
A Formal Model to Manage the InfiniBand
Arbitration Tables Providing QoS

Francisco J. Alfaro, Member, IEEE Computer Society, José L. Sánchez,

Manuel Menduiña, and José Duato, Member, IEEE Computer Society

Abstract—The InfiniBand Architecture (IBA) is an industry-standard architecture for server I/O and interprocessor communication. IBA

enables quality-of-service (QoS) support with certain mechanisms. These mechanisms are basically the service levels, the virtual

lanes, and the table-based arbitration of those virtual lanes. In previous papers, we have examined these mechanisms and described

how we can apply them to the requirements requested by the applications. We have also tested our proposals, showing that the

applications achieve the level of QoS requested. In this paper, we present a formal model for the techniques previously proposed.

According to this model, each application needs a sequence of entries in the IBA arbitration tables based on its requirements. These

requirements are related to the mean bandwidth needed and the maximum latency tolerated by the application. Specifically, each

request requires a number of entries with a maximum separation between any consecutive pair. In order to manage the requests, we

propose certain algorithms and we prove some propositions and theorems, showing that our method achieves good behavior.

Index Terms—InfiniBand, QoS, scheduling, formal model.

Ç

1 INTRODUCTION

MANY current applications have requirements such as
guarantee of bandwidth, bounded delivery deadline,

bounded interarrival delays, and so forth that not all
current networks are able to provide. In that sense, the latest
proposed standards incorporate some mechanisms in order
to provide present and future applications with these
quality-of-service (QoS) requirements [1], [2], [3].

The InfiniBand Architecture (IBA) [4] is a standard for

high-speed I/O and interprocessor communication. It has

been developed by the InfiniBand Trade Association (IBTA)

[1], which is a group of more than 200 IT companies

founded in August 1999 to develop IBA. After a very

serious crisis, IBA is ramping up again, but its current use

focuses almost exclusively on clusters for high-performance

computing. However, IBA may expand its market in the

future by being implemented in clusters for different

application areas that may require QoS support.
We envision two different application areas where QoS

may be very necessary. The first one is providing Internet

services that require QoS guarantees (for example, video on

demand) to a very large number of concurrent clients.

Although it is true that Internet protocols play a critical role

in providing such a QoS, it is also true that those Internet

servers must be highly parallel (for example, a cluster) and

will require internal QoS support when retrieving informa-
tion from the disk subsystem and transmitting it through its
system area network (for example, InfiniBand) from the
disks to the server nodes.

The second scenario is providing bandwidth and latency
guarantees to each partition when the interconnection
network of a cluster is partitioned into several virtual
networks. This partitioning is quickly becoming very
important as the trend toward virtualization continues
and an increasing number of companies are providing
service to many customers by splitting a physical server
into multiple virtual servers.

InfiniBand provides a series of mechanisms that are able
to provide QoS to the applications. These mechanisms are
mainly segregation of traffic according to categories (service
levels (SLs)) among the different virtual lanes (VLs) and
arbitration of the output port switches and network
interfaces according to the information stored in an
arbitration table. This arbitration table can be configured
to provide traffic flows with QoS according to their
requirements.

IBA distinguishes up to a maximum of 16 SLs, but it does
not specify what characteristics the traffic of each SL should
have. IBA ports have to support a minimum of 2 and a
maximum of 16 VLs. The number of VLs used by a port is
configured by the Subnet Manager. Since systems can be
constructed with switches supporting a different number of
VLs, packets are marked with an SL and a relation between
the SL and VL is established at each node by means of the
SLtoV LMappingTable.

When more than two VLs are implemented, the
V LArbitrationTable defines the priorities of the data lanes.
Each V LArbitrationTable has two tables: one for delivering
packets from high-priority VLs and another one for low-
priority VLs. The arbitration tables implement weighted
round-robin arbitration [5] within each priority level. Up to

1024 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

. F.J. Alfaro, J.L. Sánchez, and M. Menduña are with the Departamento de
Sistemas Informáticos, Escuela Politécnica Superior, Universidad de
Castilla-La Mancha, 02071-Ablacete, Spain.
Email: {falfaro, jsanchez, mmendu}@info-ab.uclm.es.

. J. Duato is with the Departamento de Informática de Sistemas y
Computadores, Universidad Politécnica de Valencia, 46071-Valencia,
Spain. E-mail: jduato@gap.upv.es.

Manuscript received 27 July 2006; revised 19 Dec. 2006; accepted 23 Mar.
2007; published online 3 Apr. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0291-0706.
Digital Object Identifier no. 10.1109/TC.2007.1051.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

64 table entries are cycled through, each one specifying a VL
and a weight. The weight is the number of units of 64 bytes
to be sent from that VL. This weight must be in the range of
0 to 255 and is always rounded up in order to transmit a
whole packet. A LimitOfHighPriority value specifies the
maximum number of high-priority packets that can be
sent before a low-priority packet is sent. More specifi-
cally, the VLs of the high-priority table can transmit
LimitOfHighPriority� 4; 096 bytes before a packet from
the low-priority table may be transmitted. If no high-
priority packets are ready for transmission at a given time,
low-priority packets can also be transmitted.

We have proposed a new methodology to use those IBA
mechanisms providing applications with QoS guarantee [6],
[7]. According to this methodology, each application needs
a sequence of entries in the IBA arbitration tables based on
its requirements. These requirements are related to the
mean bandwidth needed and the maximum latency
tolerated by the application. Specifically, each request
requires a number of entries with a maximum separation
between any consecutive pair.

Note that we do not consider the end-host overheads
while providing QoS guarantees, which usually is very
significant in high-speed cluster interconnects. However,
the reduction of this software overhead is clearly out of the
scope of this paper.

The results that we have obtained by simulation show
that this proposal provides applications with QoS require-
ments that have previously been demanded [6], [7].
However, we think that this is not enough and a formal
proof should be necessary. Although the performance
evaluation was performed with a great variety of situations,
from an engineering point of view, the correct process is to
formally prove that the new methodology works correctly.

In this paper, we present a formal model for the
technique previously proposed. In order to manage the
requests, we propose certain algorithms and we prove some
propositions and theorems, formally proving that our
methodology achieves the correct behavior.

The structure of this paper is as follows: Section 2
presents related work that we have previously undertaken.
In Section 3, a formal model to manage the InfiniBand
arbitration tables is proposed. To that end, some definitions,
initial hypotheses, and propositions are provided. Section 4
presents an algorithm to complete the table according to the
model proposed in the previous section. In Section 5, some
of the initial hypotheses are reviewed and two new
algorithms are proposed: the disfragmentation algorithm
and a further algorithm for table reordering. Section 6 deals
with the global management of the table when there are, in
a continuous way, new requests and releases. Finally, in
Section 7, our conclusions are presented.

2 RELATED WORK

In a previous work [8], we studied how we can provide
bandwidth and/or latency guarantees to the applications.
We proposed assigning all of the traffic with QoS require-
ments to the high-priority table, devoting the low-priority
table to the traffic without QoS requirements.

In [8], we showed that a bandwidth request should be
translated into a request of a certain weight in the
arbitration tables. This computing is based on the band-
width requested and the link bandwidth. However, in order
to be able to achieve the latency requirement, a connection
may need to have its assigned weight distributed among
several entries in the arbitration table. These table entries
must have a certain maximum distance between any
consecutive pair in order to guarantee the maximum
number of transmittable packets before one packet is
transmitted from the VL associated to that connection. We
say that a connection request is of type1 dd if it needs a
maximum distance of dd between any consecutive two
entries of the sequence used by its VL in the arbitration
tables. We have proposed categorizing the allowed dis-
tances in the following types: 2, 4, 8, 16, 32, and 64 (the
request of type 64 is when the request does not have any
deadline delay or is enough long). Obviously, for a table of
64 entries, there can be 64 possible distances and, so, any
request will be reduced to the corresponding power of 2
immediately preceding.

Thus, a connection request of a certain mean bandwidth
of B megabits per second and a bounded end-to-end delay
of t ms will be treated as a request of a certain weight w and
a maximum distance d between any consecutive two entries
in the arbitration table. Therefore, the total number of
entries used by the connection in the high-priority arbitra-
tion table will be the maximum between these two values:
the entries needed by the bandwidth requirement ð w255Þ and
the requirement of maximum distance between two con-
secutive entries in the table.

We have proposed that some connections requiring the
same distance between two consecutive entries share a
sequence of entries in the table, all of them obviously using
the same VL. Each one of these entries of the sequence
would have a weight based on the accumulated bandwidth
for all of the connections sharing that sequence of entries.
Thus, when a node sets a new request in the table, it must
look for an available sequence of entries in the table to be
used for that connection, that is, a sequence of entries with a
given maximum distance between them. Specifically, three
different situations are possible:

. We can use an already used sequence with the same
maximum distance but only if it has available
weight. For a sequence of entries with maximum
distance d, we have 64

d entries in the table, each one
with a maximum weight of 255. Hence, the total
weight that can be accumulated in this sequence of
entries is 64�255

d .
. There are one or some sequences in the high-priority

arbitration table with the same maximum distance as
that requested for a new connection, but none of
them can be used. The reason is that the accumu-
lated weight for its entries does not permit this new
connection to be inserted since the maximum weight
would be exceeded.

ALFARO ET AL.: A FORMAL MODEL TO MANAGE THE INFINIBAND ARBITRATION TABLES PROVIDING QOS 1025

1. As type of connection and distance have the same value and meaning
for a certain connection, in the following, we are going to use both terms
interchangeably to refer to the same concept.

. There is no previously established sequence for this
distance in the high-priority table.

The first case is very easy and we only need to
recompute the weights of these entries. The other two cases
require a more elaborate process to find a new sequence.
This paper is focused on those two cases. We present an
algorithm to find a new sequence of free entries able to
locate a connection request in the table. This algorithm is
part of a formal model to manage the IBA arbitration table.
In the next sections, we will present a formal model to
manage the IBA arbitration table and several algorithms in
order to adapt this model for being used in a dynamic
scenario when new requests and releases are made.

