
Dynamic Balanced Key Tree Management for
Secure Multicast Communications

Wee Hock Desmond Ng, Michael Howarth, Zhili Sun, and Haitham Cruickshank

Abstract—A secure multicast communication is important for applications such as pay-per-view and secure videoconferencing. A key

tree approach has been proposed by other authors to distribute the multicast group key in such a way that the rekeying cost scales with

the logarithm of the group size for a join or depart request. The efficiency of this key tree approach critically depends on whether the

key tree remains balanced over time as members join or depart. In this paper, we present two Merging Algorithms suitable for batch

join requests. To additionally handle batch depart requests, we extend these two algorithms to a Batch Balanced Algorithm. Simulation

results show that our three algorithms not only maintain a balanced key tree, but their rekeying costs are lower compared with those of

existing algorithms.

Index Terms—Multicast security, group key management, secure group communication.

Ç

1 INTRODUCTION

INTERNET Protocol (IP) multicast [1] allows a sender to
transmit a single copy of some data, with network elements

such as routers making copies as necessary for the receivers.
This approach reduces sender-processing overhead and
network bandwidth usage. This technology benefits many
group communication applications [2], [3], [4], [5] such as
pay-per-view, online teaching, and share quotes.

Before these group-oriented multicast applications can
be successfully deployed, access control mechanisms must
be developed such that only authorized members can access
the group communication [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17]. The only way to ensure controlled
access to data is to use a shared group key, known only to
the authorized members, to encrypt the multicast data. As
group membership might be dynamic, this group key has to
be updated and redistributed securely to all authorized
members whenever there is a change in the membership in
order to provide forward and backward secrecy. Forward
secrecy means that a departing member cannot obtain
information about future group communication and back-
ward secrecy means that a joining member cannot obtain
information about past group communication. We assume
the existence of a trusted entity, known as the Group
Controller (GC), which is responsible for updating the
group key. This allows the group membership to scale to
large groups.

A number of scalable approaches have been proposed
and one in particular, the key tree approach [10], [11], [12],
[13], [14], is analyzed in detail in this paper. In short, the key
tree approach employs a hierarchy of keys in which each

member is assigned a set of keys based on its location in the
key tree. The rekeying cost of the key tree approach
increases with the logarithm of the group size for a join or
depart request. The operation for updating the group key is
known as rekeying and the rekeying cost denotes the
number of messages that need to be disseminated to the
members in order for them to obtain the new group key.

Individual rekeying, that is, rekeying after each join or
depart request, has two drawbacks [18]. First, it is inefficient
since each rekey message has to be signed for authentica-
tion purposes and a high rate of join/depart requests may
result in performance degradation because the signing
operation is computationally expensive. Second, if the delay
in a rekey message delivery is high or the rate of join/
depart requests is high, a member may need a large amount
of memory to temporarily store the rekey and data
messages before they are decrypted. Batch rekeying [18],
[19], [20], [21], [22], [23] has been proposed to alleviate these
problems as a trade-off between performance and security.
In this scheme, the GC does not perform rekeying
immediately; instead, it consolidates the total number of
joining and departing members during a time period before
performing the rekeying. A short rekey interval does not
provide much batch rekeying benefit, whereas a long rekey
interval causes a delay to joining members and increases
vulnerability from departing members who can still receive
the data. A more detailed analysis of the trade-off among
user dynamics, group size, and rekey interval has been
presented in [19].

The efficiency of the key tree approach critically depends
on whether the key tree is balanced [21], [24], [25], [26]. A
key tree is considered balanced if the distance from the root
to any two leaf nodes differs by not more than 1 [26]. For a
balanced key tree with N members, the height from the root
to any leaf node is logk N , where k is the outdegree of the
key tree, but, if the key tree becomes unbalanced, then the
distance from the root to a leaf node can become as high as
N . In other words, this means that a member might need to
perform N � 1 decryptions in order to get the group key.
Furthermore, in an unbalanced key tree, some members

590 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 5, MAY 2007

. W.H.D. Ng is with AT&T Singapore, Block 85 The Cavendish #03-05/08
Science Park Drive, Singapore 118261. E-mail: desmondng@gmail.com.

. M. Howarth, Z. Sun, and H. Cruickshank are with the Centre for
Communication Systems Research, University of Surrey, Guildford,
Surrey GU2 7XH, UK.

Manuscript received 6 Feb. 2005; revised 7 Dec. 2005; accepted 28 Aug. 2006;
published online 13 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0061-0205.
Digital Object Identifier no. 10.1109/TC.2007.1022.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

might need to store N keys, whereas some might only need
to store two keys.

In this paper, we propose two Merging Algorithms
suitable for batch join events for combining subtrees
together. These two Merging Algorithms not only balance
the key tree, but have lower rekeying costs compared to
existing algorithms. In other words, our Merging Algo-
rithms allow all members in the multicast session to have
similar storage and decryption requirements during each
rekeying operation. Having a balanced key tree greatly
benefits mobile devices since they generally have limited
storage and computation power [4]; reducing the number of
decryptions needed by the mobile devices can help to
conserve the battery power. In order to additionally handle
departing members, we extend these two Merging Algo-
rithms to a Batch Balanced Algorithm where the tree height
adapts to the change in the group membership. However,
this requires a reorganization of the group members in the
key tree. Simulation results show that our Batch Balanced
Algorithm performs significantly better than existing algo-
rithms when the number of joining members is greater than
the number of departing members or when the number of
departing members is around N=k, with no joining
members. For similar numbers of joining and departing
members, our Batch Balanced Algorithm achieves the same
performance as that of existing algorithms. The rest of the
paper is organized as follows: Section 2 covers the back-
ground and reviews existing work. We describe our
proposed algorithms in Section 3. Section 4 describes our
implementation and presents the simulation results. Sec-
tion 5 discusses some of the application scenarios where our
Batch Balanced Algorithm may be used. We present our
conclusions in Section 6.

2 BACKGROUND

2.1 Key Tree Approach

In a typical key tree approach [10], [11], [14], as shown in
Fig. 1a, there are three different types of keys: Traffic
Encryption Key (TEK), Key Encryption Key (KEK), and
individual key. The TEK is also known as the group key and is
used to encrypt multicast data. To provide a scalable
rekeying, the key tree approach makes use of KEKs so that
the rekeying cost increases logarithmically with the group
size for a join or depart request. An individual key serves the
same function as KEK, except that it is shared only by the GC
and an individual member. In the example in Fig. 1a, K0 is the
TEK, K1 to K3 are the KEKs, and K4 to K12 are the individual

keys. The keys that a group member needs to store are based
on its location in the key tree; in other words, each member
needs to store 1þ logk N keys when the key tree is balanced.
For example, in Fig. 1a, member U1 knows K0, K1, and K4 and
member U7 knows K0, K3, and K10. The GC needs to store all
of the keys in the key tree.

To uniquely identify each key, the GC assigns an ID to
each node in the key tree. The assignment of the ID is based
on a top-down and left-right order. The root has the lowest
ID, which is 0. For a node with an ID of m, its parent node
has an ID of bðm� 1Þ=kc, with its children’s IDs ranging
from kmþ 1 to kmþ k, as shown in Fig. 1b.

When a member is removed from the group, the GC
must change all the keys in the path from this member’s leaf
node to the root to achieve forward secrecy. All the
members that remain in the group must update their keys
accordingly. If the key tree is balanced, the rekeying cost for
a single departing member is k logkðNÞ � 1 messages. For
example, suppose member U9 is departing in Fig. 1a. Then,
all the keys that it stores (K0 and K3) must be changed,
except for its individual key. Let fxgy denote key x
encrypted with key y and x0 denote the new version of
key x. Then, the GC needs to multicast the rekey messages
fK30gK10, fK30gK11, fK00gK1, fK00gK2, and fK00gK30 to
the members, giving a total of five encrypted keys.

