

RADAR

w
w

w
.b

ro
ok

es
.a

c.
uk

/g
o/

ra
da

r

Oxford Brookes University – Research Archive and
Digital Asset Repository (RADAR)

Directorate of Learning Resources

Jabir, A
A graph‐based unified technique for computing and representing co‐efficients over finite fields.

Jabir, A and Pradhan, D (2007) A graph‐based unified technique for computing and
representing co‐efficients over finite fields. IEEE transactions on computers, 56 (8). pp. 1119‐
1132.
Doi: http://doi.ieeecomputersociety.org/10.1109/TC.2007.1060

This version is available: http://radar.brookes.ac.uk/radar/items/06b08aaf‐ae88‐a70f‐9f0a‐
8c1c4ca6743e/1/
Available in the RADAR: [October 2010
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A
copy can be downloaded for personal non‐commercial research or study, without prior
permission or charge. This item cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the copyright holder(s). The content must not be changed
in any way or sold commercially in any format or medium without the formal permission of the
copyright holders.

This document is the published version of the journal article.

http://radar.brookes.ac.uk/radar/items/06b08aaf-ae88-a70f-9f0a-8c1c4ca6743e/1/
http://radar.brookes.ac.uk/radar/items/06b08aaf-ae88-a70f-9f0a-8c1c4ca6743e/1/

A Graph-Based Unified Technique
for Computing and Representing Coefficients

over Finite Fields
Abusaleh M. Jabir, Member, IEEE, and Dhiraj K. Pradhan, Fellow, IEEE

Abstract—This paper presents the generalized theory and an efficient graph-based technique for the calculation and representation of

coefficients of multivariate canonic polynomials over arbitrary finite fields in any polarity. The technique presented for computing

coefficients is unlike polynomial interpolation or matrix-based techniques and takes into consideration efficient graph-based forms

which can be available as an existing resource during synthesis, verification, or simulation of digital systems. Techniques for

optimization of the graph-based forms for representing the coefficients are also presented. The efficiency of the algorithm increases for

larger fields. As a test case, the proposed technique has been applied to benchmark circuits over GFð2mÞ. The experimental results

show that the proposed technique can significantly speed up execution time.

Index Terms—Finite or Galois fields, decision diagrams, coefficients, polynomials.

Ç

1 INTRODUCTION

THE motivation of this paper is efficient representation of
digital systems as word-level canonic polynomials and

their graphs over finite fields for synthesis, verification, and
testing, and also error correction. The underlying problem
seems to be the determination of the coefficients associated
with the multivariate canonic polynomials, which in itself is
a very hard problem. Hence, this paper focuses mainly on
three aspects:

. the unified theory behind representing functions as
canonic polynomials and their graphs in finite fields,

. an efficient graph-based technique for calculation
of coefficients in arbitrary finite fields in any
polarity, and

. canonic graph-based representation of the
coefficients.

1.1 Previous Work

Polynomials over finite fields are crucial to certain public-

key crypto systems (for example, the elliptic curve (EC)
cryptography) for data protection [31], error control codes

(for example, BCH and Reed-Solomon codes) for encoun-
tering channel errors [30], [36], and digital signal processing

[6]. These are especially significant due to the rapid growth
of the mobile and wireless industries, where data security
and reliability are very important in devices such as mobile

phones, palm-top or pocket computers with wireless
capabilities, and so forth. These crypto systems require

low-complexity high-performance realizations of these
polynomials for fast computations over large finite fields
[4], [8]. Given r � s ¼ m, the field GFð2mÞ can be represented
as an extension of the subfield GFð2rÞ as GFðð2rÞsÞ, for
example, the polynomials over GFðð2rÞsÞ can be repre-
sented in terms of the coefficients over GFð2rÞ, which occurs
frequently in the EC cryptosystem [8]. Our technique can
inherently handle this scenario. The role of finite fields in
error control systems is well established and contributes to
many fault-tolerant designs. In the EDA industry multi-
valued functions, especially in the form of (M)ultivalued
(D)ecision (D)iagrams or MDDs, play an important role [34].
Multivalued functions can also be represented in finite
fields, as shown in [24]. The varied use of finite fields leads
to designing high speed, low-complexity systolic very large-
scale integrated (VLSI) realizations [10]. Applications of
finite fields in Reed-Müller-like canonic polynomial forms
have also been proposed for matching algorithms for
verification, for example, [9].

Arbitrary combinations of bits or nibbles within a word
can be combined together and represented as canonic
polynomials over finite fields [3], [11], [28]. Being in canonic
form, these polynomials and their graphs allow error
correction in addition to fast verification—something that
is not directly possible by formal methods such as model
checkers [3]. Owing to the canonicity, two polynomials in
finite fields can be compared by term-by-term polynomial
addition/subtraction to find an error polynomial (for
example, by mitering), which can be added to the erroneous
circuit to correct the error.

The underlying problem of representing circuits as
word-level canonic polynomials over finite fields is the
efficient determination of the coefficients. A number of
techniques exist based on interpolation algorithms for small
finite fields (for example, GFðKÞ and K � 4), e.g., [1], [15],
[38], [39]. Although the technique in [20] seems to be
applicable to large fields, it heavily relies on the size of the
fields and also, for small fields, a solution only exists if the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007 1119

. A.M. Jabir is with the School of Technology, Oxford Brookes University,
Oxford OX33 1HX, UK. E-mail: ajabir@brookes.ac.uk.

. D.K. Pradhan is with the Department of Computer Science, University of
Bristol, Bristol BS8 1UB, UK. E-mail: pradhan@cs.bris.ac.uk.

Manuscript received 29 Nov. 2005; revised 29 June 2006; accepted 29 Mar.
2007; published online 20 Apr. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0423-1105.
Digital Object Identifier no. 10.110/TC.2007.1060.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

interpolation points are chosen from sufficiently large
extension fields [21]. Most of these techniques (for example,
[38], [39]) are suitable for only the 0-polarity (that is, only
one polarity). However, most practical circuits have
different representations in different polarities in finite
fields, for example, certain polarities will require fewer
terms or nonzero coefficients, which could result in fewer
nodes or paths in a graph than others for the same circuit. In
our approach, given a directed acyclic graph (DAG) as the
initial representation, word size, polarity number, and
primitive polynomials (PP), we compute the coefficients of
multivariate canonic polynomials in the given polarity over
finite fields generated with the PP from the initial DAG and
also store the coefficients in another DAG. In this regard,
Sasao and Izuhara [35] present a technique for computing
the optimal Reed-Müller expressions, that is, the expression
under the optimal polarity, over GFð2Þ only from minterm-
based representations. Due to its exhaustive nature, its
application is limited to small circuits. Also, Jankovic et al.
[11] present another exhaustive search-based technique for
finding optimal expressions over GFð4Þ from minterms
based on an extension of the dual polarity property over
GFð2Þ. Fourier-like matrix-based algorithms (for example,
based on coding theory and the butterfly algorithm) exist
for functions in finite fields and also generalized Reed-
Müller forms [12], [16], [17]. However, the size of the
matrices is exponential and grows exponentially with the
size of the inputs and field sizes.

1.2 Background

Let GFðNÞ denote a set of N elements, where N is a power
of a prime number with two special elements 0 and 1
representing the additive and multiplicative identities,
respectively, and two operators, addition “þ” and multi-
plication “�”. GFðNÞ defines a finite field, also known as a
Galois Field, if it forms a commutative ring with identity over
these two operators in which every element has a multi-
plicative inverse. Additional properties of finite fields can
be found in [24], [36].

Let IN ¼ f0; 1; . . . ; N � 1g. Let � : IN ! GF ðNÞ be a one-
to-one mapping with �ð0Þ ¼ 0, �ð1Þ ¼ 1, and, without loss of
generality, �ð2Þ ¼ �, �ð3Þ ¼ �, and so forth, where �, �, and
so forth are elements in GFðNÞ.

Let the notation f jxk¼y represent the fact that all
occurrences of xk within the function f are replaced with
y, that is, f jxk¼y ¼ fðx1; x1; . . . ; xk ¼ y; . . . ; xnÞ.

Finite fields over GFð2mÞ and m � 2 can be generated
with PP of the form pðxÞ ¼ xm þ

Pm�1
i¼0 cix

i, where ci 2
GFð2Þ [36]. In this paper, PPs will be considered in their
decimal notation. For example, the PP pðxÞ ¼ x3 þ xþ 1 for
GFð23Þ can be represented by the bit vector [1, 0, 1, 1], which
is 11 in decimal. Note that only one field is possible for
GFð2Þ and GFð4Þ, that is, for m � 2, but multiple fields are
possible for m > 2 for the same m.