Note that, in some cases, our approach uses more entries
in the table than absolutely necessary. In [6], we compare
this proposal with another more exhaustive search on the
basis of the number of entries improperly used and their
complexity, taking into account their implementation and
management. That study permits us to conclude that our
proposal manages the table entries in a clever and simple
way, without wasting, in a wide scope, more entries than
other approaches.

3 FORMAL MODEL FOR THE INFINIBAND

ARBITRATION TABLE

As has been mentioned before, we now propose a concrete

algorithm to find a new sequence of free entries able to

locate a connection request in the table. The treatment of the

problem that we present basically consists of setting out an

efficient algorithm able to select a sequence of free entries

on the arbitration table. These entries must be selected with

a maximum separation between any consecutive pair. To

develop this algorithm, we first propose some hypotheses

and definitions for establishing the correct frame to later

present the algorithm and its associated theorems.

Although the algorithm and the treatment are focused on

a specific frame such as InfiniBand, they can be generalized

to any problem of finding a sequence of entries in a table

with a certain separation between any consecutive pair.

This general character can be achieved if we do not use the

word arbitration when we are referring to the table and the

word connection when we are talking about the origin of the

entry requests. We therefore continue with a general frame,

although we consider some specific characteristics of IBA:

the number of table entries (64) and the value of the weight

ð0 . . . 0:255Þ. All we need to know is that the requests are

originated by the connections so that some requirements are

guaranteed. Besides, the group of entries assigned to a

request belongs to the arbitration table associated with the

output ports and interfaces of the InfiniBand switches and

hosts, respectively.

3.1 Definitions

For the later treatment that we shall be applying, we
formally define the following concepts:

. Table: Round list of 64 entries.

. Entry: Each one of the 64 parts compounding a table.

. Weight: Numerical value of the entries in the table.
This can vary between 0 and 255.

. Status of an entry: Situation of an entry of the table.
The different situations can be free ðweight ¼ 0Þ or
occupied ðweight 6¼ 0Þ.

. Request: A demand of a certain number of entries.

. Distance: Maximum separation between two con-
secutive entries in the table that are assigned to one
request.

. Type of request: Each one of the different types into
which the requests can be grouped. They are based
on the requested distances and, so, on the requested
number of entries.

. Group or sequence of entries: The set of entries of the
table with a fixed distance between any consecutive
pair. In order to characterize a sequence of entries, it
will be enough to give the first entry and the
distance between a consecutive pair.

3.2 Initial Hypothesis

In what follows, and when not indicated to the contrary, the

following hypotheses will be considered:

1. There are no request eliminations, so the table is

filled in when new requests are received and these

requests are never removed. In other words, the

entries could change from a free status to an

occupied status, but it is not possible for an occupied

entry to change to free. This hypothesis permits us to

do a more simple and clear initial study, but,
logically, it will be discarded later on.

2. It may be necessary to devote more than a group of
entries to a set of requests of the same type.

3. The total weight associated with one request is
distributed among the entries of the selected

sequence so that the weight for the first entry of

this sequence is always larger than or equal to the

weight of the other entries of the sequence.
4. The distance d associated to one request will always

be a power of 2 and it must be 1 � d � 64. These are

the different types of requests that we are going to

consider. Therefore, in the following, distance and

type of request will be equivalent terms. Thus, the
maximum distance d requested will be d ¼ 2i, where

i ¼ 0; 1; 2; . . . ; 6.

3.3 The Model

Given a table T with N entries, we will distinguish each of

them with an identifier ti, i ¼ 0; 1; � � � ; N � 1. Hence, if N is

64, then we have 64 different identifiers, t0; t1; � � � ; t62; t63.

According to the previous definitions (Section 3.1), every ti
has an associated weight wi whose value can vary between

0 and 255. The entry ti is said to be free if wi ¼ 0; otherwise,

it is not free or occupied.

Consecutive entries of the table will not have

identifiers with consecutive indexes. This does not mean

a loss of generality and we will simplify the later

process. The assignment of identifiers to the entries is

based on the application of the bit-reversal function to

the usual numbering, which would assign identifiers with

1026 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

consecutive indexes to consecutive entries. Remember

that the bit-reversal function applied to m ¼
bn�1bn�2 . . . b1b0 is <ðmÞ ¼ b0b1 . . . bn�2bn�1. For a table with

eight entries, Fig. 1a shows the correlative numbering,

whereas Fig. 1b shows the new numeration.

We can see in Fig. 1b that there are only two sequences of

entries to meet a request of maximum distance 2: {0, 2, 1, 3}

and {4, 6, 5, 7}. Note that these sequences can be considered

as sets of table entries. As there is no established order

among the elements of a set, both previous sets are the same

as {0, 1, 2, 3} and {4, 5, 6, 7}, respectively. As can be seen, the

entries of a set have a consecutive enumeration. This is why

this numeration is used. Something similar happens for

other distances.

The following definition of entry set uses the new

numeration. Each set contains the needed entries to meet

the request of a certain distance.

Definition 1. Given a table T for any request of type d ¼ 2i,

with 0 � i � 6, we define the sets Ei;j, where j ¼ k� 26�i and

0 � k < 2i:

Ei;j ¼ tn j j � n < jþ 26�i� �
:

In order to simplify the notation, we also define a

set Ii ¼ j j j ¼ k� 26�i with 0 � k < 2i
� �

. Given i, with

0 � i < 6, Ii is formed from the possible values of j. Thus,

when this index j must be referenced, it will be indicated as

j 2 Ii. Note also that the maximum value of i ði ¼ 6Þ is

based on the number of table entries ð6 ¼ log2 64Þ.
For the eight-entry table2 in Fig. 1b, the i value can vary

from 0 to 3 ðlog2 8Þ and, so, the following sets are possible:

. With table entr ies at dis tance 1 ,
E0;0 ¼ ft0; t1; t2; t3; t4; t5; t6; t7g.

. With table entries at distance 2, E1;0 ¼ ft0; t1; t2; t3g
and E1;4 ¼ ft4; t5; t6; t7g.

. With table entries at distance 4, E2;0 ¼ ft0; t1g,
E2;2 ¼ ft2; t3g, E2;4 ¼ ft4; t5g, and E2;6 ¼ ft6; t7g.

. With table entries at distance 8, E3;0 ¼ ft0g,
E3;1 ¼ ft1g, E3;2 ¼ ft2g, E3;3 ¼ ft3g, E3;4 ¼ ft4g,
E3;5 ¼ ft5g, E3;6 ¼ ft6g, and E3;7 ¼ ft7g.

Note that the sets for a distance are disjoint, each having

enough entries to meet a request of that distance. With all of

the sets, a binary tree can be established where a set of a

certain level i is the union of two disjoint sets of level iþ 1. The

tree in Fig. 2 corresponds to the eight-entry table in Fig. 1b.

In general, for a table of 64 entries, each set Ei;j contains

the entries of the table having a distance d ¼ 2i between any

consecutive pair. In this case, the binary tree with all the sets

is shown in Fig. 3. The root of the tree is the set E0;0. This set

is the union of the sets E1;0 and E1;32, which are the root sets

of their two subtrees. These sets can also be divided into

another two and so on.

For a request of distance d ¼ 2i, there are d different

sets, Ei;j, corresponding to the d possible different

sequences of entries in the table T that have this distance

between any consecutive pair. For example, for the

distance d ¼ 2, there are two different sets, E1;0 ¼
t0t1t2t3 . . . t30t31f g and E1;32 ¼ t32t33t34t35 . . . t62t63f g, corre-

sponding to a set with the first part of the entries and

another one with the second part of the entries. Note that

this distribution would correspond to a division of even

entries and odd entries in a correlative numeration. There-

fore, each one of these sets has a separation of 2 between

two consecutive entries and, so, each one of them has

enough entries and the proper separation to meet a request

of type 2. The corresponding Ei;j sets can also be obtained

for the other request types (Fig. 3).

In the following, we are going to present some defini-

tions and propositions regarding this model. Perhaps some

of them are quite trivial, but we have included them in

order to be rigorous and to be able to use them later.

Definition 2. A set Ei;j, with 0 � i � 6 and j 2 Ii, is said to be

free if wk ¼ 0 8 tk 2 Ei;j.
This, together with the definition of Ei;j (Definition 1),

implies that a free set Ei;j is needed for meeting a request3

of type d ¼ 2i.

Taking the previous definitions as the starting point, the

following propositions can be considered.

Proposition 1. For any i and j, where 0 � i < 6 and j 2 Ii

Ei;j ¼ Eiþ1;j [Eiþ1;jþ26�ðiþ1Þ :

In binary tree terms, this proposition could be enun-

ciated as “the union of both children is the father.”

ALFARO ET AL.: A FORMAL MODEL TO MANAGE THE INFINIBAND ARBITRATION TABLES PROVIDING QOS 1027

2. It is important to keep in mind that, for a table with eight entries,
23�i should be used in the previous definition instead of 26�i, which is for a
64-entry table.

3. Remember that we are going to consider only the case where a new
request needs a new sequence of free entries.

Fig. 1. Table with eight entries. (a) Using a correlative numbering of

entries. (b) Numbering based on the bit-reversal function.

Fig. 2. Tree of sets for the table of eight entries.

