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Abstract—In scheduling a large number of user jobs for parallel execution on an open-resource Grid system, the jobs are subject to

system failures or delays caused by infected hardware, software vulnerability, and distrusted security policy. This paper models the risk

and insecure conditions in Grid job scheduling. Three risk-resilient strategies, preemptive, replication, and delay-tolerant, are

developed to provide security assurance. We propose six risk-resilient scheduling algorithms to assure secure Grid job execution

under different risky conditions. We report the simulated Grid performances of these new Grid job scheduling algorithms under the

NAS and PSA workloads. The relative performance is measured by the total job makespan, Grid resource utilization, job failure rate,

slowdown ratio, replication overhead, etc. In addition to extending from known scheduling heuristics, we developed a new space-time

genetic algorithm (STGA) based on faster searching and protected chromosome formation. Our simulation results suggest that, in a

wide-area Grid environment, it is more resilient for the global job scheduler to tolerate some job delays instead of resorting to

preemption or replication or taking a risk on unreliable resources allocated. We find that delay-tolerant Min-Min and STGA job

scheduling have 13-23 percent higher performance than using risky or preemptive or replicated algorithms. The resource overheads

for replicated job scheduling are kept at a low 15 percent. The delayed job execution is optimized with a delay factor, which is

20 percent of the total makespan. A Kiviat graph is proposed for demonstrating the quality of Grid computing services. These risk-

resilient job scheduling schemes can upgrade Grid performance significantly at only a moderate increase in extra resources or

scheduling delays in a risky Grid computing environment.

Index Terms—Grid computing, job scheduling heuristics, genetic algorithm, replication scheduling, risk resilience, NAS and PSA

benchmarks, performance metrics, distributed supercomputing.
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1 INTRODUCTION

REALISTIC platforms for Grid computing are facing
security threats from network attacks and system

vulnerability. Computational Grid is often used to execute
a large number of user jobs at dispersed resource sites.
Some of the jobs may be dispatched to multiple machine
sites for distributed parallel execution. Thus, job outsour-
cing becomes a major incentive in collaborative Grid
computing. Specifically, in a large-scale computational
Grid, distributed resource clusters work at different
autonomous domains (ADs), as depicted in Fig. 1a. Job
executions are carried out across the domain boundaries,
meaning that the jobs from one AD could be outsourced to
another AD for faster execution [6], [31].

However, a major hurdle of such job outsourcing is

caused by network security threats [2]. If a Grid site is

under attack, its resources may not be accessible from

outside of the domain. Thus, a job dispatched to that site
may be delayed or failed after system infections leading to
machine crashes. To enable more effective job scheduling, it
is desirable to know a priori the security demand (SD) from
Grid jobs, as shown in Fig. 1b and the trust level (TL)
assured by a resource provider at the Grid site.

In a real life situation, asking the Grid users to fully
specify their SD is an unreasonable burden. This situation is
illustrated with a simple Grid job submission request in
Fig. 1b. In addition to the request for computing power
under deadline and budget limits, the user wishes to simply
express an SD level from high to low. Obviously, the
scheduling of jobs has to take the risk factor into account. A
practical Grid job scheduler must be security-driven and
resilient in response to all risky conditions. The scheduler
must consider the risks involved in dispatching jobs to
remote sites. Furthermore, risk-resistant strategies are
needed to properly manage the risks it may take. However,
despite the fact that many heuristics have been suggested
for large-scale job scheduling [8], [10], previously proposed
heuristics were not applicable in a risky environment.

In this paper, we have tackled the Grid heterogeneity
problem by developing security assurance and risk-resilient
strategies and offer eight job-scheduling algorithms for use
under various risky conditions. We design three risk-
resilient scheduling strategies, namely, preemptive, replica-
tion-based, and delay-tolerant. We then incorporate them into
existing heuristics and genetic algorithms. Furthermore, we
observe that, while these heuristics or genetic algorithms
are easy to implement with low complexity, security
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assurance and, thus, better performance could be achieved,

if we build the risk-resistant features into Grid job

scheduling algorithms.
In this regard, we propose a new fast GA that has two

salient features: 1) Its search is history-sensitive and, thus,

converges much faster than a traditional GA and 2) its

encoding is based on the messy concept, which is shown to

be effective in protecting good building blocks in the

chromosomes [27]. Moreover, unlike a traditional GA, the

messy encoding scheme can inherently handle the three

resilient scheduling strategies. In summary, this paper has

made basic fundamental contributions in three aspects:

1. Design and evaluation of three Grid job-scheduling
strategies, which can be applied to enable security
assurance in existing heuristic or genetic algorithms.
These risk-resilient scheduling algorithms are ex-
perimentally proven effective in real-life implemen-
tations on Grids or on any distributed computing
systems.

2. Design and evaluation of a new space-time genetic
algorithm (STGA) based on the messy encoding
concept with a space-time guided search mechan-
ism. Risk-resilient strategies are applied to provide
security assurance for trusted Grid computing.

3. After extensive performance study of eight job
scheduling algorithms, we reveal their relative
strengths, weaknesses, and applicability in scalable
Grid computing. In particular, our findings suggest
that it is more resilient to tolerating job delays by
calculated risky conditioning, instead of resorting to
job preemption, replication, or assuming risky
operations in Grid computing systems.

The performance of the heuristic algorithms and the

STGA are evaluated with two practical workloads: NAS

(Numerical Aerodynamic Simulation) and PSA (Parameter-

Sweep Application). We use a set of performance metrics for

Grids, namely, the makespan, average turnaround time, Grid

utilization, slowdown ratio, replication overhead, and failure

rate. We propose to use a five-dimensional Kiviat graph to
assess the quality of Grid services (QoGS) in Section 6.2.

The rest of the paper is organized as follows: Section 2
presents a brief review of related work and identifies our
unique approach to solving the scheduling problem over
risky Grid platforms. In Section 3, we present a job failure
model and specify the design strategies applied to heuristic
scheduling driven by security demand. In Section 4, we
describe our new STGA scheme. We present performance
metrics for Grids and report extensive simulation results in
Section 5. We reveal the relative performance and scalability
of the eight scheduling algorithms with Kiviat graphs in
Section 6. Finally, we summarize the contributions and
make some remarks on further research in Section 7.

2 RELATED WORK AND OUR NEW APPROACH

We first review related work on trusted and security-aware
resource allocation in computational Grid. Then, we
introduce our unique approach to solving the security
problem in Grid job scheduling.

