
Solution and Optimization of Systems of
Pseudo-Boolean Constraints
Fadi A. Aloul, Member, IEEE, Arathi Ramani, Member, IEEE,

Karem A. Sakallah, Fellow, IEEE, and Igor L. Markov, Senior Member, IEEE

Abstract—Optimized solvers for the Boolean Satisfiability (SAT) problem have many applications in areas such as hardware and

software verification, FPGA routing, planning, and so forth. Further uses are complicated by the need to express “counting constraints”

in conjunctive normal form (CNF). Expressing such constraints by pure CNF leads to more complex SAT instances. Alternatively,

those constraints can be handled by Integer Linear Programming (ILP), but generic ILP solvers may ignore the Boolean nature of

0-1 variables. Therefore, specialized 0-1 ILP solvers extend SAT solvers to handle these so-called “pseudo-Boolean” (PB) constraints.

This work provides an update on the on-going competition between generic ILP techniques and specialized 0-1 ILP techniques. To

make a fair comparison, we generalize recent ideas for fast SAT-solving to more general 0-1 ILP problems that may include counting

constraints and optimization. This generalization is embodied in our PB constraint solver and optimizer PBS, which is compared with

state-of-the-art CNF and generic ILP solvers. Another aspect of our comparison is the evaluation on 0-1 ILP benchmarks that originate

in Electronic Design Automation (EDA) but that cannot be directly solved by an SAT solver. Specifically, we solve instances of the

Max-SAT and Max-ONEs optimization problems, which seek to maximize the number of satisfied clauses and the “true” values over all

satisfying assignments, respectively. Those problems have straightforward applications to SAT-based routing and are additionally

important due to reductions from Max-Cut, Max-Clique, and Min Vertex Cover. Our experimental results show that specialized

0-1 techniques implemented in PBS tend to outperform generic ILP techniques on Boolean optimization problems, as well as on

general EDA SAT problems.

Index Terms—Boolean satisfiability (SAT), integer linear programming (ILP), backtrack search, conjunctive normal form (CNF),

pseudo-Boolean (PB), Max-SAT, Max-ONE, global routing.

Ç

1 INTRODUCTION

RECENT algorithmic advances in backtrack Boolean
Satisfiability (SAT), along with highly efficient solver

implementations, have enabled the successful deployment
of SAT technology in a wide range of application domains
and, particularly, in electronic design automation (EDA).
Modern SAT solvers [5], [13], [21], [23], [31] have either
displaced or have become essential companions to binary
decision diagram (BDD) packages as the Boolean reasoning
engines in such applications as formal hardware verifica-
tion [26], routing of field-programmable gate arrays [24],
and automatic test-pattern generation [18]. Their ability to
readily solve SAT instances with tens of thousands of
variables and millions of conjunctive normal form (CNF)
clauses in a matter of seconds or minutes—an impressive
feat that would have been impossible to even contemplate
just a few years ago—has also encouraged their adaptation

to solving some Boolean optimization problems that were
traditionally handled as instances of Integer Linear Pro-
gramming (ILP) [3], [20], [28]. These so-called 0-1 ILP
problems call for the minimization or maximization of a
linear objective function cTx subject to a set of m linear
constraints1 Ax � b, where b; c 2 Zn, A 2 Zm � Zn, and
x 2 f0; 1gn. These constraints are commonly referred to as
pseudo-Boolean (PB) inequalities [3] (to distinguish them
from those that admit unrestricted integer variables) and
represent a natural generalization of the CNF constraints
typically handled by SAT solvers. For example, the CNF
clause ðx1 _ x2 _ . . . _ xkÞ is equivalent to the PB constraint
x1 þ x2 þ . . .þ xk � 1. PB constraints are more expressive;
however, a single PB constraint may, in some cases,
correspond to an exponential number of CNF clauses.

Common examples of 0-1 ILPs include Min-COVER [12],

Max-SAT, and Max-ONEs [8]. In Min-COVER, we have a

collection of subsets of a given set and seek to find a cover of

the set using the fewest number of subsets. Logic minimiza-

tion of Boolean functions, as well as state minimization of

finite-state machines are two important instances of this

problem. In the Max-SAT problem, the goal is to find a

variable assignment that maximizes the number of satisfied

CNF clauses in an unsatisfiable SAT instance. Finally, in Max-

ONEs, we seek a satisfying variable assignment that max-

imizes the number of variables set to 1. Max-SAT has direct

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007 1

. F.A. Aloul is with the Computer Engineering Department, American
University of Sharjah, PO Box 26666, Sharjah, UAE.
E-mail: faloul@aus.edu

. A. Ramani is with Microsoft Corp., One Microsoft Way, Redmond, WA
98052. E-mail: arathira@windows.microsoft.com.

. K.A. Sakallah and I.L. Markov are with the Department of Electrical
Engineering and Computer Science, University of Michigan, 2260
Hayward St., Ann Arbor, MI 48109-2121.
E-mail: {karem, imarkov}@umich.edu.

Manuscript received 23 June 2004; revised 22 May 2005; accepted 22 Mar.
2007; published online 7 May 2007.
Recommended for acceptance by F. Lombardi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0216-0604.
Digital Object Identifier no. 10.1109/TC.2007.1075.

1. Greater than or equal to and equality constraints are
easily accommodated by the equivalences Ax � b, �Ax � �b
and ðAx ¼ bÞ , ðAx � bÞ ^ ðAx � bÞ.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

application in routing and routability estimation [29] and
both Max-SAT and Max-ONEs are important due to
reductions from Max-Cut, Max-Clique, and Min Vertex
Cover.

Adapting a SAT solver for optimization purposes poses
two questions: 1) What should be done with the objective
function? and 2) How should the PB constraints be
handled? An obvious answer to the first question is to use
some form of branch-and-bound around the SAT engine
and to prune the search space with best estimates of the
objective function value. Alternatively, the objective func-
tion can be treated as an auxiliary PB constraint with an
adjustable right-hand side, or goal. Starting with an easy-to-
satisfy goal, a sequence of SAT instances, each with a
successively tighter goal, is then constructed and solved.
The process continues until an unsatisfiable instance is
encountered, indicating that we have converged on the
optimal value of the objective function, namely, the goal
reached in the last satisfiable instance.