Proof. According to Definition 1,

Ei;j ¼ tn j j � n < jþ 26�i� �
¼ tj; tjþ1; . . . ; tjþ26�ðiþ1Þ ; . . . ; tjþ26�i�1

� �
¼ tj; tjþ1; . . . ; tjþ26�ðiþ1Þ�1

� �
[

tjþ26�ðiþ1Þ ; tjþ26�ðiþ1Þþ1; . . . ; tjþ26�i�1

� �
¼ tn j j � n < jþ 26�ðiþ1Þ

n o
[

tmj jþ 26�ðiþ1Þ � m < jþ 26�i
n o

¼ Eiþ1;j [Eiþ1;jþ26�ðiþ1Þ :

ut

As a consequence of this proposition, with the entries

that allow a request of type d ¼ 2i to be met, two requests of

type d0 ¼ 2iþ1 can be located.
From Definition 1, given a level i, the sets Ei;js, with

0 < i � 6 and j 2 Ii, are those obtained with j ¼ k� 26�i

and 0 � k < 2i. Therefore, the values of j are

0; 1� 26�i; 2� 26�i; 3� 26�i; . . . ; ð2i � 2Þ � 26�i;

ð2i � 1Þ � 26�i

or

0; 2� 26�i; 4� 26�i; . . . ; ð2i � 2Þ � 26�i and

1� 26�i; 3� 26�i; . . . ; ð2i � 1Þ � 26�i;

that is,

2k� 26�i

ð2kþ 1Þ � 26�i

�
0 � k < 2i�1:

Given an index k, both expressions permit us to obtain

the index that identifies two brother sets. The former is the

brother set located at the left and the latter is the brother set

located at the right.
The following function permits us to relate the identifiers

of two brother sets. Specifically, when it is applied over the

index that identifies either of them, the other index is

returned:

Brotherðp; iÞ ¼ pþ 26�i if ðpmod 26�iþ1Þ ¼ 0
p� 26�i if ðpmod 26�iþ1Þ 6¼ 0:

�

As two brothers are always located at the same level, we

simplify the above expression by omitting the level,

resulting in BrotherðpÞ. We can test this function by

applying it to a couple of brothers. For a level i

ð0 < i � 6Þ, the indexes of two brother sets are j and

jþ 26�i:

For 2k� 26�i

ð2k� 26�iÞmod 26�iþ1 ¼ ðk� 26�iþ1Þmod 26�iþ1 ¼ 0

Therefore

Brotherð2k� 26�iÞ ¼ ð2k� 26�iÞ þ 26�i ¼ ð2kþ 1Þ � 26�i

For ð2kþ 1Þ � 26�i

ðð2kþ 1Þ � 26�iÞmod 26�iþ1 ¼
ðk� 26�iþ1 þ 26�iÞmod 26�iþ1 ¼ 26�i 6¼ 0

Therefore

Brotherðð2kþ 1Þ � 26�iÞ ¼ ðð2kþ 1Þ � 26�iÞ � 26�i ¼
2k� 26�i:

1028 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Fig. 3. Decomposition in a binary tree form of all of the possible entry sets of the table, where each level corresponds to a different type of request.

(a) The whole tree. (b) A zoom of the marked half in (a).

In the same way, we can also obtain an expression
relating the identifier of a set to one of its ancestors. Thus,

for any set Ek;l, with 0 < k � 6 and l 2 Ik, l is related to the

index of any of its ancestors at the level i, with 0 � i < 6,

according to the expression ðl div 26�iÞ � 26�i. In order to
simplify the later use of this expression, we are going to

define the function Ancestorðl; iÞ ¼ ðl div 26�iÞ � 26�i as the

ancestor of l at level i.
A generalization of Proposition 1 emerges from being

successively applied to each of the descendants of a set Ei;j.
This generalization indicates that, with the entries of this

set, which meets a request of type d ¼ 2i, two requests of

type 2iþ1 can be met, four of type 2iþ2, and so on. This is
shown in the following proposition:

Proposition 2. For any i and j, where 0 � i < 6 and j 2 Ii,

Ei;j ¼
[2k�1

l¼0

Eiþk;jþl�26�ðiþkÞ k ¼ 1; 2; . . . ; 6� i:

Proof. The proof is by induction on k. For k ¼ 1, we have
Ei;j ¼ Eiþ1;j [Eiþ1;jþ26�ðiþ1Þ , which follows from Proposi-

tion 1. Let us now suppose it is true for k� 1 and we will

prove that it is also true for k. As it is true for k� 1, we

have

Ei;j ¼
[2ðk�1Þ�1

l¼0

Eiþðk�1Þ;jþl�26�ðiþk�1Þ : ð1Þ

Applying Proposition 1 to each of those sets, we obtain

Eiþðk�1Þ;jþl�26�ðiþk�1Þ ¼
Eiþk;jþl�26�ðiþk�1Þ [Eiþk;jþl�26�ðiþk�1Þþ26�ðiþkÞ ¼
Eiþk;jþl�2�26�ðiþkÞ [Eiþk;jþðl�2þ1Þ�26�ðiþkÞ :

Replacing in (1), we obtain

Ei;j ¼
[2ðk�1Þ�1

l¼0

Eiþk;jþl�2�26�ðiþkÞ[

Eiþk;jþðl�2þ1Þ�26�ðiþkÞ :

For the range of values of l, 0 : : 2ðk�1Þ � 1
� �

, the
expressions l� 2 and ðl� 2þ 1Þ include all of the values
in the interval 0 : : 2k � 1

� �
because

l� 2 : 0; 2; . . . ; 2ð2ðk�1Þ � 1Þ ¼ 0; 2; . . . ; 2k � 2

l� 2þ 1 : 1; 3; . . . ; 2ð2ðk�1Þ � 1Þ þ 1 ¼ 1; 3; . . . ; 2k � 1:

Therefore,

Ei;j ¼[2ðk�1Þ�1

l¼0
Eiþk;jþl�2�26�ðiþkÞ [Eiþk;jþðl�2þ1Þ�26�ðiþkÞ ¼[2k�1

l¼0
Eiþk;jþl�26�ðiþkÞ ;

as we wanted to prove. tu
From this last proposition, it is easy to test that if

Ei;j ¼
S
Eiþk;m, then m � j. This means that the index of

any descendant of a set at any level is always greater than or

equal to its index.

Proposition 3. The available sequences of entries for a distance
d ¼ 2i are independent of each other. In a more formal way,

Ei;j \ Ei;l ¼ � 8 l 6¼ j; 0 < i � 6 and j; l 2 Ii:

In binary tree terms, this proposition could be reworded
as “the nodes of the tree located at the same level are disjoint.”

Proof. The entries corresponding to these two sets are

Ei;j ¼ tn j j � n < jþ 26�i� �
Ei;l ¼ tm j l � m < lþ 26�i� � j ¼ k� 26�i

l ¼ t� 26�i

0 � k; t < 2i:

8<
:

However,

j � n < jþ 26�i

l � m < lþ 26�i

�
¼) k� 26�i � n < ðkþ 1Þ � 26�i

t� 26�i � m < ðtþ 1Þ � 26�i;

�

As j 6¼ l, then k 6¼ t. So, n 6¼ m and, therefore,
Ei;j \ Ei;l ¼ � tu

Proposition 4. Each available set of entries Ei;j for a distance
d ¼ 2i is disjoint from all of the other available sets of entries
for a distance d0 ¼ 2iþ1 that fail to satisfy Proposition 1 about
Ei;j. More formally,

Ei;j \Eiþ1;l ¼ � 8l j ðl 6¼ jÞ and ðl 6¼ jþ 26�ðiþ1ÞÞ
0 < i < 6 j 2 Ii l 2 Iðiþ1Þ:

In binary tree terms, this proposition can be reworded as
“a node is disjoint with any deeper node except with its
descendants.”

Proof. According to Proposition 3, we know that Ei;j \
Ei;l ¼ � 8j 6¼ l. On the other hand, from Proposition 1,
Ei;l ¼ Eiþ1;l [Eiþ1;lþ26�ðiþ1Þ . Combining both expressions,
we obtain

Ei;j \Ei;l ¼ �
()Ei;j \ ðEiþ1;l [Eiþ1;lþ26�ðiþ1Þ Þ ¼ �
()ðEi;j \ Eiþ1;lÞ [ðEi;j \ Eiþ1;lþ26�ðiþ1Þ Þ ¼ �

¼)
ðEi;j \ Eiþ1;lÞ ¼ �
ðEi;j \ Eiþ1;lþ26�ðiþ1Þ Þ ¼ �;

(

as we wished to prove. tu

Proposition 5. Let us consider a free set Ei;l and another nonfree
set Ei;m, with l 6¼ m, whose occupied entries are used to
completely locate requests of type d � 2i. Then, all those
requests can be completely met with entries of Ei;l, thus
leaving free the set Ei;m, where 0 < i � 6, and l, m 2 Ii.

Proof. If all of the entries of the set Ei;m are used to
completely locate a request of type d ¼ 2i, then this
request could also be met with the entries of any free set
Ei;j (0 � j < 2i and j 6¼ m) and, specifically, with the
entries of the set Ei;l.

If all or part of the entries of the set Ei;m are being
used to meet completely requests of types d > 2i, then
it follows that we use some of the sets Eiþk;mþn�26�ðiþkÞ

(n ¼ 0; . . . ; 2k � 1 a n d k ¼ 1; . . . ; 6� i) s o t h a t
Ei;m ¼

S2k�1
n¼0 Eiþk;mþn�26�ðiþkÞ . To meet those requests,

other free sets Eiþk;jþn�26�ðiþkÞ , with 0 � j < 2iþk

ALFARO ET AL.: A FORMAL MODEL TO MANAGE THE INFINIBAND ARBITRATION TABLES PROVIDING QOS 1029

and j 6¼ m, can also be used. Specifically, the sets
Eiþk;lþn�26�ðiþkÞ (n ¼ 0; . . . ; 2k � 1 and k ¼ 1; . . . ; 6� i) can
be used because they are free sets since Ei;l is free, and
Proposition 2 for this set is satisfied. tu

Definition 3. A set Ei;j is said to be singular if this set is free,
but the set Ei;n is not free, with 0 < i � 6, n ¼ BrotherðjÞ,
and j, n 2 Ii. Therefore, a set Ei;j is singular if it is free, but its
brother is not free. As a consequence and using the binary tree
terminology, none of the ancestors of a singular set is free.

Definition 4. A table is said to be normalized if 8i, with
0 � i � 6, at most there is a singular Ei;j with j 2 Ii.
According to this definition, an empty table and a full table are
normalized because there is no level with a singular set.

Among the previously defined sets, a partial order relation
can be defined based on their position in the binary tree.