2.1 Related Previous Work

As pointed out by many researchers [3], [17], [30], trust and
security are two different notions. Security is a notion
associated with the assurance of secure computing services
by a Grid site or by a cluster node, whereas trust is reflected
by the behavior of a resource node. These two terms are
correlated by many attributes to be discussed in Section 2.2.
In our approach, we consider both the security demand of
user jobs and the trust index of resource nodes. We focus on
how to evaluate the trust index of machine nodes and how
they affect the successful execution of user jobs. We use a
defensive and corrective approach—preventing or avoiding
security-triggered failures from happening or damaging
user jobs, if trust assurance could be established to match
with user demands at the job scheduling time.

In the past, job scheduling has been primarily suggested
for supercomputers, real-time, and parallel computers [22],
[26], [29], [33]. In security-aware job scheduling, the
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Fig. 1. The Grid job outsourcing environment and security demand in job submission. (a) Grid job-scheduling scenario. (b) Grid job submission

interface.



scheduling process becomes much more challenging [19],
[40], [42]. Unfortunately, well-known scheduling ap-
proaches for Grid computing largely ignore this security
factor, with only a handful of exceptions. Most notably,
Azzedin and Maheswaran [3] suggested integrating the
trust concept into Grid resource management. They
proposed a trust model that incorporates the security
implications into scheduling algorithms. In our approach,
we focus on how the risk brought the security concerns and
how they affect the overall performance of the jobs in the
system.

Humphrey and Thompson [19] provided usage models
for security-aware Grid computing. However, they did not
elaborate on how a scheduler should be designed to address
the security concerns in collaborative computing over
distributed cluster environment. Abawajy [1] suggested a
distributed scheme to provide fault tolerance for job
execution in a Grid environment. This scheme replicates
jobs at multiple sites to guarantee successful job executions.
Another related previous research effort is by Dogan and
Ozguner [13], [14].

Hwang and Kesselman [23] pointed out that the Grid
environment is inherently unreliable by nature. They
provided a failure detection service and a flexible failure-
handling framework as a fault-tolerant mechanism on the
Grid. They tackle the problem by providing a remedial
method—remedy jobs when failure is observed. In [42],
[43], Xie et al. studied security-aware scheduling for cluster
and Grid applications. Their studies address the applica-
tions demand of both real-time performance and security.

We briefly review below the study of resource allocation
and job scheduling in computational Grid. Berman et al.
developed adaptive application level scheduling (AppLeS)
for Grid computing [7]. In AppLeS, each application is
assigned with a scheduling agent to monitor available
resources and generate job schedule. Buyya et al. proposed
a deadline and budget constrained scheduling model [9].
They used a computational economy framework for
regulating the supply and demand for resources and
allocating them for applications based on the users quality
of services requirements. In et al. proposed a framework for
policy constraint enforcement strategies for Grid job
computing [25]. Wu and Sun [41] developed a Grid Harvest
Service (GHS) scheduler to monitor long-running applica-
tion progress and detect possible resource abnormality.
Other researchers study dynamic [16], QoS-driven [18],
coallocation [11], and decoupled [12] scheduling methods of
Grid job scheduling.

Our work is also built upon research that tackles trust
management. In [44], Xiong and Liu suggested a P2P
reputation system called PeerTrust, which maintains a
composite trust value for each peer. Other researchers have
proposed methods for the propagation and management of
trust and distrust. Lin et al. [30] assumed that trust
condition could be derived from Grid security enhance-
ment. The distinction in our approach lies in an optimized
matching of security requirements and supports judicious
Grid site mapping for user jobs. This obviously transcends
the maintenance of reputation values to provide feedback to
Grid sites.

There have been several recent advancements in tackling
the replication-based job scheduling problem. Bansal et al.
[4] suggested minimizing the turnaround time of a parallel

application using replication. Their scheme works by
judiciously examining the opening holes in an existing
unreplicated schedule, followed by filling the holes with
critical jobs. Bajaj and Agrawal [5] recently reported a
replication approach to minimize the makespan of a parallel
application in a heterogeneous distributed system. How-
ever, the TANH algorithm is designed only for precedence-
constrained jobs and is thus unsuitable for large-scale
parallel applications.

2.2 Our New Approach

Our work is built upon the related work on Grid security,
trust management, and job scheduling. Our approach
matches trust requirements by user jobs with a judicious
security index at Grid sites, which extends security-aware
Grid job scheduling in the direction of delay tolerance and
job replications. We reveal the trade-offs between speed
performance and security assurance. We look deeper into
replication-based algorithms and delay-tolerant strategies,
which were largely ignored in the past. This motivates us
to design new heuristics and genetic algorithms for
optimized Grid job scheduling under security constraints.

Grid sites may exhibit unacceptable security conditions
and system vulnerabilities [19]. Worry about inevitable
security threats and doubtful trustworthiness of remote
resources has created barriers in trusted job outsourcing to
remote computer platforms. In mapping jobs onto Grid
sites, we tackle a completely new dimension of security-
related problems. The first step is for a user job to issue a
security demand (SD) to all available resource sites. The trust
model requires assessing the resource site’s trustworthi-
ness, called the trust level (TL) of a node.

The TL quantifies how much a user can trust a site for
successfully executing a given job. A job is expected to be
successfully carried out when SD and TL satisfy a security-
assurance condition (SD � TL) during the job mapping
process. The process of matching TL with SD is similar to
the real-life scenario where the Yahoo! portal requires users
to specify the security level of the login session. On a
realistic platform, both SD and TL are highly loaded
concepts, as depicted in Fig. 2.

Our definition of trust extends from the one defined in
[3], where trust is only associated with the behavior of a
resource site. In this paper, trust level is an aggregation of
both behavior attributes and intrinsic security attributes. The
trust level is an aggregation of five major attributes listed in
Fig. 2a. They are behavior attributes accumulated from the
historical performance of a resource site, such as prior job
execution success rate and cumulative site utilization, and
intrinsic security attributes such as intrusion detection,
firewall, and intrusion response capabilities.

The intrinsic attributes can be measured as intrusion
detection rate, false alarm rate, and intrusion response results
[20], Both behavior and intrinsic attributes change dynami-
cally and they depend heavily on the security policy [36],
accumulated reputation, self-defense capability, attack history,
and site vulnerability, etc. On the other hand, the users may
be concerned in Fig. 2b about the job sensitivity, peer
authentication, etc., in setting up their security demand.

In our earlier work [21], [37], [39], we have proposed a
fuzzy-logic-based trust model to enable the aggregation of
numerous trust parameters and security attributes into easy-
to-use scalar quantities. Specifically, the TL is aggregated

SONG ET AL.: RISK-RESILIENT HEURISTICS AND GENETIC ALGORITHMS FOR SECURITY-ASSURED GRID JOB SCHEDULING 705



through our fuzzy-logic inference process over the
contributing parameters. A salient feature of our trust
model is that, if a site’s trust level cannot match with job
security demand, i.e., SD > TL, our trust model could
deduce detailed security features to guide the site security
upgrade as a result of tuning the fuzzy system.