There are also two choices for dealing with the PB
constraints: Each PB constraint can be converted into a set
of equivalent CNF clauses or the SAT engine is modified to
handle PB constraints directly. Conversion to CNF has the
advantage of using the SAT solver as a black box but, as
mentioned above, suffers from a potential exponential
explosion in problem size. This is particularly true of
“counting” constraints that impose upper or a lower
bounds on the number of certain objects, for example,
capacity constraints in routing applications. The increase in
size can be reduced from exponential to linear by introdu-
cing auxiliary variables that, effectively, decompose a PB
constraint into a “structure” of smaller constraints.

Given these various choices, the main question we
address in this paper is whether and in what circumstances
the currently best generic ILP techniques can compete with
specialized SAT-powered 0-1 ILP techniques. Since both
generic ILP solvers and specialized 0-1 ILP solvers have
consistently improved since Barth’s work [3] on the subject,
we must ensure up-to-date comparisons. For example,
ILOG [15] advertises great ILP performance improvements
in CPLEX 7.* over 6.*. On the other hand, the Chaff SAT
solver [23], viewed as a narrowly specialized 0-1 ILP solver,
outperforms earlier competitors by an order of magnitude
on many benchmarks. Therefore, in order to convincingly
compare the state of the art in generic ILP to that in
specialized 0-1 ILP, we need to ensure that the latest
techniques are used. In particular, we generalize algorithms
used in Chaff to solve 0-1 ILP problems that may include
counting constraints and optimization. Our new specialized
0-1 ILP solver, PBS, handles CNF constraints and
PB inequalities. Unlike previously proposed stochastic local
search solvers [27], this solver is complete and is based on a
backtrack search algorithm. We believe that our proposed
algorithms to handle PB constraints can be added to any
backtrack SAT solver.

The remainder of the paper is organized into five
sections: In Section 2, we briefly review the latest enhance-
ments in backtrack CNF-SAT solvers. Section 3 introduces
PB constraints and describes how they might be incorpo-
rated into a SAT solving scenario. The new PBS solver is

described in Section 4 and its performance against best-of-
class ILP, specialized 0-1 ILP, and CNF-SAT solvers is
analyzed in Section 5. We conclude in Section 6 with a few
general observations and suggestions for further work.

2 ANATOMY OF A MODERN CNF-SAT SOLVER

The satisfiability problem involves finding an assignment to
a set of binary variables that satisfies a given set of
constraints. In general, these constraints are expressed in
CNF or, as it is commonly known as, a product-of-sum
form. A CNF formula ’ on n binary variables, x1; . . . ; xn,
consists of the conjunction (AND) of m clauses, !1; . . . ; !m,
each of which consists of the disjunction (OR) of k literals. A
literal l is an occurrence of a Boolean variable or its
complement. We will refer to a CNF formula as a clause
database.

A variable x is said to be assigned when its logical value is
set to 0 or 1 and unassigned otherwise. A literal l is a true
(false) literal if it evaluates to 1 (0) under the current
assignment to its associated variable and a free literal if its
associated variable is unassigned. A clause is said to be
satisfied if at least one of its literals is true, unsatisfied if all of
its literals are set to false, unit if all but a single literal are set
to false, and unresolved otherwise. A formula is said to be
satisfied if all of its clauses are satisfied and unsatisfied if at
least one of its clauses is unsatisfied.

As an example, the CNF instance fða; b; cÞ ¼ ða _ bÞð�b _ cÞ
consists of three variables, two clauses, and four literals.
The assignment fa ¼ 0; b ¼ 1; c ¼ 0g leads to a conflict,
whereas the assignment fa ¼ 0; b ¼ 1; c ¼ 1g satisfies f .

Most modern SAT solvers [13], [21], [23], [31] are based
on the original Davis-Putnam-Logemann-Loveland (DPLL)
backtrack search algorithm [9]. The algorithm performs a
search process that traverses the space of 2n variable
assignments until a satisfying assignment is found (the
formula is satisfiable) or all combinations have been
exhausted (the formula is unsatisfiable). It maintains a
decision tree to keep track of variable assignments and can be
viewed as consisting of three main engines: the Decision,
Deduction, and Diagnosis engines.

Originally, all variables are unassigned. The algorithm
begins by choosing a decision assignment to an unassigned
variable. After each decision, the deduction engine deter-
mines the implications of the assignment on other variables.
This is obtained by forcing the assignment of the variable
representing an unassigned literal in an unresolved clause,
for which all other literals are assigned to 0, to satisfy the
clause. This is referred to as the unit clause rule and the
repeated application of the unit clause rule over the given
clause database is known as Boolean constraint propagation
(BCP). If no conflict is detected, the algorithm makes a new
decision on a new unassigned variable. Otherwise, the
diagnosis engine backtracks by unassigning one or more
recently assigned variables and the search continues in
another area of the search space.

The power of modern CNF-SAT solvers can be attributed
to a few key algorithmic advances and implementation
optimizations to the DPLL backtrack procedure, which we
summarize below.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

2.1 Conflict Diagnosis and Clause Recording

A major advance in backtrack CNF-SAT solvers was the

introduction of conflict diagnosis [21] and its tight integra-

tion with BCP, nonchronological backtracking, and clause

recording. Conflict diagnosis refers to analysis of the

implication chains, initiated by elective variables assign-

ments, which cause one or more clauses to become

unsatisfied. Such an analysis can identify a small subset of

variables whose current assignments can be blamed for the

conflict. In addition, these assignments can be turned into a

conflict-induced clause that, when added to the clause

database, prevents the future occurrence of the same

conflict and can be viewed as a form of on-demand learning.

Finally, recognizing that the current conflict is caused by

variable assignments from earlier levels in the decision tree

enables nonchronological backtracking, potentially pruning

large portions of the search space.
Conflict diagnosis is implemented in most modern

backtrack SAT solvers and its effectiveness in pruning the

search space has been amply demonstrated empirically. A

number of variations have also been studied, including

alternative ways of generating conflict clauses and schemes

that learn several clauses at each conflict [21], [23]. Recent

experimental evidence [32], however, has shown that

creating a single conflict clause—based on the unique

implication point closest to the conflict—outperforms other

schemes on hard instances.
Notwithstanding its effectiveness in pruning the search

space, conflict-based learning runs the risk of exponentially

increasing the size of the clause database. This is typically

avoided by either 1) recording only those conflict-induced

clauses with k or fewer literals or 2) deleting conflict-

induced clauses after k or more of their literals become

unassigned. This clause addition/deletion threshold k is

typically set to a value between 100 and 200, indicating that

fairly large clauses are created and kept.