If backward secrecy is required, then a join operation is
similar to a depart operation in that the keys that the joining
member receives must be different from the keys previously
used in the group. The rekeying cost for a single joining
member is 2 logk N messages when the key tree is balanced.
Suppose member U9 is joining the group. Then, the GC
needs to multicast the following rekey messages to the
members: fK30gK3, fK30gK12, fK00gK0, and fK00gK30.

The efficiency of the key tree approach critically depends
on whether the key tree remains balanced. For a balanced
key tree with N leaf nodes, the height from the root to the
any leaf node is logk N . However, if the key tree becomes
unbalanced, the distance from the root to a leaf node can
become as high as N . Fig. 2 shows an unbalanced key tree.
First of all, we can see that key storage among the group
members varies from 3 to 6 rather than 4 in a balanced
binary key tree of eight members. Second, U1 or U2 needs
five decryptions if its sibling departs rather than three
decryptions in a balanced key tree. Last, the rekeying cost is
9 when U1 or U2 departs since K0, K1, K3, K7, and K11
need to be changed. For a balanced key tree, the rekeying
cost for a departing member is only 5. In this example, the
difference between a balanced and an unbalanced key tree

NG ET AL.: DYNAMIC BALANCED KEY TREE MANAGEMENT FOR SECURE MULTICAST COMMUNICATIONS 591

Fig. 1. (a) Logical key tree. (b) Node ID assignment.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

varies slightly as the group size is small. In a scenario such
as pay-per-view, where the group membership varies from
thousands to millions of members, an unbalanced key tree
might lead to significant computation efforts for both the
GC and group members.

2.2 Batch Rekeying

Batch rekeying is when join/depart requests are collected
during a time interval called the rekey interval and are
rekeyed together. This approach is used in [18], [19], [20],
[21], [22], [23]. This not only alleviates the individual
rekeying problems described in Section 1 (that is, ineffi-
ciency, rekey message delay, and high join/depart rates),
but also reduces the number of group rekey events.
Furthermore, the number of rekey messages that need to
be multicast to the group can be much smaller than the
number of rekey messages that would be generated if each
membership change were processed individually due to the
overlapping in paths from the leaf nodes to the root.

2.3 Related Work

Before we proceed further, we introduce some notations
and definitions used in this paper. We use the term ST to
indicate a subtree. We use “minimum height” to mean the
minimum number of levels in a tree or subtree from the root
to any leaf node. Similarly, we use “maximum height” to
mean the maximum number of levels in a tree or subtree
from the root to any leaf node. We define the following
variables:

Marking Algorithms have been proposed to update the
key tree and generate, at the end of each rekey interval, a
rekey subtree with a collection of join and depart requests.
Several variations of Marking Algorithms have been
proposed [18], [20].

We refer to the algorithm in [18] as Marking Algorithm 1.
For this algorithm, there are four cases to consider. If J ¼ D,
then all departing members are replaced by the joining
members. If J < D, then we pick the J shallowest leaf nodes

from the departing members and replace them with the
joining members. By the term “shallowest node,” we mean
the leaf node of minimum height in our terminology. If
J > D and D ¼ 0, then the shallowest leaf node is selected
and removed. This leaf node and the joining members form
a new key tree that is then inserted at the old location of the
shallowest leaf node. Next, if J > D and D > 0, then all
departing members are replaced by the joining members.
The shallowest leaf node is selected from these replace-
ments and removed from the key tree. This leaf node and
the extra joining members form a new key tree that is then
inserted at the old location of the removed leaf node. Last,
the GC generates the necessary keys and distributes them to
the members.

The algorithm in [20] is referred to here as Marking
Algorithm 2. There are only three cases to consider for this
Marking Algorithm. Two of them, J ¼ D and J < D, are
similar to the one mentioned above, except that the nodes of
departing members that are not replaced by the joining
members are marked as null nodes. For J > D, all
departing members are replaced by the joining members.
If there are null leaf nodes in the key tree, then they are also
replaced by the joining members, starting from the null
nodes with the smallest node ID. If there are still extra
joining members, then the member with the smallest node
ID is removed and it is inserted as a child, together with
k� 1 joining members at its old location. The next smallest
node ID member is selected if there are more joining
members. This insertion continues until all of the joining
members have been inserted into the key tree. As before, the
GC distributes the new key to the members.

Balanced Batch Logical Key Hierarchy (LKH) [21], [22]
has also been proposed to alleviate the inefficiency in
Marking Algorithm 1 [18], but this algorithm is only
suitable for a binary key tree ðk ¼ 2Þ and the author does
not offer a solution for a key tree with other outdegrees.

3 BATCH REKEYING ALGORITHM

We now propose two Merging Algorithms [27] to combine
subtrees together in a way that is suitable for batch join
events. To handle all cases such as depart or both join and
depart requests, we then extend these two Merging
Algorithms into a Batch Balanced Algorithm. The two
Merging Algorithms are used to combine two subtrees:
ST_A and ST_B. We assume that ST_A has a greater height
than ST_B and both subtrees are of the same outdegree k.

3.1 Merging Algorithm 1

This algorithm is only used when the difference in the
maximum height between the two subtrees ST_A and ST_B
is greater than or equal to 1. We will see why it is so in
Section 4.

We now describe Merging Algorithm 1 [27] and illustrate
it with some examples. The criteria for choosing Merging
Algorithm 1 are when the difference between HMAX ST A

and HMIN ST B is greater than 1 and when the difference
between HMAX ST A and HMAX ST B is greater than or equal
to 1. If both of these conditions are fulfilled, then the
algorithm calculates HINSERT , as illustrated in Fig. 3. The
following steps are then performed:

Step 1. For k > 2, the algorithm searches for an empty child
node in ST_A at either levelHINSERT or levelHINSERT � 1.
If HINSERT ¼ 0, then levels 0 and 1 are searched. If such a

592 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 5, MAY 2007

Fig. 2. An unbalanced key tree.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

node exists, then the algorithm inserts ST_B as the child
of that particular key node.

Step 2. If an empty node is not found in Step 1, mark a
suitable key node in ST_A at level HINSERT for insertion
as follows: If HINSERT ¼ 0, then a suitable key node at
level 1 is marked. The marked key node is given by the
one with the greatest number of leaf nodes at level
HMIN ST A. For example, in Fig. 3, there are two key
nodes at level 1 ð¼ HINSERT Þ. Of these, key node ID 2 is
marked for insertion since it has two leaf nodes at level
HMIN ST A, whereas key node ID 1 has only one.

Step 3. For k > 2, when an empty node is not found in
Step 1, the algorithm searches the root of ST_B for an
empty node. If this exists, then the algorithm inserts the
marked key node from Step 2 as the child of ST_B and
inserts ST_B at the old location of the marked key node.

Step 4. For k ¼ 2 or k > 2, if Steps 1 to 3 have not inserted
ST_B into ST_A, then the algorithm creates a new key
node at the old location of the marked key node (from
Step 2) and inserts the marked key node and ST_B as its
children.

Finally, the GC may need to multicast at most one
update message to inform the affected members. We will
discuss the update message later in this section. After
updating the affected nodes, the members can identify the
set of keys they need in the rekey messages.

Fig. 4 shows how we can combine the two subtrees by
using Step 1 in Merging Algorithm 1. Fig. 4a shows only a
part of ST_A. Suppose there are three joining members and
no departing members that are formed into a new subtree
ST_B, as shown in Fig. 4b. Since there is an empty node at
level HINSERT � 1 in ST_A (node ID 13), ST_B is inserted at
that particular node. The resulting key tree is shown in
Fig. 4c. In this example, no update message is needed.

