
New Scheduling Strategies for
Randomized Incremental Algorithms in the

Context of Speculative Parallelization
Diego R. Llanos, Member, IEEE, David Orden, and Belén Palop

Abstract—In this work, we address the problem of scheduling loops with dependences in the context of speculative parallelization. We

show that the scheduling alternatives are highly influenced by the dependence violation pattern the code presents. We center our

analysis in those algorithms where dependences are less likely to appear as the execution proceeds. Particularly, we focus on

randomized incremental algorithms, widely used as a much more efficient solution to many problems than their deterministic

counterparts. These important algorithms are, in general, hard to parallelize by hand and represent a challenge for any automatic

parallelization scheme. Our analysis led us to the development of MESETA, a new scheduling strategy that takes into account the

probability of a dependence violation to determine the number of iterations being scheduled. MESETA is compared with existing

techniques, including Fixed-Size Chunking (FSC), the only scheduling alternative used so far in the context of speculative

parallelization. Our experimental results show a 5.5 percent to 36.25 percent speedup improvement over FSC, leading to a better

extraction of the parallelism inherent to randomized incremental algorithms. Moreover, when the cost of dependence violations is too

high to obtain speedups, MESETA curves the performance degradation.

Index Terms—Parallelism and concurrency, load balancing and task assignment, scheduling and task partitioning, geometrical

problems and computations.

Ç

1 INTRODUCTION

SPECULATIVE parallelization (also called thread-level spec-
ulation) is the most promising technique for extracting

parallelism of irregular loops. With speculative paralleliza-
tion, loops that cannot be analyzed at compile time are
optimistically executed in parallel. Hardware or software
mechanisms ensure that all threads access the shared data
according to sequential semantics. A dependence violation
appears when one thread incorrectly consumes a datum
that has not been generated yet by a predecessor. In the
presence of such a violation, earlier software-only spec-
ulative solutions (see, for example, [1], [2]) interrupt the
speculative execution and reexecute the loop serially. More
recent approaches [3], [4], [5] squash only the offender
thread and its successors, restarting them with the correct
data values.

It is easy to see that frequent squashes adversely affect
speculation performance. One way to reduce the cost of a
squash is to assign smaller subsets (called chunks) of
iterations to each thread, reducing the amount of work
being discarded in the case of a squash. Unfortunately,
smaller chunks also imply more frequent commit opera-
tions and a higher scheduling overhead.

The problem of scheduling iterations of parallel loops
among different processors in a parallel system has been
extensively studied in the literature during the last 20 years
[6], [7], [8], [9], [10]. However, the proposed solutions only
deal with independent iterations and their basic concern is
to achieve good load balancing among processors. There-
fore, classic scheduling alternatives are not useful for
speculative parallelization. To the best of our knowledge,
the only scheduling mechanism used so far in this context is
Fixed-Size Chunking (FSC), which schedules chunks of an
equal number of iterations among processors. This mechan-
ism does not take into account the dependence distribution
of the loop to be parallelized.

In this work, we study in detail the problem of
scheduling loops with dependences in the context of
speculative parallelization. We first show that the schedul-
ing alternatives are highly influenced by the dependence
violation pattern presented by the code. Then, we propose a
new scheduling alternative, MESETA [11], for those algo-
rithms where dependences are less likely to appear as the
execution proceeds. Many incremental algorithms follow
this pattern and, among them, randomized incremental
algorithms have been very well studied and proven to
achieve the best performance. Randomized incremental
algorithms have been deeply studied in areas such as
computational geometry and optimization [12], [13], [14],
leading to simple, easy-to-code, and efficient algorithms for
a variety of problems, including line segment intersection
[15], [16], Voronoi diagrams [15], [17], [18], [19], triangula-
tion of simple polygons [20], solving linear programs [21],
and many others. Randomized incremental algorithms are,
in general, hard to parallelize by hand and a challenge for

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007 1

. D.R. Llanos and B. Palop are with the Departamento de Informática, Edif.
Tecn. de la Información, Universidad de Valladolid, Campus Miguel
Delibes, 47011 Valladolid, Spain. E-mail: {diego, b.palop}@infor.uva.es.

. D. Orden is with the Departamento de Matemáticas, Facultad de Ciencias,
Universidad de Alcalá, Apdo. de Correos 20, E-28871 Alcalá de Henares
(Madrid), Spain. E-mail: david.orden@uah.es.

Manuscript received 20 Feb. 2006; revised 22 Oct. 2006; accepted 29 Nov.
2006; published online 15 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0062-0206.
Digital Object Identifier no. 10.1109/TC.2007.1030.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

any automatic parallelization scheme. This justifies their
choice to test the efficiency of MESETA.

The results obtained using a software-only speculative
engine [3], [22] show that MESETA allows a 5.5 percent to
36.25 percent speedup improvement over the use of FSC for
the same randomized incremental algorithm, reducing, at
the same time, the cost of the reexecution of chunks of
iterations.

The paper is organized as follows: Section 2 reviews
some classic scheduling alternatives for loops with no
dependences. Section 3 shows how the speculative execu-
tion of a loop with dependences differs from the execution
of a parallel loop, introducing a cost model to calculate an
upper bound of the extra time required by speculative
parallelization. Section 4 introduces randomized incremen-
tal algorithms, giving some examples and studying how
dependences are distributed in the iteration space. Section 5
uses this information to propose MESETA, the new schedul-
ing strategy that allows an efficient speculative execution of
this type of algorithms. Section 6 shows the experimental
results and Section 7 concludes the paper.

2 REVIEW OF SCHEDULING ALTERNATIVES FOR

PARALLEL LOOPS

The problem of scheduling iterations of irregular loops in
order to assign them to different processors has been
extensively studied in the literature. All existing proposals
assume that there are no dependences among iterations
and, therefore, all of the iterations can be executed in
parallel in any order. We review in this section some of the
solutions that have been proposed in recent years to this
problem.

We will first describe the two simplest techniques to
distribute iterations among processors. Let N be the total
number of iterations and P the total number of threads
(equal to the number of processors in the system). The first
one, called static scheduling, divides the iteration space
statically into N=P chunks of equal size. This system does
not allow us to dynamically balance the workload during
the execution of the loops. Hence, the processors may finish
at very different times, leading to a poor load balance. On
the other hand, self-scheduling [9] assigns to each thread the
next iteration to be executed. This approach minimizes load
imbalance, but at the cost of a high increase in the
scheduling overhead.

Between these two extreme solutions, different alter-
natives have been proposed. A brief description follows.