Given a variable, xi in GFðNÞ and �i 2 IN ð1 � i � nÞ,
xi can appear in one of the N polarities denoted by
xi;�i ¼ xi þ �ð�iÞ. Certain polarities require more re-
sources to represent a polynomial than others. As an
example, let fðx1; x2Þ ¼ �x1x2 represent a function in 0-
polarity in GFð3Þ, that is, both x1 and x2 are in
0-polarity (note that xi;0 ¼ xi). In another polarity, with
x1 in 1-polarity and x2 in 2-polarity, replacing x1 with

x1;1 � 1 and x2 with x2;2 � �ð2Þ ¼ x2;2 � �, and, simplify-
ing, we get fðx1; x2Þ ¼ 1þ x2;2 þ �x1;1 þ �x1;1x2;2, which
contains more terms in this case. Finding an optimal
polarity is a very hard problem.

The following result will be used in this paper:

Theorem 1 [23]. Any function fðx1; . . . ; xk; . . . ; xnÞ in GFðNÞ
can be expanded as follows:

fðx1; . . . ; xk; . . . ; xnÞ ¼
XN�1

e¼0

geðxkÞf jxk¼�ðeÞ; ð1Þ

where geðxkÞ ¼ 1� ½xk � �ðeÞ�N�1.

1.3 Graph-Based Representation

In Theorem 1, the function geðxiÞ is called a literal in GFðNÞ
and (1) is called the literal-based expansion in GFðNÞ.
Theorem 1 allows MDD-like canonic DAG representation of
any function in GFðNÞ in its literal form [2], [3]. However,
since an MDD is defined in MIN-MAX postalgebra [14],
[34], this representation will be called a (M)ultiple (O)utput
(D)ecision (D)iagram or MODD to distinguish it from an
MDD. There are two MODD reduction rules [2]: 1) If all of
the N children of a node v point to the same node w, then
delete v and connect the incoming edge of v to w. 2) Share
equivalent subgraphs. A reduced MODD can be further
optimized and normalized based on two additional rules
presented in [3]. An MODD which is reduced by all four
rules will be called a (Z)ero suppressed and (N)ormalized
MODD or ZNMODD [3].

This paper is organized as follows: Section 2 presents a
generalized canonic polynomial expansion of functions in
GFðNÞ. This section also presents a technique for efficiently
representing the coefficients by means of DAGs. Section 3
presents an efficient DAG-based technique for computing
the coefficients of any canonic polynomial over GFðNÞ.
Finally, Section 4 presents experimental results that reflect
the execution profile of the proposed technique.

2 POLYNOMIAL EXPANSION OVER GFðpnÞ
This section presents a generalized expansion technique for
canonic polynomials and their DAG-based representations
over GFðNÞ in any polarity. Techniques such as [5], [13],
[28] [29], [32] are either Reed-Müller expansions or
expansions over finite fields of fixed order, for example,
GFð2Þ or GFð4Þ, although, theoretically, they can be
generalized to higher order fields.

First, the following result is presented from combina-
torics, which will be useful later.

Theorem 2. For any nonzero positive integer n, prime number p,
and 0 � r < pn, pn�1

r

� �
mod p ¼ p�1

r mod 2

� �
.

Proof. Follows by induction on r. tu

Theorem 2 gives the following repetitive pattern for
0 � r < pn:

1; p� 1; 1; . . . ; 1; p� 1; 1|ffl{zffl}
pntimes

:

Theorem 2 yields the following for 0 � r < 2n:

1120 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Corollary 2.1. For any nonzero positive integer n and

0 � r < 2n, 2n�1
r

� �
is an odd number.

We have the following unified polynomial expan-

sion, called the (P)arameterized (G)alois (E)xpansion or

PGE, in GFðNÞ.
Theorem 3. Let fðx1; . . . ; xi . . . ; xnÞ represent an n-variable

function in GFðNÞ, where N ¼ pm and p is a prime number

and m an integer. Let 0 � �i < N represent the polarity of the

variable xi, that is, xi;�i ¼ xi þ �ð�iÞ. Then, the PGE of f is

PGE�i;iðfðx1; . . . ; xi; . . . ; xnÞÞ ¼
XN�1

e¼0

H�iðeÞf jxi¼�ðeÞ

þ
XN�2

r¼0

xN�1�r
i;�i

XN�1

e¼0

C�i;rðeÞf jxi¼�ðeÞ

 !
;

ð2Þ

where H�iðeÞ ¼ 1� ð�ð�iÞ þ �ðeÞÞN�1 and

C�i;rðeÞ ¼ ð�1Þrþ1 p� 1

r mod 2

� �
ð�ð�iÞ þ �ðeÞÞr:

Proof. (Proof Sketch) From the definition of �i-polarity,

xi ¼ xi;�i � �ð�iÞ. After substituting xi;�i � �ð�iÞ for xi in

Theorem 1, applying binomial theorem, and rearranging

and then factorizing the terms, we have

fðx1; . . . ; xi; . . . ; xnÞ ¼
XN�1

e¼0

1� ð�ð�iÞ þ �ðeÞÞN�1
h i

fjxi¼�ðeÞ

þ
XN�2

r¼0

xN�1�r
i;�i

XN�1

e¼0

ð�1Þrþ1 N � 1

r

� �
ð�ð�iÞ þ �ðeÞÞrfjxi¼�ðeÞ

 !
:

From the properties of GFðNÞ, it follows that

8a 2 GFðNÞ N � 1

r

� �
� a ¼ pm � 1

r

� �
� a

¼
� pm � 1

r

� �
mod p

�
� a:

However, from Theorem 2, pm�1
r

� �
mod p ¼ p�1

r mod 2

� �
.

Hence, the proof follows. tu
Special Case over GFð2mÞ. Finite fields over GFð2mÞ

have many applications, especially for verification and

simulation of digital systems, error control and data

security, DSP, and so forth [2], [4], [6], [9], [18], [19], [36].
Corollary 2.1, together with the fact that �a ¼ þa,

8a 2 GFð2mÞ, gives the following special case of Theorem 3

in GFð2mÞ:
Theorem 4. Let fðx1; . . . ; xi . . . ; xnÞ represent an n-variable

function in GFðNÞ, where N ¼ 2m. Let 0 � �i < N represent

the polarity of the variable xi, that is, xi;�i ¼ xi þ �ð�iÞ. Then,

the PGE of f is

PGE�i;iðfðx1; . . . ; xi; . . . ; xnÞÞ ¼
XN�1

e¼0

H�iðeÞf jxi¼�ðeÞ

þ
XN�2

r¼0

xN�1�r
i;�i

XN�1

e¼0

C�i;rðeÞfxi¼�ðeÞ

 !
;

ð3Þ

where H�iðeÞ ¼ 1þ ð�ð�iÞ þ �ðeÞÞN�1 and

C�i;rðeÞ ¼ ð�ð�iÞ þ �ðeÞÞ
r:

Note that, in Theorem 3, depending on the value of e,
H�iðeÞ 2 f0; 1g, whereas each C�i;rðeÞ 2 GFðNÞ.
Example 1. Let us consider GFð2Þ and �i ¼ 1. From

Theorem 4,

PGE1;iðfðx1; . . . ; xi; . . . ; xnÞÞ ¼
X1

e¼0

½1þ ð�ð1Þ þ �ðeÞÞ�f jxi¼�ðeÞ

þ
X0

r¼0

x1�r
i;1

X1

e¼0

ð�ð1Þ þ �ðeÞÞrf jxi¼�ðeÞ

 !

¼ ½1þ 1þ 0�f jxi¼0 þ ½1þ 1þ 1�fjxi¼1

þ xi;1ð1 � fjxi¼0 þ 1 � f jxi¼1Þ
¼ f jxi¼1 þ xi;1ðf jxi¼0 þ f jxi¼1Þ;

which is clearly the negative Davio expansion of f [35].
Similarly, the positive Davio expansion of f can be
obtained from PGE0;iðfÞ.

Example 2. Let us consider GFð4Þ and �i ¼ 3. From
Theorem 4,

PGE3;iðfðx1; . . . ; xi; . . . ; xnÞÞ

¼
X3

e¼0

½1þ ð�ð3Þ þ �ðeÞÞ3�f jxi¼�ðeÞ

þ
X2

r¼0

x3�r
i;3

X3

e¼0

ð�ð3Þ þ �ðeÞÞrf jxi¼�ðeÞ

 !