2.2 Random Restarts and Backtracking

Besides conflict-based learning, recent studies have shown

that using random restarts can be very effective in solving

hard SAT instances [2], [23]. An SAT solver may often get

stuck in a “bad” region of the search space because of the

sequence of decision assignments it had made. The restart

process helps to extricate the solver from such regions by

periodically resetting all decision and implication assign-

ments and randomly selecting a new sequence of decisions,

thus insuring that different subtrees are explored each time.

Additionally, all conflict-learned clauses in the various

probes of the search space are kept and help boost the

effectiveness of subsequent restarts.
Recently, Lynce et al. [19] proposed and empirically

evaluated combining random restarts with random back-

tracking. In this scheme, the diagnosis engine periodically

backtracks nonchronologically to a decision level invol-

ving any literal in the conflict-induced clause. The

completeness of the search is preserved by monotonically

increasing the clause addition/deletion threshold between

random backtracks.

2.3 Improved BCP

On the implementation side, it was observed that a
significant fraction of an SAT solver’s runtime is spent in
the BCP procedure [23]. In a conventional implementation
of BCP, an assignment to a variable triggers a traversal of all
clauses that contain literals of that variable to check whether
they have become unit or are in conflict. In other words, an
implication step requires time bounded by the number of
occurrences of literals of the assigned variable. This over-
head can be significantly reduced by adopting a form of
“lazy” evaluation that avoids unnecessary traversals of the
clause database. Specifically, rather than keep track of all
literals in each clause, the enhanced procedure picks and
updates only two unassigned literals per clause (the
“watched” literals) and yields a very efficient mechanism
for detecting unit clauses [23], [33]. In an SAT instance
consisting of n k-literal clauses, this enhancement reduces
BCP overhead from kn to 2n, which is substantial for typical
instances with k� 2.

2.4 Decision Strategy

Numerous decision (or branching) heuristics have been
proposed over the years, with no single heuristic emerging
as a clear winner in most cases. One that has been found to
be particularly effective in a variety of problems is the
Variable State Independent Decaying Sum (VSIDS) heuristic
introduced in [23]. The heuristic maintains two counters for
every variable that are incremented if a positive (respec-
tively, negative) literal of that variable is identified in a new
conflict-induced clause. The variable with the highest
counter is selected for the next decision. Counters are also
periodically divided by a constant to emphasize variables
identified in recent conflicts.

3 PROCESSING OF PB CONSTRAINTS

A PB constraint is in normal form if it is expressed as

a1 _x1 þ a2 _x2 þ . . .þ an _xn � b; ð1Þ

where ai, b 2 Zþ, and _xi denotes either xi or �xi. We will say
that _xi is a true literal if it evaluates to 1 under the current
assignment to its associated variable. An arbitrary PB
constraint can be converted to normal form by noting that
�xi ¼ 1� xi. For example, �3x1 þ 2x2 � x3 � 1 is first trans-
formed to the “� ” inequality 3x1 � 2x2 þ x3 � 1, which,
upon substituting x2 ¼ 1� �x2 and rearranging the terms,
yields 3x1 þ 2�x2 þ x3 � 3.

The two choices for handling PB constraints in an SAT
solver are 1) to convert them, in a preprocessing step, to
equivalent CNF constraints and 2) to process them directly
within the SAT solver.

3.1 PB-to-CNF Conversion

The PB constraint in (1) corresponds to a threshold Boolean
function [16]. Such functions are unate (monotone) in each
of their variables and have unique minimal CNF represen-
tations. Minimality here refers to the smallest CNF formula,
among all functionally equivalent CNF formulas, namely,
the formula that has the fewest number of clauses provided
that there is no other such formula with the same number of
clauses but with fewer literals. This minimal formula can be

ALOUL ET AL.: SOLUTION AND OPTIMIZATION OF SYSTEMS OF PSEUDO-BOOLEAN CONSTRAINTS 3

derived by recursive application of Boole’s expansion
theorem [6, p. 36]. Let ’ðx1; x2; . . . ; xnÞ denote the function
of the PB constraint in (1). Expanding around xi, we get

’ ¼ ð�xi _ ’xiÞðxi _ ’�xiÞ; ð2Þ

where ’xi and ’�xi are, respectively, the positive and
negative cofactors of ’ with respect to xi. Noting further
that ’ is either negative or positive unate in xi allows (2) to
be simplified to

’ ¼ ð’xiÞðxi _ ’�xiÞ if _xi ¼ �xi
ð’�xiÞð�xi _ ’xiÞ if _xi ¼ xi:

�
ð3Þ

Repeated application of (3), distributing _ over ^, and
making obvious simplifications yields the desired CNF
formula. For example, conversion of 3x1 þ 2�x2 þ x3 � 3
proceeds as follows:

’ ¼ ð3x1 þ 2�x2 þ x3 � 3Þ
¼ ð2�x2 þ x3 � 3Þð�x1 _ ð2�x2 þ x3 � 0ÞÞ
¼ ð�x1 _ ½ð�x3Þðx2 _ 0Þ�Þ
¼ ð�x1 _ ½ð�x3Þðx2Þ�Þ
¼ ð�x1 _ �x3Þð�x1 _ x2Þ:

As mentioned earlier, however, the minimal CNF

representation of a PB constraint may have an exponential

number of clauses. Specifically, a counting constraint that

chooses at most k out of n objects yields n
kþ1

� �
ðkþ 1Þ-literal

clauses [30]. For example, choosing at most 15 out of

30 objects yields 150 million 16-literal clauses and clearly

demonstrates the infeasibility of this type of transformation.
The associativity of addition suggests an alternative

transformation that yields a CNF formula whose size is
linear in n. This transformation can be obtained by
introducing auxiliary “partial sum” variables that decom-
pose the monolithic PB constraint into a set of smaller
constraints. Letting si!i � ai _xi and si!j �

P
i�k�j s

k!k, we
can rewrite (1) as follows:

ðððs1!1 þ s2!2Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
s1!2

þs3!3Þ

|ffl{zffl}
s1!3

þ . . .þ sn!nÞ

|ffl{zffl}
s1!n

� b: ð4Þ

Schematically, (4) can be viewed as a multilevel prefix
computation [17] “circuit” (see Fig. 1) whose modules
represent AND gates, adders, and an output comparator.