Fized-sized chunking (FSC). In this approach, proposed by

Kruskal and Weiss [7], the iteration space is statically
divided into chunks of fixed size. Each free thread executes

the following chunk. This solution reduces synchronization
overhead in comparison with self-scheduling, with better

load balancing than static scheduling. The efficiency of this
scheme depends on the choice of an appropriate value for

the chunk size K, a difficult task for both programmers and
compilers. Kruskal and Weiss give the following formula

for the optimal value of the chunk size Kopt:

Kopt ¼
ffiffiffi
2
p

Nh

�P
ffiffiffiffiffiffiffiffiffiffiffi
logP
p

� �2=3

;

where � is the variance of the iteration time, h the

scheduling overhead, N the number of iterations, and P

the number of processors. The first three values are

unknown at the beginning of the loop, making it difficult
to determine the optimal (or at least adequate) chunk size in

practice.
Guided self-scheduling (GSS). This technique, proposed by

Polychronopoulos and Kuck [8], addresses the problem of
uneven start times for each processor. Instead of using a

fixed chunk size, they propose decreasing chunk sizes,
calculated as a decreasing function of the current iteration

number i being executed. As execution proceeds, smaller
chunks improve the balance of the workload toward the

end of the loop. Let Ri be the remaining iterations at step i.
Each chunk size Ki is calculated as follows:

R0 ¼ N; Ki ¼
Ri

xP

� �
; Riþ1 ¼ Ri �Ki;

where x should be fixed to adjust the amount of work
scheduled in each step. When x ¼ 1, the GSS function

allocates approximately two-thirds of the remaining itera-

tions every P chunks. If the time spent by iterations is
uneven, this may result in too large an amount of work

scheduled in the first chunks, making it more difficult to
balance the work at the end of the loop [6]. This effect can be

reduced with bigger values of x.
In order to avoid having many small chunks by the end

of the loop, an additional function, GSSðKÞ, is proposed to

bound the chunk size from below by K, specified by either
the compiler or the programmer. Fig. 1a shows an example

of scheduling with GSS.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Fig. 1. Variable-sized scheduling alternatives for 1,000 iterations and four processors. (a) GSS with x ¼ 1. (b) Factoring with x ¼ 2. (c) TSS with

f ¼ 125, ‘ ¼ 1.

Factoring. This mechanism, proposed by Hummel et al. [6],
is similar in concept to GSS, but the allocation of iterations
to processors proceeds in phases. In each phase, a part of
the remaining iterations is divided into batches of
P equal-size chunks. The optimal number of iterations per
batch requires the (a priori unknown) mean iteration time �
and, again, the variance �. The authors argued that, for
many common distributions of chunk execution times, no
more than half of the remaining iterations should be
assigned to each batch. The following equation gives the
chunk size Kj for each component of the ith batch group:

R0 ¼N;

Kj ¼
Ri

xP

� �
¼K; 8j 2 f1; . . . ; Pg;

Riþ1 ¼Ri � P K:

By setting x ¼ 2, half of the remaining iterations are
scheduled in each phase. This setting smooths the schedul-
ing function in comparison with GSS and therefore
increases the probability of even finishing times. An
additional feature of this solution is that, when all of the
iterations take the same time, all of the processors execute
an equal portion of the work, N=P . Again, the value of x
can be adjusted to schedule more or fewer iterations in the
first chunks.

Factoring can be viewed as a generalization of GSS and
FSC: GSS is factoring where each batch contains a single
chunk, while FSC is factoring with a single batch. Fig. 1b
shows an example of scheduling with factoring.

Trapezoidal scheduling (TSS). This technique, proposed by
Tzen and Ni [10], uses chunks that decrease in size linearly.
This approach is simpler to implement than GSS and,
specially, GSSðKÞ, thus reducing scheduling overhead.
Moreover, according to the authors, a big value of K in
GSSðKÞ leads to a high imbalance, whereas small values
lead to too much scheduling overhead. Consequently, an
optimum value of K for GSS is difficult to obtain,
particularly in unbalanced loops. By decreasing the chunk
size linearly, TSS reduces the number of chunks and, hence,
the overhead, and simplifies the calculation of the next
chunk size, allowing its computation with atomic Fetch-and-
Increment operations.

TSS is defined as TSSðf; ‘;NÞ, where f is the size of the
first chunk and ‘ is the size of the last one. The maximum
value for f is N=P : With this value, the first P chunks will
hold 3/4 of the iterations. A more conservative value is to
set f ¼ N=ð2P Þ when only 7/16 of the iterations will be
executed in the first P chunks.

The area below TSSðf; ‘;NÞ, called A, should be
calculated in order to obtain the decreasing step �:

A ¼ 2N

f þ ‘

� �
; � ¼ f � ‘

A� 1
:

Again, the values for f and ‘ depend on the execution
time and no heuristics are provided to calculate them.
Instead, conservative values f ¼ N=2P and ‘ ¼ 1 are
suggested. Fig. 1c shows an example of TSS.

The total number of iterations being scheduled is at
least N for all scheduling alternatives described. Only

Self-Scheduling always leads to exact correspondence.
Consequently, the scheduler should always check whether
the upper limit will be exceeded and order the execution
of only the remaining iterations. Besides this, it is easy to
see in Fig. 1 that the use of different scheduling alternatives
with the recommended values for free parameters leads to a
different number of blocks being scheduled.

Finally, other proposals determine the optimum chunk
size at runtime based on the total available parallelism, the
optimal grain size, and the statistical variance of execution
times for individual tasks. We do not consider adaptive
scheduling policies in this work, such as the Tapering
algorithm by Lucco [23].

3 SCHEDULING IN THE CONTEXT OF SPECULATIVE

PARALLELIZATION

In the context of speculative parallelization, however, loops
may present dependences among iterations. A Read-after-
write (RAW) dependence violation appears when a thread
speculatively reads a value and, later, a predecessor
modifies the same value. If a dependence violation occurs
during the parallel execution of the loop, the offending
thread and all of its successors are squashed and restarted
with the correct values. Fig. 2 shows the events involved in
a RAW dependence violation, where a thread modifies a
value that a successor has already consumed. Therefore, the
scheduling alternatives described in Section 2 cannot be
directly applied to speculative parallelization since they are
designed to achieve load balancing and low scheduling
overhead on loops composed of independent iterations.

We will now develop a simple model to compute an
upper bound of the squash overhead. Suppose that some
loop is divided into C equal-size chunks and that we have
P processors where we can schedule in batch P chunks at a
time. The number of batches is then B ¼ dC=Pe. Let us call
ts the time it takes to execute the loop sequentially, tc the
time to complete a chunk, and tb the time to execute a batch.

LLANOS ET AL.: NEW SCHEDULING STRATEGIES FOR RANDOMIZED INCREMENTAL ALGORITHMS IN THE CONTEXT OF SPECULATIVE... 3

Fig. 2. Example of RAW dependence violation. P1 to P4 are four

different processors executing chunks of consecutive iterations, labeled

c1 to c12. The event sequence is described as follows: 1) A thread reads

a shared variable. 2) A predecessor modifies the same variable. 3) A

RAW dependence violation is detected. 4) The offending threads are

squashed and restarted with the correct value of the variable.

