical model. The main advantage of

CACTI is that, as all these models are integrated together,

trade-offs between the different parameters are all based on

the same assumptions and, hence, are mutually consistent.
We have assumed that the t-SRAM and h-SRAM are

shared by all the queues. The design of a unified (shared)

SRAM buffer is not as trivial as the design of a distributed

(isolated) SRAM buffer, in which each queue has its own

partition of the available memory. The second kind of

SRAM buffer could be easily implemented as a set of

circular queues implemented with simple direct-mapped

SRAM structures. On the other hand, in the shared SRAM

buffer, we need a mechanism to identify where exactly the

nth element of a given queue qi is placed. Intuitively, this is

similar to the design of Q linked lists in which the next cell

to access by the arbiter is located at the head of the

correspondent list and the next cell to store coming from the

DRAM is placed at the tail of the correspondent list.

Fig. 12 shows two different alternatives for imple-
menting a unified SRAM buffer, one of them targeted
at achieving a very short access time (and, hence,
suited to high-performance implementations) and the
other targeted at achieving the lowest impact on area
and power consumption (and, hence, suited to cost-
effective implementations).

The global CAM design consists of a full content-
addressable memory. In such memory, packety cells are
stored out of order and can be indexed using a tag. Each
cell’s tag identifies the queue where that cell belongs and
the relative order inside the list of cells of that same queue.
When the address (queue identifier and order) of the cell is
set, the CAM searches across all entries for the related cell.
Note that we assume that the refreshes from the DRAM are
serialized along B time slots at a rate of one cell per slot.
This implementation requires one CAM port (to look for a
given cell entry) and one write port (to allocate new entries).
Additionally, the system requires a method to perform
allocation of new cells in available entries. A very simple
way of handling this is to implement a free-list as a direct-

596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 11. Complementary CDF of the MMA response time for different values of M and (a) b ¼ 8 and (b) b ¼ 2.

Fig. 12. SRAM design alternatives: (a) global CAM and (b) unified

linked-list.

mapped circular buffer that holds indexes to unused entries
of the global CAM. Such a structure would require one read
port and one write port, and one head and tail pointer.

The functional timing behavior of the global CAM is as
follows: Reading a new item implies CAMing the memory
array for the specified item. This gives us the index of the
entry just read so that we can write this index in the free-list
as a new available entry. Writing a new item involves
accessing the free-list to obtain a valid index to write. Once
this index is obtained, we can do a direct-mapped write
onto our CAM array.

Note that we could conceivably reduce the critical path
of the access by overlapping the accesses to the CAM array
and the free-list. In order to enable this, we would need a
lookahead of one when obtaining a valid entry in the free-
list and latch it. The drawback of this technique is that we
may produce bubbles when the SRAM is full, which is
actually a very unwanted artifact. Therefore, we will
consider that the access to both structures needs to be
serialized.

Finally, the unified linked-list proposal is a straightfor-
ward implementation of Q linked lists onto a direct-
mapped memory structure. Each entry of that direct-
mapped SRAM contains one cell and a pointer to the next
cell (another entry of the same structure). In order to be able
to identify the head and the tail of each linked list, we have
another direct-mapped structure that stores the head and
tail pointers for each of the queues. Of course, we also need
a free-list to determine available entries in the SRAM array
whenever a new item is written. The advantage of this
implementation is that it does not require a complex CAM
implementation. However, it requires one additional write
operation to store the position of the new tail onto the
pointer field of the old tail. As a result, the structure needs
one read port and two write ports per structure (or having
to perform three accesses with one single read/write port
for a time-multiplexed configuration).

Since this design is targeted at low power and area
impact, the access is performed time-multiplexed. That is,
instead of having several read-write ports that can act in
parallel, we have a single read/write port for each structure
so that the set of accesses can be serialized. The lower the
number of ports, the lower the area and power consump-
tion of a SRAM array. The obvious downside of this
alternative is that we considerably increase the overall time
required to perform all the actions.

The functional timing behavior of the unified linked-list is
as follows: Reading a new item involves first reading the
head-tail array to determine the location of the head of a
given queue. Then, we read this item from the SRAM array,
which, at the same time, gives us the pointer of the new
head, which is required to update the head-tail entry in the
first array. At the same time, while the main SRAM array is
accessed, since we know that the old head will become a
new available entry, we can update the free-list (hence, this
access is out of the critical path). Writing a new item
involves, first, in parallel, reading from the head-tail array
the current tail of the queue while reading a new available
entry from the free-list. After that, two consecutive writing
accesses to the main SRAM array are needed: one to write

on, which was the current tail, the index of the new tail
(which is given by the free-list), and one to write the actual
new cells onto what has already become the new tail of the
queue, i.e., the available entry obtained from the free-list.