We propose three risk-resilient strategies, namely, pre-
emptive, replication, and delay-tolerant strategies. The purpose
is to reduce the risk involved in job scheduling. We derive
risk-resilient job-scheduling algorithms, which are specially
tailored for risky Grid environment. In this paper, we
evaluate the performance of the min-min scheduling
heuristic and genetic algorithm to illustrate the main
concept of security binding. The security-driven algorithm
design technique hereby developed can be applied to
modify many other heuristics or genetic algorithms, such
as the max-min, sufferage, or greedy etc. [8], [10].

3 RISK-RESILIENT JOB SCHEDULING

When a remote site is infected by intrusions or by malicious
attacks, that site may not be accessible by outside jobs or by
the global job scheduler. The scheduler has two options to
consider: 1) Abort the job scheduling and reschedule it later.
2) Allow the job’s finish time to be delayed until the security
barricade is removed. Three risk-tolerant strategies and
eight scheduling algorithms are specified below.

3.1 Job Failure and Delayed Execution Models for
Online Job Scheduling

In our model, a job could be delayed or dropped, if the site
TL is lower than the job SD. The SD is a real fraction in the
range ½0; 1� with 0 representing the lowest and 1 the highest
security requirement. The TL is in the same range with 0 for
the most risky resource site and 1 for a risk-free or fully
trusted site. Specifically, we define the following job failure
model as a function of the difference SD� TL between the
job demand and site trust:

1. Job Failure Model. The job failure probability is
modeled by an exponential distribution given in
(1). The failure coefficient � is a fraction number. The
negative exponent indicates failure grows with the
difference SD� TL. The job abortion at a site could
result from severe network attack or inaccessibility
from a security imposed barricade.

P ðcomplete failÞ ¼ 0 if SD � TL
1� e��ðSD�TLÞ if SD > TL:

�

ð1Þ

2. Delayed Execution Model. The probability of a
delayed job execution is given in (2). The parameter
� decides the delayed execution against the differ-
ence caused by temporary resource unavailability. It
is more likely that a job will be delayed versus a job
failing. Thus, the delay coefficient � is less than the
failure coefficient �.

P ðdelayÞ ¼ 0 if SD � TL
1� e��ðSD�TLÞ if SD > TL:

�
ð2Þ

We consider a batch mode scheduling as modeled in
Fig. 3. In our model, we assume a fail-stop execution [35],
meaning that if a job fails on a site, then it will be
rescheduled to restart at another site. Modeling the real-life
scheduling situation, jobs are scheduled in batches. We
assume that all jobs are scheduled independently. The main
purpose of online job scheduling is to minimize the total
execution time of all N jobs, which is often called the
makespan, defined by:

Makespan ¼
MaxifFT ðJiÞjFT ðJiÞ is the finish time of job Jig:

ð3Þ

3.2 Improved Heuristic and Genetic Scheduling
Algorithms

Four online job scheduling strategies are specified below:
These strategies can be applied to any existing heuristics and
genetic algorithms to yield new scheduling algorithms. The
preemptive, replication, and delay-tolerant strategies are all
risk-resilient. Only the risky mode ignores the risk factors as
assumed in conventional heuristics and genetic algorithms.

1. Risky mode. Jobs are scheduled independent of the
risky or failing conditions of the resource site,
meaning taking all the risks that may exist.

2. Preemptive mode. The scheduler preempts a job when
a site is not accessible by the global scheduler, the job is
assumed to be failing to meet the schedule require-
ment, and, thus, migrates to another Grid site.

3. Replicated mode. To play it safe, the scheduler
duplicates the job to be executed at multiple sites,
albeit all of them having SD > TL. All replicas will
stop execution once one of the replicated jobs is
successfully carried out.

4. Delay-Tolerant mode. The scheduler waits a period of
time �i ¼ �Ti for job i, where Ti is the estimated
execution time. The delay factor � indicates the
percentage of time that can be tolerated by the global
scheduler, i.e., the job must be finished within the
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Fig. 2. Attributes affecting the trust level (TL) at the resource site and the

security demand (SD) at the user end. (a) Site trust level from trust

integration reported in [37]. (b) Job security demand.



extended time �i þ Ti. Beyond the tolerable period, the
scheduler reschedules the job to other sites.

Eight security-aware job scheduling algorithms are
introduced in Table 1 under the four strategies defined
above. In this paper, we only apply the risk-resilient
strategies on the min-min algorithm [8] and on a new
STGA (space-time genetic algorithm) to be presented in
Section 4. The applicable algorithms are not restricted to a
particular heuristics applied. The max-min, min-min, suffer-
age, greedy, and genetic algorithms can all apply the
proposed strategies [24]. The word “heuristic” in Table 1
can be replaced by any of the cited heuristic algorithms.

4 SPACE-TIME GENETIC ALGORITHM

In this section, we describe our proposed Space Time Genetic
Algorithm (STGA) for risk-resilient scheduling of many jobs
simultaneously over a large number of Grid sites.

4.1 A Traditional Risk-Taking Genetic Algorithm

A genetic algorithm (GA) is a global search technique, which
maintains a pool of potential solutions, called chromosomes
[45]. The GA produces new solutions through randomly
combining the good features of existing solutions. This
exploratory searching step is achieved by using a crossover
operator, which works by randomly exchanging portions of
two chromosomes [8]. Fig. 4a shows the structure of a
traditional GA, while Fig. 4b illustrates its operations, and a
chromosome encoding scheme is given in Fig. 4c.

Crossover operation globally searches through the
solution space. Another important local search operator is

mutation, which works by randomly changing one of the
genes in a chromosome. Mutation operation leads the
search to get out of a local optimum. There is a selection

process to remove the poor solutions. A value-based
roulette wheel schema is used for selection. This schema
probabilistically generates new population. Elitism, the
property of guaranteeing the best solution to remain in
the population, is also implemented.

The crossover and mutation operators are governed by
their respective probabilities. The whole process is repeated
a number of times, called generations or iterations. Here, each
chromosome array is indexed with the site assignment for a
job. The crossover operator causes random swapping of two
portions of chromosomes. Note that the crossover point is
randomly chosen. A mutation randomly changes the site
assignment of a randomly selected job in an arbitrary
chromosome. The crossover operator is the major facility to
explore the search space to locate good solutions.