We assume that the overhead time to, measured as the time
it takes to assign each chunk to some processor plus the
time to commit or squash the results on the main copy of
the shared variables, is similar in all batches. If we assume
that all iterations take equal time, then tb ¼ tc ¼ ts=C þ to.

We will now calculate an upper bound for the time
needed to complete the loop in parallel tp when only a
single squash arises and then extend this formula for
several squashes.

We can decompose tp into two parts: the time it would
take to execute the loop if there were no squashes and the
time it takes to reexecute the work that was already done
when the squash was produced. In the worst case, the
squash will be produced in the last iteration of some chunk.
Therefore, all of the work done by later threads in this batch
will be reexecuted from the beginning and

tp � Btb þ tb:

It is important to note that the dependences between
iterations in the same chunk do not lead to squashes.
Therefore, the number of squashes, Ns, is, in general,
smaller than the number of dependences. It is easy to see
that each squash costs, at most, tb. Hence, for several
squashes, we get

tp � Btb þNstb

and, since tb ¼ ts=C þ to and B ¼ C=P , we have

tp � ts=P þ C=P to þNsðts=C þ toÞ: ð1Þ

The term Nsðts=C þ toÞ indicates that, the greater the
number of chunks (thus, using smaller chunks), the smaller
the time lost on each squash. On the other hand, the term
C=P to indicates that we can obtain better time bounds if we
minimize the number of chunks, that is, making chunks
bigger.

If we decide to use a single chunk size during the entire
execution of the loop, the optimal number of chunks we
should use can be determined by minimizing tp, derived as
follows:

@ðts=P þ C=P to þNsðts=C þ toÞÞ
@C

¼ 0

and we obtain

C� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NstsP

to

s
:

Therefore, the optimal number of chunks, C�, depends on
the number of squashes,Ns. However, changing the number
of chunks varies the number of dependences leading to
squashes. That is, only one chunk executing the whole loop
would makeNs ¼ 0 and chunks of size equal to one iteration
would produce one squash for each dependence.

The analysis of (1) suggests that a useful strategy for
speculative execution is to use big chunks on portions of the
loop where fewer dependences are expected to be found
and smaller chunks on portions where we expect to find
many dependences.

Obviously, it is not a simple task to characterize the
distribution of dependences inside a general loop. In

Section 4, we will study randomized incremental algo-
rithms and characterize their dependence pattern.

4 RANDOMIZED INCREMENTAL ALGORITHMS

Randomized incremental algorithms have been deeply
studied in areas such as computational geometry and
optimization [12], [13], [14]. They have led to simple,
easy-to-code, and efficient algorithms for a variety of
problems. Among them, we can cite line segment intersec-
tion [15], [16], Voronoi diagrams [15], [17], [18], [19],
triangulation of simple polygons [20], solving linear
programs [21], and many others.

In their general formulation, the input of a randomized
incremental algorithm is a set of elements (not necessarily
points) for which a certain output needs to be computed.
The algorithm proceeds incrementally by adding the input
elements one by one and obtaining the intermediate results.
The main feature is that the elements are added in random
order, determined by the choice of a random permutation at
the beginning.

Our main concern is that, independent of the problem,
these algorithms are shown to present a common depen-
dence pattern: At the beginning of the execution, many
iterations depend on values calculated by previous ones.
However, as the execution proceeds, fewer and fewer
dependences arise between different iterations. This beha-
vior makes it possible (and attractive) to develop schedul-
ing strategies for the speculative parallelization of this type
of algorithms, as well as all algorithms sharing their
dependence pattern, and motivates the proposal of MESETA

in Section 5.

4.1 Expected Number of Dependences

Let S and �ðSÞ represent, respectively, the input and the
output of a randomized incremental algorithm. These
algorithms start by choosing a random permutation
fs1; . . . ; sng of the elements in S and then incrementally
construct �ðRiÞ for Ri :¼ fs1; . . . ; sig.

In order to study the expected number of dependences
appearing at a given step i, let us introduce the following
notions: We call violators those elements of S not processed
yet that would cause the present output �ðRiÞ to be
updated, that is, the elements leading to a potential RAW
dependence. The extreme elements will be the ones needed
to define the present output �ðRiÞ.

More formally, the sets of violators and extreme elements
are defined as follows:

V ðRiÞ :¼ fs 2 S nRi : �ðRi [fsgÞ 6¼ �ðRiÞg

is the set of violators of Ri in S and

XðRiÞ :¼ fs 2 Ri : �ðRi n fsgÞ 6¼ �ðRiÞg

is the set of extreme elements of Ri.
For a couple of examples, consider the computation of

the Convex Hull [15], [24] and the Smallest Enclosing Circle
[25]. The Convex Hull and the Smallest Enclosing Circle
problems consist, respectively, of obtaining the smallest
convex polygon and the smallest circle that enclose a set of
points in the plane. Let us choose S to be a subset of points

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

in IR2. Considering � � ConvexHull, the violators V ðRiÞ are
those points outside ConvexHullðRiÞ, whereas the extreme
points XðRiÞ are the vertices of this convex hull. For
� � SmallestEnclosingCircle, the points outside the
smallest enclosing circle of Ri are the violators V ðRiÞ and
the extreme points XðRiÞ are the points defining this circle.

As observed above, the number jV ðRiÞj of violators
equals the number of potential RAW dependences at step i.
The following lemma, whose proof can be found in
Appendix A, states a relationship between the expected
number of extreme elements found before processing
element i and the expected number of violators to be found
afterward.

Lemma 4.1 (Sampling Lemma). Let vi :¼ EðjV ðRiÞjÞ and
xi :¼ EðjXðRiÞjÞ be the expected numbers of violators and
extreme elements for Ri as above. Then, for any i 2 f1; . . . ; ng,

xi
i
¼ vi�1

n� iþ 1
:

That is, the fraction of elements defining the present output
over those already processed is expected to equal the fraction of
elements forcing the update of the present output over those
remaining to be processed.

Therefore, at any step i, the expected number of potential
RAW dependences is

vi�1 ¼
xi
i
ðn� iþ 1Þ:

In other words, the probability of finding a dependence at
step i is at most xii . Randomized incremental algorithms are
used when xi is asymptotically smaller than i and, hence,
this probability decreases as execution proceeds.