8.1.1 SRAM Buffer Implications in GHDS Systems

For any GHDS configuration, we must observe two main
issues. First, the cells coming from the DRAM memory
system of a given queue may come out-of-order. Second, for
CFDS, the SRAM must contain additional entries to be able
to hold elements before they are scheduled by the MMA.
The first problem can be easily overcome by implementing
some basic changes to our proposed SRAM structures to
allow them to insert cells from a queue out of its natural
order:

. global CAM: Implementation of writing operations
out-of-order is trivial in this configuration as only
more bits are required in the ordinal tag field.

. unified linked-list: Out-of-order writing operations are
complex inside a linked-list. However, an easy
solution is to implement Q�M linked-lists instead
of Q as M is the number of banks and two operations
on the same bank are always performed in strict
order. The selection of the subqueue can be easily
performed with a round-robin mechanism per
queue.

8.2 SRAM Buffer Performance

8.2.1 RADS SRAM Buffer Limitations

Fig. 13 shows the access time and the area of the different
SRAM implementations for OC768 and OC3072 as a
function of the number of slots of the lookahead. The
required SRAM size depends on the size of the lookahead:
It is maximum for lookahead ¼ 0 and minimum for
lookahead ¼ Q ðB� 1Þ þ 1 (see [29]).

Note that, in the numbers of Fig. 13, we account for
the effect of both t-SRAM and h-SRAM (the area is the
combination of both, while the time is the most
restrictive one).

For the area graphs, we also show the size of the SRAM
structures in MB. The OC768 system SRAM size ranges
between 600 kB (for the minimum lookahead) and 128 kB
(for the maximum lookahead). The OC3072 system SRAM
size ranges between 10.5 MB (for the minimum lookahead)
and 4.0 MB (for the maximum).

For an OC768 system, we need to access a new cell every
12.8 ns (assuming 64 bytes wide cells). We can observe from
Fig. 13 that the access times of all SRAM alternatives are far
below that number, even for the shortest lookahead.
Therefore, as access time is not a concern, we shall focus
on those implementations with a minimum area. For
instance, the global CAM implementation has an overall
area of more than 0.4 cm2 for lookaheads shorter than 100-
200 slots, which could represent a significant fraction of the
overall transistor budget of a medium cost system. On the
other hand, the time-mux unified linked list exhibits an area
smaller than 0.2 cm2 with very small lookaheads and as low
as 0.1 cm2. For this reason, in the rest of the paper, we will
target the time-mux unified linked list SRAM for all OC768
systems.

GARC�IIA-VIDAL ET AL.: A DRAM/SRAM MEMORY SCHEME FOR FAST PACKET BUFFERS 597

For an OC3072 system, we need to access a new cell

every 3.2 ns, which is a significantly harder constraint to

meet, taking into account that the SRAM buffers are now

larger. Indeed, if we look at Fig. 13, we can clearly

appreciate the fact that no SRAM implementation is able

to comply with the 3.2 ns target (even for the longest

lookaheads). The fastest implementation is the global CAM,

which has an access time slightly higher than 7 ns, and that

for extremely long lookahead delays. Furthermore, if we

look at the area results for the different alternatives, we can

observe that all the configurations exhibit areas larger than

2 cm2, which could be another limiting factor of design even

for the budget of high-end systems. As the access time is

clearly the constraint for OC3072, for the rest of the paper

we will use the global CAM implementation (the fastest) for

evaluation purposes.

8.2.2 RBAU Performance Improvements

Fig. 14 allows us to demonstrate the performance benefits of

using RBAU instead of RADS and CFDS. It shows the area (of

both h-SRAM and t-SRAM) and most restricting access time

for OC768 and OC3072 for the maximum lookahead accord-

ing to the data granularity. Again, the number of queuesQ is

128 for the OC768 system and 512 for the OC3072 system. We
assume the number of banks M to be 256.