From this construction, it should be evident that the truth
assignments that satisfy (1) are precisely those assignments
that set the circuit output z to 1. Specifically

’ ¼ 9z; s1!1; . . . ; sn!n; s1!2; . . . ; s1!nðz ^ Þ; ð5Þ

where is the circuit consistency function:

 ¼ ðz$ s1!n � bÞ^\
2�i�n

ðs1!i $ s1!i�1 þ si!iÞ^
\

1�i�n
ðsi!i $ ai _xiÞ:

ð6Þ

In other words, the satisfiability of the formula ðz ^ Þ is
equivalent to the satisfiability of the PB formula ’.

The final step in this transformation is the translation of
each conjunct in (6) to a set of CNF clauses. This is
accomplished by expressing each multibit coefficient and
variable in terms of a suitable number of binary encoding
variables and invoking the module function (AND, add,
and compare) to relate those variables.

There are obvious simplifications in this construction
that can eliminate redundant variables and clauses (for
example, some of the equivalences in (6) can be replaced by
one-way implications). Furthermore, unlike the first trans-
formation in (3), this construction is not unique: Associa-
tivity of addition allows the terms in (4) to be grouped in
other ways that may reduce the number of CNF variables
and yield fewer clauses. Finally, we should point out that
this construction is very similar to those described in [29]
and [30].

Note that some constraints in specific applications can be
expressed efficiently by CNF. Basically, if a constraint can
be expressed efficiently in terms of a Boolean circuit, then it
can be expressed by CNF with only a linear-space overhead
since circuit-SAT can be easily converted into CNF-SAT. On
the other hand, if a constraint can be expressed by CNF
efficiently, then it can be expressed by a Boolean circuit
efficiently since a CNF can be viewed as a Boolean circuit.

3.2 PB-SAT Algorithms

Even when conversion to CNF is feasible, it might be
advantageous to process PB constraints directly within an
SAT solver. The required bookkeeping is fairly inexpensive,
consisting mainly of updating the value of a PB constraint’s
left-hand side ðLHSÞ to reflect the current truth assignment.
Initially, set to 0, LHS is updated as follows:

. If _xi ¼ xi, increment LHS by ai when xi is set to 1
and decrement it by ai, when xi is unassigned from
1; otherwise, leave LHS unchanged.

. If _xi ¼ �xi, increment LHS by ai when xi is set to 0
and decrement it by ai when xi is unassigned from 0;
otherwise, leave LHS unchanged.

Implications. Implications are triggered by a PB con-
straint for each literal _xi whose coefficient ai satisfies
ai > b� LHS. Note that, unlike CNF clauses, a PB con-
straint can cause the simultaneous implication of several
variables. For example, after setting x1 to 1 in the constraint
3x1 þ 2�x2 þ x3 � 3, x2 and x3 are immediately implied to 1

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

Fig. 1. Circuit representation of (4). Single and multibit signals are

denoted by thin and bold lines, respectively.

and 0, respectively. In general, implications follow the
template: \

_xi2True
_xi !

\
_xi2Large

�_xi;

where True is the set of true literals and Large is the set of
literals whose coefficients exceed ðb� LHSÞ.

Conflicts. Conflicts are indicated when the current
variable assignment causes LHS to exceed b. In this case,
we need to choose a subset C of the true literals such thatX

_xi2C
ai > b

and return it as a conflicting assignment to the diagnosis
engine. Ideally, it is desirable to find the smallest such subset,
but this is an instance of the KNAPSACK NP-complete
problem [12]. Alternatively, a near-minimal subset can be
quickly found using the classic heuristic that packs starting
from the largest coefficient toward the smallest.

4 THE PSEUDO-BOOLEAN SOLVER (PBS)

PBS is a new SAT solver/optimizer written in C++.2 PBS
incorporates all of the modern CNF-SAT solver features
described in Section 2. In addition, it handles PB constraints
in both optimization and decision (that is, SAT) applica-
tions. It uses the “watched literal” data structure from Chaff
[23] for CNF constraints and a structure similar to that in
SATIRE [28] for PB constraints. Specifically, every PB
constraint is represented internally by a record with the
following fields:

. A list of the coefficients ai and their respective
literals _xi. For efficiency, this list is sorted in the
order of increasing coefficient values.

. The right-hand side b.

. LHS, which stores the value of the left-hand side
under the current variable assignment.

In addition, PBS maintains, for each variable, a list of PB
constraints in which the variable occurs positively and
another in which it occurs negatively. These lists are used to
facilitate the update (according to the rules described in
Section 3.2) of the LHS of each relevant PB constraint
whenever a variable is assigned or unassigned.

In optimization mode, PBS converts the objective
function to a PB constraint with a sliding right-hand-side
goal (see Section 1) and proceeds to solve a sequence of SAT
instances that differ only in the value of that goal. To
illustrate, assume a maximization scenario, denote the
sequence of SAT instances by I0; I1; I2; . . . , and let ĝi be
the goal for the ith instance. If the instance is satisfiable,
substituting its solution in the objective function constraint
should yield a new goal value, gi � ĝi. The goal, for instance
ðIi þ 1Þ, is now set to ðgi þ 1Þ and the process is repeated.
The goal reached in the last satisfiable instance is returned
by PBS as the optimal value of the objective function. We
refer to this approach as the linear search scheme.

5 EXPERIMENTAL RESULTS

In this section, we report the results of an empirical

evaluation of PBS and several other leading-edge solvers

on a set of Boolean satisfiability and Boolean optimization

benchmarks.