The situation can be considered stable when the prob-
ability � of finding a potential RAW dependence is close
enough to 0. Using the Sampling Lemma, the probability of
having a potential RAW dependence can be computed for
any value of i. Reciprocally, once a threshold � is chosen, it
is easy to derive from the formula xi

i ¼ � the iteration i in
which that � is achieved. Now, observe that, given two
possible thresholds, the faster the probability of finding a
dependence tends to 0 (that is, the smaller the numerator xi

is), the more similar are the iteration values obtained for
those thresholds. This implies that, the faster the probability
of dependences goes to 0, the less determinant accuracy is
in the choice of a threshold �. We have chosen � ¼ 3 � 10�4,
for which our experimental results show that the situation is
stable regardless of the input set.

4.2 Randomized Incremental Construction of the
Smallest Enclosing Circle

For the above example of � � SmallestEnclosingCircle, it
is clear that xi � 3 for any i since at most three points are
needed in order to define a circle in IR2. Hence, the expected
number of points outside the smallest circle enclosing Ri is

vi�1 �
3

i
ðn� iþ 1Þ:

In other words, the probability of finding a dependence at
step i is at most 3

i . The fact that this amount decreases
quickly when i gets bigger shows why the probability of
finding a dependence is much higher in the first iterations
than in the remaining ones.

To check this result, two sample executions for square and
disc-shaped input sets have been made. These sets are
extreme in the sense that all other convex polygonal shapes
(but triangles) happen to be in between these two. Perfor-
mance for these sets will obviously be closer to one or the
other, depending on the number of sides of the polygon. We
have used constant-size blocks of 1,000 iterations to run
Welzl’s Smallest Enclosing Circle algorithm [25], measuring
the number of potential dependence violations in each block.
As expected, only a portion of the potential RAW depen-
dences turn into real RAW dependences since some of them
appear inside each chunk and will be executed sequentially.
Fig. 3 shows the effective distribution of RAW dependences
for both input sets.

Applying the Sampling Lemma in the case of the
Smallest Enclosing Circle, we obtain

3

i
¼ 3 � 10�4 ¼) i � 104:

This iteration number is represented by vertical lines in
Figs. 3a and 3b. As can be seen in the figures, the number of

LLANOS ET AL.: NEW SCHEDULING STRATEGIES FOR RANDOMIZED INCREMENTAL ALGORITHMS IN THE CONTEXT OF SPECULATIVE... 5

Fig. 3. Effective RAW dependences in Welzl’s algorithm for the Smallest Enclosing Circle. Note the use of logarithmic scales. (a) Square-shaped

input set. (b) Disc-shaped input set.

dependences after this iteration number is low enough to

consider the situation stable.

4.3 Randomized Incremental Construction of a
Convex Hull

For the randomized construction of the 2D Convex Hull

ð� � ConvexHullÞ, the usual input data sets are uniform

distributions of points in a k-gon (see [26]). We will not

consider degenerate cases like i cocircular points in which

every iteration is dependent on the previous ones and the

problem is inherently nonparallel. It is well known (see [27]

and [28]) that, in order to define the convex hull of i points

uniformly distributed in a k-gon, only xi ¼ Oðk logðiÞÞ of

them are needed, whereas only xi ¼ Oð
ffiffi
i3
p
Þ are needed for

the limit situation of points uniformly distributed in a disc.
We have performed several sequential executions on

small sets of points in order to accurately determine the

constants involved, which tend to be 2.60 for the square and

3.34 for the disc. Hence, the Sampling Lemma for

randomized incremental algorithms claims that the prob-

abilities 2:60 logðiÞ=i (square) and 3:34
ffiffi
i3
p
=i (disc) of causing

a potential RAW dependence are much higher at the first

iterations.
Two sample executions for square and disc-shaped input

sets have been made in order to check this result. We have

used constant-size blocks of 1,000 iterations of the main

loop with the best randomized incremental algorithm for

computing 2D Convex Hulls due to Clarkson et al. [29]. As

expected, only a portion of the potential RAW dependences

turn into real RAW dependences since some of them appear

inside each chunk and will be executed sequentially. Fig. 4

shows the effective distribution of RAW dependences for

both input sets. If we again considered the situation stable

when the probability � of finding a potential RAW

dependence is close enough to 0, also as expected, this

happens earlier in the square than in the disc; we again

apply the Sampling Lemma in order to obtain the iteration

number, after which the situation can be considered stable.

For a randomly distributed square-shaped input set, we set

2:60 logðiÞ
i

¼ 3 � 10�4 ¼) i � 105;

while, for a randomly distributed disc-shaped input set,

3:34
ffiffi
i3
p

i
¼ 3 � 10�4 ¼) i � 106:

Both iteration numbers are represented with vertical
lines in Figs. 4a and 4b. It is easy to see that the number of
dependences after each of them is low enough to consider
the situation stable.

5 MESETA: SCHEDULING STRATEGY FOR

RANDOMIZED INCREMENTAL ALGORITHMS

We have seen in the previous section how the number of
dependences appearing in a randomized incremental
algorithm tends to decrease as the algorithm proceeds. All
dependences are, in principle, candidates to produce a
squash in the context of speculative parallelization. The cost
model described in Section 3 shows that the optimal size of
chunks depends on the number of squashes, which is not
known until execution time and depends on the size of the
chunks. This is why it is rather difficult to find a fixed
chunk size that minimizes the number of squashes. More-
over, the rest of the scheduling alternatives proposed lead
to poor performance since they schedule bigger chunk sizes
at the beginning of the loop, precisely where we have
proved that potential RAW dependences are more likely to
be found.

We propose here a new scheduling strategy for the
speculative execution of those algorithms in which depen-
dences are less likely to appear as execution proceeds, like
randomized incremental algorithms. MESETA (the Spanish
word for tableland) divides the execution of the loop into
three parts (see Fig. 5):

. At the beginning of the loop, many dependences are
likely to be found. We propose assigning small
chunks to processors in that part of the execution,
progressively increasing their size as the execution
proceeds. The benefits are twofold. First, we are
preventing dependences between distant iterations

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Fig. 4. Effective RAW dependences in Clarkson et al.’s algorithm for the 2D Convex Hull. Note the use of logarithmic scales. (a) Square-shaped input

set. (b) Disc-shaped input set.

from appearing since they will not be processed in
parallel (and, therefore, many potential RAW de-
pendences will not turn into real RAW depen-
dences). Second, the amount of work to be redone
after each squash is smaller since we are scheduling
small chunks. Except for FSC, any of the scheduling
functions reviewed in Section 2 can be mirrored with
respect to the y-axis and applied here in order to
obtain increasing-size chunks.

. The probability of finding dependences between
iterations will lower as the execution proceeds,
reaching some probability value � 2 ½0; 1� where the
situation can be considered stable. At this point, we
can use a fixed chunk size to minimize both squash
and overhead costs.

. In the last part of the loop, we can safely assume that
the number of dependences can be neglected. At this
point, our main concern is load balancing. To
achieve this goal, any of the techniques proposed
in Section 2 can again be applied.