Definition 5. Let E be the set made up of all the sets Ei;j, with
0 < i � 6 and j 2 Ii. In E � E, the following binary relation is
defined:

Ek;l / Ei;j ()
i � k
l < j:

�

Ek;l / Ei;j is read as: Ek;l is placed more to the left than the set
Ei;j at the same level or at a deeper level in the binary tree, as
shown in Fig. 3.

Because none of the sets Ei;j 2 E are comparable (for
example, E3;8 6/ E4;12, and E4;12 6/ E3;8), this is a partial order
relation and, so, E is a partially ordered set.

We will now show new propositions that are based on
Definition 5.

Proposition 6. For Ek;l and Ek;m, where 0 < k � 6 and l;m 2 Ik
such that Ek;l / Ek;m, if p 6¼ q, where p ¼ Ancestorðl; iÞ,
q ¼ Ancestorðm; iÞ, and 0 < i < k, then Ei;p / Ei;q.

This means that, if two sets are related, then their
respective ancestors up to the previous level of the first
common ancestor are also related to each other.

Proof. In order for Ei;p / Ei;q, both conditions of Definition 5
must be true, which are i � i and p < q. As the first one is
trivial, we shall study the second condition. Because
Ek:l / Ek;m, then l < m and, so, ðl div 26�iÞ � ðm div 26�iÞ.
Moreover, ðl div 26�iÞ � 26�i � ðm div 26�iÞ � 26�i and,
so, p � q.

From the definition, p 6¼ q and p < q, which means
that Ei;p / Ei;q. tu

Proposition 7. For Ek;l and Ek;m, where 0 < k � 6 and l;m 2 Ik
such that Ek;l / Ek;m, if i < k, and n 6¼ j, where n ¼
Ancestorðl; iÞ and j ¼ Ancestorðm; iÞ, then Ek;l / Ei;j.

This means that, if two sets are related, then the ancestors
of the second one at any level, up to the level of the first
common ancestor, are also related to the first set.

Proof. Because Ek;l / Ek;m, then l < m. Besides, because
i < k and n 6¼ j, from Proposition 6, Ei;n / Ei;j. More-
over, because n 6¼ j, from Proposition 3, we have
Ei;n \Ei;j ¼ �. However, because Ek;l � Ei;n, it is also
true that Ek;l \Ei;j ¼ �.

Let us suppose that Ek;l 6/ Ei;j and, so, l � j. We also
have l < m and, so, j � l < m. Because Ek;m � Ei;j and,
from Proposition 2, which relates the indexes of a set and
its descendants, we would have Ek;l � Ei;j. However,
this is a contradiction because Ek;l \Ei;j ¼ �. Therefore,
it must be true that Ek;l / Ei;j. tu

Proposition 8. For Ek;l and Ei;j, where 0 < i < k � 6, l 2 Ik,
and j 2 Ii such that Ek;l / Ei;j, then Et;m / Ei;j, where

i � t < k, and m ¼ Ancestorðl; tÞ.

This means that, if two sets from levels k and i, where

i < k, are related, then all the ancestors up to the level i of

the set of the level k are also related to the set of the level i.

Proof. For Et;m / Ei;j, according to Definition 5, i � t and

m < j must be true. The first condition is true according

to the initial hypothesis. Let us then look at the second

condition. Because Ek;l / Ei;j, l < j, and, hence,

m ¼ ðl div 26�tÞ � 26�t � ðj div 26�tÞ � 26�t: ð2Þ

Because j 2 Ii, j ¼ p� 26�i, where 0 � p < 2i. Because

i � t, then t ¼ iþ x, where x � 0. This way

j mod 26�t ¼ ðp� 26�iÞ mod 26�t ¼
ðp� 26�tþxÞ mod 26�t ¼ ðp� 2x � 26�tÞ mod 26�t ¼ 0:

Because ðj mod 26�tÞ ¼ 0, ðj div 26�tÞ � 26�t ¼ j. Thus,
from (2), it is true that m � j.

Moreover, because m ¼ Ancestorðl; tÞ and from Pro-
position 2, which relates the indexes of a set and its
descendants, m � l. Therefore, we have m � j, and
m � l. Also, l < j. If m ¼ j, then we would have
l < j ¼ m. However, this is a contradiction. Therefore,
m 6¼ j and, so, it must be true that m < j.

Thus, i � t and m < j and, so, it is true that Et;m / Ei;j,
where i � t < k. tu

Definition 6. A table is ordered if 8Ei;j and 8Ek;l, both singular

sets, where 0 < i < k � 6, j 2 Ii, and l 2 Ik, then Ek;l / Ei;j.

So far, we have seen the model that we are using, some

related definitions, and some derived propositions. In the

following section, we will propose the algorithm to search

for a new sequence of entries in the table that are situated

with a certain distance between any consecutive pair. We

will first provide the algorithm and, later, some derivable

theorems.

4 ALGORITHM FOR FILLING IN THE TABLE

When there is a new request of maximum distance d ¼ 2i,

we must find a group of 64
d entries in the table such that two

consecutive entries are separated at a maximum distance of

d. Note that this is the same as finding a free set Ei;j. In

order to find the specific set, we will apply an algorithm.

We will first make an informal description of this algorithm

in order to later formally propose it and validate it with

some theorems and their corresponding proofs.
For a request of distance d ¼ 2i, the algorithm examines,

in a certain order, all of the possible sets Ei;j for this type of

1030 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

request. The first one of these sets having all of its entries

free is selected.
The order in which the sets are examined has as an

objective to maximize the distance between two free

consecutive entries that would remain in the table after

carrying out the selection. This way, the table remains in the

optimum condition to be able to later meet the most

restrictive possible request. The order in which the

algorithm examines the free sets results from testing the

Ei;j sets from left to right according to the arrangement in

Fig. 3. For a new request of maximum distance d ¼ 2i, the

algorithm selects the first free set Ei;j of the sequence

Ei;0; Ei;1�26�i ; Ei;2�26�i ; Ei;3�26�i ; . . . ; Ei;ð2i�1Þ�26�i .
Note that the apparent simplicity of this algorithm (to

sweep theEi;j sets from left to right) has been achieved due to

the enumeration of the entries of the table by using the bit-

reversal function instead of using a correlative enumeration.
This algorithm has some characteristics that make it very

efficient for filling in the table with a series of requests with

maximum distance requirements. We will now show these

characteristics by proving some theorems.

Theorem 1. If there is a group of free entries in the table

separated between any consecutive pair with the requested

distance d ¼ 2i, with 0 � i � 6, then the algorithm finds it.

Proof. If there is a free group of entries in the table with a

distance d ¼ 2i separating any consecutive pair, then

there is a free set Ei;k, with k 2 Ii. Since the algorithm, by

definition, inspects all of the sets Ei;j consecutively until

a free one is found, it is guaranteed that this set Ei;k will

finally be found. tu
Theorem 2. After applying the filling-in algorithm, the table is

normalized. This means that the filling-in algorithm leaves, at

any level of the tree in Fig. 3, at most a singular set.

Proof. Let us suppose this is false. We then have 9i, where

1 < i � 6, with this level having more than one singular

set. Let us suppose there are two sets, specifically, Ei;k

and Ei;l, where k; l 2 Ii and k < l. Because Ei;l is singular,

Ei;n is not free, where n ¼ BrotherðlÞ. Because k < l and

Ei;k and Ei;l are singular sets, Ancestorðk; i� 1Þ 6¼
Ancestorðl; i� 1Þ and, so, it is also true that k < n. This

means that the set Ei;k is placed to the left of the set Ei;n.
However, this situation cannot arise because the

filling-in algorithm would have selected the set Ei;k or
any of its sons in the tree (according to Proposition 2)
before the set Ei;n or any of its sons in the tree (according
to Proposition 2). This is because, with the first ones, we
could have met all of the requests that were being met
with the last ones.

Whatever situation that we consider with more than
two sets, if the initial hypothesis fails, then this includes
the case of two sets. As a consequence, none of them will
be possible. So, 8i, with 0 < i � 6, if there is more than
one free set Ei;j, then at most one of them is a singular set
and, so, the table is normalized. tu

Theorem 3. If, after applying the filling-in algorithm several

times, there are still n free entries in the table, then it is

possible to meet the most restrictive possible request, which is

the one of type d ¼ 2i, with 64
d � n < 64

d
2

. Hence, this means

that one free set Ei;m exists, where m 2 Ii.
Proof. We know that there are n free entries in the table. If

64
d entries of them belong to the same set Ei;m, then the
proof is trivial.

Now, let us suppose that there is no free set Ei;j.
Therefore, the n free entries are distributed among a
series of free sets Ek;l, with i < k � 6 and l 2 Ik.
According to Theorem 2, after applying the filling-in
algorithm several times, the table is normalized. This
means that, at level iþ 1, there is at most a singular set
Eiþ1;l, but this is true 8k, where i < k � 6. However, each
one of these sets Ek;l would have 64

2k
¼ 26�k entries and,

so, the total number of free entries that those free sets
have would be

X6

k¼iþ1

26�k ¼
X6�i�1

k¼0

2k ¼ 20 þ 21 þ 22 þ . . .þ 26�i�1:

This is the addition of a geometric progression with
difference 2 with the result 26�i � 1. As a consequence,

X6

k¼iþ1

26�k ¼
X6�i�1

k¼0

2k ¼ 26�i � 1 < 26�i ¼ 64

2i
¼ 64

d
;

which is a contradiction of our initial assumption that
there are n � 64

d free entries. Therefore, one free set Ei;k

must exist.
Thus, if, after applying the filling-in algorithm several

times, there are still n free entries, then 64
2i entries ð64

2i �
n < 64

d
2

Þ belong to the same set Ei;m and, so, it is possible
to meet the most restrictive possible request, which is of
type d ¼ 2i. tu

Theorem 4. Let there be a table with n free entries. Then, the
filling-in algorithm is able to locate any set of requests that
does not require more than n entries.