¼ fjxi¼� þ
�
x3
i;3ðf jxi¼0 þ f jxi¼1 þ f jxi¼� þ f jxi¼�Þ

þ x2
i;3ð�f jxi¼0 þ �f jxi¼1 þ f jxi¼�Þ

þ xi;3ð�2f jxi¼0 þ �2fjxi¼1 þ fjxi¼�Þ
�

¼ fjxi¼� þ x
3
i;3ðfjxi¼0 þ f jxi¼1 þ f jxi¼� þ fjxi¼�Þ

þ x2
i;3ð�f jxi¼0 þ �f jxi¼1 þ f jxi¼�Þ

þ xi;3ð�f jxi¼0 þ �f jxi¼1 þ f jxi¼�Þ;

which is the 3-4 negative Davio expansion in [28].
Similarly, the 4-positive, 1-4 negative, and 2-4 nega-

tive Davio expansions in [28] can be obtained from
Theorem 3 as PGE0;iðfÞ, PGE1;iðfÞ, and PGE2;iðfÞ,
respectively.

In this way, any polarity polynomial expansion can be
obtained in GFðNÞ.

Apply Operation. We have the following regarding
operations between two functions in GFðNÞ:
Lemma 1 [2]. Let fðx1; . . . ; xi; . . . ; xnÞ and hðx1; . . . ; xi; . . . ; xnÞ

be two functions in GFðNÞ and “�” represent an algebraic
operation (for example, addition, multiplication, subtraction,
and division) in GFðNÞ. Then,

JABIR AND PRADHAN: A GRAPH-BSAED UNIFIED TECHNIQUE FOR COMPUTING AND REPRESENTING COEFFICIENTS OVER FINITE ... 1121

f � h ¼
XN�1

e¼0

½1� ðxi � �ðeÞÞN�1�ðfjxi¼�ðeÞ � hjxi¼�ðeÞÞ: ð4Þ

This can be expressed in terms of two PGEs as follows.

Lemma 2. Let fðx1; . . . ; xi; . . . ; xnÞ and hðx1; . . . ; xi; . . . ; xnÞ be

two functions in GFðNÞ, and “�” represent an algebraic

operation (for example, addition, multiplication, subtraction,

and division) in GFðNÞ. Then,

PGE�i;iðfÞ � PGE�i;iðhÞ ¼
XN�1

e¼0

H�iðeÞ fjxi¼�ðeÞ � hjxi¼�ðeÞ
� �

þ
XN�2

r¼0

xN�1�r
i;�i

XN�1

e¼0

C�i;rðeÞ fjxi¼�ðeÞ � hjxi¼�ðeÞ
� � !

:

ð5Þ

Proof. Follows from manipulation of Lemma 1 as in the

proof of Theorem 3. tu

Theorem 3 can be represented in terms of Fourier-like

matrix expansions such as those in [26], but this has been

left out for brevity.

2.1 Graph-Based Representation

�i-polarity Expansion. Equation (2) can be recursively

expanded with respect to each variable. For example, in (2),

let xj ðj 6¼ iÞ be another variable. Then, it can be expanded

in terms of PGE�j;jðf jxi¼�ðeÞÞ, 8e 2 IN , that is,

PGE�i;iðfÞ ¼
XN�1

e¼0

H�iðeÞPGE�j;j f jxi¼�ðeÞ
� �

þ
XN�2

r¼0

xN�1�r
i;�i

XN�1

e¼0

C�i;rðeÞPGE�j;j f jxi¼�ðeÞ
� � !

:

ð6Þ

Equation (2) can also be written as

PGE�i;iðfðx1; . . . ; xi; . . . ; xnÞÞ

¼
XN�1

e¼0

H�iðeÞfjxi¼�ðeÞ

þ
XN�1

r¼1

xri;�i

XN�1

e¼0

C�i;N�2�ðr�1ÞðeÞf jxi¼�ðeÞ

 !

¼ h�i;0 þ
XN�1

r¼1

xri;�ih�i;r;

ð7Þ

where

h�i;s ¼
PN�1

e¼0 H�iðeÞfjxi¼�ðeÞ if s < 1PN�1
e¼0 C�i;N�2�ðs�1ÞðeÞf jxi¼�ðeÞ otherwise

(

and s 2 IN .
Now, (7) can be represented based on an MDD-like

structure, as shown in Fig. 1. Here, the internal nodes

represent the variables of expansion in �i-polarity, while the

terminal nodes represent the coefficients of expansion. The

edges denote the exponents of xi;�i . To distinguish between

representation of MIN-MAX-based postalgebra using an

MDD, we call such a diagram the (G)alois (P)olynomial DD
or GPDD.

Equation (7) can be recursively expanded as in (6), which
will result in a decision diagram.

Reduction. The GPDD which results can be reduced as
follows: Let us consider two nodes v and w such that
childiðvÞ ¼ w and 0 � i � N � 1.

1. If all of the nonzero edges of w point to the zero
terminal node, then reconnect childiðvÞ to child0ðwÞ
and delete w.

2. Share equivalent subgraphs.

A linear time GPDD reduction algorithm can be derived

based on these rules from the binary decision diagrams

(BDD) reduction algorithm in [7]. However, two things

need to be considered: 1) The number of children has to be

extended to N from 2 and 2) the BDD reduction rule has to

be replaced with the first reduction rule above, whereas the

sharing rule remains the same. A linear time recursive

reduction algorithm has been developed and incorporated

into our tool presented in Section 4. This algorithm visits

each node exactly once during the reduction process.
As with the ZNMODD, further node reduction can be

obtained in a similar manner:

. Zero Suppression. Suppress the 0-terminal node,
along with all the edges pointing to it.

. Normalization. Move the values of the nonzero
terminal nodes as weights to the edges and ensure
that 1) the weight of a specific valued edge (for
example, that with the highest value) is always 1 and
2) assuming P represents the set of all the paths,
8z 2 P , the GFðNÞ product of all the weights along z
is equal to the coefficient of the term in the
polynomial, which is represented by z.

Although normalization rules have been considered in

[22] and [27], those rules are in the integer domain rather

than in finite fields and they are also based on the relative

primeness of the weights of the edges. It can be argued that

these reduction rules will render the diagram canonic and

minimal if the weights are assigned in a certain order

throughout the graph during normalization. Such a reduced

GPDD will be called (Z)ero suppressed (N)ormalized GPDD or

ZNGPDD.

Example 3. Let f0; 1; �g represent the elements in GFð3Þ. Let
fðx1; x2Þ ¼ x1 þ �x2. The truth vector of this function is

Ffðx1; x2Þ ¼ ½0�110��10�:

Based on this truth-vector, a ZNMODD can be con-

structed, which appears in Fig. 2a. Here, the lines with

zero, one, and two cuts represent 0, 1, and �,

respectively.

1122 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Fig. 1. Decision diagram-based representation of PGE�i;iðfÞ.

Now, in GFð3Þ,

PGE0;iðfÞ ¼ fjxi¼0 þ xi;0ð�fjxi¼1 þ f jxi¼�Þ
� x2

i;0ðf jxi¼0 þ f jxi¼1 þ f jxi¼�Þ:
ð8Þ

Equation (8) is the 0-polarity PGE in GFð3Þ. Recursive
expansion of (8) will result in a reduced GPDD shown in
Fig. 2b. Here, the lines with zero, one, and two cuts
represent 0, 1, and 2, respectively. Fig. 2c and Fig. 2d
show the gradual conversion to the ZNGPDD. The
weights have been moved around and adjusted to ensure
the correctness of the underlying function.

Fig. 2d can be used to recursively construct the
original polynomial as follows:

1 � 1 � x1
1 þ 1 � � � 1 � x0

1x
1
2 ¼ x1 þ �x2;

which is fðx1; x2Þ.
Again, let gðx1; x2Þ ¼ x1x2 in GFð3Þ. The ZNMODD

requires three internal nodes for this function, whereas
the ZNGPDD requires just two.

As an another example, Fig. 3 shows the reduced
MODD and GPDD for a 2-bit integer multiplier in
0-polarity GFð4Þ (that is, 2-bit word size) as generated
by our tool. Here, outputs f0 and f1 represent the 2-bit
least significant and most significant digits of the
multiplier, respectively. The numbers 0-3 represent
elements in GFð4Þ.

This example brings to light the following: Given an
n input function fðx1; x2; . . . ; xnÞ ¼

Pn
i¼1 xi in GFðNÞ, it

can be shown by generalizing the number of nodes in a
BDD for parity functions that its reduced MODD will
require Nðn� 1Þ þ 1 internal nodes. Its reduced GPDD
will require n internal nodes, each one corresponding to
one of the xis. Assuming node vi corresponds to xi viþ1 ¼
child0ðviÞ for i < n, 8i child1ðviÞ will point to a nonzero
terminal node and the rest of the edges will point to the
zero terminal node. Hence, the GPDD will require
approximately N times fewer internal nodes. This can
be shown to be true irrespective of the variable ordering
for these types of functions.