Some decisions still have to be made in order to show

that MESETA improves the performance of the fixed-block-

size basic technique.
The first problem is how to determine the number of

iterations to be executed before the probability of finding

dependences is considered low enough. Fortunately,

accuracy at this point is not determinant to the success of

the scheduling mechanism, which performs well regardless

of the particular transition point chosen. In Section 4.1, we

have seen that randomized incremental algorithms follow

the Sampling Lemma and, using this lemma, we have

shown that conservative-enough iteration numbers are

obtained in all of the studied cases with � ¼ 3 � 10�4.

The second important decision is fixing the chunk size

for the stable part of the loop. This decision will be

postponed to Section 6 since it not only depends on the

dependence pattern but also on the overheads produced by

squashed threads.
We finally reach the descending part of the MESETA. We

can now simply rely on the known scheduling solutions

presented in Section 2 since squashes are less and less likely

to happen and we only have to care about load balancing.

For the different alternatives, we will apply the parameters

proposed by the authors in each case, starting at the height

of the tableland. This will determine the iteration number in

which the descending part of MESETA starts.

6 EXPERIMENTAL RESULTS

A state-of-the-art software-only speculative parallelization

engine [3], [22] was used to execute in parallel the two

randomized incremental algorithms considered above:

Clarkson et al.’s algorithm for the 2D Convex Hull problem

(2D-Hull) [29] and Welzl’s algorithm for the 2D Smallest

Enclosing Circle problem (2D-SEC) [25]. In both cases, we

executed the outer loop in parallel, which accounts for

100 percent of the algorithm sequential execution time.

Table 1 summarizes the characteristics of both algorithms.
To test these applications, we have used four different

standard input sets: two composed by points randomly

distributed inside a square (10 and 40 million points) and

two with the same numbers of random points distributed

inside a disc. All input sets have been generated using

the random points generator of the Computational

Geometry Algorithms Library (CGAL) 2.4 [30] and have

been randomly ordered using its shuffle function. The

LLANOS ET AL.: NEW SCHEDULING STRATEGIES FOR RANDOMIZED INCREMENTAL ALGORITHMS IN THE CONTEXT OF SPECULATIVE... 7

Fig. 5. Distribution of chunk sizes for different versions of MESETA. The area below each plot is the total number N of iterations being scheduled. The

area below the ascending and descending phase is the same in all the versions considered.

TABLE 1
Characteristics of the Algorithms and Input Sizes Used

expected performance for these sets is the same as for any
other with the same shape and size.

6.1 Environment Setup

The experiments performed were done on a Sun Fire 15K
symmetric multiprocessor (SMP), equipped with 900 MHz
UltraSparc III processors, each one with a private 64 KByte,
4-way set-associative L1 cache, a private 8 MByte, direct-
mapped L2 cache, and 1 GByte of shared memory per
processor. The system runs on Sun OS 5.8. The application
was compiled with the Forte Developer 7 Fortran 95
compiler using the highest optimization settings for our
execution environment: -O3 -xchip = ultra3 -xarch =

v8plusb -cache = 64/32/4 : 8192/64/1. Times shown
in the following sections represent the time spent in the
execution of the main loop of the application. The time
needed to read the input set and the time needed to output
the convex hull or the smallest enclosing circle have not
been taken into account. The application had exclusive use
of the processors during the entire execution and we use
wall-clock time in our measurements.

6.2 Dependences in the Applications Considered

In the case of Clarkson et al.’s algorithm, the number of
violations between executions is bounded by the number of
points lying outside the convex hull computed up to their
insertion. As we saw in Section 4, the number of
dependences changes according to how quickly the grow-
ing convex hull tends to the final one and the usual input
data sets are uniform distributions of points. The asympto-
tic cost of a dependence violation is Oðlog iÞ for the square
input set and Oð

ffiffi
i3
p
Þ for the disc input set (Appendix B

shows the details). These costs are small compared with the
Oðn lognÞ expected complexity of the algorithm and, there-
fore, its speculative execution leads to good speedups
despite the comparatively high number of dependence
violations that may appear (see Table 1).

The situation is very different for Welzl’s algorithm. The
randomized incremental construction of the smallest en-
closing circle has an expected complexity of OðnÞ and it is
easy to see that a dependence violation in iteration i will
have a cost that is also in OðiÞ (see Appendix B for the
details). This fact severely affects the speculative perfor-
mance of the algorithm since a single violation implies the
recalculation of the solution for all of the points considered
so far. As we will see in the following sections, the
traditional scheduling mechanisms fail in the extraction of
any parallelism for this algorithm, whereas MESETA

effectively curves the performance degradation.

6.3 Choosing the Maximum Chunk Size

Recall that, in Section 5, we fixed the iteration number after
which the loop can be considered stable for both the square
and disc-shaped input sets. The next point is to obtain the
best value for the fixed chunk size used in the middle part
of the loop execution. As in the case of FSC, this value can
only be obtained by experimentation. We will use the chunk
sizes shown in Table 1. Fortunately, an incorrect choice for
this value will not affect the obtained speedup significantly
since it is only used when the number of expected
dependences is considered low enough. An incorrect choice
is much more serious if we use a fixed chunk size for the

execution of the entire loop, as shown in [31].

6.4 Comparing Different MESETA Shapes

In this section, we measure the performance of our schedul-
ing proposal for randomized incremental algorithms. Recall
that we divide the scheduling profile into three parts,
scheduling increasing chunk sizes at the beginning (to
avoid dependence violations), a fixed chunk size for the
stable part of the loop, and decreasing chunk sizes at the
end in order to achieve good load balancing.

Three different scheduling functions will be used to
distribute iterations in both the beginning and end of the
speculative execution: GSS, Factoring, and TSS (see Fig. 5).

Fig. 6 shows the execution time breakdown for the
processing of the 10-million point sets with the applications
considered. As can be seen from the figure, the relative
performance of 2D-Hull is similar for all three mechanisms,
with a slight slowdown for the Trapezoidal version of the
MESETA scheduling. The execution time breakdown shows
that most of the time is consumed by speculative memory
operations and that contention and commit times are not
significant for this problem (more details on the behavior of
the speculative engine can be found in [22]). In the case of the
2D-SEC algorithm, the GSS version of MESETA leads to a
much better performance than the other versions. The reason
is that GSS distributes smaller chunks in the ascending part of
the execution, thus leading to better management of the
dependences found. It is also noticeable that most of the
execution time is spent in spin waits. The reason is that the
thread that detects a dependence violation should recalculate
the new solution from scratch, again processing all of the
points processed so far while the remaining threads wait for
the new solution in order to continue. This effect makes it
extremely difficult to obtain any speedup, despite the number
of processors being used.