We should remember that RBAU should always leverage
smaller areas and shorter latencies than CFDS for a given
configuration since RBAU does not need the extra SRAM
entries needed by CFDS, used to accommodate the bounded
(yet, still significative) level or reordering of memory
accesses. As shown previously, this improvement comes
at the cost of a very small percentage of packet losses (when
CFDS was targeted at granting zero packet losses).

There are two main conclusions that can be inferred from
the results in Fig. 14. First, one can see the evident
advantages of either CFDS and RBAU relative to RADS.
For an OC768 (in which area is the main factor of merit), a
RBAU system with b ¼ 2 achieves an area 2.3X smaller than
RADS and 10 percent smaller than CFDS. For b ¼ 1, the
differences are even greater (4.1X compared to RADS, 1.4X
compared to CFDS). Note that it is not always possible to
keep decreasing the main memory data granularity as we
may be ultimately limited by the main bus cycle time.
However, for OC768, a DRAM cycle time of 12.8 ns would
be perfectly affordable.

However, the especially significant gains are for the
OC3072 system. An RBAU system with b ¼ 8 is compliant

598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 13. h-SRAM area and access time as a function of the lookahead for the RAIDS scheme (Q = 128, B = 8 for OC768 and Q = 512, B = 32 for

OC3072).

with the requirements of buffering packets at 160 Gbps as

the access time is lower than 3.2 ns. For instance, the CFDS

system requires a lower granularity (b ¼ 4) to match the

same requirements, putting more pressure on the DRAM

memory system performance (as it requires a shorter main

bus cycle time).
Moreover, this is accomplished with an affordable area

(less than 0.75 cm2 overall and as low as 0.37 cm2 if we keep

decreasing the granularity to the minimum value). This

contrasts strongly with its RADS counterpart, which is not

able to access data in 7 ns (hence, not being compliant for an

OC3072 design), even with a delay of more than 50 �s and

the nonirrelevant area of 2 cm2 (almost the size of the

Pentium IV or a 90 nm version of IBM’s cell chip, which has

an die size of 214 mm2).
The second important conclusion is that there is an

optimal value of b for a given CFDS implementation. The

reason for this is the trade-off between the SRAM size

required to tolerate the unpredictability of arrivals from the

arbiter—which is proportional to b—and the SRAM size

required to absorb the level of reordering of the accesses

from the DRAM—which is proportional to 1=b—(see [17]).
RBAU does not suffer from this shortcoming as it presents

a trade-off between packet loss percentage and reordering

size. At the cost of a very small probability of packet losses, we

can still keep reducing the data granularity to match the

timing and bandwidth specifications.

8.2.3 Scalability for Future Implementations

A very interesting experiment is to determine the scalability
of our proposed system for a near future scenario. There are
two parameters that determine whether a given GHDS
implementation is compliant with the timing targets of a
packet buffer. The first one is the characteristics of the link
rate (the packed bandwidth), while the other is the
technological process used to implement the SRAM buffers.

In order to extrapolate the future scalability, we
measured the maximum number of queues tolerated by
GHDS, varying three different parameters: the granularity b,
the link rate, and the technological process. For the link
rates, we selected, in addition to OC768 and OC3072, a near
future value of OC12288 (640 Gbps). For the technological
processes, in addition to 130 nm, we selected the close to
current state-of-the-art 60 nm process (to be featured next
year) and the following one (45 nm). Note that we did not
consider 90 nm, which is the current state-of-the-art
process, as we are interested in future projections.

Fig. 15 shows the maximum number of queues that the
different SRAM buffer approaches can afford, taking into
account the access time constraints (12.8 ns of maximum
delay for OC768, 3.2 ns for OC3072, and 0.8 ns for
OC12288). The graphs also show the effect of using different
technological processes (130, 60, and 45 nm). It is expected
that the higher the link rate, the lower the number of
queues. At the same time, the more advanced the
technological process, the higher the number of queues.
On the other hand, for CFDS, we should expect a trade-off

GARC�IIA-VIDAL ET AL.: A DRAM/SRAM MEMORY SCHEME FOR FAST PACKET BUFFERS 599

Fig. 14. SRAM area (both h-SRMA and t-SRMA) and access time as a function of the granularity, for RADS, CFDS, and RBAU configurations.

in the granularity b as too low a granularity may produce
too high a level of disorder between transactions that
override the granularity reduction benefits. Such a trade-off
does not exist for the more general GHDS since we are no
longer looking for a zero packet loss rate. However, we
should take into account that some values of b cannot be
feasible for certain link rates as the limiting factor ends up
being the DRAM main memory system cycle time. For
instance, assuming a DDR3 memory system at 1 GHz, we
would not be able to implement an OC12288 system with
b ¼ 1 as the required cycle time would be 0.8 ns.