3 COMPUTATION OF COEFFICIENTS

Given a function fðxn; xn�1; . . . ; x1Þ in GFðNÞ and a polarity
number t, it can be shown that recursive application of
Theorem 3 with respect to all of the variables with their

corresponding polarities, as determined by t, will result in a

canonic polynomial of the following form [12], [24]:

fðxn; xn�1; . . . ; x1Þ ¼ �0;t þ �1;t~x1 þ �N;t~x2 þ � � � þ �i;t~xikjk ~xik�1
jk�1

� � � ~xi1j1 þ � � � þ �Nn�1;t~x
N�1
n ~xN�1

n�1 � � � ~xN�1
1 :

ð9Þ

Here, we have used the notation in [24] as follows:

�i;t represents the coefficient of the ith term contain-

ing k number of variables in polarity number t,

where both i and t are defined in the radix-N

number system as i ¼ ikNjk þ ik�1N
jk�1 þ � � � þ i1Nj1 and

t ¼ �nNn�1 þ �n�1N
n�2 þ � � � þ �1.1

Further, each �q represents the polarity of the variable xq
and 1 � q � n, that is, xq;�q ¼ xq þ �ð�qÞ. Here, ~xl represents

the fact that xl is in any one of the polarities f0; 1; . . . ; N �
1g as determined by t. For example, the term associated

with the coefficient �i;t is ~xikjk ~xik�1

jk�1
� � � ~xi1j1 , where the polarity

of each variable is determined by t.
Such an expansion will determine all of the coeffi-

cients. Unfortunately, this recursive expansion will always
be exponential. The coefficients can also be computed
based on a Fourier-type expansion [12], [17]. However,
this approach requires the storage of an Nn �Nn matrix,
which can blow up quite rapidly, especially for large
fields. Considering these, an efficient DAG-based techni-
que has been presented in the following for computing
the coefficients.

3.1 Graph-Based Coefficient Computation

In many cases, the MODD (or MDD) may be available as a
part of the existing resources during a synthesis, verifica-
tion or simulation process, in which case, the coefficients
can be derived from the graphs by means of an efficient
incremental technique, as shown below.

Let the ith term in a canonic polynomial in

GFðNÞ be ~xikjk ~xik�1
jk�1
� � � ~xi1j1 , which is associated with

the coefficient �i;t. Let us define the function

�i;tð~xn; ~xn�1; . . . ; ~x1Þ ¼ ~xN�1�ik
jk

~xN�1�ik�1
jk�1

� � � ~xN�1�i1
j1

as shown

in [24]. Here, �i;t has the following properties: 1) �i;t ¼ 1 if

i ¼ 0 or ik ¼ ik�1 ¼ � � � ¼ i1 ¼ N � 1, 2) only those literals

present in ~xikjk ~xik�1
jk�1
� � � ~xi1j1 appear in �i;t, and 3) those literals

with exponents equal to N � 1 do not appear in �i;t at all.
We have the following:

Theorem 5 [3]. Let fðxn; xn�1; . . . ; x1Þ represent an n variable

function in GFðNÞ. Its ith coefficient corresponding to a term

containing k number of variables in the polarity number t is

�i;t ¼ ð�1Þk
X�ðN�1Þ

xjk¼�ð0Þ

X�ðN�1Þ

xjk�1
¼�ð0Þ
� � �

X�ðN�1Þ

xj1¼�ð0Þ
�i;tð~x1; ~x2; . . . ; ~xnÞ

fðxjk ; xjk�1
; . . . ; xj1 ;��ð�lÞ;��ð�l�1Þ; . . . ;��ð�1ÞÞ;

ð10Þ

JABIR AND PRADHAN: A GRAPH-BSAED UNIFIED TECHNIQUE FOR COMPUTING AND REPRESENTING COEFFICIENTS OVER FINITE ... 1123

1. Note that each subscript of i and t, uniquely identifying a term in the
polynomial, can also be represented in terms of vectors of dimension n.
Considering ik, each element in the vector would represent the exponent of
the corresponding variable in the term. If a variable is missing from a term,
then a 0 is entered in its position, and so on. Similarly, for tl, each element in
the vector would represent the polarity of the corresponding variable in the
term.

Fig. 2. DDs in Example 3. (a) ZNMODD, (b) GPDD, (c) and (d) gradual

reduction to ZNGPDD.

where �ð�lÞ; �ð�l�1Þ; . . . ; �ð�1Þ are the polarities of the

variables xl; xl�1; . . . ; x1 as determined by t.

In fðxjk ; xjk�1
; . . . ; xj1

;��ð�lÞ;��ð�l�1Þ; . . . ;��ð�1ÞÞ, vari-
ables xjk ; xjk�1

; . . . ; xj1 are not assigned any values. There-
fore, these variables will be called “unassigned”
variables. The rest of the variables, that is, those assigned

��ð�lÞ;��ð�l�1Þ; . . . ;��ð�1Þ will be called “assigned”
variables.

In a reduced MODD, the zero terminal node does not
contribute to a canonic polynomial in GFðNÞ. Therefore, in
the rest of the paper, only the ZNMODD will be considered

because they provide with a very efficient representation of
functions in finite fields with the zero terminal node
suppressed.

Let TV ðxÞ denote the value of the terminal node of path
x in an MODD. In a ZNMODD, TV ðzÞ corresponds to the

GFðNÞ product of all the weights along z. In other words,
let E denote the set of all the edges constituting the path z.
Then, for a ZNMODD, TV ðzÞ ¼

Q
y2E weightðyÞ, where

weightðyÞ represents the weight associated with edge y.
Let contribðxÞ represent the contribution of path x to �i;t

having k variables.

Lemma 3 [3]. If a path z in a ZNMODD contains all the

unassigned variables of �i;t and zero or more assigned variables

have their desired values, then its contribution to �i;t is

contribðzÞ ¼ TV ðzÞ �
Yk
s¼1

ðxjs þ �ð�jsÞÞ
rs ;

where rs ¼ N � 1� is.
Lemma 4 [3]. If, in a path z of a ZNMODD m ðm � 1Þ number

of unassigned variables are missing and zero or more assigned

variables have their desired values, then its contribution to �i;t
is 0, that is, contribðzÞ ¼ 0.

A Path Oriented Algorithm. Let P denote the set
of all the paths in a ZNMODD. Then, we have

�i;t ¼ ð�1Þk
P

z2P contribðzÞ. A path-oriented algorithm ap-
pears in Fig. 4. Here, if z does not satisfy Lemma 3, then

contribðzÞ ¼ 0 because either Lemma 4 is satisfied or z does

not constitute a term in

fðxjk ; xjk�1
; . . . ; xj1 ;��ð�lÞ;��ð�l�1Þ; . . . ;��ð�1ÞÞ:

Example 4. Let us consider a function fðx1; x2Þ in GFð3Þ
whose ZNMODD appears in Fig. 5 [3]. It contains four

paths: ac, ad, bc, and bd. Let us find its coefficients in

polarity number 5, that is, x1 appears in polarity 1,

whereas x2 appears in polarity 2 since 5 ¼ 1� 3þ 2� 1.

The canonic polynomial is

fðx1; x2Þ ¼ 1þ x2;2 þ �x1;1 þ �x1;1x2;2: ð11Þ

From Theorem 5, �0;5 ¼ fð�1;��Þ ¼ fð�; 1Þ. From
Fig. 5, this corresponds to path bc. Therefore,
TV ðbcÞ ¼ � � 1 � � ¼ �2 ¼ 1. Hence, �0;5 ¼ 1.

Again, let us calculate �4;5. Since 4 ¼ 1� 31 þ 1� 1,
this corresponds to the term x1;1x2;2. Therefore,
�4;5ðx1;1; x2;2Þ ¼ x1;1x2;2.

�4;5 ¼ ð�1Þ2
X�
x1¼0

X�
x2¼0

ðx1 þ 1Þðx2 þ �Þfðx1; x2Þ

¼ ð�1Þ2ðcontribðacÞ þ contribðadÞ þ contribðbcÞ
þ contribðbdÞÞ:

For path ac, both of the unassigned variables are present.

Therefore, from Lemma 3,

contribðacÞ ¼ ð1þ 1Þð1þ �ÞTV ðacÞ ¼ � � 0 � �3 ¼ 0:

1124 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Fig. 3. Graph-based representation of 2-bit integer multiplier. (a) MODD. (b) GPDD.