Proof. Let d1; d2; . . . ; dm be the requests to locate in the table,
which has n free entries. These requests are performed in
the order indicated by the sequence and they satisfy

Xm
i¼1

64

di
� n:

Let ni be the number of free entries in the table when the
request di is made. Of course, n1 ¼ n. Let us analyze
what happens when each of the requests di, with
1 � i � m, is performed. When a request di is made, it
may or may be the most restrictive one. Thus, we have
two possible cases:

. The request di is the most restrictive. In this case,
from Theorem 3, it can be met. After meeting it,
there are still niþ1 ¼ ni � 64

di
free entries.

. The request di is not the most restrictive. In this case,

due to Theorem 3, with the ni free entries, the

most restrictive possible request (dk so that
64
dk
� ni < 64

dk
2

) can be met. As di is not the most

restrictive possible request, di > dk and, from

Proposition 2, with the free entries being able to

locate a request of type dk,
di
dk

requests of type di

ALFARO ET AL.: A FORMAL MODEL TO MANAGE THE INFINIBAND ARBITRATION TABLES PROVIDING QOS 1031

could be met, where di
dk
� 2. Hence, the free set

required to meet the request di exists.

Summing up, if there are enough free entries in the
table to locate a set of requests, then the filling-in
algorithm is able to meet them. tu

Theorem 5. After applying the filling-in algorithm, the table
stays ordered.

Proof. According to Theorem 2, the filling-in algorithm
always leaves the table normalized. Therefore, Ei:j and
Ek:l are the only singular sets of the levels i and k,
respectively, 8i and 8k so that 0 < i < k � 6, j 2 Ii, and
l 2 Ik.

Because Ek;l is a singular set and due to the working
of the filling-in algorithm, then Ek;m is not free 8m such
that m < l. According to Proposition 2, these sets Ek;m are
included in their ancestor sets at level i, Ek;m � Ei;n,
where n ¼ Ancestorðm; iÞ, which means that the sets Ei;n

are not free.
Moreover, because Ek;l is singular after the filling-in

algorithm has been applied, its ancestor at level i is not
free. Thus, all of the ancestor sets at level i of the sets
from level k placed to the left of the set Ek;l and also Ek;l’s
ancestor at level i are not free. Therefore, the free sets at
level i must be placed to the right of l’s ancestor at level i:
Ancestorðl; iÞ < j. Because Ek;l � Ei;Ancestorðl;iÞ and from
Proposition 3, Ek;l 6� Ei;j, then l < j. This, together with
i < k, implies that Ek;l / Ei;j. As this is true 8i and 8k
such that 0 < i < k � 6, the table stays ordered. tu

This last theorem will be used in the next section to
prove that the situation in the table after releases is similar
to the situation that would be achieved if we made the
requests that stay in the table after those releases. This way,
the application of Theorem 4 can guarantee that, if there are
enough free entries to meet a sequence of requests, then
these can always be met in the table. This is because the free
entries are located in the best way possible to meet any later
combination of maximum-distance requests.

5 INSERTIONS AND ELIMINATIONS IN THE TABLE

The algorithm presented in Section 4 has been set out based
on certain initial hypotheses. The first of these requires that
there are only request insertions in the table. Obviously, this
is not a real situation and, so, the releasing situations must
also be considered. This way, in the general behavior of the
table, we could have insertions of new requests and releases
of previously established requests.

Now, we eliminate the first of the initial hypotheses.
Therefore, the elimination of requests is now possible. As a

consequence, the entries used for the eliminated requests

will be released. Considering the filling-in algorithm, as
discussed in Section 4, in relation to this new scenario, we

can achieve situations where there are enough available
entries to meet a request, but it is not possible to meet it

because these entries are not correctly separated. One of
these situations is shown in the following example:

Example 1. We have the table filled4 and two requests of
type d ¼ 8 are eliminated. These requests were made

using the entries of the sets E3;16 and E3;32. This means
that, now, the table has 16 free entries, and, so, a request

of type d0 ¼ 4 could be met. However, there is no free set
E2;j (see Fig. 4).5

Note that, in the previous example, the table is no longer
normalized when the release is made. In order to solve that

problem, the 16 free entries must be situated with a distance
of 4 between any consecutive pair. Therefore, there should

exist a free setE2;j. It follows that the table must be normalized
again. This can be achieved as indicated in Example 2. In this

example, we follow a process based on leaving free entries
that are occupied in order to obtain a set of free entries able to

meet the most restrictive possible request.

Example 2. A solution for the situation shown in Example 1

would consist of, for example, releasing the set E3;40 and,
in this way, together with the free set E3;32, obtain E2;32

free (by Proposition 1). Therefore, the request of type
d0 ¼ 4 could be met.

In order to free the set E3;40, the entries of the free set
E3;16 must be used to meet the requests that use the entries

of the set E3;40. This is possible according to Proposition 5.

The final situation after this interchange is shown in Fig. 5.
Note that, now, the table is normalized again.

This process, which we call disfragmentation, has as an

objective of obtaining the greatest free set possible with the
available free entries. Although the need for applying this

disfragmentation process emerges as a consequence of
considering request release, it is possible for it to be applied

1032 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

4. We have selected this starting point in order to make the development
of this example easier to understand. However, the situation shown in this
example and in the following can be achieved starting from diverse table
status.

5. The figure corresponds to a part of the 64-entry tree in Fig. 3.

Fig. 4. Situation of the arbitration table after releasing the sets E3;16 and

E3;32, having started with a filled table. Fig. 5. Situation of the arbitration table in Example 1 after interchanging

the sets E3;16 and E3;40.

after locating the requests. This situation is shown in the
following example:

Example 3. This example starts from the situation obtained in
Example 2, with the entries of the set E2;32 free and the
others occupied. In this situation, the entries of the setE3;56

are released. This situation is shown in Fig. 6a. After that,
there is a new request of type d ¼ 8 that must be located
because there are enough free entries having the correct
separation between them. When the filling-in algorithm is
applied, the setE3;32 is selected (the first free set at level 3).
This creates a situation similar to that previously shown in
Example 1, which can now be seen in Fig. 6b.

As a consequence, a new disfragmentation process is
needed because enough entries exist to meet a request of
type d0 ¼ 4, but they do not belong to the same set. In this
case, the solution consists in freeing the set E2;48. To that
end, the entries of the set E3;40 would meet the requests
that are now being met by the entries of the set E3;48.

Note that, in Example 3, when the set E3;56 is released,
the table is no longer ordered. When the filling-in algorithm
is applied later over a nonordered table, a normalized table
is no longer obtained. This is a direct consequence of the
filling-in algorithm that sweeps the sets for a specific
distance by selecting the first one that is free. The solution
that has been applied in Example 3 consists of applying
disfragmentation after a new insertion.

Another alternative would consist of ordering the
singular sets generated after a release such that the table
is ordered again. This way, the problem would be solved if
in the situation shown in Fig. 6a, the singular set from
level 3 (now E3;56) would be to the left of the singular set
from level 2 (now E2;32). This way, the request of type d ¼ 8
can be met by using the singular set from level 3, without
applying disfragmentation and leaving a free set able to
meet a request of type d0 ¼ 4. In general, the alternative
solution consists of bringing about that the smaller sized
free sets, whose entries will have greater separation, are
situated to the left of the greater sized free sets. Obviously,
this means that the table is ordered.

In order to detect this kind of situation, we must study
the table, checking if there is any free set of a certain size to
the left of another set that has a smaller size. To solve this
situation, we must apply Proposition 5, but at the level of
the greatest free set. Thus, the interchange must be
performed between the greatest set and another same level
set that includes the smallest free set. This situation is
explained in Example 4.

Example 4. We will use the final situation in Example 2 as a
starting point (Fig. 5). Then, the set E3;56 is released, and
the resulting situation is shown in Fig. 6a. In this

situation, we study all of the tree levels until we find
the situation to deal with. In order to solve this situation,
we must apply Proposition 5, interchanging the sets E2;32

and E2;48. The resulting situation has as free sets E3;32

and E2;48, as can be seen in Fig. 7. If there is now a
request of type d ¼ 8, then it will be met with the entries
of the set E3;32, leaving the free set E2;48 in order to meet a
later request of type d0 ¼ 4.

Therefore, combining the filling-in algorithm, the dis-
fragmentation algorithm, and the reordering algorithm, we
can manage the general treatment of the table. We have
shown two alternatives. In the first case, we maintain the
table ordered and normalized, whereas, in the second case,
the table only needs to be normalized and it is not necessary
for the table to be ordered.

Summing up, we have just outlined two methods to treat
those situations that have arisen as a result of having
eliminated the restriction imposed by the first initial
hypothesis in Section 3.2. These methods basically consist
of the following:

1. We must study the resulting status of the table both
after meeting a new request (using free entries) and
after releasing a request (releasing occupied entries).
In both cases, we must study if the table has enough
free entries to meet a request, but this is not possible
because there is no free set correctly sized. If this
situation is found, then the disfragmentation algo-
rithm must be applied to solve it. In other words, if,
after an insertion or a release, the table is no longer
normalized, then the disfragmentation algorithm
must be applied to normalize it.

2. We must study the resulting status of the table only
when a request is released. In this case, we must first
check if there are free sets of a greater size than other
sets situated to the left and, in this case, we must
reorder. We must also check if, since we have
enough free entries to meet a certain request, the
latter cannot be met because there is no correctly
sized free set. In this case, the disfragmentation
algorithm must be applied. The order of these checks
is irrelevant.

Summing up, this second method should check
after a release if the table is no longer normalized
and/or nonordered. In this case, the disfragmenta-
tion algorithm and/or the reordering algorithm
must be executed to leave the table once more
normalized and ordered.

ALFARO ET AL.: A FORMAL MODEL TO MANAGE THE INFINIBAND ARBITRATION TABLES PROVIDING QOS 1033

Fig. 6. Situations of the arbitration table in Example 3.

Fig. 7. The situation of the arbitration table in Example 4 after applying a

reorder process.

Therefore, there are two new algorithms to be developed:
one for the disfragmentation and another for the reordering.
In the following sections, these new algorithms and the
generic situations when they must be used will be
explained. We will also study some new theorems that
can be obtained by applying these new algorithms.