As shown in the figure, RBAU (compared to RADS)
allows around four more queues for OC768, around 16 times
more queues for OC3072, and around 50 times more queues
for OC12288. The differences remain quite constant for the
different technology processes. Additionally, RBAU, com-
pared to CFDS, allows around two times more queues for
OC768, around three times more queues for OC3072 and,
finally, around six times more queues for OC12288 (with a
realistic granularity of b ¼ 2).

Another very interesting consequence that we may
observe from the graphics is that, if we have a target of
around 2,000 queues, 130 nm is good enough for OC768,
while 65 nm is good enough for OC3072. On the other hand,
we may observe that there is a dramatic change in behavior
for OC12288. We may observe that, even for the best
technological process (45 nm), the number of maximal queues
we can handle is low (less than 32 for CFDS and less than 200
for RBAU and a reasonable granularity). This last observation
poses the interesting challenge of designing a new system that

is able to handle hundreds of queues for OC12288 as it is clear
that RBAU benefits reach their limits due to the advance of
link rate technology and the CMOS scalability problems.
Ultimately, it becomes evident that the performance of high-
performance routers may become limited by the packet buffer
performance in a span of five years.

9 RELATED WORK

Virtual Output Queuing was proposed for first time in [43]
(with the name of “dynamically-allocated multi-queue
buffers”). The amount of buffering and the line rates
considered in this seminal paper were far lower than those
required for our target application: high-speed backbone
routers. For OC192 (10 Gbps) line rates, a time slot is lower
than the random access time of DRAM. Nikologiannis and
Katevnis [37] propose a design using DRAM only for a
VOQ buffer architecture working at this line rate. The
proposed design uses out-of-order memory access in order
to reduce the number of bank conflicts, although it does not
guarantee zero miss loses. Hasan et al. [22] propose
techniques that exploit row locality whenever possible in
order to enhance the average-case DRAM bandwidth.
However, this scheme may have a significant miss prob-
ability for special traffic patterns.

For faster line rates, a hybrid SRAM-DRAM implemen-
tation of a VOQ buffer using ECQF for the h-MMA is
discussed in [29]. This is the starting point of our work.

There are many proposals that exploit the bank
organization of DRAM memory [40], [46], [27]. This is

600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 15. Maximum number of queues for OC768, OC3072, and OC12288.

especially true in the vector processor domain. The novelty
of our proposal resides in the application of this technique
to the context of fast packet buffering. For our RBAU
system, we assumed a theoretically ideal random hashing
mechanism for distributing cells across memory banks. In a
practical implementation, we could use many of the
proposed hashing mechanisms found in the literature.

10 CONCLUSIONS

In this paper, we have proposed a general design for hybrid
SRAM/DRAM packet buffers. We have shown that two
previously proposed hybrid SRAM/DRAM packet buffer
designs ([29] and [17]) can be seen as particular cases of our
general scheme.

Based on this general scheme, we have proposed a
Random BAU (RBAU) Scheme that randomly chooses a
DRAM memory bank for every transfer between SRAM and
DRAM. The numerical results show that this scheme would
require an SRAM size almost an order of magnitude lower
than the scheme given in [29], without the memory
fragmentation problem of the scheme proposed in [17].

Although the RBAU Scheme proposed in this paper does
not have a zero miss probability, the results support the
conclusion that the randomization process among memory
banks allows an extremely low miss probability to be
guaranteed for any traffic pattern. We think that our design
may be useful for building very large and fast future packet
switches.

We are planning to use Cacti 4.0 (since a near release has
been recently announced) to add even better tech process
projections and include also power consumption numbers.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education of
Spain under grants TEC2004-06437-C05-05 and TIN2004-
07739-C02-01, by the European NoE EuroNGI, and by a
grant from IBM.

REFERENCES

[1] Altera, “Linear Feedback Shift Register Megafunction,” Dec. 2001,
http://www.altera.com/literature/sb/sb11_01.pdf.

[2] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router
Buffers,” ACM SIGCOMM, Aug. 2004.

[3] S.B. Murkherjee, D. Danerjee, and A. Murkherjee, “A Generalized
Processor Sharing Approach to Flow Control in Integrated
Services Networks: The Multiple-Node CAS,” IEEE/ACM Trans.
Networking, vol. 4, pp. 684-696, 1996.