Fig. 5 shows another example, where k ¼ 2, and we

therefore need to apply only Steps 2 and 4. We have a

balanced subtree (ST_A) with eight members. Assume that

two members wish to join the group. These two members

form a new subtree (ST_B), as shown in Fig. 5b. For these

subtrees, HINSERT ¼ 2. In Step 2, we perform our marking.

Since all four key nodes at level 2 ð¼ HINSERT Þ have the

same number of leaf nodes at level 3 ð¼ HMIN ST AÞ, we

arbitrarily choose key node 3 and mark it as shown in

Fig. 5a. Finally, in Step 4, we create a new key node K18 and

insert the marked key node and the new subtree, consisting

of the new joining members, as its children, as shown in

Fig. 5c. In this case, the GC needs to inform U1 and U2 that

node ID 3 has shifted down one level to accommodate one

new node. The update message therefore consists of the old

node ID, which is 3, and the new node ID, which is 7.
The worst rekeying cost is kðblogk Nc � dlogk Je þ 1Þ þ

kdðJ � 1Þ=ðk� 1Þe (see Appendix A.1).
Finally, there is an exception in Merging Algo-

rithm 1. In cases where Step 4 is used to find

the insertion point, HMAX ST A �HMIN ST A ¼ 1 and

HMAX ST B �HMAX ST B ¼ 1 and, when there is at least one

leaf node at level HMAX ST A in the marked key node, a

slightly unbalanced key tree will exist if ST_A and ST_B are

combined using the steps above. One way to alleviate this

issue is to delete the root in ST_B and split it into at most

k subtrees. Order these new subtrees in increasing order of

HMIN . Starting from the subtree with the minimum height,

insert it into ST_A by using Merging Algorithm 1 and

repeat until all new subtrees have been inserted into ST_A.
Fig. 6 shows an example. In this example, we delete the

root in ST_B (K9) and use Step 4 twice to insert the two new

subtrees. Member U8 is inserted as the sibling of member

U3 (see MARK1) and both members U6 and U7 are inserted

as the siblings of members U4 and U5 (see MARK2). In this

case, the rekeying cost is slightly higher and two update

messages are needed.

3.2 Merging Algorithm 2

We now describe our Merging Algorithm 2 [27]. This

algorithm is only used for combining subtrees whose height

difference is 0 or equal to 1.
The criteria for using Merging Algorithm 2 are when the

difference between HMAX ST A and both HMIN ST B and

NG ET AL.: DYNAMIC BALANCED KEY TREE MANAGEMENT FOR SECURE MULTICAST COMMUNICATIONS 593

Fig. 3. ST_A (five members) and ST_B (two members).

Fig. 4. (a) Part of the subtree in ST_A. (b) ST_B subtree (three members). (c) Resulting key tree.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

HMAX ST B is 0 or equal to 1. The algorithm performs the

following steps:

Step 1. For k > 2, the algorithm searches the root of ST_A

for an empty child key node. If it exists, then the

algorithm inserts ST_B at the empty child key node.

Step 2. For k ¼ 2 or when Step 1 is not valid for k > 2, the

algorithm creates a new key node at the root and inserts

ST_A and ST_B as its children.

The GC needs to multicast at most one update message

to all existing members. After updating the affected node

IDs, the members can identify the set of keys that they need

in the rekey messages.
Fig. 7 shows an example of how Merging Algorithm 2 is

used to combine two subtrees together by using Step 2.

Since Merging Algorithm 2 creates a new node at the root,

the GC needs to inform U1 to U8 that the ID of the old root

has changed from 0 to 1 by using the update message.
As shown in Appendix A.1, the rekeying cost is kþ

kdðJ � 1Þ=ðk� 1Þe messages.

3.3 Batch Balanced Algorithm

We now show how our two Merging Algorithms can be

extended to produce an algorithm that we call Batch

Balanced Algorithm that encompasses both joining and

departing members.
There are six steps in our Batch Balanced Algorithm.

1. Identify and mark all key nodes that need to be
updated. These key nodes are on the ancestor paths
from each departing member to the root.

594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 5, MAY 2007

Fig. 6. (a) ST_A subtree (five members). (b) ST_B subtree (three members). (c) Resulting key tree.

Fig. 5. (a) ST_A subtree (eight members). (b) ST_B subtree (two members). (c) Resulting key tree.

Fig. 7. (a) ST_A subtree (eight members). (b) ST_B subtree (four members). (c) Resulting key tree.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

2. Remove all marked key nodes. After removal, there
are only two types of element left: the remaining
subtrees and the joining members.

3. Classify all siblings of the departing members as
joining members since all of the KEKs that they store
cannot be used.

4. Group the joining members into one or many
subtrees, each with k members. If there are remain-
ing members left, then they are grouped into another
subtree of between 2 and k� 1 members unless there
is only one member left. If there is only one member
left, then treat it as a single-node subtree.

5. Starting from the subtree with the minimum height,
compare it with another subtree with the next
minimum height and if the Merging Algorithm 1
criteria are met, combine them using Merging
Algorithm 1, else combine them using Merging
Algorithm 2. Repeat this process until there is only
one key tree.

6. Construct the update and rekey messages and
multicast them to the members.

For clarity, we illustrate it with an example. Assume that
we have a key tree with 16 members. Suppose members
U11 and U15 are departing from the group and six new
members, U17 to U22, are joining the group. All of the key
nodes in the path from the departing members to the root
are marked and removed (Steps 1 and 2). The siblings of
departing members U12 and U16 form a new subtree, ST7,
since the KEKs that they store are unusable (Step 3). The
joining members form one or more subtrees of k members
(Step 4). These usable subtrees ST1 to ST7 are identified as
shown in Fig. 8.

In Step 5, we start with the minimum-height subtrees
and merge them. Thus, ST2 forms a subtree with ST3, ST4
forms a subtree with ST5, and ST6 forms a subtree with ST7.

Then, the resulting subtree of ST2 and ST3 is combined with
the resulting subtree of ST4 and ST5. This resulting subtree,
in turn, forms another subtree with the resulting subtree of
ST6 and ST7. Finally, the last two subtrees form a single key
tree, as shown in Fig. 9. The GC sends out the update
messages to inform the members of their new location.
Those members that need to receive the update messages
are U12 and the members in ST2 and ST3, which means that
a total of three update messages is needed. In this example,
we assume that member U16 and subtree ST1 are left intact
at their old location. If their locations are changed, then two
extra update messages are needed. For ST4, ST5, and ST6,
no update message is needed since the members in the
subtrees are newly joining members. At the same time, the
GC can multicast the rekey messages to the members. The
total rekeying cost is 20 messages.

If we use Marking Algorithm 1 [18] or Marking
Algorithm 2 [20] in a similar situation, then Marking
Algorithm 1 has the same rekeying cost, but it ends up
with an unbalanced key tree. Although Marking Algo-
rithm 2 can maintain a balanced key tree, it needs 28 rekey
messages. From this, we can see that reorganizing the group
members leads to saving on rekeying costs.

3.4 Update Messages

In order for the members to identify the keys that they need
after the key tree has been reorganized, the GC needs to
inform the members of their new location. An update
message consists of the smallest node ID of the usable key
tree m and the new node ID m0. With the new node ID m0,
the members can update the remaining keys m0 by using
the following function:

fðm0Þ ¼ kxðm0 �mÞ þm0; ð1Þ

where x denotes the level of the usable key tree.

NG ET AL.: DYNAMIC BALANCED KEY TREE MANAGEMENT FOR SECURE MULTICAST COMMUNICATIONS 595

Fig. 8. Steps 1 to 4 of the Batch Balanced Algorithm.

Fig. 9. Resulting key tree.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

For example, in Fig. 10, the smallest node ID in the
usable key tree m is 2 and the smallest new node ID m0 is 8.
Each member just needs to insert the remaining node ID m0

that they store into the function above to obtain the new
node ID.