Fig. 4. An efficient path oriented algorithm.

Similarly, contribðadÞ ¼ � � 1 � �2 ¼ �, contribðbcÞ ¼ 0,
and contribðbdÞ ¼ 0. Hence,

�4;5 ¼ 1 � ð0þ �þ 0þ 0Þ ¼ �:

Now, let us calculate �1;5. This corresponds to the
term x2;2.

�1;5 ¼ ð�1Þ1
X�
x2¼0

ðx2 þ �Þfð�1; x2Þ

¼ ð�1Þ
X�
x2¼0

ðx2 þ �Þfð�; x2Þ

¼ �ðcontribðacÞ þ contribðadÞ þ contribðbcÞ
þ contribðbcÞÞ:

Paths ac and ad do not contribute. Therefore, their
contributions are 0s.

contribðbcÞ ¼ 0: contribðbdÞ ¼ ð�þ �Þ � � ¼ �:

Therefore, �1;5 ¼ �ð0þ 0þ 0þ �Þ ¼ 1.
Again, �3;5 is associated with the term x1;1.

�3;5 ¼ ð�1Þ1
X�
x1¼0

ðx1 þ 1Þfðx1;��Þ ¼ ð�1Þ
X�
x1¼0

ðx1 þ 1Þfðx1; 1Þ

¼ �ðcontribðacÞ þ contribðadÞ þ contribðbcÞ þ contribðbdÞÞ
¼ �ð½ð1þ 1Þð� � � � �Þ� þ 0þ 0þ 0Þ ¼ �:

It can be shown in a similar manner that the other
coefficients equate to 0. Clearly, each of these coefficients
verify against (11).

It should be noted that, in polarity number t ¼ 0,
fðx1; x2Þ ¼ �x1x2.

The complexity of Algorithm CompByPath is associated
with 1) the number of paths which do not terminate into a
0-terminal node in the MODD or ZNMODD and 2) the
number of missing unassigned variables in the path. In the
worst case, each path has to be traversed only once, which
may render the algorithm exponential in the worst case.
However, if there is at least one missing unassigned
variable in a path, then that path’s contribution is 0. For
these types of paths, all of the edges leading to a terminal
node need not be traversed. It has been observed that, for
most benchmarks, the algorithm found the coefficients
quickly. However, for a certain variable ordering, a missing
unassigned variable may appear at a level closer to the root
than at a different variable ordering of the shared MODD

(SMODD). Hence, for a certain variable ordering, a missing
unassigned variable can be determined quicker than if a
different variable ordering is considered.

This algorithm can be applied in GFð2Þ for computing
the fixed-polarity Reed-Müller coefficients. In this regard,
the technique of [25] seems to be a highly restricted version
of the proposed algorithm for GFð2Þ only.

Application of this algorithm for determining all of the
coefficients in higher order fields can render the process
slow. A far more efficient technique is proposed in
Section 3.2.

3.2 Speeding Up for Large Finite Fields

Let the partial coefficient (PC) be defined as

PCi;tð~xikjk ~xik�1
jk�1
� � � ~xi1j1

Þ ¼ �i;tð~x1; ~x2; . . . ; ~xnÞ
fðxjk ; xjk�1

; . . . ; xj1 ;��ð�lÞ;��ð�l�1Þ; . . . ;��ð�1ÞÞ:

Then, (10) becomes

�i;t ¼ ð�1Þk
X�ðN�1Þ

xjk¼�ð0Þ

X�ðN�1Þ

xjk�1
¼�ð0Þ
� � �

X�ðN�1Þ

xj1¼�ð0Þ
PCi;tð~xikjk ~xik�1

jk�1
� � � ~xi1j1

Þ:

ð12Þ

Lemma 5. Let �i;t and �i0;t be the coefficients corresponding to the

two terms ~xikjk ~xik�1
jk�1
� � � ~xi1j1

and ~x
i0k
jk

~x
i0k�1
jk�1
� � � ~xi

0
1
j1

, respectively.

Also, let i > i0 and il � i0l for 1 � l � k. Then, �i0;t can be

computed from �i;t by multiplying the PCs of �i;t by each value

of ~x
ik�i0k
jk

~x
ik�1�i0k�1
jk�1

� � � ~xi1�i
0
1

j1
and then adding them together

without revisiting the ZNMODD (MODD), that is

�i0;t ¼ ð�1Þk
X�ðN�1Þ

xjk¼�ð0Þ

X�ðN�1Þ

xjk�1
¼�ð0Þ
� � �

X�ðN�1Þ

xj1¼�ð0Þ
PCi;tð~xikjk ~xik�1

jk�1
� � � ~xi1j1Þ

� ~xik�i
0
k

jk
~x
ik�1�i0k�1
jk�1

� � � ~xi1�i
0
1

j1
:

Proof. This follows from Theorem 5 and the definition of �.tu

Lemma 5 gives us an opportunity to compute coefficients
incrementally without having to visit the ZNMODD each
time, that is, without resorting to Algorithm CompByPath
(Fig. 4) each time.

Let us represent each unassigned variable with 1 and
each assigned variable with 0. This results in a set of binary
vectors of dimension n. Each position in the binary vector
corresponds to whether that particular input variable is
assigned or not. The set of all such binary vectors defines a
lattice over Boolean algebra. The Greatest Lower Bound
(GLB) of this lattice is ½00 � � � 0� (that is, all variables
assigned), whereas the Least Upper Bound (LUB) is
½11 � � � 1� (that is, all variables unassigned). Clearly, an
n-variable function in GFðNÞ will have 2n points in the
lattice. For GFð2Þ, each point in the lattice will correspond
to a single coefficient. However, for GFðNÞ and N > 2, each
point will correspond to a range of coefficients. For each 1 in
the vector corresponding to a point in the lattice, apart from
the GLB, the corresponding variable will have N different
exponents in the term ranging from 1 to N � 1. Assume that
each point in the lattice represents a term having exponents
equal to N � 1 for all the unassigned variables. If the
coefficients of all such terms are known, then the coefficients

JABIR AND PRADHAN: A GRAPH-BSAED UNIFIED TECHNIQUE FOR COMPUTING AND REPRESENTING COEFFICIENTS OVER FINITE ... 1125

Fig. 5. An example ZNMODD.

of all of the remaining terms having unassigned variables
in the same place can be determined by Lemma 5, without
visiting the MODD.

The following example best describes this:

Example 5. Fig. 6 shows an example lattice for a 3-input
function in GFð4Þ. The GLB corresponds to the
coefficient �0;t. The LUB corresponds to the terms
x1;�1

x2;�2
x3;�3

; x1;�1
x2;�2

x2
3;�3
; . . . ; x3

1;�1
x3

2;�2
x3

3;�3
, that is, the

coefficients �21;t; �22;t; . . . ; �64;t. Similarly, the point
001 corresponds to the terms x3;�3

, x2
3;�3

, and x3
3;�3

,
that is, the coefficients �1;t, �2;t, and �3;t. Consider-
ing the point 001, the coefficient for x2

3;�3
can be

computed as �2;t ¼
P�

x3¼0ðx3 þ �ð�3ÞÞfð�ð�1Þ; �ð�2Þ; x3Þ
(Theorem 5) using Algorithm CompByPath (Fig. 4).
Here, PC2;t ¼ ðx3 þ �ð�3ÞÞfð�ð�1Þ; �ð�2Þ; x3Þ. If during
this computation PC2;t is stored for the relevant
values of x3 from the MODD, then the coefficient
of x3;�3

can be computed as

�1;t ¼
X�
x3¼0

PC2;t � ðx3 þ �ð�3ÞÞ2�1

¼
X�
x3¼0

ðx3 þ �ð�3ÞÞ2fð�ð�1Þ; �ð�2Þ; x3Þ

by multiplying the values of x3 þ �ð�3Þ by the stored
values of PC2;t and then adding them together without
having to revisit the MODD (Lemma 5). In this way,
other coefficients with smaller exponents can be deter-
mined from those with larger ones by Lemma 5.

A Fast Algorithm. A fast algorithm for computing
coefficients can be derived based on Lemma 5. Assume
that the exponent of �i;t and that of �i0;t differ only in place s
and also that is � i0s ¼ 1. Then, �i0;t can be computed from
�i;t by multiplying with the PCs of �i;t the values of ~xjs and
adding them together if the values of the PCs are stored
while computing �i;t. Similarly, another coefficient whose
exponent differs from �i0;t in one place only and by one can
be computed, and so on.

An algorithm for computing all of the coefficients can be
formulated, as shown in Fig. 7. It is assumed that the
information about unassigned variables represented by the
point of the lattice under consideration is stored while
executing Line 10 so that this information can be used to
compute the other coefficients in Lines 11-12. One way of
implementing Lines 11-12 is shown in Fig. 8.