[4] V. Bollapragada, R. White, and C. Murphy, Inside Cisco IOS
Software Architecture. Cisco Press, July 2000.

[5] C. Chang, D. Lee, and Y. Jou, “Load Balanced Birkhoff-von
Neumann Switches, Part I: One-Stage Buffering,” Computer
Comm., vol. 25, pp. 661-622, 2002.

[6] Y. Chen and J. Turner, “WDM Burst Switching For Petabit
Capacity Routers,” Proc. Military Comm. Conf. (MILCOM), pp. 968-
973 1999.

[7] Cisco, “Cisco Carrier Router System,” http://www.cisco.com/
en/US/products/ps5763/index.html, 2005.

[8] J. Corbal, R. Espasa, and M. Valero, “Command-Vector Memory
System,” Proc. IEEE Parallel Architectures and Compilation Techni-
ques (PACT ’98), Nov. 1998.

[9] C. Crisp, “Provisioning Internet Backbone Networks to Support
Latency Sensitive Applications,” PhD dissertation, Stanford Univ.,
June 2002.

[10] R. Crisp, “Direct Rambus Technology: The New Main Memory
Standard,” IEEE Micro, vol. 7, pp. 18-28, Nov./Dec. 1997.

[11] A. Dhamdhere, H. Jiang, and C. Dovrolis, “Buffer Sizing for
Congested Internet Links,” Proc. IEEE Infocomm, Mar. 2005.

[12] M.D.K. Hunter and I. Andonovic, “Buffering in Optical Packet
Switches,” J. Lightwave Technology, vol. 16, pp. 2081-2094, Dec.
1998.

[13] W. Eatherton, “Router/Switch Architecture with Networking
Specific Memories,” Proc. Memory, Storage, and Serial Interface
Technology Conf. (MemCon 2002), Oct. 2002.

[14] Fujitsu, “256M bit Double Data Rate FCRAM, MB81N26847B/
261647B-50/-55/-60 data sheet,” http://www.fujitsu.com, 2004.

[15] J. Gabriagues and J. Jacob, “OASIS: A High-Speed Photonic ATM
Switch—Results and Perspectives,” Proc. 15th Int’l Switching
Symp., pp. 457-461, Apr. 1995.

[16] J. Garcı́a, L. Cerdà, and J. Corbal, “A Conflict-Free Memory
Banking Architecture for Fast Packet Buffers,” Technical Report
UPC-DAC-2002-50, Politechnic Univ. of Catalonia, July 2002,
http://www.ac.upc.es/recerca/reports/DAC/2002.

[17] J. Garcı́a, J. Corbal, L. Cerdà, and M. Valero, “Design and
Implementation of High-Performance Memory Systems for Future
Packet Buffers,” Proc. MICRO ’03, Dec. 2003.

[18] J. Garcı́a, M. March, L. Cerdà, J. Corbal, and M. Valero, “On the
Design of Hybrid DRAM/SRAM Memory Schemes for Fast
Packet Buffers,” Proc. IEEE High Performance Switching and Routing
(HPSR), pp. 15-19, Apr. 2004.

[19] G. Iannaccone, M. May, and C. Diot, “Aggregate Traffic
Performance with Active Queue Management and Drop from
Tail,” SIGCOMM, vol. 37, pp. 277-306, 2001.

[20] G. Glykopoulos, “Design and Implementation of a 1.2 Gbit/s
ATM Cell Buffer Using a Synchronous DRAM Chip,” Technical
Report 221, ICS-FORTH, July 1998, http://www.ii.uib.no/
~markatos/avg/publications.html.

[21] C. Guillermot, “Transparent Optical Packet Switching: The
European ACTS KEOPS Project Approach,” J. Lightwave Technol-
ogy, vol. 16, no. 12, pp. 2117-2133, Dec. 1998.

[22] J. Hasan, S. Chandra, and T. Vijaykumar, “Efficient Use of
Memory Bandwidth to Improve Network Processor Throughput,”
Proc. 30th Ann. Int’l Symp. Computer Architecture (ISCA), June 2003.

[23] Hitachi, “Hitachi 166 Mhz SDRAM,” Hitachi HM5257XXb series,
2000, http://semiconductor.hitachi.com/dram/dram_modules.
htm.