4 PERFORMANCE EVALUATION

In this section, we study the performance of our proposed
algorithms and compare them with the Marking Algo-
rithms described in [18] and [20], which we have already
labeled as Marking Algorithm 1 and Marking Algorithm 2,
respectively. We consider four performance metrics:

. rekeying cost,

. update cost,

. minimum and maximum height in the key tree, and

. key storage.

The rekeying cost denotes the total number of rekey
messages that need to be sent to all authorized group
members in order for them to learn the new group key. A
higher rekeying cost means that more bandwidth is needed
for the transmission. Although Marking Algorithm 2 adopts
the User-Oriented Key Assignment Algorithm (UKA) [20],
where all of the encryptions for a member are assigned in a
single packet, we ignore the UKA when we calculate the
rekeying costs since it leads to a significant number of
duplications in rekey messages. Instead, we just calculate
the total number of rekey messages that are needed without
any duplication. The update cost denotes the total number
of update messages that need to be sent to all affected
members after the key tree has been reorganized in order
for them to identify the keys that they need. As for the
minimum and maximum height, they affect the members’
key storage and, thus, the number of decryptions needed by
each member and may even increase the rekeying costs, too,
as explained in Section 2. Last, the key storage denotes the
number of keys each member need to store.

We ran our algorithms on a Linux terminal with a
512 Mbyte RAM on a 2 GHz processor. To give an
indication of runtime, for a tree size of 4,096 members,
runtimes are typically in the range of 1 to 5 sec and, for a
tree size of 65,536 members, runtimes are typically in the
range of 1 to 40 sec, both results being less than or equal to
approximately 2,000 departing and joining members.

4.1 Merging Algorithm Performance Evaluation

We have performed some simulations to compare the
performance of both of our Merging Algorithms with existing
work for batch join requests. For our simulations, we used a

balanced binary key tree of 256 members with a height of 8.
The number of joining members varies from 1 to 250.

4.1.1 Rekeying Cost

In Fig. 11, we can see that Marking Algorithm 2 has the
highest rekeying cost. This is because the joining members
are inserted one by one at each leaf node, which affects the
paths from the affected leaf nodes to the root. As the
number of joining members increases, the number of
affected nodes increases significantly. On the other hand,
the other three algorithms have similar rekeying costs since
they try to minimize the number of affected nodes. Marking
Algorithm 1 minimizes the rekeying costs by placing the
new subtree, which consists of joining members and one
removed member on the shallowest height, at the old
location of the removed member. Hence, only the path from
that leaf node to the root is affected, regardless of the
number of joining members. In other words, the rekeying
cost consists of the rekey messages that need to be multicast
to the joining members and 2 logk N messages to update the
keys from that affected leaf node to the root. Merging
Algorithm 1 inserts the new subtree consisting of the joining
members into one of the key nodes in the key tree at a
location that depends on the number of the joining
members; thus, as the number of joining members
increases, the number of affected nodes is reduced since
the key node selected for insertion gets closer to the root.
For Merging Algorithm 2, a new root is created with the
existing subtree and the new subtree consisting of the
joining members, which are inserted as its children.

4.1.2 Update Cost

Of the four algorithms, only Marking Algorithm 2 does not
need to distribute update messages to the members.
Marking Algorithm 1 needs to send one update message
to inform the removed leaf node of its new location.
Similarly, both Merging Algorithms need to send out one
update message to inform the affected members of the
newly created node.

4.1.3 Minimum and Maximum Height

Fig. 12 shows the maximum height of the key tree after the
joining members have been inserted into the key tree for all
algorithms. Only Marking Algorithm 2 and Merging
Algorithm 2 maintain at a fixed height, regardless of the
number of joining members. Marking Algorithm 2 alle-
viates the inefficiency of Marking Algorithm 1 by inserting
the joining members one by one at each leaf node, whereas

596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 5, MAY 2007

Fig. 10. (a) Usable and (b) new updated key trees.

Fig. 11. Batch join rekeying costs.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

Merging Algorithm 2 creates a new root and inserts the
existing key tree and the joining member key tree as its
children. Merging Algorithm 1 has the same performance as
Marking Algorithm 2 and Merging Algorithm 2 when the
number of joining members is less than or equal to half the
group size. However, once the number of joining members
exceeds half the group size, the maximum height increases
by 1. This is why we set the criteria in Section 3.1, because
the selection of the suitable key node is always at the child
of the root once the joining members are greater than half
the group size. In the case of Marking Algorithm 1, the
maximum height increases significantly as the number of
joining members increases because all of the joining
members form a new subtree with one member at the
minimum height. This new tree is inserted at the old
location of the removed member, causing the maximum
height to increase considerably.

Fig. 13 shows the maximum difference in height of the
key tree, which indicates whether the key tree is balanced.
The maximum difference in height for Marking Algorithm 1
increases considerably as the number of joining members
increases. Similarly, our Merging Algorithm 2 is not a
balanced key tree when the number of joining members is
less than half the group size and it only maintains a
balanced key tree when the number of joining members is
greater than or equal to half the group size. This is why we
set the criteria for Merging Algorithm 2 in Section 3.2. As
for our Merging Algorithm 1, it maintains a balanced key
tree when the number of joining members is less than or
equal to half the group size. The difference in height in
Merging Algorithm 1 increases by 1 once the number of
joining members exceeds half the group size since the child
of the root is selected for the insertion. Marking Algorithm 2
is the only algorithm that creates a balanced key tree,
regardless of the number of joining members. However, this
comes with the drawback of the high rekeying costs, as
shown in Fig. 11. On the other hand, if we can choose

appropriately between both of our Merging Algorithms
depending on the number of joining members, we can
create a balanced key tree without extra costs.

4.1.4 Key Storage

Table 1 shows the minimum and maximum number of keys
that a member needs to store for the four algorithms for
batch join events. We can see that the maximum number of
keys that a joining member needs to store in Marking
Algorithm 1 is dependent on the number of joining
members at that particular interval. A large number of
joining members results in a great difference in key storage
among members. Marking Algorithm 2 does not suffer from
the storage inefficiency as in Marking Algorithm 1, but it
comes at the expense of the large rekeying costs, as shown
in Fig. 11. Our Merging Algorithms can achieve the same
efficiency of Marking Algorithm 2 if the Merging Algorithm
is chosen appropriately, depending on the number of
joining members.

4.2 Batch Balanced Algorithm

4.2.1 Rekeying Cost

We have performed a theoretical analysis for the rekeying
cost of our Batch Balanced Algorithm, the details of which
are discussed in Appendix A. To verify our analysis, we
have also built a simulator for the algorithm. The simulator
first constructs a balanced key tree with 1,024 members for
k ¼ 2. Departing members are either randomly selected or
selected so as to give either the best or worst rekeying costs.
Joining members are then inserted into the key tree and the
rekeying costs are calculated.

Figs. 14a and 14b show the computed and simulated best
and worst rekeying costs for a binary key tree. Our analysis
and simulated results match so well that we could not
distinguish between the two. For the best case, the rekeying

NG ET AL.: DYNAMIC BALANCED KEY TREE MANAGEMENT FOR SECURE MULTICAST COMMUNICATIONS 597

Fig. 12. Maximum height of the key tree. Fig. 13. Maximum difference in height.

TABLE 1
Minimum and Maximum Key Storage for Batch Join Events

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

costs are not affected by the number of departing members;
rather, they are based purely on the number of joining
members. This is because the number of affected nodes is
minimized as the departing members are concentrated on
one area of the key tree. On the other hand, if the departing
members are spread fairly on the key tree, as in the worst
case, then it maximizes the number of affected nodes in the
key tree. The highest rekeying cost occurs when the number
of departing members approaches half the group size,
which means that most or all the key nodes in the key tree
cannot be used.