Here, each term is represented by a vector, PosCounter, of
exponents and a point on the lattice is stored as another
vector, PosVector. However, PosVector only indicates the
places in the lattice point, which are nonzeros. HtPc is a hash
table, which stores the PCs corresponding to a term. This
algorithm generates all the exponents starting from allN � 1s
to all 1s. However, it also ensures that the exponents are
generated in a decreasing order and differing in only one
place and by one. Those terms which differ in more than one
place are stored in the hash table so that another set of terms
can be considered which differ in only one place and by one. It
can be argued that the elements are stored in the hash table
optimally, that is, it is not possible to store fewer elements on
the hash table and still make the algorithm work. The actual
coefficients are calculated in Line 21 by Lemma 5. Assuming
that the information of each variable, along with the values of
the PCs, is stored in Line 10 in Fig. 7, only one pass over the
PCs is necessary to compute a new coefficient. Initially,
PosCounter hasN � 1 in those places indicated by PosVector,

1126 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Fig. 6. A Boolean lattice for n ¼ 3.

Fig. 7. A fast algorithm for large finite fields.

Fig. 8. Incremental computation of coefficients.

for example, for the lattice point 101 in Fig. 6 in GFð4Þ,
PosVector ¼ ð0; 2Þ, and PosCounter ¼ ð3; 0; 3Þ. As the experi-
mental results will show, this algorithm can drastically
reduce the computation time.

For the purpose of comparison, another version of the
algorithm has been investigated. In this case, instead of
considering all of the exponents in such a way that they
differ in one place and by one, the coefficients are
considered in decreasing order of the exponents. Whenever
the least significant exponent is equal to N � 1, Algorithm
CompByPath is applied to generate it. For the rest of the
cases, that is, for the range N � 2 to 1 of the least significant
exponent, Lemma 5 is applied because the exponents differ
in the least significant digit and by one only. This algorithm
is called GfCoeffHs. However, it is not presented in detail
for brevity as it resembles Algorithm GfCoeffHs1.

Note that techniques such as [39] also use the concept of
Boolean lattice for determining coefficients over small fields
based on evaluation and decomposition of matrices.
However, our technique does not rely on matrices but
computes the coefficients using a different approach.

Increased Efficiency for Large Fields. Ann-input function
in GFð2Þ has 2n lattice points. However, if this same function
is encoded in GFð2mÞ, that is, at the word level with m-bit
word size, then the number of lattice points would come
down to 2dn=me. This is the total number of times Algorithm
CompByPath will be executed to compute all of the
coefficients. Hence, with largem, the number of lattice points
would be small, implying that the total number of times the
Algorithm CompByPath is executed will also be small.
However, as m approaches n, the number of terms whose
exponents differ by one also increases. This implies that
Algorithm CompBy1Diff will also execute more frequently.

4 EXPERIMENTAL RESULTS

The algorithms presented in this paper have been imple-
mented as a part of a tool in C++ (Gnu C++ 3.2.2). This
section presents some experimental results carried out on
an Intel Celeron machine running at 1 GHz and with
512 Mbytes of RAM. The operating system was RedHat
Linux 9 (kernel-2.4.20-30.9). The tool assumes the following
PPs by default for generating the fields: (2, 7), (3, 11), (4, 19),
(5, 37), (6, 67), (7, 137), and (8, 285). Here, the first number m
in the ordered pair ðm; dÞ is the word size and the second
number d is the decimal representation of the PP. It is also
possible to specify any other word sizes and valid PP as
command line options.

Table 1 shows the coefficient count in 0-polarity for small
(upper part: GFð2Þ-GFð8Þ) and large (lower part: GFð16Þ-
GFð64Þ) fields, whereas Table 2 shows the corresponding
execution times in seconds. Table 3 shows the results in
random polarity. Some of the benchmarks are from the
International Workshop on Logic Synthesis (IWLS ’93) set.
Benchmark addm4 is a 4-bit adder/multiplier with a 1-bit
multiplexer, whereas gf4adr, gf4mul, and gf4adrmul are
adder, multiplier, and adder/multiplier in GFð4Þ, respec-
tively. mulx and adrx, for x ¼ 2 . . . 6, are x-bit integer adder
and multipliers, respectively.

In Tables 1 and 3, the columns with the label “ncf, scf,
and ts” represent the total number of nonzero coefficients
(ncf), number of shared coefficients (scf) out of nzcf, and the
total number of times they have been shared (ts).

The coefficients are stored as reduced shared GPDD

(SGPDD) as they are computed. The complexity of the

representations can be reasoned about in terms of the

number of nodes and the amount of memory each node

takes. Details of the complexity issues can be found in [33].

In this implementation, the graphs were stored as adjacency

lists constructed with the help of the vector standard

template class library (STL) of C++. Each node has two

entries, a flag, and a variable, which stores the reference for

deleted nodes. An integer was used to represent the

variable number and a vector of integers (called children)

of dimension 2m was used to represent the 2m children.

Here, children½i� ð0 � i < 2mÞ represents the ith exponent.

For example, for mul6 in GFð16Þ, the SGPDD requires

554 nodes and the SMODD requires 431 nodes or about

ð554þ 16Þ � ð16þ 3Þ ¼ 10; 830 and ð431þ 16Þ � ð16þ 3Þ ¼
8; 493 words of memory, respectively, assuming that each

integer is implemented as a single word. In GFð64Þ, this

figure is 12,797 and 12,462, respectively. Other measures

include “com,” which is the total number of nodes in the

SMODD and SGPDD as a percentage of the total nodes in

the multiway decision trees (MDT), where the total nodes in

the MDTs corresponding to n-input r-output functions over

GFðNÞ is r � Nnþ1�1
N�1 . “com” indicates the degree of node

compression, that is, the lower the value of “com,” the higher

is the node compression. Another measure is “ratio,” which is

the ratio of the number of nonterminal to terminal nodes.
Note that the total number of paths in the reduced SGPDD

is equal to ncf þ scf since the shared paths are not counted
separately while counting the paths in the reduced SGPDD.

To construct the tables, Algorithms CompByPath (CBP),
GfCoeffHs (GFHS), and GfCoeffHs1 (GFHS1) have been
applied for each benchmark to compare their performances.
In Table 2, their performances appear under the columns
CBP, GFHS, and GFHS1. To compare their performances,
each execution has been divided into the time spent on
computing the coefficient from the MODD (c), by the
method of difference incrementally (cbd), amount of time
spent on constructing the SGPDD (spdd), and the total
time (t) (that is, t ¼ cþ cbdþ spdd). Note that the symbol
“cbd” does not appear under the column CBP because this
algorithm relies solely on computing the coefficients from
the graph.

The tables are constructed as follows: First, shared
MODDs are constructed from the benchmark circuits. Then,
the algorithms in Sections 2.1, 3.1, and 3.2 are applied to
compute and store all the coefficients exhaustively.

Performance. Tables 1 and 2 provide complete execution
profile of the algorithms for the benchmarks. For example,
considering benchmark mul5 in GFð32Þ, the total number of
coefficients in 0-polarity is 1,660, out of which 16 of them
are shared 16 times. The number of nodes and paths in the
SMODD and SGPDD are 63 and 1,760, and 59 and 1,676,
respectively. If we use Algorithm CompByPath only, then
about 6.11 secs are required, out of which 6.1 secs are spent
on actual coefficient computation and 0.01 sec is spent on
constructing the reduced SGPDD. However, if we apply
Algorithm GfCoeffHs1, then the total execution time
reduces to just 0.96 sec, that is, about 6.3 times speed up,
and so forth.

JABIR AND PRADHAN: A GRAPH-BSAED UNIFIED TECHNIQUE FOR COMPUTING AND REPRESENTING COEFFICIENTS OVER FINITE ... 1127

The experimental results suggest substantial speed up
(more than an order of magnitude) for many benchmarks.
For example, for benchmarks misex3, misex3c, and so forth,

the speed up is close to two orders of magnitude in GFð4Þ.
The speedup for that in Table 3 in GFð4Þ is more than two
orders of magnitude. The experimental results also show

1128 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

TABLE 1
Number of Coefficients in 0-Polarity

that the time to actually construct the reduced SGPDD is
only a fraction of the total execution time and is at most a
couple of seconds. As anticipated in Section 3.2, for many

benchmarks (for example, misex3, Table 3), the computa-
tion time reduces as we go to a higher order field from a
lower order field.