[24] D. Hunter, “WASPNET: A Wavelength Switched Packet Net-
work,” IEEE Comm. Magazine, pp. 120-129, Mar. 1999.

[25] D. Hunter, W. Cornwall, T. Gilfedder, A. Franzen, and I.
Andonovic, “SLOB: A Switch with Large Optical Buffers for
Packet Switching,” IEEE/OSA J. Lightwave Technology, vol. 16,
no. 10, Oct. 1998.

[26] A.F.I. Chlamtac and T. Zang, “Lightpah Routing in Large WDM
Networks,” IEEE J. Selected Areas in Comm., vol. 14, pp. 909-913,
June 1996.

[27] D. Harper and J. Jump, “Performance Evaluation of Vector
Accesses in Parallel Memories Using a Skewed Storage Scheme,”
Proc. 13th Int’l Symp. Computer Architecture (ISCA), pp. 324-328,
1986.

[28] Infineon Technologies, “RLDRAM. High Density, High-Band-
width Memory for Networking Applications,”http://www.
infineon.com, 2004.

[29] S. Iyer, R. Kompella, and N. McKeown, “Designing Buffers for
Router Line Cards,” Technical Report TR02-HPNG-031001,
Stanford Univ., Nov. 2002, http://klamath.stanford.edu/
~sundaes/publications.html.

[30] Juniper, “Juniper T640,” http://www.juniper.net/products/
tseries, 2005.

[31] J.S.K. Dolzer, C. Gauger, and S. Bodamer, “Evaluation of
Reservation Mechanisms for Optical Burst Switching,” AEU Int’l
J. Electronics and Comm., vol. 55, no. 1, 2001.

[32] M. Karol, “Shared-Memory Optical Packet (ATM) Switch,”
Multigigabit Fiber Comm. Systems, vol. 2024, pp. 212-222, 1993.

[33] I. Keslassy, S. Chuang, and N. Mckeown, “Architectures and
Algorithms for a Load-Balanced Switch,” Technical Report TR03-
HPNG-061501, Stanford Univ., June 2003.

[34] I. Keslassy, S. Chuang, and N. McKeown, “A Load-Balanced
Switch with an Arbitrary Number of Linecards,” Proc. IEEE
Infocom, Mar. 2004.

GARC�IIA-VIDAL ET AL.: A DRAM/SRAM MEMORY SCHEME FOR FAST PACKET BUFFERS 601

[35] I. Keslassy, S. Chuang, K. Yuu, D. Miller, M. Horowitz, O.
Solgaard, and N. McKeown, “Scaling Internet Routers Using
Optics,” ACM SIGCOMM, Aug. 2003.

[36] C. Minkenberg, R. Luijten, W. Denzel, and M. Gusat, “Current
Issues in Packet Switch Design,” Proc. HotNets-I, Oct. 2002.

[37] A. Nikologiannis and M. Katevenis, “Efficient Per-Flow Queueing
in DRAM at OC-192 Line Rate Using Out of Order Execution
Techniques,” Proc. IEEE Int’l Conf. Comm., June 2001.

[38] C. Quiao and M. Yoo, “Optical Burst Switching (OBS): A New
Paradigm for an Optical Internet,” J. High Speed Networks, vol. 8,
no. 1, pp. 69-84, 1999.

[39] R. Ramaswami and K.N. Sirvajan, Optical Networks. San Mateo,
Calif.: Morgan Kaufman, 1990.

[40] B. Rau, M. Schlansker, and D. Yen, “The Cydra 5 Stride-
Insensitive Memory System,” Proc. Int’l Conf Parallel Processing,
pp. 242-246, 1989.

[41] P. Shivakumar and N. Jouppi, “Cacti 3.0: An Integrated Cache
Timing, Power and Area Model,” technical report, Compaq
Computer Corp., Aug. 2001, http://research.compaq.com/
wrl/people/jouppi/CACTI.html.

[42] R. Spanke, “Architectures for Large Nonblocking Optical Space
Switches,” IEEE J. Quantum Electronics, vol. 22, no. 6, pp. 964-967,
June 1986.

[43] Y. Tamir and G. Frazier, “High-Performance Multi-Queue Buffers
for VLSI Communication Switches,” Proc. 15th Int’l Symp.
Computer Architecture (ISCA), pp. 343-354, May 1988.