If the departing members are randomly selected, then we
obtain the mean rekeying costs that lie between the
theoretical best and worst cases. Fig. 14c shows the
calculated best and worst and also the simulated average
rekeying cost calculated as an average of 100 simulation
runs. We can see that the average rekeying cost is closer to
the worst rekeying cost than to the best rekeying cost.
Generally, we can predict the rekeying costs for a key tree of
any outdegree k if we are able to group the members
according to their departing probability since it is based
purely on the number of joining members rather than the
number of departing members. However, if the departing
members are spread around as in the worst case, the highest
rekeying cost happens when the number of departing
members is around N=k since most or all of the KEKs that
the members store cannot be used.

We also built simulators for the Marking Algorithms
[18], [20] to compare their performance with that of our
Batch Balanced Algorithm. All simulators first construct a
balanced key tree and then randomly pick departing
members, with all members having an equal probability
of departing. The joining members are inserted into the key
tree and, finally, the rekeying costs are calculated. The

rekeying costs are again based on the average of 100 runs.
We use a tree of 1,024 members with a height of 10 for a
balanced binary key tree and a tree of 4,096 members with a
height of 6 for a balanced key tree of k ¼ 4.

Fig. 15 shows the rekeying costs for the three algorithms
for k ¼ 2. Marking Algorithm 1 and the Batch Balanced
Algorithm have similar rekeying costs. Marking Algorithm 2
has twice the rekeying costs compared to both Marking
Algorithm 1 and the Batch Balanced Algorithm when the
number of joining members approaches the group size and
there are no departing members. Generally, Marking
Algorithm 2 has the highest rekeying costs when the
number of joining members is greater than the number of
departing members.

To investigate the rekeying costs in detail, we calculate
the difference in the rekeying costs for the three algorithms,
as shown in Fig. 16. For clarity, the y-axis of Fig. 16b is
reversed. All three algorithms have similar rekeying costs
when the number of joining members and the number of
departing members are comparable. Marking Algorithm 1
has the highest rekeying costs compared to the Batch
Balanced Algorithm when the number of departing
members approaches half the group size, especially when
there are no joining members. This is because most of the
key nodes in the key tree are affected by the departing
members. By reorganizing the remaining members in the
key tree, we can reduce the rekeying costs. Replacing some
of the departing members with the joining members can
help to diminish this effect for both Marking Algorithm 1
and Marking Algorithm 2. We can see that Marking
Algorithm 2 has the highest rekeying costs compared to
Marking Algorithm 1 and the Batch Balanced Algorithm
when the number of joining members is greater than the
number of departing members. Another high cost in

598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 5, MAY 2007

Fig. 14. (a) Best case. (b) Worst case. (c) Best, average, and worst rekeying costs for k ¼ 2.

Fig. 15. Rekeying costs for (a) Marking Algorithm 1, (b) Marking Algorithm 2, and (c) Batch Balanced Algorithm.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

Marking Algorithm 2 is when the number of departing
members approaches half the group size. All of these extra
rekeying costs resulted from the use of the null nodes and
the way Marking Algorithm 2 inserts the joining members.

Fig. 17 shows the difference in the rekeying costs for
k ¼ 4. As before, the y-axis for the difference in rekeying
between Marking Algorithm 1 and the Batch Balanced
Algorithm is reversed for a clearer view. When the number
of joining members and the number of departing members
are comparable, all three algorithms have similar rekeying
costs. As before, Marking Algorithm 2 has two regions of
high rekeying costs compared to Marking Algorithm 1 and
the Batch Balanced Algorithm. The first occurs when the
number of joining members approaches the group size with
no departing members. The other occurs when the number
of departing members is around N=k with no joining
members. Marking Algorithm 1 has the highest rekeying
costs compared to the Batch Balanced Algorithm when the
number of departing members is in the region of N=k with
no joining members. Replacing the departing members with
the joining members helps to lower the rekeying costs for
both Marking Algorithm 1 and Marking Algorithm 2.

4.2.2 Update Cost

For the Batch Balanced Algorithm, there are some over-
heads incurred since we reorganize the group members in
the key tree. This requires the GC to send update messages
to inform the members of their new location. It is important
to note that the GC in Marking Algorithm 1 needs to
multicast update messages to the members as well.

Fig. 18 shows the total update messages that need to be
sent to the remaining group members, including the
siblings of the departing members, in order for them to
update their new key node IDs. As expected, the update

messages are purely dependent on the number of departing

members. The number of update messages increases as the

number of departing members increases to around half the

group size. This is because more key nodes in the key tree

are affected by the departing members. However, once the

number of departing members exceeds half the group size,

the number of update messages decreases since there are

fewer members left in the group.
If we assume that a key is 128 bits long and the node ID

is 20 bits (that is, up to 220 members), then a rekey message

is at least 148 bits, excluding other overheads. An update

message consists of the old node ID and the new node ID

and, ignoring overheads, is therefore 40 bits long. In other

words, a rekey message is 3.7 times the length of an update

message; thus, the maximum update cost is equivalent to

109 rekey messages. In Section 5, we show how we can

reduce the number of update messages needed by the

group members for some rekey events.

NG ET AL.: DYNAMIC BALANCED KEY TREE MANAGEMENT FOR SECURE MULTICAST COMMUNICATIONS 599

Fig. 16. Difference in rekeying costs for k ¼ 2.

Fig. 17. Difference in the rekeying costs for k ¼ 4.

Fig. 18. Update messages for the Batch Balanced Algorithm ðk ¼ 2Þ.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

Fig. 19 shows the total number of update messages that
need to be multicast to the members for k ¼ 4. We can see
that there is a sharp increase in update messages compared
with a binary key tree. This is because, for every departing
member, the GC needs to send three update messages to its
siblings so that they can update the new location. The
highest number of update messages occurs when the
number of departing members is in the region of N=k.

4.2.3 Minimum and Maximum Height

Fig. 20 shows the minimum and maximum height for
Marking Algorithm 1, showing that a small percentage of
joining or departing members can increase the difference in
height significantly. In the case where the number of joining
members is greater than the number of departing members,
only the maximum height is affected, whereas the mini-
mum height is left unchanged and vice versa when the
number of departing members is greater than the number of
joining members. Marking Algorithm 1 can only maintain a
balanced key tree when the number of joining members is
equal to the number of departing members.

Fig. 21 shows the minimum and maximum height for
Marking Algorithm 2. It can be seen that the rapid increase
in height as in Marking Algorithm 1 is not visible in this
case since the joining members are inserted one by one at
each leaf node. As for the minimum height, Marking
Algorithm 2 alleviates the inefficiency in Marking Algo-
rithm 1 with the use of the null node. However, one
problem with Marking Algorithm 2 is that the key tree has
now become a static key tree that can increase its minimum
height to accommodate more joining members into the
group but cannot decrease its minimum height with the
departure of the members since nodes that are not occupied
are marked as null nodes. This causes unnecessary key
storage and encryptions or decryptions for both the GC and
group members. There is no way to overcome this issue
unless the whole key tree is rekeyed, which adds extra
network costs.

Fig. 22 shows the minimum and maximum heights for the
Batch Balanced Algorithm. Regardless of the number of
joining or departing numbers, both minimum and maximum
height adapt to the changes in the group membership.

We omit the minimum and maximum heights perfor-
mance for Marking Algorithm 1 and Marking Algorithm 2
for k ¼ 4 since the analysis described above is applicable.

Fig. 23 shows the minimum and maximum heights for
the Batch Balanced Algorithm for k ¼ 4. Both the minimum
and maximum height have similar output. Since the single
key tree is formed using a bottom-up method, some of the
root’s child key nodes might be less than k in some case,
which results in one extra level in the minimum and
maximum height.

4.2.4 Key Storage

Table 2 shows the minimum and maximum key storage for
the three algorithms. Since a full calculation for key storage

600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 5, MAY 2007

Fig. 19. Update messages for the Batch Balanced Algorithm ðk ¼ 4Þ.