5.1 Disfragmentation Algorithm

The basic idea of this algorithm is to group all of the free
entries of the table into several free sets that permit meeting
any request needing a number of entries equal to or lower
than the available table entries. Thus, the objective of the
algorithm is to perform a grouping of the free entries in
order to be able to apply Theorem 4. This algorithm repeats,
as often as necessary, a process that consists of joining the
entries of two free sets of the same size in a unique free set.
This joining will be effective only if the two free sets do not
already belong to the same greater free set. Therefore, the
algorithm is restricted to only singular sets. The goal is to
have a free set of the biggest size in order to be able to meet
a request of this size. For that purpose, the table has enough
free entries which, however, belong to two small free sets
that are not able to meet that request.

Fig. 8 shows the code of the disfragmentation algorithm.
Starting from a free set Ei;k, a check is made to see if there is
another free set Ei;l that is not Ei;k’s brother (function Find,
line 3). If this exists, all of the entries of both sets are joined
in a new free set of double size. This is achieved by
applying Proposition 5 (procedure swap, line 5). As the new
free set cannot be the only one at level i� 1, the process
must continue. This process can continue up to level 1 (the
loop from lines 2 to 9). The resulting set from the joining is
the Ei;k of its level (lines 7 and 8).

The basic action of this disfragmentation algorithm is the
execution of the procedure swapðÞ. This procedure makes a
transformation in the table through an interchange of sets.
This fact was shown in an informal way in Example 1,
where we showed that the interchange of the suitable sets
ends up with a unique singular set at a specific level. This
would permit us to pass from a situation where a request of
the most restrictive type cannot be met to another situation
where this is possible. This interchange is reflected in
Theorem 6.

Theorem 6. From a situation in which 9Ei;k and 9Ei;l are both

singular sets, 1 < i � 6 and k 6¼ l, it is possible to bring about

a new situation, where 9 Ei�1;j, which is free so that

Ei�1;j ¼ Ei;m [Ei;l, k, l, m 2 Ii, j 2 Ii�1.

Proof. Because 9 Ei;k and 9 Ei;l, which are singular sets,

6 9Ei�1;j such that Ei�1;j ¼ Ei;k [Ei;l. Proposition 5 per-
mits us to interchange the singular set Ei;k and the

nonfree set Ei;m, where m ¼ BrotherðlÞ. Thus, we
interchange the free set Ei;k with Ei;l’s brother, which is

occupied. This process creates a free Ei�1;j such that
Ei;m [Ei;l ¼ Ei�1;j. tu

However, it is possible that, in some situations, the
problem is not corrected with only an interchange. In these

cases, the disfragmentation algorithm must perform several
iterations. This is shown in the following example:

Example 5. After the release of the sets E3;0 or E3;16, the
situation shown in Fig. 9a arises. Then, the disfragmen-

tation algorithm is applied. In the first iteration, the
algorithm interchanges the sets E3;0 and E3;24 and, so, the

set E2;16 is now free. However, there are 32 free entries
and there is no free set at level 1 to meet a possible
request of type d ¼ 2. Obviously, this is because the table

is not normalized and there are two singular sets at
level 2. Therefore, the disfragmentation algorithm is

going to perform another iteration. At the starting point
of the second iteration, the singular sets are E2;16 and

E2;48. The algorithm now interchanges E2;16 and E2;32

such that both E2;32 and E2;48 end up free and, so, the

singular set now is E1;32. This situation is shown in
Fig. 9b. Note that the table is now normalized. If we now

have a request of type d ¼ 2, then this would be met with
the entries of the set E1;32.

Therefore, the disfragmentation algorithm consists of
applying Theorem 6 at all levels where there is more than a

singular set. Thus, starting from a table that is not
normalized, a normalized table is achieved. This is reflected

in the following theorem:

Theorem 7. The disfragmentation algorithm permits us to obtain

a normalized table from a table that was not normalized, which

was obtained after a release of a request in a normalized table.

Proof. The disfragmentation algorithm applies Theorem 6
successively at all levels where there are more than two

singular sets. Starting from the level where the release
has happened, it studies all of the levels up to level 1,

joining couples of free sets of the same level. This way,
after applying the algorithm, not more than one singular
set can exist at each level. Thus, after applying the

disfragmentation algorithm, the table is normalized
again. tu

1034 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Fig. 8. Disfragmentation algorithm.

Fig. 9. Situation (a) before and (b) after applying the disfragmentation

algorithm successively at several levels.

Let now see how disfragmentation influences the

ordering of a table.

Example 6. After the release of the set E3;8 or E3;16, the

situation in Fig. 10a is achieved. Note that the table is

ordered because the smaller sets are always placed at the

left of the greater sets. However, the table is not

normalized because, at level 3, there are two singular

sets. After applying the disfragmentation algorithm, the

situation shown in Fig. 10b is obtained. Note that the

table remains ordered but now is also normalized.
If the disfragmentation algorithm were to be applied

successively to several levels, then the order in the table
would not be modified either because, starting from an
ordered table, the greater sets will be always placed to
the right. Although the algorithm sweeps several levels
by grouping the singular set formed in the previous
iteration with the singular set that existed at that level,
the order will not be altered.

Note that we are neither claiming that the disfragmenta-

tion algorithm orders the table nor that, after a release, the

table will always end up ordered, as shown in Example 7.

When we want to recover the order in the table, we must

apply the reordering algorithm that we will study in the

following section. What we want to highlight is that the

disfragmentation algorithm does not cause any disorder in

the table.
In the previous example, we have seen that applying the

disfragmentation algorithm on an ordered table that is not

normalized obtains an ordered and normalized table. We

are going to see that in a formal way with the following

theorem:

Theorem 8. After applying the disfragmentation algorithm to an

ordered table, in which there is at most a level i, with

1 < i � 6, having two singular sets, the table ends up

normalized and remains ordered.

Proof. Let Ei;k and Ei;l be the two singular sets of the unique

level i that has two singular sets, where k < l and

k; l 2 Ii. Applying Theorem 7, a free set Et;u is obtained,

with 0 < t < i and u 2 It.
Let Ep;q and Er;s be any two singular sets such that

0 < r < i < p � 6, q 2 Ip, and s 2 Ir. As the table was
initially ordered, Ep;q / Ei;k / Ei;l / Er;s.

Having this situation as the initial point, we have two
possibilities:

. If r < t, then what must be proven is
Ep;q / Et;u / Er;s.

Let us first study the case when t ¼ i� 1. In

this case, u ¼ Ancestorðl; tÞ. Because Ei;k / Ei;l,

Ei;k / Et;u from Proposition 7. Moreover, because

Ep;q / Ei;k and Ei;k / Et;u, from the transitive

proposition of the order relation, Ep;q / Et;u.
If r < t < i� 1, then the proof is similar to, but

applies in a successive way, Proposition 7 and the

transitive proposition of the order relation. There-

fore, whichever is the case, if r < t, then Ep;q / Et;u.
On the other hand, Et;u / Er;s must also be true.

For this to be so, it should be true that r � t and

u < s. The first is in the initial hypothesis. Let us

study the second one for the particular case where

t ¼ i� 1. Because Ei;l / Er;s, l < s. Moreover, as

u ¼ Ancestorðl; tÞ and following from Proposi-

tion 2, which relates the indexes of a set and its

descendants, u � l and, so, u < s. Therefore,

Et;u / Er;s.
Again, for the general case where r < t < i� 1,

the proof is similar, but it must be performed in a

successive way. Therefore, in any case, if r < t,

then Et;u / Er;s.
This way, Ep;q / Et;u / Er;s and, so, if r < t, then

the new singular set Et;u, which the disfragmen-

tation algorithm has generated, keeps the table

ordered.
. If r ¼ t, then the disfragmentation algorithm,

using Et;u and Er;s, will generate a singular set
Er�1;h, where h 2 Ir�1 and h ¼ Ancestorðs; r� 1Þ.
In this case, we only need to prove that
Ep;q / Er�1;h.

This proof is similar to the one performed in

the previous point, where Proposition 7 and the

transitive proposition of the order relation must

be applied successively.

Therefore, in any case, after applying the disfragmen-
tation algorithm to an ordered table in which there is at
most one level i, with 1 < i � 6, having two singular sets,
the table ends up normalized and remains ordered. tu

Thus, the disfragmentation algorithm normalizes a

nonnormalized table and, if it was already normalized,

then it remains ordered after applying this algorithm. This

result will be used again in Section 6.
We are now going to present the reordering algorithm.

Just as in the case of the disfragmentation algorithm, we

will first include an informal description by using simple

examples and, later, we will show its properties, stating and

proving several theorems.

5.2 Reordering Algorithm

The reordering algorithm basically consists of an order

algorithm, but applies it at a level of sets. This algorithm has

been designed to be applied to a table that is nonordered,

with the purpose of leaving the table ordered according to

Definition 6. The reordering algorithm sets an order from a

lower to a larger set size in ascending order and from left to

right (according to Fig. 3). Thus, when the order fails as a

consequence of the apparition of new singular incorrectly

ALFARO ET AL.: A FORMAL MODEL TO MANAGE THE INFINIBAND ARBITRATION TABLES PROVIDING QOS 1035

Fig. 10. Situation (a) before and (b) after applying the disfragmentation

algorithm. Note that, starting from an ordered table, the disfragmentation

algorithm leaves the table ordered and normalized.

situated sets, the algorithm will act to reestablish the order
right again.

When a set is released, the algorithm checks if this set is
correctly placed in relation to the other free sets. Hence, this
new free set must have to its left all of the smaller free sets
and placed to its right all of the greater free sets. If its
position is not correct, then it will perform the needed
movements to reestablish the order in the table. These
movements will be performed by making interchanges
between sets, in the same way as the disfragmentation
algorithm works.

As stated at the beginning of Section 5, the reordering
algorithm will be used after every entry release. This release
always happens in an ordered table. Therefore, just before
applying the reordering algorithm, there will be in the table
only one singular set that is not ordered in relation to the
other singular sets. It should be noted that the way in which
this algorithm works is very similar to that of the well-
known order algorithm Direct Selection [9].