4.2 A New Encoding Scheme for Risk-Resilient
Scheduling

Typically, a GA is composed of two main components, which
are problem dependent: the evaluation function and the
encoding schema. The evaluation function measures the quality
of a particular solution. Each solution is associated with a
fitness value, which is represented by the completion time of
the schedule. In this case, the smallest fitness value represents
the best solution. The efficiency of a GA depends on the
encoding scheme applied. The typical chromosome encoding
shown in Fig. 3c suffers from a deficiency—it cannot handle
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Eight Grid Job Scheduling Algorithms Being Evaluated



security assured scheduling. Thus, we propose using the
messy representation [27] as defined in Fig. 5.

Here, a chromosome is a list of ordered pairs (job ID, site
ID). For example, (3, 4) represents the third job being
assigned to the fourth Grid site. The length of each
chromosome can be different. Furthermore, a gene’s value
may be overspecified, i.e., it may appear more than once in a
chromosome with different values. In the scheduling
context, each gene represents a (job, site) pair. The under-
specified genes do not exist in the chromosome. We use a
prespecified template to assign their values. The template is
the best solution found in previous iterations. A randomly
generated template is used for the first iteration.

In Fig. 5, Job 3 and Job 5 are not mapped to any site. By
applying the predefined template, they are scheduled to
Site 2 and Site 3, respectively. In our simulation, the
template is the best solution found so far. We use the cut
and splice operator shown in Fig. 6. Two chromosomes are
randomly selected and a random cut point is chosen on
each of them. Depending on the cut probability chosen, the
two chromosomes are cut randomly. The resulting pieces
are exchanged and spliced together. These operators protect
the good building blocks existing in a chromosome [27].

We use the cut and splice operator shown in Fig. 6 to
replace the crossover operation used for fixed length
encoding. Two chromosomes are randomly selected and a

random cut point is chosen on each of them. Depending on
the cut probability chosen, the two chromosomes are cut
randomly. The resulting pieces are exchanged and spliced
together. These operators protect the good building blocks
existing in a chromosome [27]. The solution generated from
the cut and splice operation may be underspecified. Again,
the template assigns values for underspecified genes, which
guarantees that solutions generated by the cut-and-splice
operation are valid.

4.3 Risk-Resilient Genetic Algorithms

After a number of rounds of evolutions, the genetic
algorithm generates a final solution. Based on the messy
encoding schema, we design three risk-resilient genetic
algorithms:

1. P-STGA. Preemptive genetic algorithms scan the
final solution from left to right on a first come first
serve basis. A job is first scheduled to the site
identified by the leftmost (job, site) pair. The
remaining sites are backups. If a failure is observed
in this site, the job will be migrated to the first
backup site. If more failure is observed, the job will
be migrated to the second backup site until the job is
successfully executed or exhausts all backup sites. In
the worst case, the job will be resubmitted as a new
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Fig. 4. Structure and operations of a traditional genetic algorithm. (a) Structure of a typical GA. (b) Major operations in a GA. (c) A typical

chromosome encoding of a possible solution.

Fig. 5. A messy-encoded chromosome for introducing redundancy

needed for security-assurance and risk resilience.

Fig. 6. Cut and splice operations over the messy-encoded

chromosomes.



job in the next batch. We use a simple example to
illustrate the initial scheduling result of P-STGA in
Fig. 7a, where Job 2 is scheduled to Site 1 and Site 2
acting as two backup sites.

2. R-STGA. A replicated genetic scheme schedules a job
to selected sites. Thus, a job could be scheduled to
multiple sites, albeit all of them satisfying SD > TL.
Once the job is finished at one site, all other sites are
informed to stop the job execution to save computing
power. If the job fails at all sites, it will be resubmitted
as a new job in the next batch. The scheduling result of
R-STGA is illustrated in Fig. 7b.

3. DT-STGA. The initial scheduling result of DT-STGA
is the same as P-STGA. A job is only scheduled to the
leftmost encoded site. The difference is that, once a job
failure is observed, the DT-STGA allows the site to
have a period of time for job recovery. If the job cannot
be recovered, it will be migrated to a backup site.

The fixed-encoded STGA schedules jobs with risks.
Thus, we named the algorithm Risky-STGA, which implies
that they are not risk resilient.

To evaluate the fitness of a messy-encoded chromosome,
we design a probability-based evaluation function. This
new evaluation function estimates the expected execution
time of a job on a site based on the job failure probability.
We use a simple example in Fig. 8 to explain the basic
concept involved. Fig. 8 shows the snapshot of an example
R-STGA job scheduling. A job is dispatched to three sites for
replicated execution. Suppose that the job failure probabil-
ities on three sites are Pfailð1Þ ¼ 0:4, Pfailð2Þ ¼ 0:1, and
Pfailð3Þ ¼ 0:3. If the job starts to execute independently at
time s1, s2, and s3, and if the job is successfully executed,
then the job will be finished at time t1, t2, and t3,
respectively.

In R-STGA, if a job is successfully executed at one site, all
replicas at other sites will stop execution. For example, in

Fig. 8, if the replica on Site 1 succeeds, then the replica on

Site 2 will not start and the replica on Site 3 will stop at

time t1. Therefore, the probability that the job will continue

after time t1 will be Pcontðt1Þ ¼ Pfailð1Þ. In general, in a Grid

of m sites, for a specific site l, the job continues after time tl
only if all previous executed replicas fail. Thus, the

probability that the job will continue after time tl will be:

PcontðtlÞ ¼
Y

1�i�m
ti�tl

PfailðiÞ: ð4Þ

As illustrated in Fig. 8, the execution time of each replica

is broken into multiple pieces by ti (1 � i � m). Each piece

has an execution probability. The expected execution time

EðTlÞ of a replica on an l is calculated by (5), which is

applicable to both P-STGA and DT-STGA.

EðTlÞ ¼ PcontðslÞ � ðts � slÞ þ
X

1�i;j�m
sl�ti<tj�tl
:9tk ;ti<tk<tj

PcontðtiÞ � ðtj � tiÞ;

ð5Þ

where

PcontðslÞ ¼
Pcontðs1Þ l ¼ 1
PcontðtiÞ l 6¼ 1

�

and sl � ti and : 9tj; sl > tj > ti.
The calculated expected times are used to evaluate the

fitness of messy encoded chromosomes.

4.4 Acceleration of the Genetic Search Process

The crux of the high efficiency in our STGA approach is
illustrated in Fig. 9. In general, starting from a set of
randomly generated initial pool of solutions (called the
initial chromosome population), the quality of the best
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Fig. 8. Replicated genetic algorithm calculates the expected job execution time based on job failure probability.



solution in the pool is usually quite low. Over a number of
generations, the solution quality gradually improves. Thus,
the question is how to skip the initial phase of struggling
with bad solutions. Our answer to this question is to make
use of prior scheduling knowledge—the scheduling results
from previous executions.