Fig. 20. (a) Minimum and (b) maximum height for Marking Algorithm 1.

Fig. 21. (a) Minimum and (b) maximum height for Marking Algorithm 2.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

of Marking Algorithm 1 is complex, we have assumed a
balanced key tree when we calculate its maximum and
minimum storage. The maximum key storage for a joining
member in Marking Algorithm 1 then depends on the
number of joining and departing members at that particular
interval. For Marking Algorithm 2, the member needs
additional key storage since the minimum and maximum
key storage values are dependent on the maximum group
size ever reached, NMAX, regardless of the current group
size. The Batch Balanced Algorithm has a lower maximum
key storage than either Marking Algorithm 1 or Marking
Algorithm 2.

5 DISCUSSION

5.1 Optimization

From the above simulations, we observe that the Batch
Balanced Algorithm has identical rekeying costs compared
to existing algorithms when the number of joining members
and the number of departing members are comparable.
Therefore, one optimization that we can apply to our Batch

Balanced Algorithm is not to reorganize the members in the
key tree for the following condition:

D � J � ðD�DminÞ þ kDmin; ð2Þ

where Dmin is the number of departing members at the

minimum height.
For the case where J is equal to D, we replace all

D departs by J joins. If J is greater than D and provided

that J is smaller or equal to ½ðD�DminÞ þ kDmin�, then we

replace all ðD�DminÞ departs at the maximum height with

ðD�DminÞ joins. The remaining joining members are split

across the Dmin nodes. We illustrate it with an example.

Suppose, in Fig. 24a, U3, U6, and U7 depart and U8 to U12

join. Then, J must lie between 3 and 5 in order to fulfill the

above condition. The resultant key tree is shown in Fig. 24b.
Fig. 25 shows the update messages for our optimized

Batch Balanced Algorithm for k ¼ 2. We can see that there

are some cases where no update message is needed since

there is no reorganization in the group. The rekeying costs

still remain the same as shown in Fig. 15. There is no way to

maintain a balanced key tree without reorganizing the key

tree when the number of departing members is greater than

the number of joining members.

5.2 Application Scenarios

Based on our simulation results, we now make some
recommendations on the various applications where our
Batch Balanced Algorithm can outperform existing work.
Our recommendations are based on application requirement,
operation environments, and expected group membership
behavior.

NG ET AL.: DYNAMIC BALANCED KEY TREE MANAGEMENT FOR SECURE MULTICAST COMMUNICATIONS 601

Fig. 22. (a) Minimum and (b) maximum height for the Batch Balanced Algorithm ðk ¼ 2Þ.

Fig. 23. (a) Minimum and (b) maximum height in the Batch Balanced Algorithm ðk ¼ 4Þ.

TABLE 2
Minimum and Maximum Key Storage for

Batch Join and/or Depart Events

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

. Satellite pay-per-view TV distribution. For this type of
scenario, generally, the number of joining members
is greater than the number of departing members at
the beginning of the session. During the session, the
number of joining members and departing members
might be comparable. Finally, at the end of the
session, the number of departing members is greater
than the number of joining members. In this case,
our Batch Balanced Algorithm can overcome the
inefficiency in Marking Algorithm 1 and Marking
Algorithm 2 at the beginning and end of the session.
In the middle of the session, the rekeying costs for
the three algorithms are expected to be similar.

. Group-oriented mobile commerce [4], [5]. Generally,
mobile devices have limited storage and computa-
tion [4], [27]. In this case, it might be better to
minimize the number of keys that they need to store
and the number of decryptions during each batch.
By reducing the number of decryptions needed, we
can help to conserve the battery power too.
Furthermore, the energy consumption of decryption
is 30 percent more than encryption [28]. In this type
of scenario, the Batch Balanced Algorithm has better
performance compared to both Marking Algorithms
since its minimum and maximum height adapt to
the changes in the group membership. In addition,
its rekeying cost is lower than or similar to those of
the existing algorithms. This is crucial, especially in
wireless multicast scenario, since the bandwidth is
limited and data typically experience a higher
transmission error rate than in conventional envir-
onments [29].

. Multicast session with long duration. There is usually
at least one peak period and one nonpeak period for
this type of scenario. If Marking Algorithm 2 is used
for this type of scenario, then additional rekeying
costs are needed during the off-peak period since the
minimum and maximum height of the key tree stay

at the same level as in the peak period. Furthermore,
there are additional key storage and encryption/
decryption requirements for both the GC and group
members. As for Marking Algorithm 1, the prob-
ability of the key tree becoming unbalanced is very
high [21], which can result in a higher decryption for
some of the members.

6 CONCLUSION

In this paper, we have presented two Merging Algorithms
that are suitable for batch join events. To additionally
handle batch depart requests, we have extended these two
Merging Algorithms into a Batch Balanced Algorithm. All
three algorithms try to minimize the difference in height in
the key tree without adding extra network costs. However,
all of the algorithms require the GC to update the affected
members on their node position by using update messages.
By minimizing the differences in height, we minimize the
number of key storage and decryptions needed by each
member. This is critical for terminals with limited computa-
tion and storage. Furthermore, reducing the number of
decryptions can help to reduce the energy consumption,
which, in turn, leads to battery saving.

For batch join events, the way the joining members are
inserted has a significant effect on the key tree, especially
when there are a large number of join requests in a batch. The
key tree can become unbalanced even if the insertion is at the
minimum height. Existing algorithms do not simultaneously
consider both the balancing of key tree and rekeying costs and
therefore lead to either an unbalanced key tree or high
rekeying costs. Our proposed Merging Algorithms provide a
good compromise compared to existing algorithms, produ-
cing a balanced key tree with low rekeying costs. Merging
Algorithm 1 requires the GC to multicast at most two update
messages to inform the affected members, whereas Merging
Algorithm 2 needs at most one update message. Compared
with that of a rekey message, the size of an update message is
several times smaller since it consists of only the old node ID
and the new node ID.

As for other events, our Batch Balanced Algorithm
outperforms existing algorithms when the number of
joining members is greater than the number of departing
members and when the number of departing members is
around N=k with no joining member. However, our
algorithm requires the GC to multicast update messages
to the members. For cases where the number of joining
members and the number of departing members are
comparable, our Batch Balanced Algorithm has a similar
performance compared to existing work. We further
observe that, if we are able to group the members according

602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 5, MAY 2007

Fig. 24. (a) Key tree with join and depart requests. (b) Resulting key tree.

Fig. 25. Update message for the optimized Batch Balanced Algorithm

ðk ¼ 2Þ.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

to their departing probability, then we are able to predict
the rekeying costs based on the number of joining members.
However, if the departing members are spread evenly
across the key tree, then the highest rekeying cost happens
at around N=k since most or all of the KEKs that the
members store cannot be used.

APPENDIX A

ANALYSIS

The performance of the key tree approach depends on
storage, computation, and communication overhead. Fol-
lowing [10], [11], [12], [13], [14], we assume that the key tree
investigated in this work is fully loaded and balanced, with
height h. All members have equal probability of departing.
For ease of analysis, we assume that all of the subtrees are
combined using Merging Algorithm 2 when the number of
departing members is greater than zero.

In order for the GC to perform the rekeying, it needs to
store all of the keys in the key tree; therefore, its storage is
dðkN � 1Þ=ðk� 1Þe keys. The members, on the other hand,
only need to store the keys on the ancestral path from their
location in the key tree to the root, which means that each
member needs to store logkðNÞ þ 1 keys.