5.1 Benchmarks

We evaluated the various algorithms on three sets of

benchmarks. For SAT, we used a set of difficult global

routing instances that involve both CNF and PB counting

constraints. For Boolean optimization, we chose Max-ONEs

and Max-SAT instances from a variety of CNF families.
Global Routing. A set of difficult satisfiable global

routing benchmarks was introduced in [1]. Each instance in

this family entails the routing of a random set of n two-pin

connections (nets) over a two-dimensional grid of cells (see

Fig. 2). An r-by-c grid has m ¼ rðc� 1Þ þ cðr� 1Þ intercell

routing channels. The maximum number of routes that can

pass through any channel is referred to as the channel

capacity and denoted by C. For each net, a set of m Boolean

variables (one per channel) is used to indicate how the net is

routed through the grid. In addition, for each channel, a set

of C variables per net is introduced to indicate how the net

is routed through the channel (that is, the net’s “track”

assignment in the channel). Thus, the CNF formulation of

these instances requires a total of ð1þ CÞmn variables and

consists of two sets of constraints: route definition con-

straints to express the possible routes that each net can take

and capacity constraints to insure that no more than C nets

are routed in each channel. These two sets are similar,

respectively, to the connectivity and exclusivity constraints

for SAT-based FPGA routing [24].
A quick calculation shows that the number of CNF

clauses needed to express channel capacity constraints in

the above formulation is ðn2C þ nC2Þm. Using PB model-

ing, this can be reduced to just m PB inequalities (one per

channel) of the form:

ch1 þ ch2 þ . . .þ chn � C;

where chi denotes the variable that associates net i with

channel ch. The PB formulation also eliminates the need for

the extra track assignment variables, bringing down the

total number of variables to just mn.

ALOUL ET AL.: SOLUTION AND OPTIMIZATION OF SYSTEMS OF PSEUDO-BOOLEAN CONSTRAINTS 5

2. The PBS version used in this paper is v3.0, which is based on the SAT
engine in the minimal SAT solver MiniSAT [22]. The original version of PBS
v2.0 was based on a slower chaff-like in-house-implemented SAT engine.

Fig. 2. A 3� 3 global routing grid with 12 intercell routing channels.
Horizontal and vertical channels are labeled, respectively, with x and y
net-to-channel assignment variables. For example, the highlighted 2-pin
connection from S in cell (1, 1) to E in cell (3, 2), is specified by xi1;1 ¼
yi1;2 ¼ yi2;2 ¼ 1 and 0 for the nine remaining channel variables.

In the experimental results reported below, the global
routing instances are modeled using CNF clauses for route
definition and PB inequalities for channel capacity. In
addition, we also report on a CNF-only formulation derived
by converting the PB capacity constraints using the linear
transformation described in Section 3.1.

Max-ONEs. Max-ONEs instances are easily constructed
by adding a single PB constraint x1 þ x2 þ . . .þ xn � b to
any satisfiable CNF instance, where the goal b is mono-
tonically increased until the instance becomes unsatisfiable.
We constructed such instances for representative members
from the DIMACS [10], Bejing [14], quasi-group [31], and
sat-planning [14] benchmark families.

Max-SAT. Given an unsatisfiable CNF-SAT instance with
m clauses, C1; C2; . . . ; Cm, a Max-SAT instance is constructed
by introducing m auxiliary variables y1; y2; . . . ; ym, m addi-
tional predicates yi $ Ci, and a single objective function PB
constraint y1 þ y2 þ . . .þ ym � b. Each added predicate yi $
Ci introduces jCij binary clauses and a single
ð1þ jCijÞ-literal clause, where jCij is the number of literals
in clause Ci. We constructed Max-SAT instances for
representative unsatisfiable DIMACS and FPGA switch-
box routing (chnl) [1] benchmarks.

5.2 Experimental Setup

We conducted several experiments to compare the perfor-
mance of the new PBS solver (v3.0) against the following:

. the 0-1 ILP solvers OPBDP [4] and SATIRE [28],

. the generic commercial ILP solver CPLEX 7.0 [15],
and

. the CNF-SAT solver zChaff [23].

Chaff was used only in the global routing SAT comparisons.
All experiments were conducted on a Sun Blade 1000
workstation running SunOS 5.8 and equipped with
512 Mbytes of RAM. We used the default settings for
zChaff, OPBDP, and CPLEX and the DLCS decision
heuristic for SATIRE. PBS was configured to use the default
features in zChaff (that is, all of the features described in
Section 2 except for clause deletion, random restarts, and
backtracking). A time-out limit of 1,000 seconds was used
for each run.

5.3 Results for Global Routing Benchmarks

Table 1 lists the results of solving satisfiable and unsatisfi-
able global routing instances. The ith routing instance on an
x� x grid with channel capacity y is named grout-x:y�i.
For each instance, the table indicates the number of nets, the
instance size (number of variables jVj, CNF clauses jCj, and
PB constraints jPBj) for the hybrid CNF+PB, as well as for
the pure CNF formulations, the runtimes of PBS, SATIRE,
OPBDP, CPLEX, and zChaff, and the ratio of PBS’s runtime
to that of the other solvers. The pure CNF formulation was
tested only on zChaff.

Clearly, the size of instances, in terms of both variables and
clauses, increases significantly for the CNF-only formulation.
Pure CNF formulations, thus, are likely to run out of memory
for more realistic routing grid sizes, leaving the hybrid
CNF+PB formulations as the only viable alternative for this
type of SAT problem. Still, it is remarkable that, even when

problem size increases fourfold to fivefold, zChaff manages,
in some cases, to outperform PBS.

Compared with the two other 0-1 ILP solvers, PBS comes
out ahead: It solves all 15 instances, whereas SATIRE solves
only 10 and OPBDP, just 5. This can be easily attributed to
PBS’s incorporation of the latest algorithmic and imple-
mentation features of modern CNF-SAT solvers. Compared
with CPLEX, on the other hand, PBS does quite poorly;
CPLEX beats PBS on most instances, in some cases with a
substantial margin.

Finally, we compare PBS with the older version of PBS
(v2.0). Clearly, the underlying SAT solver can have a great
impact on the efficiency of the 0-1 ILP solver.