The justification of this space-time approach is that the
workload submitted to a practical Grid computing platform
usually has some time correlation or temporal locality. That
is, the jobs submitted previously would appear again in the
near future. For instance, a physicist trying to generate some
simulation data today would very likely try them again
tomorrow. Thus, in our STGA, we keep a history table storing
the job specifications and their schedules. The historical data
on scheduling are used to form the initial population when
the GA is invoked. This results in an elevated starting point of
the STGA algorithm, as shown in Fig. 9a.

Fig. 9b shows the Grid PSA benchmark results on the
number of evolutional iterations needed to yield a good
solution with low makespan time for both the GA and
STGA algorithms. The STGA converges after only 50 itera-
tions to a very good solution. The conventional GA takes
thousands of iterations to reach a comparable solution. This
clearly demonstrates the advantage of STGA over the GA in
large-scale Grid computations.

The overall scheduling mechanism of our proposed
STGA is illustrated in Fig. 10. In the lookup table, input
parameters are represented by 3-tuples, corresponding to:
1) the next available times of Grid sites, 2) job execution

time matrix, and 3) job security demands. The 3-tuples of
new input jobs are compared with those in the table entries.
The solutions of those matched 3-tuples are included in the
initial populations.

We map each parameter into a vector and then we use the

vector comparison method to calculate the similarity for each

parameter. Suppose two vectors are aa ¼ ða1; a2; ; . . . ; akÞ and

bb ¼ ðb1; b2; . . . ; bkÞ, the similarity between vectors aa and bb is

defined by:

Similarityða; bÞ ¼ 1�
Pk

i¼1 ai � bik k
maxðai; bi; i ¼ 1; 2; . . . kÞ : ð6Þ

Because the initial population is based on a prior solution,
we expect higher solution quality in the STGA scheme.
Our scheme not only performs evolutionary searching
over the solution space as manifested by the chromosome
population, but also spans over the time period repre-
sented by scheduling history. In simulation experiments,
we use the Min-Min heuristics to schedule a small number
of training jobs to generate the initial lookup table. The
least recently matched entries are replaced by new job
scheduling solutions.

5 SIMULATED PERFORMANCE RESULTS ON NAS
AND PSA WORKLOADS

In this section, we define several performance metrics for
measuring Grid performance. Then, we present the
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Fig. 9. The STGA starts with a high-quality initial population and converges to a good solution in 50 evolutional iterations, as compared with

thousands of iterations needed for a conventional GA starting with a low-quality population. (a) GA versus STGA in terms of iterations. (b) The STGA

converges in 50 iterations.

Fig. 10. Space-time genetic algorithm (STGA) for trusted Grid job scheduling.



simulated benchmark results on scheduling a large number
of user jobs from the commonly tested NAS and PSA
benchmark suites in Grid systems.

5.1 NAS and PSA Workloads and Performance
Metrics

In order to gain practical insights into the effectiveness of
the scheduling approaches, we use two realistic workloads
to test the scheduling effectiveness in a risky Grid
environment.

The NAS Workload. We use the Numerical Aerodynamic
Simulation (NAS) benchmark recorded on the 128-node
iPSC/860 system at the NASA Ames Research Center. This
NAS trace contains 92 days of data gathered in 1993. We
simulate 12 Grid sites with eight sites containing eight
nodes each and the remaining four sites containing 16 nodes
each. The NAS traces key parameters for simulated jobs
—the arrival time, job size [32]. These parameters could be
applied to both the homogenous and heterogeneous
environments. This trace was sanitized to remove the user
specified information and preprocessed to correct for
system downtime. Table 2 summarizes key simulation
parameters used in the NAS benchmark experiments [15].

Parameter-Sweep Application (PSA) Workload. The
parameter-sweep application (PSA) model has emerged as a
killer application benchmark for high-throughput comput-
ing applications in large-scale Grid experiments [10]. The
PSA was designed to model N independent jobs (each with
the same task specification over a different data sets) on
M distributed sites, where N is much greater than M. In our
simulation, we assume that the input to each job is a set of
files and each job only produces a single output file.

The PSA benchmark is ideal to modelN independent jobs
running in the SPMD mode with the same task specification
over different data sets. In Table 2, we have specified the PSA
workload with 10,000 jobs running on 20 simulated Grid sites.
For both the NAS and PSA workloads, the user SD is set
uniformly distributed between 0.3 and 0.9. The site TL is set
uniformly distributed between 0.3 and 1.0. The failure rate
and delay factor are also set with the same values for all
fairness in comparative studies.

Performance Metric Evaluated. To evaluate the schedul-
ing performance, we propose using the following perfor-
mance metrics:

. Average turnaround time. Let N be the total number
of jobs, ci, be the completion time for a single job Ji,

and ai the job arrival time. The average turnaround
time is defined by:

Average job turnaround time ¼
XN
i¼1

ðci � aiÞ=N: ð7Þ

. Makespan. This was defined as maxfci; i ¼ 1; 2; ::Ng
in (3).

. Slowdown ratio. Denote the start time for a single
job Ji as bi, the average waiting time isPN

i¼1 ðci � biÞ=N . The slowdown ratio is the ratio
between the average turnaround time and the
average waiting time. This metric indicates the
contention experienced in a security-aware schedul-
ing algorithms.

Slowdown ratio ¼
PN

i¼1ðci � aiÞ=NPN
i¼1ðci � biÞ=N

¼
PN

i¼1ðci � aiÞPN
i¼1ðci � biÞ

:

ð8Þ

. Job failure rate. When TL < SD, job execution may
fail due to insecure resource sites applied. The
numerator, Nfail, is the number of failed and
rescheduled jobs. The failure rate is thus defined
by the ratio:

Job failure rate ¼ Nfail=N: ð9Þ

. Grid utilization. Defined by the percentage of
processing power allocated to successfully executed
jobs out of the total processing power available of a
global Grid. For replication strategy, only one replica
is counted as a successfully executed job. The Grid
utilization does include processing resources con-
sumed by stopped jobs.

. Replication overhead ratio (ROR). In replicated job
scheduling, let Rreplica be the resources allocated to
replicated jobs and Rtotal be the total resources
allocated to all jobs. ROR measures the percentage
of extra resources needed to execute the job replicas.
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ROR ¼ Rreplica=Rtotal: ð10Þ

5.2 Performance Results over the NAS Workload

We evaluated the performance of eight variants of the
Min-Min heuristic and space-time genetic algorithms with
the NAS trace workload. The simulation results are given in
Fig. 11 for each metric proposed. Fig. 11a shows the
makespan results of eight algorithms. Overall, the P-STGA
and DT-STGA algorithms have the lowest makespan
performance. The R-STGA performs the worst. All others
have essentially the same level of performance. For both the
Min-Min and STGA algorithms, the delay-tolerant strategy
performs better than others and the replication strategy
performs the worst.