A.1 Merging Algorithm Analysis

When there is no departing member, we can immediately
apply Merging Algorithm 1 or Merging Algorithm 2,
depending on the number of joining members. The worst
rekeying cost for Merging Algorithm 1 occurs when the two
subtrees are combined using Step 4 since a new key node is
created for insertion. All of the KEKs from the root to level
HINSERT are affected by the insertion; in other words, the
number of affected key nodes, including the newly created
key node, is blogk Nc � dlogk Je þ 1. In addition, we include
the cost for constructing a subtree for the joining members
kdðJ � 1Þ=ðk� 1Þe. Similarly, the worst rekeying cost for
Merging Algorithm 2 occurs when the two subtrees are
combined using Step 2 since a new root is created for
insertion. The rekeying cost is simply the outdegree k for
creating a new root plus the cost for constructing a new key
tree for the joining member. Thus, the worst rekeying cost
RC for a batch join event is given by

Worst RCðJ>0;D¼0Þ ¼
kðblogk Nc � dlogk Je þ 1Þ
þk ðJ�1Þ

ðk�1Þ

l m Merging Algorithm 1

kþ k ðJ�1Þ
ðk�1Þ

l m
Merging Algorithm 2:

8>>><
>>>:

ð3Þ

In the best case for the two Merging Algorithms, a new
node is not required and, therefore, the best rekeying cost is
given by Best RC ¼Worst RC� k.

A.2 Batch Balanced Algorithm Worst Case Analysis

For simplicity, we first assume that the number of departing
members is some value D ¼ k0 for some integer l.

In the worst case, the departing members are spread
evenly at the leaf nodes, as shown in Fig. 26a. This means
that ðklþ1 � 1Þ=ðk� 1Þ key nodes from level 0 to level l
cannot be used. From level lþ 1 to h� 2, there are Dðk� 1Þ
usable subtrees at each level; in other words, the total
number of usable subtrees is Dðk� 1Þðh� 2� lÞ. At level
h� 1, there are ðk� 1Þ siblings for each departing member,
which means a total of Dðk� 1Þ siblings. The worst update
cost is Dðk� 1Þðh� 2� lÞ þDðk� 1Þ. Using our Batch
Balanced Algorithm, all J joining members and Dðk� 1Þ
siblings of the departing members form one or more
subtrees with k members. Finally, all subtrees form a single
key tree. The rekeying cost is therefore given by

Worst RCðJ�0;D 6¼0Þ

¼
kðDðk� 1Þðh� 2� lÞ þ Dðk�1ÞþJ

k

l m
� 1Þ

k� 1
þDðk� 1Þ þ J

¼ kDðlogk
N

D
Þ �Dþ J þ

k Dðk�1ÞþJ
k

l m
� k

k� 1
:

ð4Þ

Now, suppose that we have D ¼ kl þ r, where r
lies between 0 and ðk� 1Þkl. The analysis is split into
two portions. For the kl portion, the previous analysis
still applies. As for r, r½ðh� 3� 1Þðk� 1Þ � 1� usable
subtrees are produced. The worst update cost is
klðk� 1Þðh� 2� lÞ þ rðh� 3� lÞðk� 1Þ þ ðkl þ rÞðk� 1Þ. In
addition, the rðk� 1Þ siblings of the r departing members
form one or more subtrees with the siblings of the
kl departing members and joining members. The rekeying
cost therefore becomes

Worst RCðJ�0;D 6¼0Þ¼
k½klðk�1Þðh�2�lÞþ ðklþrÞðk�1ÞþJ

k

� �
�1þrðh�3�lÞðk�1Þ�r�

k�1 þðklþrÞðk�1ÞþJ

¼ðklþ1þrkÞ logk
N

kl
þ
k
ðklþrÞðk�1ÞþJ

k

� �
�k�rk2

k�1 �kl�rþJ:

ð5Þ

A.3 Batch Balanced Algorithm Best Case Analysis

Again, we first assume that D ¼ kl for some integer l.
In the best case, the number of key nodes affected by the

departing members is minimized, which means that all of the

NG ET AL.: DYNAMIC BALANCED KEY TREE MANAGEMENT FOR SECURE MULTICAST COMMUNICATIONS 603

Fig. 26. (a) Worst and (b) best case rekeying costs.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

departing members will be concentrating on one area of the
key tree, as shown in Fig. 26b. In this case, there are ðk� 1Þ
usable subtrees in the affected branch from level logk Do to
h� 2 and the k� dkD=Ne children of the root are not affected
by the departing members, where Do lies between 0 and
N=k ðD ¼ CN=kþDoÞ and C is between 0 and k. The best
update cost is ðk� 1Þðh� 2� logk D0Þ þ k� dkD=Ne. All
joining members form one or more subtrees with
k members.

Best RCðJ�0;D6¼0Þ ¼
k½ðk� 1Þðh� 2� logk DoÞ þ dJke þ ðk� dkDN eÞ � 1�

k� 1
þ J:

ð6Þ

Suppose we have D ¼ kl þ r, where r lies between 0 and
ðk� 1Þkl.

The same analysis still applies, except that r
produces another Y subtrees, where Y is the sum
of the digit of kdlogk Doe �Do when written in radix k.
In other words, the total number of usable subtrees is
ðk� 1Þðh� 2� dlogk D0eÞ þ k� dkD=Ne þ Y . T h e r e a r e
Dmodk siblings of the departing members. Therefore, the
best update cost is

ðk� 1Þðh� 2� dlogk D0eÞ þ k� dkD=Ne þDmod k:

The Dmod k sibling of the departing members and the

joining members form one or more subtrees with

k members.

Best RCðJ�0;D6¼0Þ¼
k½ðk�1Þðh�2�dlogk DoeÞþ

JþDmodkÞ
kd eþ k� kD

Nd eð ÞþY�1�
k�1 þJþD mod k: ð7Þ

APPENDIX B

The operations for both Merging Algorithms and the Batch

Balanced Algorithm without optimization are shown in

Figs. 27, 28, and 29, respectively.

REFERENCES

[1] S.E. Deering, “Host Extensions for IP Multicasting,” IETF RFC
1112, Aug. 1989.

[2] S. Paul, Multicast on the Internet and Its Applications. Kluwer
Academic, 1998.

[3] U. Varshney, “Multicast over Wireless Networks,” Comm. ACM,
vol. 45, no. 12, pp. 31-37, Dec. 2002.

[4] U. Varshney, “Multicast Support in Mobile Commerce Applica-
tion,” Computer, vol. 35, no. 2, pp. 115-117, Feb. 2002.

[5] N. Shi, Mobile Commerce Applications. Idea Group, 2004.
[6] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Noar, and B.

Pinkas, “Multicast Security: A Taxonomy and Efficient Construc-
tions,” Proc. IEEE INFOCOM, vol. 2, pp. 708-716, Mar. 1999.

[7] A. Ballardie, “Scalable Multicast Key Distribution,” IETF RFC
1949, 1996.

[8] H. Harney and C. Muckerhirn, “Group Key Management Protocol
(GKMP) Specification,” IETF RFC 2093, July 1997.

604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 5, MAY 2007

Fig. 29. Batch Balanced Algorithm without optimization.

Fig. 27. Merging Algorithm 1 and its exception.

Fig. 28. Merging Algorithm 2.

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

[9] H. Harney and C. Muckenhirn, “Group Key Management
Protocol (GKMP) Architecture,” IETF RFC 2094, July 1997.

[10] D.M. Wallner, E.J. Harder, and R.C. Agee, “Key Management for
Multicast Issues and Architectures,” IETF RFC 2627, June 1999.

[11] C. Wong, M. Gouda, and S. Lam, “Secure Group Communication
Using Key Graphs,” IEEE/ACM Trans. Networking, vol. 8, pp. 12-
23, Feb. 2000.

[12] D. Balenson, D. McGrew, and A. Sherman, “Key Management for
Large Dynamic Groups: One-Way Function Trees and Amortized
Initialization,” Internet Draft, draft-irtf-smug-groupkeymgmt-oft-
00.txt, Aug. 2000.