5.4 Results for Max-ONEs Benchmarks

The results of the Max-ONEs experiment are listed in Table 2.
For each tested instance, the table indicates the instance size
(number of variables jVj and clauses jCj), the maximum (that
is, optimal) number of 1s in the solution, the runtimes of each
of the solvers, and the PBS’s speedup ratio. In this set of
experiments, PBS outperforms all other solvers, including
CPLEX. The only exceptions are the bw aand bw b instances in
which SATIRE beats PBS by a minor margin.

5.5 Results for Max-SAT Benchmarks

The results of the Max-SAT experiment are shown in
Table 3. For each unsatisfiable instance, the table lists the
instance name and size (number of variables jVj and clauses
jCj), the size of the corresponding companion satisfiable
instance (that is, the satisfiable instance created by adding
auxiliary variables and clauses as described earlier), and the
minimum (that is, optimal) number of original unsatisfiable
clauses (#UnSAT). The remaining columns show the
runtimes of the various solvers and PBS’s speedup ratio.

In order to speed up the search process for all solvers,
WalkSAT [25] was executed for 10 tries as a preprocessing
step (with negligible runtime) and the number of unsatisfied
clauses it found was used as the initial solution for the
optimization runs. It turned out that WalkSAT was able to
identify the optimal solution for all tested instances. Thus,
only a single run was required for each solver to prove the
optimality of that solution. Again, PBS outperformed all other
solvers in all cases, except for the pigeon hole instances, which
have similar characteristics to the grout instances.

5.6 Summary

The above results suggest that combining PB modeling with
state-of-the-art SAT algorithms gives PBS a definite perfor-
mance advantage against other solvers in both optimization
and SAT applications. The only anomaly is the unexpectedly
good showing of CPLEX on the global routing SAT bench-
marks. Unfortunately, lacking knowledge of CPLEX’s algo-
rithms, it is difficult to explain why it performs so well on
these benchmarks. To better understand its behavior, we
tested it on a variety of easy SAT instances from the DIMACS
set [10]. The results of those tests are reported in Table 4. In
this case, PBS outperforms CPLEX with an even higher
margin than that of CPLEX over PBS in the global routing
experiments. The only exception is the hole7 instance, which
has similar characteristics to the grout instances. This leads us
to conjecture that CPLEX incorporates algorithms that

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

recognize and simplify certain structured problems (such as
the pigeon hole and global routing instances), but not
general structured EDA problems (such as the bridging
fault bf0432-007 and stuck-at-fault ssa7552-038 instances).

In summary, generic ILP solvers, such as CPLEX, seem to
be inadequate for solving Boolean optimization problems
and the majority of Boolean satisfiability problems. Simi-
larly, previous specialized 0-1 ILP solvers such as SATIRE
and OPBDP perform poorly on almost all problems due to
the limited SAT enhancements implemented in these
solvers. The latest specialized 0-1 ILP solver, PBS, outper-
forms all of the presented solvers, except for some specific
structured problems in which the commercial CPLEX solver
wins. Furthermore, expressing constraints in CNF and PB

allows for a significant reduction in memory and sub-
stantial speedup. It also allows for optimization problems to
be efficiently solved using SAT-based techniques.

We should note that the search used in our experiments
is linear, that is, it searches for the optimal solution in
increments/decrements of 1. It is a possibility that a faster
search scheme such as binary search could reduce this
overhead. However, our experiments with binary search on
PBS indicate that it actually performs worse than linear
search. One reason for this may be that the starting values of
objective function picked for the Max-ONEs experiments
are very close to the actual optimal value, so the ordinary
benefit of binary search is lost. Additionally, when using the
linear search scheme, all conflict-induced clauses are

ALOUL ET AL.: SOLUTION AND OPTIMIZATION OF SYSTEMS OF PSEUDO-BOOLEAN CONSTRAINTS 7

TABLE 1
Runtime Results for Various Global Routing Instances

retained when performing successive searches, which may

help the solver’s performance. This difference in perfor-

mance will have to be studied more closely to investigate

trade-offs, for example, if the initial value of the objective is

actually far from the optimal value, binary search may have

more of a payoff.

6 CONCLUSIONS

In this work, we studied discrete optimization and decision

problems related to Boolean satisfiability that can be tackled

with 1) generic ILP solvers and 2) specialized 0-1 ILP

solvers. We showed that the trade-offs between these

methods are sensitive to the current state of the art, which

has considerably changed over the last several years.

Noting the success of modern SAT solvers in handling

extremely large instances (tens of thousands of variables and

millions of clauses) despite the well-recognized worst-case

complexity of CNF-SAT suggested that logic-based methods

might be a viable alternative to general-purpose ILP
techniques. This work further pushes the performance

envelope of 0-1 ILP techniques by combining it with the best

CNF-SAT methods. We implemented a new 0-1 ILP solver,

PBS, which uses the latest advances in Boolean satisfiability.

We showed how PBS can handle both decision and

optimization problems. We compared PBS against four
previously existing implementations, including the leading

generic commercial ILP solver CPLEX [15], the CNF-SAT

solver Chaff [23], and two specialized 0-1 ILP solvers [4], [28].
In particular, we evaluated PBS on instances of the

Max-SAT and Max-ONEs optimization problems, whose

significance is due to a reduction from the Max-Cut and

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

TABLE 2
Results of the Max-ONEs Experiment

TABLE 3
Results of the Max-SAT Experiment

Max-Clique problems, respectively, as well as applications
to min-wirelength routing. We also experimented with
decision SAT problems that appear in global routing and
other EDA domains.

Algorithmic and benchmarking contributions aside, our
two most important suggestions for the EDA community
are as follows:

. consider generic ILP solvers in the context of highly
structured 0-1 constraint satisfaction (that is, Boolean
SAT) problems and

. consider specialized 0-1 ILP techniques in the
context of 0-1 optimization problems.

Although we did not find a universal “rule of thumb,”
we did identify relevant trends for most types of instances
that we worked with. Additionally, tool developers may
benefit from learning techniques used by their colleagues,
although we do not know what techniques are currently
used by the commercial tool, CPLEX, to solve ILP problems.
Furthermore, encodings that utilize CNF and PB constraints
in applications such as routing can be much more compact
than pure CNF and generally lead to faster runtimes.