[44] S. Tariq, M. Dhodhi, J. Palais, and R. Ahmed, “Next Generation
DWDM Networks: Demands, Capabilities and Limitations,” Proc.
Canadian Conf. Electrical and Computer Eng., pp. 1003-1007, 2000.

[45] J. Turner, “Terabit Burst Switching,” J. High Speed Networks, vol. 8,
pp. 3-6, 1999.

[46] M. Valero, T. Lang, J. LLaberia, M. Peiron, E. Ayguade, and J.
Navarro, “Increasing the Number of Strides for Conflict-Free
Vector Access,” Proc. 19th Int’l Symp. Computer Architecture (ISCA),
pp. 372-381, May 1992.

[47] M. Valero, T. Lang, M. Peiron, and E. Ayguade, “Increasing the
Number of Conflict-Free Vector Access,” IEEE Trans. Computers,
vol. 44, no. 5, pp. 634-646, May 1995.

[48] D. Wischik and N. McKeown, “Part I: Buffer Sizes for Core
Routers,” Computer Comm. Rev., vol. 35, no. 3, pp. 75-78, 2005.

[49] Xilinx, “Pseudo Random Number Generator,” Dec. 2001, http://
www.xilinx.com/xcell/xl35/xl35_44.pdf.

[50] C.Q.Y. Chen and X. Yu, “Optical Burst Switching (OBS): A New
Area in Optical Networking Research,” IEEE Network Magazine,
vol. 18, no. 4, pp. 16-23, 2004.

[51] W. Zhong and R. Tucker, “Wavelength Routing-Based Photonic
Packet Buffers and Their Applications in Photonic Packet Switch-
ing Systems,” J. Lightwave Technology, vol. 16, no. 10, pp. 1737-45,
Oct. 1998.

Jorge Garcı́a-Vidal graduated as a telecomu-
nications engineer in 1988 from the Polytechnic
University of Catalonia (UPC), Barcelona, and
received the PhD degree in telecommunications
(UPC, 1992, Best UPC Telecommunication
Thesis Award). During 1992-1993, he was a
visiting scientist at the University of Arizona.
Since 2003, he has been a full professor in the
Computer Architecture Department of UPC. His
current research interests are ad hoc and sensor

networks, design of networking equipment, and performance evaluation
of computer systems. He is a member of the IEEE.

Maribel March received the engineering degree
in computer science in 2002 from the Polytech-
nic University of Catalonia (UPC). The same
year, she joined the Computer Architecture
Department of UPC as an assistant professor.
Her PhD advisor is Jorge Garcı́a-Vidal and her
PhD co-advisor is Mateo Valero. Her thesis is
about high-speed switching and routing. Mainly,
she is working o the design of fast packet
buffers.

Llorenç Cerdà received the engineering degree
in telecommunications in 1993 from the Techni-
cal University of Catalonia (UPC). He joined the
Computer Architecture Department of UPC in
1994, where he received the PhD degree in
2000 and, currently, he is an assistant professor.
He has published a substantial number of
papers and participated in several industry and
EU funded research projects in the fields of
ATM, IP micromobility, wireless networks, and

fast packet buffers. He is a member of the IEEE.

Jesús Corbal received the MS degree in
electrical engineering from the Universitat Poli-
tecnica de Catalunya in 1997. He went on to
receive the PhD degree in computer science
from the Department of Computer Architecture
at the same university in 2002. He worked as an
assistant teacher for the Department of Compu-
ter Architecture in Barcelona for three years,
focusing his research on vector architectures,
memory system design and multimedia accel-

eration. He is currently working for BSSAD, VSSAD (DEG) at Intel Labs
Barcelona.

Mateo Valero received the PhD degree from the
Polytechnic University of Catalonia (UPC) in
1980. He is a professor in the Computer
Architecture Department at UPC. His research
interests focus on high-performance architec-
tures. He has published approximately 400
papers on these topics. He is the director of
the Barcelona Supercomputing Center, the
National Center of Supercomputing in Spain.
Dr. Valero has been honored with several

awards, including the King Jaime I by the Generalitat Valenciana and
the Spanish national award “Julio Rey Pastor” for his research on IT
technologies. In 2001, he was appointed a fellow of the IEEE, in 2002,
an Intel Distinguished research fellow and, in 2003, a fellow of the ACM.
In 1994, he became a founding member of the Royal Spanish Academy
of Engineering. In 2005, he was elected Correspondant Academic of the
Spanish Royal Academy of Sciences, and his native town of Alfamén
named their public college after him.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