Fig. 7 shows the number of dependence violations
triggered by each of our scheduling strategy versions
together with the number of corresponding squashed
threads. The plots show that the behavior of all MESETA

versions is comparable in terms of dependence violations
and squashes triggered. It is interesting to note that the poor
performance of the Trapezoidal and Factoring versions of
MESETA in the execution of 2D-SEC is not reflected in these
plots since the difference among these versions is not the
number of dependences but the time spent in the reexecu-
tion of chunks, which is proportional to their size.

6.5 Performance Evaluation of MESETA

The last part of our study compares the performance of
MESETA with respect to FSC, the only scheduling mechan-
ism used so far in the field of speculative parallelization.
The version of MESETA compared here is the one that uses
GSS for both the increasing and decreasing parts of the loop
execution: As we saw above, this function leads to a better
performance than the other two alternatives. To give a
global perspective of the scheduling problem in this
context, we also compare both scheduling mechanisms
with GSS. To better balance the work at the end of the loop
in GSS, we have set x ¼ 2 (see Section 2).

Fig. 8 shows the speedup of all three mechanisms in the
execution of the applications considered. From the figure,
we can draw the following observations:

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

. MESETA-GSS overcomes the FSC approach in all
cases. Both mechanisms lead to very similar results
when the number of dependence violations and their
time costs are very small, such as 2D-Hull proces-

sing the square input sets. Our scheduling strategy
gives better results when the cost of a dependence
violation grows: With the 10-million-point disc input
set, the use of MESETA-GSS leads to a 5.5 percent to

LLANOS ET AL.: NEW SCHEDULING STRATEGIES FOR RANDOMIZED INCREMENTAL ALGORITHMS IN THE CONTEXT OF SPECULATIVE... 9

Fig. 6. Execution time breakdowns using different versions of MESETA. (a) 2D-Hull, 10 million points, disc-shaped input set. (b) 2D-Hull,

10 million points, square-shaped input set. (c) 2D-SEC, 10 million points, disc-shaped input set.

11.48 percent performance gain over FSC. The
results are even better for the 40-million-point disc
input set, leading to a performance gain between
15.63 percent and 36.25 percent. The gain is
proportionally higher for the disc because, as
expected, this input set generates many more
dependences than the square-shaped one and there-
fore benefits more from our scheduling strategy.

. The high cost of a single dependence violation in the
2D-SEC algorithm, discussed in Section 6.2, makes it
impossible for FSC to extract any speedup at all.
However, MESETA-GSS manages to curve the
performance degradation, that is, smaller for the
bigger input set, since the obtained solution is better
amortized during the processing of the additional
points.

. It is worth noting the poor performance of GSS in these
experiments. This behavior is easy to explain, con-

sidering that, as we saw in Section 3, the only concern
of GSS is to achieve good load balancing at the end of
the loop. Therefore, GSS schedules the biggest chunks
first, precisely where more dependences are found.
The same considerations apply to TSS and Factor-
ing as well.

. Finally, no performance loss due to the higher
scheduling cost of MESETA-GSS in comparison with
FSC has been observed in any experiment.

7 CONCLUSIONS

In this work, we study in detail the problem of scheduling
loops with dependences in the context of speculative
parallelization. We show that the scheduling alternatives
are highly influenced by the dependence violation pattern
presented by the code. We center our analysis on those
algorithms where dependences are less likely to appear as the

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Fig. 7. Number of dependence violations and number of squashed threads using different versions of MESETA for three of the six combinations of

applications and input sets listed in Table 1.

execution proceeds, like randomized incremental algorithms.

We propose MESETA, a new scheduling strategy that

schedules variable-size chunks of iterations according to the

probability of a dependence violation for each part of the

loop. Our results show a 5.5 percent to 36.25 percent speedup

improvement of MESETA over FSC, leading to a better

extraction of the inherent parallelism of randomized incre-

mental algorithms. Finally, in cases where the reexecution

cost of a dependence violation is high, MESETA effectively

curves the performance degradation compared to the rest of

the scheduling strategies available.

APPENDIX A

PROOF OF THE SAMPLING LEMMA

In this section, we give the proof of the Sampling Lemma

used in Section 4.1 to obtain the expected number of RAW

dependences at each step of a randomized incremental

algorithm. More details can be found in [32].

Proof. Consider the set S
r

� �
of those subsets of S having

cardinality r. Analogously, consider S
rþ1

	

the subsets of

LLANOS ET AL.: NEW SCHEDULING STRATEGIES FOR RANDOMIZED INCREMENTAL ALGORITHMS IN THE CONTEXT OF SPECULATIVE... 11

Fig. 8. Speedups during the execution of the applications considered with two different input set sizes.

Fig. 9. Graph for the proof of the Sampling Lemma.

S with rþ 1 elements. We construct a graph G whose

vertices correspond to the elements of S
r

� �
[S

rþ1

	

,

depicted in two horizontal rows: the bottom one for the

elements of S
r

� �
and the top one for those of S

rþ1

	

. See

Fig. 9.

As for the edges of G, a vertex R 2 S
r

� �
is joined to a

vertex R [fsg precisely if �ðR [fsgÞ 6¼ �ðRÞ (that is, s is

a violator of R). Note that this is a bipartite graph, that is,

every edge is incident to exactly one vertex on each row.

Let us count the number of edges incident to each of the

two rows:

. By the above definition, the number of edges

incident to an R 2 S
r

� �
on the bottom row equals

the number jV ðRÞj of violators.

. For a Q 2 S
rþ1

	

in the top row, there is an edge

incident to it precisely if there is an element s0 2 Q
such that �ðQ n fs0gÞ 6¼ �ðQÞ. Therefore, the num-

ber of edges incident to a Q 2 S
rþ1

	

on the top

row equals the number jXðQÞj of extreme points.

On the one hand, the graph being bipartite implies

that the number of edges incident to the top row equals

the number of edges incident to the bottom one.

Therefore, X
R2 S

rð Þ
jV ðRÞj ¼

X
Q2 S

rþ1ð Þ
jXðQÞj:

On the other hand, the expected number of violators

of a random R 2 S
r

� �
and the expected number of extreme

points of a random Q 2 S
rþ1

	

are, respectively,

vr ¼
P

R2 S
rð Þ jV ðRÞj
n
r

� �
and

xrþ1 ¼
P

Q2 S
rþ1ð Þ jXðQÞj
n
rþ1

	
 :

Using these two facts, one gets that

vr ¼ xrþ1

n
rþ1

	

n
r

� � ¼ xrþ1
n� r
rþ 1

;

which, in particular, gives the desired result for the Ri

with i elements considered in the statement. tu

APPENDIX B

COST OF RAW DEPENDENCES

We show here how to analyze the cost of a RAW

dependence at step i in the algorithms considered.