The superior makespan performance of the delay-tolerant
algorithms is due to their resilient allocation of jobs to the
machines. Specifically, the overall makespan is not affected
much if the job failures do not trigger a collapse of jobs across
machines. On the other hand, the replication approach is
simply too pessimistic in that it tends to avoid failures
completely, instead of proactively handling them. As a result,
heavy overheads were incurred to prolong the makespan.

Fig. 11b shows the slowdown ratio results. A large
slowdown ratio is observed from the R-STGA algorithm.
A small slowdown ratio is observed on the DT-STGA and
DT-Min-Min algorithms. The superior makespan perfor-
mance of the delay-tolerant algorithms is due to their
resilient allocation of jobs to the machines. Specifically,
the overall makespan is not affected much if the job failures
do not trigger a collapse of jobs across machines. On the

other hand, the replication approach is simply too pessimis-
tic in that it tends to avoid failures completely, instead of
proactively handling them.

Fig. 11c shows the job failure rates of eight algorithms.
Overall, Min-Min heuristic algorithms have lower failure
rates than the space-time genetic algorithms. In particular,
the R-MinMin algorithm has very few job failures, only
6 percent. Furthermore, among the three risky strategies,
replication algorithms always have the lowest failure rate, the
delay-tolerant policies have the medium failure rate, and the
preemptive algorithms have the highest failure rate. Fig. 11d
shows that the DT-STGA algorithm has the highest
utilization and the R-STGA has the lowest utilization.

All other algorithms have comparable utilization rates.
Indeed, a rather uniform utilization rate across all algo-
rithms indicates that failure-avoidance approaches (e.g.,
replication) cannot necessarily save computational resources.
The rationale is that, in using the delay-tolerant algorithm,
the utilization rate can be kept at an acceptable level, while
enhancing the overall performance. In summary, the turn-
around time results are highly correlated with the make-
span results. Thus, the conservative approaches (e.g.,
replication) tend to have longer turnaround times due to
extra computations performed. As to failure rate, a
replicated scheduling approach may expect a lower failure
rate due to redundancy applied.

However, the delay-tolerant algorithm exhibits resilient
behaviors with a moderate level of failures, which does not
necessarily lead to a worse performance. No single
algorithm achieves the highest performance for all metrics.
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Fig. 11. Performance results of using security-assured heuristics and risk-resilient STGA algorithms to schedule 16,000 NAS jobs over 12 simulated

Grid sites. (a) Makespan. (b) Slowdown ratio. (c) Failure rate. (d) Grid utilization.



The delay-tolerant risky algorithm achieves the best in
makespan, turnaround time, slowdown ratio, and Grid
utilization. However, its failure rate is relatively higher
compared with the replicated strategy. The replication
strategy has the lowest failure rate; however, it has the
worst performance in all other metrics.

5.3 Performance Results over the PSA Workload

In Fig. 12, we evaluate the performance of the Min-Min
heuristic and genetic algorithms under the PSA workload.
We simulated the execution of a PSA workload of 10,000 jobs
over 20 Grid sites. Fig. 12a shows the makespan results of all
algorithms. First, compared with the Min-Min algorithms,
the STGA algorithms exhibit shorter makespan. Second,
among all eight algorithms, the Min-Min heuristics algorithm
exhibits the longest makespan. Third, comparing all three
strategies, the delay-tolerant strategy has the shortest make-
span. The replication strategy has the longest makespan.

The PSA workload is irregularly structured, with
massive parallelism at the job level. This is reflected by
the fact that the delay-tolerant algorithm is more robust and
resilient to changes in computational patterns. In Fig. 12b,
large slowdown ratios are observed from two replication
strategies. Small slowdown ratios are observed from the
DT-Min-Min, STGA, and DT-STGA algorithms. Fig. 12c
shows the job failure rates. Overall, the R-Min-Min algorithm
has very few job failures, roughly 8 percent.

Among the three strategies, replication algorithms always
have the lowest failure rate, delay-tolerant algorithms have
the medium failure rate, and preemptive algorithms have
the highest failure rate. In Fig. 12d, the DT-STGA algorithm
has the highest utilization and the R-STGA has the lowest
utilization rate. The NAS workload demands more

computing power than the PSA workload. This translates
to longer turnaround time and larger slowdown ratios.

The makespan and Grid utilization have relatively the
same performance ranking order under both workloads.
The R-MinMin algorithm under the PSA workload has a
much higher slowdown ratio and turnaround time than
those for the NAS workload. The NAS workload is more
balanced in terms of site computing power distribution. The
PSA workload does not enjoy such a nice distribution.
Under both workloads, the R-Min-Min algorithm has the
lowest failure rate. This is due to the fact that every job is
duplicated in both workloads. The higher failure rate of the
DT-Min-Min algorithm under the PSA workload is attrib-
uted to its job irregularity.

5.4 Replication Overhead Ratio and Effect of
Waiting Period

Replicated job execution on different sites is a redundancy
technique to tolerate site failure in a Grid. As seen in previous
sections, the Grid performance in terms of the makespan of all
replicated jobs may not pay off. This is due to the fact that
replicated job execution demands extra resources. Thus, there
exists a trade-off between the costs of enhanced security
resilience and extra resources used. It is useful to consider this
trade-off to work out an appropriate operating range in using
the replicated job scheduling policy.

The defense heterogeneity induces some unacceptable
job schedules by which the waiting is excessively long or
replication is too costly. A practical solution is to aggregate
the job requirements as well as the site capabilities to scalar
quantities TL and SD. Even if the aggregated trustworthi-
ness of a resource site is sufficiently high, jobs dispatched to
such sites can still fail. Consequently, the failed jobs need to
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Fig. 12. Performance results of using security-assured min-min heuristics and risk-resilient STGA algorithms to schedule 10,000 PSA jobs over

20 simulated Grid sites. (a) Makespan. (b) Slowdown ratio. (c) Failure rate. (d) Grid utilization.



be rescheduled. Here, we study the overhead of job
replication of two algorithms: the R-Min-Min and R-STGA.

Based on simulation results under the scalable PSA
workload, the ROR of the R-MinMin and R-STGA algo-
rithms is plotted in Fig. 13 against the job sizes. Here, we
assumed double redundancy by which every risky job is
duplicated one copy for parallel execution. The overhead
ratio measured is essentially flat, independent of the job
sizes. On the average, the R-STGA algorithm uses 25 percent
extra resources for the replicated jobs. There is 15 percent
extra resources for replicated job execution in using the
R-Min-Min algorithm. The R-STGA algorithm uses more
extra resources than even some jobs satisfying SD < TL. This
situation is not allowed in the R-Min-Min algorithm. This
also explains the lower Grid utilization rate in using the
R-STGA algorithm.