[13] M. Valdvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The
Versakey Frameworks: Versatile Group Key Management,” IEEE
J. Selected Areas in Comm. (JSAC), vol. 17, no. 9, pp. 1614-1631, Sept.
1999.

[14] M.P. Howarth, S. Iyengar, Z. Sun, and H. Cruickshank, “Dy-
namics of Key Management in Secure Satellite Multicast,” IEEE J.
Selected Areas in Comm. (JSAC), Feb. 2004.

[15] S. Mittra, “Iolus: A Framework for Scalable Secure Multicasting,”
Proc. ACM SIGCOMM, vol. 27, pp. 277-288, Sept. 1997.

[16] B. DeCleene et al., “Secure Group Communication for Wireless
Networks,” Proc. Military Comm. Conf. (MILCOM), Oct. 2001.

[17] A. Perrig, “Efficient Collaborative Key Management Protocol for
Secure Autonomous Group Communication,” Proc. Int’l Workshop
CrypTEC, 1999.

[18] X.S. Li, Y.R. Yang, M. Gouda, and S. Lam, “Batch Rekeying for
Secure Group Communications,” Proc. 10th Int’l WWW Conf., May
2001.

[19] S. Setia, S. Koussih, and S. Jajodia, “Kronos: A Scalable Group
Rekeying Approach for Secure Multicast,” Proc. IEEE Symp.
Security and Privacy, 2000.

[20] X.B. Zhang, S. Lam, D.Y. Lee, and Y.R. Yang, “Protocol Design for
Scalable and Reliable Group Rekeying,” IEEE/ACM Trans.
Networking, vol. 11, pp. 908-922, Dec. 2003.

[21] J. Pegueroles and F. Rico-Novella, “Balanced Batch LKH: New
Proposal, Implementation and Performance Evalution,” Proc.
IEEE Symp. Computers and Comm. (ISCC), June 2003.

[22] J. Pegueroles, J. Hernandez-Serrano, F. Rico-Novella, and M.
Soriano, “Adapting GDOI for Balanced Batch-LKH,” Internet
draft, draft-irtf-gsec-gdoi-batch-lkh-00.txt, June 2003.

[23] P.P.C. Lee, J.C.S. Lui, and D.K.Y. Yau, “Distributed Collaborative
Key Agreement Protocols for Dynamic Peer Groups,” Proc. IEEE
Int’l Conf. Network Protocols (ICNP), Nov. 2002.

[24] A.M. Eskicioglu, “Multimedia Security in Group Communication:
Recent Progress in Key Management, Authentication and Water-
marking,” ACM Multimedia Systems J., special issues on multi-
media security, pp. 239-248, Sept. 2003.

[25] W. Ng and Z. Sun, “Multi-Layers LKH,” Proc. IEEE Int’l Conf.
Comm. (ICC), May 2005.

[26] M.J. Moyer, J.R. Rao, and P. Rohatgi, “Maintaining Balanced Key
Trees for Secure Multicast,” Internet Research Task Force (IRTF),
Internet draft, draft-irtf-smug-key-tree-balance-00.txt, June 1999.

[27] W.H.D Ng, H. Cruickshank, and Z. Sun, “Scalable Balanced Batch
Rekeying for Secure Group Communication,” Elsevier Computers
and Security, vol. 25, pp. 265-273, June 2006.

[28] A. Hodjat and I. Verbauwhede, “The Energy Cost of Secrets in
Ad Hoc Networks (Short Paper),” Proc. IEEE Circuits and Systems
Workshop (CAS), 2002.

[29] Y. Sun, W. Trappe, and K.J. Ray, “A Scalable Multicast Key
Management Scheme for Heterogeneous Wireless Networks,”
IEEE/ACM Trans. Networking, vol. 12, Aug. 2004.

Wee Hock Desmond Ng received the BEng
and PhD degrees in electronics and electrical
engineering, both from the University of Surrey,
United Kingdom. He is currently working at
AT&T Singapore. His research interests include
network security and next-generation network.

Michael Howarth received the bachelor’s de-
gree in engineering science and the DPhil
degree in electrical engineering, both from
Oxford University and the MSc degree in
telecommunications from the University of Sur-
rey, United Kingdom. Prior to joining the
University of Surrey, he worked for several
networking and IT consultancies. He is a lecturer
in networking at the Centre for Communication
Systems Research (CCSR), University of Sur-

rey. His research interests include traffic engineering, quality of service,
security systems, protocol design, and optimization of satellite commu-
nications. He is a chartered electrical engineer and a member of the
United Kingdom IET.

Zhili Sun received the BSc degree in mathe-
matics from Nanjing University, China, and the
PhD degree in computing science from Lan-
caster University, United Kingdom. He is the
chair of Communication Networking in the
Centre for Communication Systems Research
(CCSR), Department of Electronic Engineering,
School of Electronics and Physical Sciences,
University of Surrey, United Kingdom. He is a
lecturer in data and Internet networking, as well

as satellite communication courses, at the University of Surrey. He also
teaches MSc, undergraduate, and industrial courses on satellite
networking, computer and data networks, and Internet traffic engineering.
He was a postdoctoral researcher from 1989 to 1993 in the Telecommu-
nications Group, Queen Mary and Westfield College, University of
London, before coming to Surrey. He has been a principal investigator
and technical coordinator for many European projects, including the
European Strategic Programme for Research and development in
Information Technology on Broadband Integrated Satellite Network
Traffic Evaluation (Esprit BISANTE) project on evaluation of broadband
traffic over satellite using simulation approach, Validation of IP Telephony
over Euroskyway Network (VIP-TEN) project on quality of service (QoS)
of IP telephony over satellite, EU Fifth and Sixth Framework Programme
GEOCAST projects on IP multicast over satellites, ICEBERGS project on
IP-based Multimedia Conference over Satellite, SatLife project on IP over
digital video broadcasting satellite/radar cross-section (DVB-S/RCS),
satellite-based communications systems within IPv6 networks (SATSIX)
project on IPv6 over satellite, and Euro-NGI project on next-generation
Internet. He has also been a principal investigator for the UK Engineering
and Physical Sciences Research Council (EPSRC), European Space
Agency (ESA), and industrial projects on IP multicast security. He has
supervised many PhDs and research fellows. He has also been a
member of the technical committees for international conferences and of
reviewers for EU and UK research proposals. He has acted as an external
examiner for PhD viva at many universities in the UK, Europe, Singapore,
and China. Since January 1996, he has been working on several
European research projects in the Advanced CompuTational Software
(ACTS), Esprit, Trans-European Telecommunications Network (TEN-
TELECOM), and Information Society Technologies (IST) programs. His
main research interests include network security, satellite network
architectures, Voice over IP (VoIP), and IP conferencing over satellites.
He has published a book titled Satellite Networking (Wiley) and more than
120 papers in international journals and conferences. He is a member of
the Satellite and Space Communications Committee of the IEEE
Computer Society and a chartered engineer and corporate member of
the IET in the United Kingdom.

Haitham Cruickshank is a lecturer in data and
Internet networking and satellite communication
courses at the University of Surrey, United
Kingdom. Since January 1996, he has been
working on several European research projects
in the Advanced CompuTational Software
(ACTS), Esprit, Trans-European Telecommuni-
cations Network (TEN-TELECOM), and Informa-
tion Society Technologies (IST) programs. His
main research interests include network secur-

ity, satellite network architectures, Voice over IP (VoIP), and IP
conferencing over satellites. He is a member of the Satellite and Space
Communications Committee of the IEEE Computer Society and a
chartered engineer and corporate member of the IET in the United
Kingdom.

NG ET AL.: DYNAMIC BALANCED KEY TREE MANAGEMENT FOR SECURE MULTICAST COMMUNICATIONS 605

Authorized licensed use limited to: University of Surrey. Downloaded on February 18,2010 at 09:42:29 EST from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