B.1 Dependence Cost for the Smallest Enclosing
Circle

For the computation of the Smallest Enclosing Circle, we

have used the iterative version of the original recursive

algorithm by Welzl [25]. The algorithm is shown in Fig. 10.

Even though this algorithm runs in expected OðnÞ time, it is

interesting now to take a deeper look at the constant

involved. If we assume that conditional and assignment

sentences cost one time unit, we can give a more precise

upper bound for the time it takes to run the algorithm.
Let T ðnÞ be the time needed for the algorithm to run for

an input of n points. The following observations are needed:

. For each step i of the outer loop, one containment

query is performed for sure. If the condition holds,

then an assignment is done and the second loop is

executed. When the point pi is outside the current

candidate solution, then a new enclosing circle with

pi on the boundary has to be computed. As follows

from the Sampling Lemma, this happens with

probability 3
i . Calling T1ðiÞ the time needed to run

the second loop, we obtain

T ðnÞ ¼
Xn
i¼1

1þ 3

i
T1ðiÞ

� �
:

. For each step j of the next loop, again, one contain-
ment query is sure. The probability of running the
assignment and entering the innermost loop is 2

j .
Therefore, calling T2ðjÞ the time needed to run the
innermost loop, we have

T1ðiÞ ¼ 1þ
Xi�1

j¼1

1þ 2

j
T2ðjÞ

� �
:

. Finally, exactly one containment query is made at
each step k of the innermost loop that will be

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Fig. 10. Welzl’s algorithm for the Smallest Enclosing Circle problem.

followed by an assignment with probability 1
k ,

making

T2ðjÞ ¼ 1þ
Xj�1

k¼1

1þ 1

k

� �
:

Since 1
k � 1, we have that

T2ðjÞ � 1þ 2ðj� 1Þ � 2j;

so

T1ðiÞ � 1þ 5ði� 1Þ � 5i

and

T ðnÞ � 16n:

Therefore, T ðnÞ 2 OðnÞ and T1ðiÞ 2 OðiÞ: Since T1ðiÞ is the
cost of point i being a violator, we conclude that both the
expected complexity of the algorithm and the expected cost
of a dependence violation are linear. This situation
adversely affects the speculative parallelization of the
algorithm, even in the presence of few dependences.

B.2 Dependence Cost for the Convex Hull

Clarkson et al.’s algorithm keeps the incrementally com-
puted solutions in a data structure, from which point
location queries will benefit. Whenever a point happens to
be outside of the current solution, two tasks have to be
performed. First, the two tangents to the candidate convex
hull are computed. Second, the edges between the tangency
points are updated in the data structure.

Finding the tangents from one point to a polygon with
k edges has a cost of Oðlog kÞ using binary search. On the
other hand, at most k� 1 edges will have to be updated (in
constant time) for the underlying structure in the algorithm.
The cost of inserting a point that lies out of the current
convex hull is therefore OðkÞ. As we said in Section 4.3, the
number of convex hull edges depends on the distribution of
the point set.

If the input points are uniformly distributed in a square,
the expected number of edges after insertion of the ith point
is Oðlog iÞ. Hence, if point iþ 1 lies out of the hull, its
insertion has a cost of Oðlog iÞ.

On the other hand, if points are distributed uniformly in
a disc, the complexity of the hull at step i is Oð

ffiffi
i3
p
Þ, which

coincides with the time bound of the insertion of point iþ 1
given that it lies out of the hull.

As above, from these costs for a violator iþ 1, we can
conclude that the expected cost of a dependence violation
for both input sets is much lower than the expected cost for
the algorithm itself, which is Oðn lognÞ. Therefore, the
algorithm is expected to have good behavior under
speculative parallelization.

ACKNOWLEDGMENTS

This work was supported in part by Junta de Castilla y León
under Grant VA031B06 and by Comunidad Autónoma de
Madrid under Grant CAM S-0505/DPI/000235. Diego R.
Llanos is partially supported by the European Commission
under Contract RII3-CT-2003-506079. David Orden is

partially supported by Grant MEC MTM2005-08618-C02-

02. Belén Palop is partially supported by MCYT TIC2003-

08933-C02-01. Part of this work was carried out while David

Orden was visiting the Departamento de Informática,

Universidad de Valladolid, with the support of the

Universidad de Alcalá. The authors would like to thank

the anonymous referees for their valuable suggestions.

Diego R. Llanos and Belén Palop would like to thank

Manuel Abellanas and the Departamento de Matemática

Aplicada, Universidad Politécnica de Madrid, where part of

this research was performed. The authors would also like to

thank the Edinburgh Parallel Computing Center (EPCC) for

the main computing resources used in this work and its

support staff, in particular, Chris Johnson and Catherine

Inglis.

REFERENCES

[1] M. Gupta and R. Nim, “Techniques for Run-Time Parallelization
of Loops,” Proc. Supercomputing, Nov. 1998.

[2] L. Rauchwerger and D.A. Padua, “The LRPD Test: Speculative
Run-Time Parallelization of Loops with Privatization and Reduc-
tion Parallelization,” Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation (PLDI ’95), pp. 218-232, June
1995.

[3] M. Cintra and D.R. Llanos, “Toward Efficient and Robust
Software Speculative Parallelization on Multiprocessors,” Proc.
SIGPLAN Symp. Principles and Practice of Parallel Programming
(PPoPP ’03), June 2003.

[4] F. Dang, H. Yu, and L. Rauchwerger, “The R-LRPD Test:
Speculative Parallelization of Partially Parallel Loops,” Proc. 16th
Int’l Parallel and Distributed Processing Symp. (IPDPS ’02), Apr.
2002.

[5] P. Rundberg and P. Stenström, “Low-Cost Thread-Level Data
Dependence Speculation on Multiprocessors,” Proc. Workshop
Scalable Shared Memory Multiprocessors, June 2000.

[6] S.F. Hummel, E. Schonberg, and L.E. Flynn, “Factoring: A Method
for Scheduling Parallel Loops,” Comm. ACM, vol. 35, no. 2, pp. 90-
100, Aug. 1992.

[7] C.P. Kruskal and A. Weiss, “Allocating Independent Subtasks on
Parallel Processors,” IEEE Trans. Software Eng., vol. 11, no. 10,
pp. 1001-1016, Oct. 1990.

[8] C.D. Polychronopoulos and D.J. Kuck, “Guided Self-Scheduling:
A Practical Scheduling Scheme for Parallel Supercomputers,”
IEEE Trans. Computers, vol. 36, no. 12, pp. 1425-1439, Dec. 1987.

[9] P. Tang and P.-C. Yew, “Processor Self-Scheduling for Multiple
Nested Parallel Loops,” Proc. IEEE Int’l Conf. Parallel Processing
(ICPP ’86), pp. 528-535, Aug. 1986.