JABIR AND PRADHAN: A GRAPH-BSAED UNIFIED TECHNIQUE FOR COMPUTING AND REPRESENTING COEFFICIENTS OVER FINITE ... 1129

TABLE 2
Execution Times in 0-Polarity

As compared to Algorithm GfCoeffHs, Algorithm
GfCoeffHs1 executes much faster for the majority of the
benchmarks. Also, as anticipated, Algorithm GfCoeffHs
spends more time on computing from the graph rather than
computing incrementally, which is slowing it down.

Word level circuits are constructed from the bit-level
circuits as follows: Only those circuits which have non-
prime number of inputs are considered in higher order
fields. For those circuits which can be considered in higher
order fields, the inputs are broken into chunks of k adjacent
bit words, where k divides the number of inputs evenly.
Hence, parts of the tables are intentionally left blank owing
to the way grouping of the bits was done to form words.

Multipliers over GFð2mÞ. Given �, � 2 GFð2mÞ, if �

and � are in their polynomial basis as �ðxÞ ¼Pm�1
i¼0 �ix

i and �ðxÞ ¼
Pm�1

i¼0 �ix
i, where �i; �i 2 f0; 1g,

and 0 � i < m, then multiplication over GFð2mÞ can be

defined as wðxÞ ¼ �ðxÞ � �ðxÞmod pðxÞ, where pðxÞ repre-

sents the PP used to generate the fields [4], [24], [36].

Multipliers of this form are very important for error control

codes and certain public key crypto systems [4]. We have

computed the coefficients in 0-polarity for multipliers over

the fields GFð2kÞ, 2 � k � 8, generated with all 51 PPs. The

node count in the SMODD grew exponentially with k and,

for the majority of the cases, was significantly more than an

order of magnitude higher than those in the SGPDD. As an

example, Table 4 shows the results for 6-bit multipliers over

finite fields generated with all six PPs. In GFð2Þ, only one

field is possible, but, in GFð23Þ, there are two PPs possible,

PP ¼ 11 and PP ¼ 13, which yield two fields. If the word

size is six bits, then only two coefficients are required for

each of the six fields over GFð26Þ, which results in an

SGPDD with two nodes and one path, whereas the SMODD

requires 64 nodes and 3,969 paths. As another example, for

the 8-bit multipliers out of the 16 fields, we found minimum

values of (nodes, paths) over GFð2Þ to be (95, 155) and

(95, 152) for the PPs 391 and 451, respectively. This figure is

(2,422, 26,240) for the SMODD over GFð2Þ, that is, well over

an order of magnitude higher. The coefficients as (ncf, scf,

ts) were (64, 28, 91) and (64, 28, 88), respectively. The

maximum (nodes, paths) was observed for the PP 501 to be

(120, 174), the coefficient being (64, 28, 110). Again, for the

7-bit multipliers over the 18 fields, the minimum and

maximum values of (nodes, paths) were (62, 70) and

(89, 131) for the PPs 131 and 191, respectively, over GFð2Þ.
This figure is (1,079, 7,651) for SMODD over GFð2Þ. The

coefficients were (49, 21, 21) and (49, 21, 82), respectively. The

nonzero coefficient count was always m2 over GFð2Þ. Note

that m2 AND gates are required for bit-parallel realization of

these multipliers [4]. Our observation suggests that the

minimum node and path counts for the SGPDD were for

1130 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

TABLE 3
Number of Coefficients in Random Polarity

multipliers over GFð2mÞ with primitive trinomials. This

figure increased for primitive pentanomials and polynomials

with more than five terms and varied according to the

positions of the terms within the polynomials. This observa-

tion is consistent with the hardware complexity of these

multipliers with respect to the number of terms and their

positions in the PPs [4]. This information can be very useful

for graph-based synthesis of multipliers and exponentiation

circuits over GFð2mÞ, such as those in [4] and [8].
Verification and Synthesis. Table 5 shows some of the

benchmark results from Table 1 in the presence of errors/
faults in 0-polarity. The faults have been injected randomly,
which include stuck-at-0/1, extra and missing gates (cross-
points), and extra and missing connections. In this table,
columns with the label “n, p” represent the number of
nodes and paths in the reduced SGPDD, whereas the
columns with the label “sec” represent the total time in
seconds to compute the coefficients and to construct and
minimize the SGPDD. Here, Algorithm GfCoeffHs1 has
been used. Clearly, the number of coefficients and the
number of nodes/paths in the reduced SGPDD are different
from those in Table 1, which indicates errors. The error
polynomials can be computed in Tables 1 and 5 by adding/
subtracting the polynomials in the designated finite field,
which is a simple task once the coefficients and the reduced
graphs are constructed. Note that, although the execution
time is approximately the same as in Table 1, the program
can be terminated early as soon as a mismatch in the
coefficient is detected. This can significantly reduce the
verification time.

Once the coefficients have been computed, the resulting
circuits in the polynomial forms can be synthesized in
hardware, for example, based on techniques such as those
in [19], [24], [37].

5 CONCLUSIONS

This paper presented efficient graph-based techniques for
computing and representing coefficients of canonic poly-
nomials over finite fields. Theoretically, the efficiency of the

proposed algorithm is associated with the number of paths
leading to the nonzero terminal nodes in the graphs.
Although this technique can be efficient for computing a
single coefficient, it can become time consuming for
computing all of the coefficients in large fields. Hence,
efficient incremental algorithms have also been presented
for large finite fields. The algorithms presented in this paper
are implemented as a part of a tool. Experimental results are
provided which suggest several orders of magnitude speed
gain. These results include multipliers over GFð2kÞ,
2 � k � 8, generated with all 51 PPs. The results for the
multipliers seem to suggest that the complexity of the
graphs storing the coefficients is associated with the
number of terms and their positions in the PPs with the
best cases arising for primitive trinomials.

ACKNOWLEDGMENTS

The work of D.K. Pradhan was partially funded by the
Engineering and Physical Science Research Council (EPSRC),
United Kingdom, under Grant No. GR/S40855/01.

REFERENCES

[1] A. Dur and J. Grabmeier, “Applying Coding Theory to Sparse
Interpolation,” SIAM J. Computing, vol. 22, no. 4, pp. 695-703, Aug.
1993.

[2] A. Jabir and D. Pradhan, “MODD: A New Decision Diagram and
Representation for Multiple Output Binary Functions,” Proc.
Design, Automation and Test in Europe (DATE ’04), pp. 1388-1389,
Feb. 2004.

[3] A. Jabir and D. Pradhan, “An Efficient Graph Based Representa-
tion of Circuits and Calculation of Their Coefficients in Finite
Field,” Proc. Int’l Workshop Logic and Synthesis (IWLS ’05), pp. 218-
225, June 2005.

[4] A. Reyhani-Masoleh and M.A. Hasan, “Low Complexity Bit
Parallel Architectures for Polynomial Basis Multiplication over
GFð2mÞ,” IEEE Trans. Computers, vol. 53, no. 8, pp. 945-959, Aug.
2004.

[5] B. Harking and C. Moraga, “Efficient Derivation of Reed-Müller
Expansions in Multiple-Valued Logic Systems,” Proc. 22nd IEEE
Int’l Symp. Multiple-Valued Logic (ISMVL ’92), pp. 436-441, 1992.

[6] R.E. Blahut, Fast Algorithms for Digital Signal Processing. Addison-
Wesley, 1984.

JABIR AND PRADHAN: A GRAPH-BSAED UNIFIED TECHNIQUE FOR COMPUTING AND REPRESENTING COEFFICIENTS OVER FINITE ... 1131

TABLE 4
Six-Bit GF Multipliers

TABLE 5
Error Detection in 0-Polarity

[7] R.E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677-
691, Aug. 1986.

[8] C. Paar, P. Fleischmann, and P. Soria-Rodriquez, “Fast Arithmetic
for Public-Key Algorithms in Galois Fields with Composite
Exponents,” IEEE Trans. Computers, vol. 48, no. 10, pp. 1025-
1034, Oct. 1999.

[9] C.C. Tsai and M. Marek-Sadowska, “Boolean Matching Using
Generalized Reed-Müller Forms,” Proc. Design Automation Conf.
(DAC ’94), pp. 339-344, 1994.

[10] C.H. Wu, C.M. Wu, M.D. Sheih, and Y.T. Hwang, “High-Speed,
Low-Complexity Systolic Design of Novel Iterative Division
Algorithm in GFð2mÞ,” IEEE Trans. Computers, vol. 53, no. 3,
pp. 375-380, Mar. 2004.

[11] D. Jankovic, R. Stankovi�c, and C. Moraga, “Optimization of GFð4Þ
Expressions Using the Extended Dual Polarity Property,” Proc.
Int’l Symp. Multiple Valued Logic (ISMVL ’03), pp. 50-55, May 2003.