In Fig. 11, the basic code that makes up the algorithm is
shown. The algorithm studies all of the possible levels
(lines 2-11), starting from the bottom. In each of them, there
will be at most one singular set Ek;l except at one of the
levels where there may be two singular sets. In that case,
only one of them can be badly ordered. Therefore, at each
level, if there is a singular set Ek;l, it will be tested to learn if
there is a singular set Ei;j at the upper levels (lines 4-9) that
is placed to its left. If there are several sets, then the one that
is at the leftmost will be selected (lines 5 and 6) and the
ordering takes place by applying Proposition 5 over Ei;j and
the ancestor of Ek;l at level i (procedure swap, line 7).

As we did in the previous section with the disfragmenta-
tion algorithm, we will now see a simple example of the
working of the reordering algorithm.

Example 7. Let us take as our initial situation the one shown
in Fig. 12a. The table has arrived at that situation after the
release of the set E2;16 or E3;40 in an ordered table. The
reordering algorithm will interchange the sets E2;16 and
E2;32. Therefore, the final situation will be the one shown
in Fig. 12b, where the singular sets are now E4;4, E3;24,
and E2;32. Note that the table is ordered again.

Thus, with the correct interchange of sets, we can pass
from a situation where some singular sets do not maintain
the order relation of Definition 5 to another situation where

the new singular sets do maintain that order relation. This is
shown in a formal way in the following theorem:

Theorem 9. Let Ek;l and Ei;j be the only singular sets at levels k
and i, respectively, with 0 < i < k � 6, l 2 Ik, and j 2 Ii,
such that no order relation exists between them. Thus,
Ek;l 6/ Ei;j. However, it is possible to change to another
situation with Ek;n / Ei;m, with n 2 Ik, and m 2 Ii, where
Ek;n and Ei;m are now the only singular sets of levels k and i,
respectively. Moreover, all of the accepted requests until that
moment are maintained.

Proof. Proposition 5 permits the sets Ei;j and Ei;m to be
interchanged, where m ¼ Ancestorðl; iÞ. Therefore, the
singular set at level i is now Ei;m, whereas Ei;j is no
longer free. The same happens with the singular set at
level k, which is now Ek;n, with n ¼ l�mþ j. What must
be proven is that Ek;n / Ei;m. For that purpose, it will be
enough to prove that Ek;n / Ek;l, which, together with the
application of Proposition 7, allows us to obtain
Ek;n / Ei;m.

Let us suppose Ek;n 6/ Ek;l, which means that n � l. If
n 6¼ l were false, then Ek;n and Ek;l would be the same set
and n > l. However, Ek;l / Ek;n and, according to
Proposition 7, Ek;l / Ei;j, which is false according to the
initial hypotheses. Therefore, Ek;l 6/ Ek;n, n < l, and
Ek;n / Ek;l, and, from Proposition 7, Ek;n / Ei;m. tu

This result permits us to obtain two singular ordered sets
from two singular nonordered singular sets. By applying
this result in a successive way, we can obtain an ordered
table. This result is shown in the following theorem:

Theorem 10. The reordering algorithm permits us to pass from a
table that is not ordered to another one that is ordered.

Proof. The reordering algorithm applies Theorem 9 succes-
sively to any couple of sets Ei;j and Ek;l, which are
singular, with 0 < i < k � 6, j 2 Ii, and l 2 Ik such that
Ek;l 6/ Ei;j. After applying the theorem, Ek;n / Ei;m, with
n ¼ l�mþ j and m ¼ Ancestorðl; iÞ. Therefore, after
applying the reordering algorithm, the table becomes
ordered. tu

As stated in the description of the reordering algorithm,
its working is similar to the well-known Direct Selection
ordering algorithm. We therefore have an even stronger
guarantee that our reordering algorithm works properly
and obtains an ordered table.

To conclude our study of the reordering algorithm, let us
see what happens when this algorithm is applied over a
table that is normalized. Specifically, we want to know if it
remains normalized. For that purpose, we use the fact that

1036 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Fig. 11. Reordering algorithm.

Fig. 12. The situation (a) before and (b) after applying the reordering

algorithm.

the reordering algorithm does not generate more singular
sets than were previously there, but it simply changes their
order. We will see this in the following theorem:

Theorem 11. A normalized table remains normalized after
applying the reordering algorithm.

Proof. If the table was normalized, then it must have at
most one singular set at each level. However, the
reordering algorithm always interchanges a singular set
Ei;j with another set Ei;m which is not free. Thus, the
algorithm will never generate more free sets than those
existing at each level. Therefore, we have at most a
singular set per level and, so, the table also remains
normalized. tu

Once the filling-in, disfragmentation, and reordering
algorithms have been presented, we must draw together the
elements studied and check that the global treatment of the
table is correct.

6 GLOBAL MANAGEMENT OF THE TABLE

For the global management of the table, having both
insertions and releases, we have shown that a combination
of the filling-in and disfragmentation algorithms (and even
the reordering algorithm, if needed) must be used. How-
ever, the properties of the filling-in algorithm have been
proven with a certain initial hypothesis in which the
releases were not considered. Therefore, when releases are
considered and we use the disfragmentation algorithm (and
the reordering algorithm, if needed), we must prove that the
table will always have a correct status in order that the
propositions of the filling-in algorithm continue to be true
(for example, Theorem 4). We will now prove that the final
situation achieved in the arbitration table after insertions
and releases of requests with their corresponding disfrag-
mentations and reorderings is equivalent to that achieved
with only the insertions of the requests finally remaining in
the table. The term equivalent refers to the capacity to meet
requests and is exactly defined in the following:

Definition 7. Tables T and T0 are said to be equivalent if they
can meet the same requests.

This means that, regardless of which sets of both tables
are free, they must be able to meet the same requests. As we
shall see in the following, two tables will be equivalent if
they have the same number of singular sets and these sets
are placed at the same levels.

As an example, the tables shown in Figs. 9a and 9b are
not equivalent, even though they have the same number of
free entries. Note that, with the second table, requests of
type d � 2 can be met, whereas, with the first table, only
requests of type d0 � 4 can be met. In the same way, the
tables in Figs. 10a and 10b also are not equivalent. We shall
see in the following an example with two tables that are not
equal but are equivalent.

Example 8. In Fig. 13, we can see two tables that are
equivalent. In the one shown in Fig. 13a, the singular sets
are E4;4, E3;24, and E2;32, whereas, in Fig. 13b, the singular
sets are E4;8, E3;16, and E2;48. The other sets, which are not

descendants of these, are busy. However, both tables are
able to meet exactly the same request sequences.

The following theorem proves that two normalized
tables that have the same number of singular sets located
at the same levels have the same number of free entries.

Theorem 12. If two normalized tables, T and T0, such that
8Ei;j 2 T , where Ei;j is singular, 9Ei;k 2 T0, where Ei;k is also
singular, and 8Ei;k 2 T0, where Ei;k is singular, 9Ei;j 2 T ,
where Ei;j is singular, with 0 < i � 6 and j; k 2 Ii, then both
tables have the same number of free entries.

Proof. This proof works by reductio ad absurdum. Let us
suppose that both tables T and T0 do not have the same
number of entries. Therefore, a level l, with 0 � l � 6,
must exist such that, from l (toward lower levels), the
tables do not have the same number of free entries.
Because the number of singular sets is the same at all of
the levels of both tables, it must be a number n of free
nonsingular sets in one of the tables which are not found
in the other. In order for these n free sets to be
nonsingular sets, their brother sets must also be free.
However, this would form, in a table, one or more
singular sets at some level t, with 0 < t < i, that are not
in the other table. Obviously, this contradicts the initial
hypothesis.

Therefore, if two tables, T and T0, are normalized and
8Ei;j 2 T , where Ei;j is singular, 9Ei;k 2 T0, where Ei;k is
also singular, and 8Ei;k 2 T0, where Ei;k is singular,
9Ei;j 2 T , where Ei;j is singular, with 0 < i � 6 and
j; k 2 Ii, then both tables have the same number of free
entries. tu

Using the previous theorem, we are going to prove that
two normalized tables are equivalent if they have the same
number of singular sets and these are located at the same
levels.

Theorem 13. If two normalized tables, T and T0, such that
8Ei;j 2 T , where Ei;j is singular, 9Ei;k 2 T0, where Ei;k is also
singular, and 8Ei;k 2 T0, where Ei;k is singular, 9Ei;j 2 T ,
where Ei;j is also singular, with 0 < i � 6 and j, k 2 Ii, then
both tables are equivalent.

Proof. If T and T0 are normalized, then it is because they
have at most a singular set per level. Moreover, 8Ei;j 2 T ,
where Ei;j is singular, 9Ei;k 2 T0, where Ei;k is also
singular, with 0 < i � 6, and vice versa. From Theo-
rem 12, both tables have the same number of free entries.
Therefore, from Theorem 4, the tables T and T0 are able
to meet the same number of requests and are therefore
equivalent. tu

ALFARO ET AL.: A FORMAL MODEL TO MANAGE THE INFINIBAND ARBITRATION TABLES PROVIDING QOS 1037

Fig. 13. Example of two equivalent tables.

We shall now prove that the resulting situation of insert
and release requests is equivalent to the final situation if
there were only the requests that remain after the releases.
Thus, all of the work developed for the case when this did
not have releases is also applicable to the case when we
have request release (considering the disfragmentation and
reordering algorithms). The reason for this is that we have
an equivalent situation regarding new requests and, in this
case, we can apply Theorem 4. This way, we can
successfully unite both parts of the theory developed. We
shall now see the theorem to prove this equivalence.

Theorem 14. Let a series of requests d1; d2; � � � ; dn be followed
by a series of releases d01; d

0
2; � � � ; d0m after each of the

reordering and/or disfragmentation algorithms are applied,
when needed, for the table to be normalized and ordered,
where 9di=d0j ¼ di, 8j 2 ½1;m�. This sequence of insertions di,
followed by these releases d0j, produces a table equivalent to
that which results from the insertion of only the following
requests, fd1; d2; � � � ; dng � fd01; d02; � � � ; d0mg, which are the
requests that remain after the releases when all the requests
have been satisfied.