[10] T.H. Tzen and L.M. Ni, “Trapezoid Self-Scheduling: A Practical
Scheduling Scheme for Parallel Compilers,” IEEE Trans. Parallel
and Distributed Systems, vol. 4, no. 1, pp. 87-98, Jan. 1993.

[11] D.R. Llanos, D. Orden, and B. Palop, “Meseta: A New Scheduling
Strategy for Speculative Parallelization of Randomized Incremen-
tal Algorithms,” Proc. 34th Int’l Conf. Parallel Processing (ICPP ’05)
Workshops, Seventh Workshop High Performance Scientific and Eng.
Computing (HPSEC ’05), pp. 121-128, June 2005.

[12] K. Mulmuley, “Randomized Algorithms in Computational Geo-
metry,” Handbook of Computational Geometry, J.-R. Sack and
J. Urrutia, eds., chapter 16, pp. 703-724, North-Holland Publish-
ing, 2000.

[13] K. Mulmuley and O. Schwarzkopf, “Randomized Algorithms,”
Handbook of Discrete and Computational Geometry, J.E. Goodman
and J. O’Rourke, eds., chapter 34, pp. 633-652, CRC Press, 1997.

[14] Handbook of Randomized Computing: Volumes I and II, S. Rajasekar-
an, P.M. Paradalos, J.H. Reif, and J.D. Rolim, eds. Kluwer
Academic, 2001.

[15] K.L. Clarkson and P.W. Shor, “Applications of Random Sampling
in Computational Geometry, II,” Discrete and Computational
Geometry, vol. 4, no. 1, pp. 387-421, 1989.

[16] K. Mulmuley, “A Fast Planar Partition Algorithm, I,” Proc. 29th
Ann. Symp. Foundations of Computer Science (FOCS ’88), pp. 580-
589, 1988.

LLANOS ET AL.: NEW SCHEDULING STRATEGIES FOR RANDOMIZED INCREMENTAL ALGORITHMS IN THE CONTEXT OF SPECULATIVE... 13

[17] O. Devillers, “Randomization Yields Simple Oðn log� nÞ Algo-
rithms for Difficult !ðnÞ Problems,” Int’l J. Computational Geometry
and Applications, vol. 2, no. 1, pp. 97-111, 1992.

[18] L.J. Guibas, D.E. Knuth, and M. Sharir, “Randomized Incremental
Construction of Delaunay and Voronoi Diagrams,” Algorithmica,
vol. 7, pp. 381-413, 1992.

[19] K. Mehlhorn, S. Meiser, and C. �O’Dunlaing, “On the Construction
of Abstract Voronoi Diagrams,” Discrete and Computational
Geometry, vol. 6, pp. 211-224, 1991.

[20] R. Seidel, “A Simple and Fast Incremental Randomized Algorithm
for Computing Trapezoidal Decompositions and for Triangulating
Polygons,” Computational Geometry: Theory and Applications, vol. 1,
pp. 51-64, 1991.

[21] J. Matou�sek, M. Sharir, and E. Welzl, “A Subexponential Bound
for Linear Programming,” Algorithmica, vol. 16, pp. 498-516, 1996.

[22] M. Cintra and D.R. Llanos, “Design Space Exploration of a
Software Speculative Parallelization Scheme,” IEEE Trans. Parallel
and Distributed Systems, vol. 16, no. 6, pp. 562-576, June 2005.

[23] S. Lucco, “A Dynamic Scheduling Method for Irregular Parallel
Programs,” Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI ’92), pp. 200-211, 1992.

[24] R. Seidel, “Linear Programming and Convex Hulls Made Easy,”
Proc. Sixth Ann. ACM Symp. Computational Geometry, pp. 211-215,
1990.

[25] E. Welzl, “Smallest Enclosing Disks (Balls and Ellipsoids),” New
Results and New Trends in Computer Science, H. Maurer, ed.,
pp. 359-370, Springer, 1991.

[26] S. Har-Peled, “On the Expected Complexity of Random Convex
Hulls,” Technical Report 330, School of Math. Sciences, Tel-Aviv
Univ., 1998.

[27] H. Raynaud, “Sur l’Enveloppe Convexe des Nuages de Points
Aléatoires dans IRn,” J. Applied Probability, vol. 7, pp. 35-48, 1970.

[28] A. Renyi and R. Sulanke, “Über die Jkonvexe Hülle von n Zufällig
Gerwähten Punkten II,” Zeitschrift für Wahrscheinlichkeitstheorie
und Verwandte Gebiete, vol. 3, pp. 138-147, 1964.

[29] K.L. Clarkson, K. Mehlhorn, and R. Seidel, “Four Results on
Randomized Incremental Constructions,” Computational Geometry:
Theory and Applications, vol. 3, no. 4, pp. 185-212, 1993.

[30] CGAL, Computational Geometry Algorithms Library, http://
www.cgal.org/, May 2002.

[31] M. Cintra, D.R. Llanos, and B. Palop, “Speculative Parallelization
of a Randomized Incremental Convex Hull Algorithm,” Proc.
Fourth Int’l Workshop Computational Geometry and Applications
(CGA ’04), pp. 188-197, May 2004.

[32] B. Gärtner and E. Welzl, “A Simple Sampling Lemma: Analysis
and Applications in Geometric Optimization,” Discrete and
Computational Geometry, vol. 25, no. 4, pp. 569-590, 2001.

Diego R. Llanos received the MS and PhD
degrees in computer science from the University
of Valladolid, Spain, in 1996 and 2000, respec-
tively. He is an associate professor of computer
architecture at the University of Valladolid and
his research interests include parallel and
distributed computation, computer system per-
formance evaluation, and automatic paralleliza-
tion of sequential code. He is a member of the
IEEE and the IEEE Computer Society. He is a

recipient of the Spanish government’s national award for academic
excellence. More information about his current research activities can be
found at http://www.infor.uva.es/~diego.

David Orden received the MS and PhD degrees
in mathematics from the University of Cantabria
in 1999 and 2003, respectively. He is an
assistant professor of applied mathematics at
the University of Alcala, Spain. He was formerly
a visiting professor of geometry at the University
of Alicante and a granted researcher at the
University of Cantabria. His research interests
are focused on discrete and computational
geometry from geometric graphs, including

triangulations, pseudotriangulations, rigidity, and crossings to geometric
algorithms like incremental randomized ones. More information about
his work is available at http://www2.uah.es/ordend.

Belén Palop received the PhD degree in
computer science from the Universitat Politècni-
ca de Catalunya in 2003. Since 2002, she has
been an associate professor in the Department
of Computer Science at the University of
Valladolid, Spain. She worked previously for
other universities in Spain (in Madrid and
Barcelona). Her research interests include com-
putational geometry and automatic paralleliza-
tion for geometric algorithms. More information

about her current research activities can be found at http://www.infor.
uva.es/~b.palop.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