[12] D.K. Pradhan and A.M. Patel, “Reed-Müller Like Canonic Forms
for Multivalued Functions,” IEEE Trans. Computers, vol. 24, no. 2,
pp. 206-210, Feb. 1975.

[13] D.K. Pradhan, M. Ciesielski, and S. Askar, “Math. Framework for
Representing Discrete Functions as Word-Level Polynomials,”
Proc. IEEE Int’l High Level Design Validation and Test Workshop
(HLDVT ’03), pp. 135-142, Nov. 2003.

[14] D.M. Miller and R. Drechsler, “On the Construction of Multiple-
Valued Decision Diagrams,” Proc. 32nd Int’l Symp. Multiple Valued
Logic (ISMVL ’02), pp. 245-253, 2002.

[15] D.Y. Grigoriev and M. Karpinski, “Fast Parallel Algorithms for
Sparse Multivariate Polynomials over Finite Fields,” SIAM J.
Computing, vol. 19, no. 6, pp. 1059-1063, Dec. 1990.

[16] E.V. Dubrova and J.C. Muzio, “Generalized Reed-Müller Canoni-
cal Form for a Multiple-Valued Algebra,” Multiple Valued Logic: An
Int’l J., pp. 65-84, 1996.

[17] D.H. Green, “Families of Reed-Müller Canonical Forms,” Int’l J.
Electronics, vol. 70, no. 2, pp. 259-279, 1991.

[18] K. Radecka and Z. Zilic, “Design Verification by Test Vectors and
Arithmetic Transform Universal Test Set,” IEEE Trans. Computers,
vol. 53, no. 5, pp. 628-640, May 2004.

[19] K.M. Dill, K. Ganguly, R.J. Safranek, and M.A. Perkowski, “A
New Zhegalkin Galois Logic,” Proc. Int’l Workshop Applications of
the Reed-Müller Expansion in Circuit Design (RM ’07), pp. 247-257,
Sept. 1997.

[20] M. Ben-Or and P. Tiwari, “A Deterministic Algorithm for Sparse
Multivariate Polynomial Interpolation,” Proc. 20th Symp. Theory of
Computing, pp. 301-309, Apr. 1988.

[21] M. Clausen, A. Dress, J. Grebmeier, and M. Karpinski, “On Zero-
Testing and Interpolation of k-Sparse Polynomials over Finite
Fields,” Theoretical Computer Science, vol. 84, no. 2, pp. 151-164, Jan.
1991.

[22] M.J. Ciesielski, P. Kalla, Z. Zeng, and B. Rouzeyere, “Taylor
Expansion Diagrams: A Compact, Canonical Representation with
Applications to Symbolic Verification,” Proc. Design, Automation
and Test in Europe, Mar. 2002.

[23] D.K. Pradhan, “A Multivalued Switching Algebra Based on Finite
Fields,” Proc. Int’l Symp. Multiple Valued Logic, pp. 95-113, May
1974.

[24] D.K. Pradhan, “A Theory of Galois Switching Functions,” IEEE
Trans. Computers, vol. 27, no. 3, pp. 239-249, Mar. 1978.

[25] S. Purwar, “An Efficient Method of Computing Generalized Reed-
Müller Expansion from Binary Decision Diagram,” IEEE Trans.
Computers, vol. 40, no. 11, pp. 1298-1301, Nov. 1991.

[26] R. Stankovi�c, T. Sasao, and C. Moraga, “Spectral Transform
Decision Diagrams,” Representations of Discrete Functions, T. Sasao
and M. Fujita, eds., pp. 55-92, Kluwer Academic, 1996.

[27] R.E. Bryant and Y.A. Chen, “Verification of Arithmetic Functions
with Binary Moment Diagrams,” Proc. Design Automation Conf.
(DAC ’95), 1995.

[28] R.S. Stankovi�c and R. Dreschler, “Circuit Design from Kronecker
Galois Field Decision Diagrams for Multiple-Valued Functions,”
Proc. Int’l Symp. Multiple Valued Logic (ISMVL ’97), pp. 275-280,
May 1997.

[29] T. Sasao, “AND-EXOR Expressions and Their Optimization,”
Logic Synthesis and Optimization, T. Sasao, ed., pp. 287-312, Kluwer
Academic, 1993.

[30] S. Lin and D.J. Costello, Error Control Coding: Fundamentals and
Applications. Prentice Hall, 1983.

[31] W. Stallings, Cryptography and Network Security. Prentice Hall,
1999.

[32] R. Stankovi�c, “Functional Decision Diagrams for Multiple-Valued
Functions,” Proc. 25th Int’l Symp. Multiple Valued Logic (ISMVL
’95), pp. 284-289, 1995.

[33] R. Stankovi�c, “Unified Views of Decision Diagrams for Repre-
sentation of Discrete Functions,” Multiple Valued Logic, vol. 8,
no. 2, pp. 237-282, 2002.

[34] T. Kam, T. Villa, R.K. Brayton, and A.L. Sangiovanni-Vincentelli,
“Multi-Valued Decision Diagrams: Theory and Applications,”
Multiple Valued Logic, vol. 4, nos. 1-2, pp. 9-62, 1998.

[35] T. Sasao and F. Izuhara, “Exact Minimization of FPRMs Using
Multi-Terminal EXOR TDDs,” Representations of Discrete Functions,
T. Sasao and M. Fujita, eds., pp. 191-210, Kluwer Academic, 1996.

[36] S.B. Wicker, Error Control Systems for Digital Communication and
Storage. Prentice Hall, 1995.

[37] Z. Zilic and Z. Vranesic, “Current Mode CMOS Galois Field
Circuits,” Proc. 23rd Int’l Symp. Multiple Valued Logic (ISMVL ’93),
pp. 245-250, 1993.

[38] Z. Zilic and Z. Vranesic, “A Multiple-Valued Reed-Müller
Transform for Incompletely Specified Functions,” IEEE Trans.
Computers, vol. 44, no. 8, pp. 1012-1020, Aug. 1995.

[39] Z. Zilic and Z.G. Vranesic, “A Deterministic Multivariate
Interpolation Algorithm for Small Finite Fields,” IEEE Trans.
Computers, vol. 51, no. 9, pp. 1100-1105, Sept. 2002.

Abusaleh M. Jabir received the BSc degree
(Honors) in computer science and applied
physics and electronics and the MSc degree
with distinction, respectively, from the University
of Dhaka, Bangladesh, and the DPhil degree in
computing from the Computing Laboratory,
University of Oxford, United Kingdom, in 2001,
where he was with the Hardware Compilation
Group, a subdivision of the renowned Program-
ming Research Group. He is currently a senior

lecturer in the School of Technology at Oxford Brookes University,
United Kingdom. Prior to that, he served as a lecturer in the Department
of Computer Science, University of Dhaka, Bangladesh. While
completing the DPhil degree, he worked with Celoxica Ltd., United
Kingdom, as a senior member of their research staff, prior to starting his
career at Oxford Brookes University. His research interests include
computer architectures, digital systems design, especially for low-power
applications, tests, and verification, efficient hardware design for error
control and reliability, and cryptosystems. He is a member of the IEEE.

Dhiraj K. Pradhan is currently a professor in
computer science at the University of Bristol,
Bristol, United Kingdom. Previously, he was a
professor of electrical and computer engineering
at Oregon State University, Corvallis, and held
the COE endowed chair professorship in com-
puter science at Texas A&M University, College
Station, where he also served as the founder of
the Laboratory of Computer Systems, and he
held a professorship at the University of Massa-

chusetts, Amherst, where he also served as the coordinator of computer
engineering. He is also the inventor of two patents, one of which was
licensed to Mentor Graphics and Motorola. The recently announced
verification tool, Formal Pro, by Mentor Graphics is based on his patent.
He has contributed to VLSI computer-aided design and test, as well as
to fault-tolerant computing, computer architecture, and parallel proces-
sing research, with major publications in journals and conferences,
spanning more than 30 years. He is a fellow of the IEEE, the ACM, and
the Japan Society of Promotion of Science. He is also the recipient of a
Humboldt Prize, Germany. In 1997, he was also awarded the Fulbright-
Flad Chair in Computer Science. He received the Best Paper Awards
honors including the 1996 IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Ssystem Best Paper Award, with W.
Kunz, on “Recursive Learning: A New Implication Technique for Efficient
Solutions to CAD Problems Test, Verification and Optimization.” He
continues to serve as an editor in prestigious journals, including IEEE
transactions. He has also served as the general chair and program chair
for various major conferences.

1132 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