By significantly improving the efficiency of SAT-based
applications, particularly routing, we hope to facilitate new
uses of 0-1 techniques. Our on-going work in this direction
includes embedding SAT-based routers into realistic algo-
rithmic flows and benchmarking them against best known
geometric algorithms.

Our progress on the Max-ONEs problem—a fundamen-
tal but unfortunately overlooked formulation—also opens
new applications of SAT-based solvers. Our future work
will study applications to Max-Clique, Max Independent
Set, and Min Vertex Cover, which are fairly popular
problems in logic synthesis and other areas of design
automation. In addition, we are considering methods to
further prune the search space by 1) enhancing the
optimization capabilities of PBS by incorporating lower/
upper bound estimations of the value of the objective
function and 2) extending the conflict diagnosis engine to
learning PB constraints rather than CNF constraints.

Since the publishing of this work at ICCAD 2002, 0-1 ILP

has received a lot more exposure and many specialized

0-1 ILP solvers and potential applications have come to the

forefront. Notably, Dixon and Ginsberg [11] extended the

SAT solver RELSAT [5] to handle PB constraints and

described a method for deriving PB constraints. Chai and

Kuehlmann [7] described a watch-literal strategy that is

applicable for BCP on PB constraints and presented a

general algorithm for learning PB constraints based on

cutting planes. The ideas presented by Chai and Kuehl-

mann were implemented in a tool called Galena [7], which

was shown to be faster than PBS on several benchmarks.

Nevertheless, one of the main contributions of this paper

and the earlier version from ICCAD 2002 is extending the

applicability of 0-1 ILP by developing better algorithms and

making available a better solver. The introduction of PBS

has sparked a new wave of 0-1 ILP solvers.

ACKNOWLEDGMENTS

This work was funded by the DARPA/MARCO Gigascale

Silicon Research Center.

REFERENCES

[1] F Aloul, A Ramani, I Markov, and K Sakallah, “Solving Difficult
SAT Instances in the Presence of Symmetry,” Proc. Design
Automation Conf. (DAC ’02), pp. 731-736, 2002.

[2] L. Baptista and J.P. Marques-Silva, “Using Randomization and
Learning to Solve Hard Real-World Instances of Satisfiability,”
Proc. Sixth Int’l Conf. Principles and Practice of Constraint Program-
ming (CP ’00), 2000.

[3] P. Barth, “A Davis-Putnam Based Enumeration Algorithm for
Linear Pseudo-Boolean Optimization,” Technical Report MPI-I-95-
2-003, Max-Planck-Institut Für Informatik, 1995.

[4] P. Barth, “OPBDP: A Davis-Putnam Based Enumeration Algo-
rithm for Linear Pseudo-Boolean Optimization,” http://
www.mpi-sb.mpg.de/units/ag2/software/opbdp, 2007.

[5] R. Bayardo, Jr. and R. Schrag, “Using CSP Look-Back Techniques
to Solve Real World SAT Instances,” Proc. Nat’l Conf. Artificial
Intelligence, pp. 203-208, 1997.

[6] F.M. Brown, Boolean Reasoning. Kluwer Academic, 1990.
[7] D. Chai and A. Kuehlmann, “A Fast Pseudo-Boolean Constraint

Solver,” Proc. Design Automation Conf. (DAC ’03), pp. 830-835,
2003.

[8] N. Creignou, S. Kanna, and M. Sudan, Complexity Classifications of
Boolean Constraint Satisfaction Problems. SIAM, 2001.

[9] M. Davis, G. Logemann, and D. Loveland, “A Machine Program
for Theorem Proving,” Comm. ACM, vol. 5, no. 7, pp. 394-397,
1962.

[10] DIMACS Challenge Benchmarks, ftp://Dimacs.rutgers.EDU/
pub/challenge/sat/benchmarks/cnf, 2007.

[11] H. Dixon and M. Ginsberg, “Inference Methods for a Pseudo-
Boolean Satisfiability Solver,” Proc. Nat’l Conf. Artificial Intelligence,
pp. 635-640, 2002.

[12] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, 1979.

[13] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust SAT-
Solver,” Proc. Design, Automation, and Test in Europe Conf. (DATE
’02), pp. 142-149, 2002.

[14] H. Hoos and T. Stützle, http://www.satlib.org, 2007.
[15] ILOG CPLEX, http://www.ilog.com/products/cplex, 2007.
[16] Z. Kohavi, Switching and Finite Automata Theory, second ed.

McGraw-Hill, 1978.
[17] R. Ladner and R. Fischer, “Parallel Prefix Computation,” J. ACM,

vol. 27, no. 4, pp. 831-838, 1980.
[18] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiabil-

ity,” IEEE Trans. Computer-Aided Design, vol. 11, no. 1, pp. 4-15,
1992.

ALOUL ET AL.: SOLUTION AND OPTIMIZATION OF SYSTEMS OF PSEUDO-BOOLEAN CONSTRAINTS 9

TABLE 4
PBS versus CPLEX on DIMACS SAT Instances

[19] I. Lynce, L. Baptista, and J. Marques-Silva, “Stochastic Systematic
Search Algorithms for Satisfiability,” Proc. LICS Workshop Theory
and Applications of Satisfiability Testing, 2001.

[20] V. Manquinho and J. Marques-Silva, “On Using Satisfiability-
Based Pruning Techniques in Covering Algorithms,” Proc. Design
Automation and Test Conf. in Europe, pp. 356-363, 2000.

[21] J. Marques-Silva and K. Sakallah, “GRASP: A Search Algorithm
for Propositional Satisfiability,” IEEE Trans. Computers, vol. 48,
no. 5, pp. 506-521, May 1999.

[22] N. Een and N. Sorensson, “An Extensible SAT-Solver,” Theory and
Applications of Satisfiability Testing, pp. 502-518, 2003.

[23] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” Proc. Design
Automation Conf. (DAC), pp. 503-535, 2001.

[24] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative
Study of Two Boolean Formulations of FPGA Detailed Routing
Constraints,” Proc. Int’l Symp. Physical Design (ISPD ’01), pp. 222-
227, 2001.

[25] B. Selman, H. Kautz, and B. Cohen, “Noise Strategies for Local
Search,” Proc. Nat’l Conf. Artificial Intelligence, pp. 337-343, 1994.