The selection of a sufficiently small waiting period (�) is
crucial to the ultimate performance a delay-tolerant algo-
rithm. The waiting period could be sensitive to the applica-
tion structures and, hence, may need to be dynamically
adjusted to avoid waste of resources. To illustrate the effects
of using different waiting periods, we performed additional
experiments by varying the waiting factor �. Fig. 14 plots the
makespan results of using the DT-MinMin and DT-STGA
algorithms in scheduling 2,000 and 5,000 jobs, respectively,
under the PSA workload.

The results indicate that neither a small nor a large delay
leads to a better performance. In other words, the delay
extension cannot be made too short or too long. Indeed, if
the global scheduler allows a short delay, only a small

amount of jobs can benefit from the extension, thus the
performance improvement is not obvious. However, if the
global scheduler allows a long delay, many jobs will take
longer times than expected, thus degrading the global
performance. Fig. 14 plots the effects of delayed job
execution on total makespan performance.

In practice, we find the optimal choice of � ¼ 0:2 at the
bottom of the plotted curves. A polynomial fitting-function
is used to calculate the optimal �. It is interesting to see
� ¼ 0:2 is optimal for both delay-tolerant algorithms. This is
likely due to the compensation for the 20 percent delayed
time with the overhead incurred with implementing the
delay-tolerant algorithms. The above results reported in
Fig. 13 and Fig. 14 are also a good indication of the low
overhead incurred in both the replicated and delay-tolerant
security-aware Grid job scheduling algorithms.

6 RELATIVE PERFORMANCE AND SCALABILITY

ANALYSIS

In this section, we discuss the scaling effects and aggregate
performance of eight job-scheduling algorithms specified in
Table 1, considering their combined strength and weakness
in five performance dimensions.

6.1 Scaling Effects of Workload Size (Number of
Jobs)

The more user jobs injected into a Grid system, the higher
the workload and the longer the time needed to process the
submitted jobs. The performance effects of varying the
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Fig. 13. Replication overhead ratios of two replicated job scheduling algorithms under the scalable PSA workload.

Fig. 14. Effect of the waiting factor � on the makespan of two delay-tolerant job scheduling algorithms under the PSA workload. (a) DT-MinMin

(N ¼ 2; 000). (b) DT-STGA (N ¼ 5; 000).



number of simulated jobs are reported in Fig. 15. Because

the number of jobs in the NAS trace workload is fixed at

20,000, we study the scaling effects only on the PSA

workload. The PSA workload scales from N ¼ 2; 000 to

20,000 jobs in our study over 20 simulated Grid sites.
All simulation parameters follow the setting in Table 2.

With more jobs running the same PSA workload, the

makespan and the slowdown ratio increase with the same

pace, as seen in Fig. 15a and Fig. 15b. The DT-STGA has the

best performance for its capability to tolerate some time

delays with suffering too much in makespan. Furthermore,

the flat job failure rate in Fig. 15c shows the robustness of

these algorithms. The slow increase of Grid site utilization

in Fig. 15d indicates that all algorithms reach their

maximum utilization by job scaling.
The higher slope of the Makespan curve or of the

slowdown ratio shows the lower scalability of a given

algorithm. The flat curves in Fig. 15c and Fig. 15d

demonstrate that the job failure rate and site utilization

are almost independent of the problem sizes. This is due

to the fact that PSA has all independent jobs. The R-Min-

Min algorithm shows the lowest failure rate and the DT-

STGA has the highest site utilization. This is a common

situation for all replication algorithms to have a low

failure rate due to redundancy introduced. The delay-

tolerant algorithms have higher utilization because jobs

are delayed if they are in danger of failing due to

mismatch between the SD and TL.

6.2 Kiviat Graph for Measuring Grid Service Quality

We use the five-dimensional Kiviat graph to measure the

aggregate Grid performance. Each Kiviat graph has five

orthogonal dimensions, each representing one of the

performance metrics defined in Section 5.2. The scales and

ranges of five measures are specified in Fig. 16a. The circle

center represents zero for all measures. The range of

makespan, turnaround time, and slowdown ratio is from zero

to the largest value observed in the experiments. The failure

rate and underutilization rate (1-utilization) are within the

interval ½0; 1�. Fig. 16 contains eight Kiviat graphs, each of

which shows the simulated NAS benchmark performance

of a Grid job scheduling algorithms being evaluated.
These Kiviat graphs provide a holistic view of the

capabilities of each algorithm. Based on visualizing these

graphs, we can select the best approach under practical

constraints in real-life applications. Specifically, the smaller

the shaded area,Ashaded, on the center of the Kiviat graph, the

better the Quality of Grid Services (QoGS) provided by a

scheduling algorithm. The entire circle area,Acircle, provides a

common denominator to compare the relative performance.

Thus, we define below the QoGS of a scheduling algorithm.

This compound performance metric measures the overall

quality on the scheduling algorithm being evaluated.

QoGS ¼ 1�Ashaded

Acircle

� �
� 100%: ð11Þ
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Fig. 15. Scaling effects of the number of jobs on the performance of six security-assured scheduling algorithms in executing scalable PSA workload

over 20 Grid resource sites. (a) Makespan. (b) Slowdown ratio. (c) Failure rate. (d) Grid utilization.



The DT-STGA and DT-Min-Min algorithms achieve the
highest QoGS. This results from the fact that the delayed job
execution can assure better security to gain in all five
dimensions. The R-STGA has the lowest QoGS, as shown
by the largest area in Fig. 16h. The two replicated
algorithms suffer in all five dimensions. Based on these
results, we conclude that the delay-tolerant strategy is
indeed the most resilient job-scheduling algorithm. This
algorithm performs well at all performance dimensions, to
yield the highest QoGS.

From a practical point of view, our approach is more
suitable for use in a dynamic heterogeneous Grid or peer-
to-peer environment because Grid sites join and leave the
system at will and unexpectedly. In summary, the Kiviat
diagrams reveal the overall Grid performance on a given
benchmark suite. We demonstrate here the aggregate
performance results for NAS only. The NAS results reflect
practical computational Grid performance.

6.3 Ranking of Security-Assured Job Scheduling
Algorithms

We summarize in Table 3 the QoGS and the relative
ranking of eight scheduling algorithms for both the NAS
and PSA workloads. The DT-SGTA ranks first for both

workloads. The DT-Min-Min and STGA demonstrate high

performance quality under both workloads. The preemp-

tive and replication algorithms rank low among all six

security-aware algorithms. The implication here is that the

delay-tolerant strategy should be adapted for general-

purpose Grid job scheduling. The replicated algorithms

are used only if the job failure is the primary concern.
The performance of both replicated algorithms is inferior

in all dimensions. One plausible explanation is that the

replicated strategies in an open Grid environment are not

guided by structures known to the scheduler. Specifically,

there is no critical path for the replication algorithms to

follow through in order to select the most critical jobs to

replicate with respect to the application structure and the

network structure. Consequently, many replicated jobs are

simply a waste of extra computational resources allocated.