Proof. Let T be the resulting table after realizing the
insertion of the requests d1; d2; � � � ; dn, followed in any
order by the releases d01; d

0
2; � � � ; d0m. On the other hand, let

T0 be the resulting table if the insertions fd1; d2; � � � ; dng �
fd01; d02; � � � ; d0mg are directly carried out. What we want to
prove is that T and T0 are equivalent tables. For that
purpose, we are going to show that both tables have the
same number of singular sets and are placed at the same
levels. Thus, according to Theorem 13, both tables are
able to meet exactly the same requests.

As explained in Section 5, we have two options to
dynamically manage the table:

1. After each insertion di and each release d0j, the
disfragmentation algorithm is applied. Thus,
according to Theorem 7, the table T remains
normalized. On the other hand, according to
Theorem 2, the table T0 is also normalized.

2. In this case, after each release d0j, the reordering
algorithm and/or the disfragmentation algorithm
are applied. Thus, according to Theorems 7, 8,
and 11, table T is normalized. For the same reason
as before, by Theorem 2, the table T0 is also
normalized.

Thus, in both cases, the tables T and T0 are normalized
and at most have only one singular set per level. We shall
see that both tablesalso the same number of singular sets,
placed at the same levels.

If T and T0 do not have the same number of singular
sets or, if they do, they are not situated at the same levels,
then it is because, for some level i, with 0 < i � 6,
9Ei;j 2 T , which is singular, j 2 Ii, but 6 9Ei;k 2 T0, with
Ei;k singular, k 2 Ii. The sets Ei;l 2 T0, which are not free,
with l 2 Ii, could be due to requests of type d ¼ 2i or, by
Proposition 2, to requests of type d0 ¼ 2iþp, with 1 � p �
6� i such that Ei;l ¼

S2p�1
m¼0 Eiþp;jþm�26�ðiþpÞ . This would

mean that the request of type d ¼ 2i (or, in a similar way,
the request of type d0 ¼ 2iþp) in which both tables differ
would be in a sequence of requests d1; d2; � � � ; dn and not

in the other sequence fd1; d2; � � � ; dng � fd01; d02; � � � ; d0mg.
However, we know that this is not possible.

Hence, we have proven that both tables T and T0 have
the same number of singular sets and are located at the
same levels. Thus, from Theorem 13, both tables are able
to meet the same requests. Therefore, we have proven
that both tables T and T0 are equivalent. tu

After having proven this theorem, we have linked both
parts of the theory developed. Now, it is possible to apply
Theorem 4 in any situation in order to meet new requests.
The conclusion is very important because, whatever the
request may be, with our proposal, it is possible to meet it in
the table by simply having enough free entries.

7 CONCLUSIONS

In [6] and [7], we proposed a scheduling methodology to
provide applications with QoS in an InfiniBand subnet. For
a certain maximum latency, the maximum distance between
two consecutive entries in the arbitration table is computed.
We proposed categorizing the distances in the powers that
are divisors of 64, which simplifies the management of the
requests and achieves a good filling in of the table. This
model has been evaluated in previous papers using
simulations and results show that all applications achieve
the QoS requirements that they had previously requested.
Although these simulation results are very important, a
formal proof of our proposed methodology is also needed.

In this paper, we have defined a methodology that is
based on sets of entries in the arbitration table. Each set is
the sequence of entries in the table that have a certain
distance between any two consecutive entries. After
defining the model, we have stated and proven a series of
propositions that have further allowed us to state the
theorems. With these theorems, we have proven that, if we
have enough free entries in the arbitration table, then, with
our algorithm, we can always situate the request in the
table. This is because the algorithm always uses the entries
in a concrete way, leaving the other free entries in the best
place to meet other requests later.

We have studied the different possible situations in
which requests are met and released from the arbitration
table. We have analyzed the different situations, and we
have found some problematic situations causing our filling
in algorithm to not behave correctly. In order to solve these
situations, we have proposed two new algorithms. The first
is the disfragmentation algorithm, which must be executed
every time a request is released on the table. The idea of this
algorithm is to join loose sets (sequences) in order to form
other sets able to meet requests that are more restrictive
than the previous ones. For that purpose, an interchange
between a free set and another occupied one can be made.
This is in order to put together the two free sets and, in this
way, to form a large free set able to meet a more restrictive
request. The second algorithm proposed is used to maintain
the order among the sets. The idea is that we might need to
have the free sets in a certain order based on their size. As in
the previous case, to achieve our propose, the algorithm
will interchange different sets.

1038 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

We have shown that if we only want to change the table
after a release, we need both the disfragmentation and the
reordering algorithms. If we perform the disfragmentation
algorithm both after an insertion and after a release, then it
is not necessary to maintain an order among the sets and,
hence, the reordering algorithm becomes useless.

The algorithm to fill in the arbitration table, together with
the disfragmentation algorithm and the algorithm to main-
tain the order among the free sets when there are releases in
the table permit us to make a dynamic use of the arbitration
table of InfiniBand when there are requests to be settled in the
table and also requests to be released from the table.

ACKNOWLEDGMENTS

This work was partly supported by the Spanish CICYT
under CONSOLIDER INGENIO 2010 CSD-2006-46 and
TIN2006-15516-C04-02 grants and the Junta de Comuni-
dades de Castilla-La Mancha under Grant PBC-05-005.

REFERENCES

[1] InfiniBand Trade Assoc., http://infinibandta.com, 1999.
[2] Advanced Switching Core Architecture Specification Rev 1.1. Ad-

vanced Switching Interconnect Group, Mar. 2005.
[3] HyperTransport Technology Consortium, HyperTransport2 I/O

Link Specification, http://www.hypertransport.org, 1999.
[4] InfiniBand Architecture Specification Vol. 1. Release 1.0. InfiniBand

Trade Assoc., Oct. 2000.
[5] M. Katevenis, S. Sidiropoulos, and C. Corcoubetis, “Weighted

Round-Robin Cell Multiplexing in a General-Purpose ATM
Switch,” IEEE J. Selected Areas in Comm., Oct. 1991.

[6] F.J. Alfaro, J.L. Sánchez, M. Menduiña, and J. Duato, “Formalizing
the Fill-In of the InfiniBand Arbitration Table,” Technical Report
DIAB-03-02-35, Dept. of Informatics, Univ. of Castilla-La Mancha,
http://www.info-ab.uclm.es/trep.php, Mar. 2003.

[7] F.J. Alfaro, J.L. Sánchez, and J. Duato, “A New Proposal to Fill In
the InfiniBand Arbitration Tables,” Proc. 32nd IEEE Int’l Conf.
Parallel Computing (ICPP ’03), pp. 133-140, Oct. 2003.

[8] F.J. Alfaro, J.L. Sánchez, and J. Duato, “QoS in InfiniBand
Subnetworks,” IEEE Trans. Parallel and Distributed Systems,
vol. 15, no. 9, pp. 194-205, Sept. 2004.

[9] D.E. Knuth, “Sorting and Searching,” The Art of Computer
Programming 3, Addison-Wesley, 1973.

Francisco J. Alfaro received the MS degree in
computer science from the University of Murcia,
Spain, in 1995 and the PhD degree from the
University of Castilla-La Mancha, Spain, in 2003.
He is currently an assistant professor of com-
puter architecture and technology in the Depart-
ment of Computer Systems at the University of
Castilla-La Mancha. His research interests
include high-performance local area networks,
quality of service (QoS), design of high-perfor-

mance routers, and design of on-chip interconnection networks for
multicore systems. He is a member of the IEEE Computer Society.

José L. Sánchez received the PhD degree from
the Technical University of Valencia, Spain, in
1998. Since November 1986, he has been a
member of the Department of Computer Sys-
tems (formerly the Department of Computer
Science) at the University of Castilla-La Mancha,
Spain. He is currently an associate professor of
computer architecture and technology. His re-
search interests include multicomputer systems,
quality of service (QoS) in high-speed networks,

interconnection networks, parallel algorithms, and simulation.

Manuel Menduiña is a high school teacher of
mathematics. In 1990, he joined the Department
of Computer Systems, University of Castilla-La
Mancha, Spain, as a part-time assistant profes-
sor. His main research fields are formal models
and operation researches.

José Duato received the MS and PhD degrees
in electrical engineering from the Polytechnic
University of Valencia (UPV), Spain, in 1981 and
1985, respectively, where he is now a professor
in the Department of Computer Engineering
(DISCA). He served as an associate editor of
the IEEE Transactions on Parallel and Distrib-
uted Systems and the IEEE Transactions on
Computers and is serving as an associate editor
of the IEEE Computer Architecture Letters

(CAL). He was the general cochair of the 30th International Conference
on Parallel Processing (ICPP ’01), a program chair of the 10th
International Symposium on High-Performance Computer Architecture
(HPCA-10), and a program cochair of ICPP 2005. Also, he served as a
cochair, Steering Committee member, vicechair, or program vommittee
member for more than 55 conferences, including HPCA, the Interna-
tional Symposium on Computer Architecture (ISCA), the International
Parallel Processing Symposium/Symposium on Parallel and Distributed
Processing (IPPS/SPDP), the International Parallel and Distributed
Processing Symposium (IPDPS), ICPP, the International Conference on
Distributed Computing Systems (ICDCS), Euro-Par, and the Interna-
tional Conference on High Performance Computing (HiPC). His
research interests include interconnection networks and multiprocessor
architectures. His research results have been used in the design of the
Alpha 21364 microprocessor and the Cray T3E and IBM BlueGene/L
supercomputers. He has published more than 350 papers. He is the first
author of the book Interconnection Networks: An Engineering Approach.
He is a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ALFARO ET AL.: A FORMAL MODEL TO MANAGE THE INFINIBAND ARBITRATION TABLES PROVIDING QOS 1039

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