[26] M. Velev and R. Bryant, “Effective Use of Boolean Satisfiability
Procedure in the Formal Verification of Superscalar and VLIW
Mircroprocessors,” Proc. Design Automation Conf. (DAC ’01),
pp. 226-231, 2001.

[27] J. Walsor, “Solving Linear Pseudo-Boolean Constraint Problems
with Local Search,” Proc. Nat’l Conf. Artificial Intelligence, pp. 269-
274, 1997.

[28] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A New
Incremental Satisfiability Engine,” Proc. Design Automation Conf.
(DAC ’01), pp. 542-545, 2001.

[29] H. Xu, R. Rutenbar, and K. Sakallah, “Sub-SAT: A Formulation for
Relaxed Boolean Satisfiability with Applications in Routing,” Proc.
Int’l Symp. Physical Design (ISPD ’02), 2002.

[30] J. Warners, “A Linear-Time Transformation of Linear Inequalities
into Conjunctive Normal Form,” Information Processing Letters,
vol. 68, no. 2, pp. 63-69, 1998.

[31] H. Zhang, “SATO: An Efficient Propositional Prover,” Proc. Int’l
Conf. Automated Deduction, pp. 272-275, 1997.

[32] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik, “Efficient
Conflict Driven Learning in a Boolean Satisfiability Solver,” Proc.
Int’l Conf. Computer-Aided Design (ICCAD ’01), pp. 279-285, 2001.

[33] H. Zhang and M. Stickel, “An Efficient Algorithm for Unit-
Propagation,” Proc. Int’l Symp. Artificial Intelligence and Math.,
pp. 166-169, 1996.

Fadi A. Aloul received the BS degree (summa
cum laude) in electrical engineering from Lawr-
ence Technological University, Southfield, Mi-
chigan, in 1997 and the MS and PhD degrees in
computer science and engineering from the
University of Michigan, Ann Arbor, in 1999 and
2003, respectively. He was a postdoctoral
research fellow at the University of Michigan,
Ann Arbor, during the summer of 2003. In the
summer of 2005, he was a visiting researcher

with the Advanced Technology Group, Synopsys, Portland, Oregon. He
is currently an assistant professor of computer engineering at the
American University of Sharjah (AUS), Sharjah, United Arab Emirates.
His research interests include computer-aided design, combinatorial
optimization, Boolean satisfiability, and computer security. He has
published more than 45 refereed papers and has presented invited talks
and tutorials at several industrial sites, universities, and conferences. He
has also developed several tools for Boolean Satisfiability, including the
pseudo-Boolean SAT solver and optimizer PBS. He has received a
number of awards, including the Agere/SRC research fellowship, the
GANN fellowship, and the LTU presidential scholarship. He has served
on the technical program committees of many conferences. He was a
local organizer of the 2006 IEEE International Conference on Computer
Systems and Applications (AICCSA) and the AV chair of the 2003
International Workshop on Logic Synthesis (IWLS). He is a member of
the IEEE, the ACM, and Tau Beta Pi. He is currently the GOLD chair of
the IEEE UAE Section.

Arathi Ramani received the BS degree in
computer engineering from Thadomal Shahani
Engineering College, affiliated with the Univer-
sity of Mumbai, India, in 1999 and the MS and
PhD degrees in computer engineering from the
University of Michigan, Ann Arbor, in 2002 and
2005, respectively. Her research interests in-
clude algorithms for combinatorial optimization,
hypergraph partitioning, and physical design of
integrated circuits. Shee is currently working at

Microsoft Corp., Redmond, Washington. She is a member of the IEEE.

Karem A. Sakallah received the BE degree in
electrical engineering from the American Uni-
versity of Beirut, Beirut, Lebanon, in 1975 and
the MSEE and PhD degrees in electrical and
computer engineering from Carnegie Mellon
University, Pittsburgh, Pennsylvania, in 1977
and 1981, respectively. In 1981, he was with the
Department of Electrical Engineering at Carne-
gie Mellon University as a visiting assistant
professor. From 1982 to 1988, he was with the

Semiconductor Engineering Computer-Aided Design Group, Digital
Equipment Corporation, Hudson, Massachusetts, where he headed
the Analysis and Simulation Advanced Development Team. Since
September 1988, he has been with the University of Michigan, Ann
Arbor, as a professor of electrical engineering and computer science.
From September 1994 to March 1995, he was with the Cadence
Berkeley Laboratory, Berkeley, California, on a six-month sabbatical
leave. His current research interests include computer-aided design with
emphasis on logic and layout synthesis, Boolean satisfiability, discrete
optimization, and hardware and software verification. He has authored
or coauthored more than 200 papers and has presented seminars and
tutorials at many professional meetings and various industrial sites. He
was an associate editor of the IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems from 1995 to 1997 and has
served on the program committees of the International Conference on
Computer-Aided Design, Design Automation Conference, and the
International Conference of Computer Design, as well as numerous
other workshops. He is currently an associate editor of the IEEE
Transactions on Computers. He is a fellow of the IEEE and a member of
the ACM and Sigma Xi.

Igor L. Markov received the MA degree in
mathematics and the PhD degree in computer
science from the University of California, Los
Angeles, in 1994 and 2001, respectively. He is
currently an associate professor in the Depart-
ment of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor. His
research interests include combinatorial optimi-
zation with applications to the design and
verification of integrated circuits, as well as

quantum logic circuits. He has published more than 100 refereed
papers. In 2001, he was awarded the DAC Fellowship and received the
IBM University Partnership Award. He received the 2004 IEEE CAS
Donald O. Pederson paper-of-the-year award and the 2004 ACM SIGDA
Outstanding New Faculty Award. He was the recipient of the best paper
award at Design Automation and Test in Europe Conference (DATE)
2005 in the Circuit Test category, as well as the US National Science
Foundation CAREER and the Synplicity Inc. Faculty Awards. He has
served on the technical program committees at the Design Automation
Conference, International Conference on Computer-Aided Design,
DATE Conference, International Symposium on Physical Design, and
several other IEEE conferences and symposia. He served as the
general chair and the technical program committee chair of the
International Workshop on System-Level Interconnect Prediction. He
is a member of the ACM and American Mathematical Society (AMS) and
is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