However, the replication overhead is rather low, less than

25 percent in using the STGA scheme and less than

15 percent in using the R-Min-Min algorithm under the

PSA workload, as reported in Fig. 13.
The entries in Table 3 lead to several important

conclusions:
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Fig. 16. Kiviat graphs showing the aggregate performance of six security-assured job scheduling algorithms (d) through (i), compared with two risky

scheduling algorithms in (a) and (b) under the Grid NAS benchmark workload. (a) Scales and ranges of five measures. (b) Risky MinMin. (c) Risky

STGA. (d) P-MinMin. (e) R-MinMin. (f) DT-MinMin. (g) P-STGA. (h) R-STGA. (i) DT-STGA.



1. The dynamic STGA algorithms perform better than
the static Min-Min heuristics.

2. The DT algorithms appeal better to computational
Grids.

3. The performance of the replicated and preemptive
algorithms is barely tolerable.

4. The risky heuristics should not be applied at all in Grid
computing for their poor performance and QoGS.

However, the risky STGA and P-STGA are not bad at all.

The relative ranking of algorithms is subject to change with

different workloads applied.

7 CONCLUSIONS AND IMPLEMENTATION

REQUIREMENTS

In a Grid computing environment, when a resource site is

under attack, the site may be unresponsive but not in a total

down state. The jobs dispatched to such a failing site may

take higher risk and potentially may not succeed. There are

also situations where a site is shut down and all jobs must

be purged. The real challenge to successful Grid scheduling

is thus to decide what the smart alternatives are or to have

contingent plans under different levels of risky conditions.

The classical results in fault-tolerant computing cannot be

applied here on Grids due to large-scale heterogeneity

encountered in Grid resource distribution [34].

7.1 Summary of Research Findings

In summary, we have considered two categories of trust:

1) intersite trust, for which a fundamental level of support

exist, and 2) job-site trust, for which a scheduling algorithm

is needed to do the security matching. The NAS and PSA

benchmark results prove that the security-aware job

scheduling algorithms scale well with the increase of both

Grid size and the workload (number of jobs). Scalability and

robustness are the two major assets built into the proposed

security-aware Grid job scheduling algorithms. The low

overhead in extra resources and time delays are also useful

incentives to insist on security assurance.
Summarized below are the major contributions and

research findings out of our NAS and PSA benchmark

experiments in a simulated Grid environment.

1. First, we developed the job failure model and the
delayed execution model for job scheduling under
security threats in Grids. These models characterize
various levels of risk involved in Grid job schedul-
ing. These conditions are applied to bind security in
upgrading heuristics or STGA algorithms for large-
scale Grid job scheduling.

2. Second, we propose three risk-resilient strategies:
the preemptive, replicated, and delay-tolerant stra-
tegies for Grid job scheduling. Based on these
scheduling strategies, we proposed six security-
assured job scheduling algorithms to enable risk-
resilient services under different risky conditions.
These strategies cover various Grid applications, not
necessarily restricted to the NAS or PSA workloads
being reported.

3. The relative performances of the six security-assured
scheduling algorithms are evaluated with the NAS
and PSA results. We measure the makespan, average
job turnaround time, Grid utilization, slowdown
ratio, job failure rate, and replication overhead of
these algorithms. We find that the scheduling
resource overheads of both replicated and delay-
tolerant algorithms are kept rather low (15 to
25 percent at most). The Kiviat graph is newly
proposed for use to reveal the quality of aggregate
Grid computing services provided,

4. Our simulation results suggest that, in a wide-area
Grid environment, it is more resilient for the global
job scheduler to tolerate the job delays, instead of
resorting to preemption or replication or assuming
unrealistic risk-free models. The risky scheduling
heuristics have the lowest performance for being
unable to adapt to changes in detected risky
conditions.

5. The delay-tolerant (DT) heuristic or STGA algo-
rithms have the best performance among the eight
algorithms evaluated. The rationale is to use avail-
able computing power more intelligently. The
DT algorithms preserve the resource utilization rate.
These algorithms exhibit resilient capability with the
least failure rate. To sum up, all risk-resilient
scheduling algorithms scale well with the increase
in job numbers.
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7.2 Implementation Requirements and Limitations

How efficient implementation of the security-assured
scheduling algorithms is depends on the trust model used
in a real-life Grid environment. We considered the cases
that the participating Grid sites are periodically assessed
with three trust conditions: 1) trusted communication of SD
and TL values, 2) trusted execution of replicated jobs, and
3) trusted propagation of job results after various delayed
executions. Condition 1) implies that communication links
among Grid sites are secure. This is achievable in practice
because Grid sites can set up secure IP tunnels among them.
As to conditions 2) and 3), execution of replicated jobs and
propagation of delayed job results can be implemented by
having the Grid sites digitally sign the data and code (e.g.,
SD, TL, job results) so that the recipients can verify the data
integrity and authenticate all parties involved.

As the Grid sites are administered by different organiza-
tions, the defense capabilities of the sites may differ
dramatically. Such a heterogeneity feature is highly complex
to prevent a perfect match of the job security requirements
with the trust indices of various resource sites located in
different administrative domains. In [37], we have proposed a
fuzzy-logic-based trust integration and security binding
methodology to align security requirements of both jobs
and Grid resource sites. Detailed implementation require-
ments of the fuzzy trust management system can be found in
the companion papers [37], [38].

Furthermore, such a fundamental trust index is not in
conflict with the concept that a job may not be executed at a
certain site if the SD and TL values are not matched. Indeed,
a low TL value (with respect to the SD of a job) does not
mean that the site is totally not trustworthy. Rather, it only
means that the site’s security capabilities are not sufficiently
high to assure a successful execution of a particular set of
jobs. For examples, the job may require contacting some
external clients (outside the Grid), which may create even
more security breaches. If the site executing this job does
not have a strong firewall, the job may fail, etc.

Of course, we are limited by the assumption of
performing cooperative work among all participating Grid
sites. The limitation is posed by exchange of trust index
information and agreement to enhance the trust level, when
the peer evaluation scores are low. In this sense, our scheme
may not be applicable to selfish Grids or noncooperative
Grid nodes. Game theory can be applied to alleviate the
limitation imposed by selfish Grids [28], which is beyond
the scope of this paper. It would be interesting to combine
the two approaches in further research work.
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