
Exact Fault-Sensitive Feasibility Analysis
of Real-Time Tasks

Hakan Aydin, Member, IEEE

Abstract—In this paper, we consider the problem of checking the feasibility of a set of n real-time tasks while provisioning for timely

recovery from (at most) k transient faults. We extend the well-known processor demand approach to take into account the extra

overhead that may be induced by potential recovery operations under Earliest-Deadline-First scheduling. We develop a necessary and

sufficient test using a dynamic programming technique. An improvement upon the previous solutions is to address and efficiently solve

the case where the recovery blocks associated with a given task do not necessarily have the same execution time. We also provide an

online version of the algorithm that does not require a priori knowledge of release times. The online algorithm runs in Oðm � k2Þ time,

where m is the number of ready tasks. We extend the framework to periodic execution settings: We derive a sufficient condition that

can be checked efficiently for the feasibility of periodic tasks in the presence of faults. Finally, we analyze the case where the recovery

blocks are to be executed nonpreemptively and we formally show that the problem becomes intractable under that assumption.

Index Terms—Real-time scheduling, real-time systems, fault tolerance, deadline-driven systems, recovery blocks, processor demand

analysis.

Ç

1 INTRODUCTION

IN real-time systems, timeliness is as important as the
correctness of the output. Thus, traditionally, hard real-

time scheduling theory has aimed at achieving predict-
ability by assuming worst-case scenarios such as the worst-
case execution time and minimum interarrival rate [3], [27].

Providing reliability and availability in safety-critical
applications is of paramount importance [30]. Further, in
safety-critical real-time systems, the fault-tolerant techniques
must take into account the timing constraints of the task set:
Faults must be detected and appropriate recovery opera-
tions must be completed before the deadlines.

Permanent faults are usually tolerated by providing
hardware redundancy in the form of hot-standby spares
and/or by employing techniques such as triple modular
redundancy [30]. Transient faults are typically short-lived;
they can be caused by a variety of sources such as
atmospheric nuclear particles (alpha-particles, protons,
and neutrons) or electrical noise (power supply noise or
electromagnetic interference). It is known that transient
faults occur much more frequently than permanent faults
[20], [21]. A recent study indicates that the emerging low-
power design techniques [1] further increase the suscept-
ibility of VLSI circuits to transient faults [28].

In real-time systems, transient faults are usually ad-
dressed through time redundancy and backward error recovery
techniques in which extra CPU time is reserved in the
schedule for potential recovery operations. To achieve this

aim, in this paper, we adopt the recovery block approach [32]
as the basis of error recovery mechanism. Fault detection
tests (in the form of sanity or consistency checks [30]) are
performed when a task completes. Should an error be
detected, a recovery operation is undertaken by activating a
recovery block. In the general case, there may be a need to
execute multiple recovery blocks (or secondaries) one after
another before a complete recovery is achieved or a safe state

is loaded into the memory.
An alternative approach to recovery block execution is

checkpointing, where important state information is saved
periodically during task execution while error checking
routines are run simultaneously [4], [26]. If an error is
detected, the system state is rolled back to the last
checkpoint and the computation is repeated. Though it
may reduce the amount of recovery overhead compared to
the recovery block approach, checkpointing has two draw-
backs: increased runtime overhead due to the frequent
checkpointing during the fault-free execution and inability to
cope with cases where the error stems from the (unique)
software implementation of the task. With recovery blocks,
the designer can provide alternate implementations of the
same task in the form of different recovery blocks and these
can be activated if the error persists.

1.1 Contributions of This Paper

Our objective in this paper is to solve the following
fundamental problem: Given a set of n real-time tasks, is

it possible to complete all tasks and potential recovery

operations within timing constraints under any fault

scenario with at most k transient faults? In our analysis,
we use the Earliest-Deadline-First (EDF) [27] scheduling
policy, which is known to be optimal for uniprocessor
systems under various conditions [13], [27].

After introducing our system model and assumptions in
Section 2, we focus on the concept of fault patterns. Since we

1372 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

. The author is with the Computer Science Department, George Mason
University, 4400 University Drive-MSN 4A5, Fairfax, VA 22030.
E-mail: aydin@cs.gmu.edu.

Manuscript received 18 Aug. 2006; revised 2 Dec. 2006; accepted 11 Apr.
2007; published online 5 June 2007.
Recommended for acceptance by L. Welch.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0321-0806.
Digital Object Identifier no. 10.1109/TC.2007.70739.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

do not make any assumptions about the distribution of
faults to individual tasks, the fault patterns enable us to
characterize all possible execution scenarios with at most
k faults. We show that traditional feasibility analysis
techniques can lead to a combinatorial explosion if we
consider each fault pattern separately (Section 3).

In Section 4, we derive the main theoretical result that is
used as a basis for other contributions of the paper. Namely,
we show how the processor demand analysis [3], [18], [33]
technique can be extended to settings with transient faults.
Processor demand analysis proved to be very useful in the
feasibility analysis since its fundamental principles were
introduced by Baruah et al. in the early 1990s [2], [3]. We
believe that existing approaches to the feasibility problem in
the presence of faults, especially for the EDF policy, remain
somewhat disconnected from the well-known methodolo-
gies of conventional (that is, non-fault-tolerant) analysis
techniques. In this aspect, we hope that our extensions will
fill an important gap and lay ground for further research. In
the same section, we also prove that the preemptive EDF
scheduling policy is optimal for executing real-time tasks
and recovery blocks in the presence of transient faults.

We show how the computation of worst-case recovery
overhead function for k transient faults affecting n tasks can
be achieved in Oðn � k2Þ time by the dynamic programming
technique in Section 5. Based on this result, we present the
algorithm FT-feasibility, which can be used to check the
feasibility of the task set under all k-fault scenarios
(Section 6). We note that the problem of checking the
tolerance of a real-time task set to k faults was first
addressed in [23]. The time complexity of our algorithm is
Oðn2 � k2Þ. Our solution, unlike [23], does not assume that all
of the recovery blocks associated with a given task have the
same execution time. We believe that relaxing this assump-
tion represents fault-tolerant real-time applications that rely
on the recovery block mechanism more realistically. For
instance, the first recovery block may try to reexecute the
task and, in case another fault is detected at the end of the
reexecution, an alternate module/version performing an
approximate computation can be activated (or a safe state
can be loaded into the memory). Moreover, there can be
multiple alternate versions of the same task implemented at
different sophistication levels. Clearly, in this realistic
example, the worst-case execution times of recovery blocks
do not need to be the same. Of course, one can still apply
the feasibility analysis in [23] by setting the execution time
of all recovery blocks to the largest execution time among
all recovery blocks. In this case, the test becomes only
sufficient but not necessary. By taking into account the
variations in the overhead of recovery operations, we
propose a necessary and sufficient feasibility test in the
presence of transient faults.

In our study, we establish the fundamentals of a fault-
sensitive feasibility analysis assuming an aperiodic task
model with known timing parameters. Then, we use these
results to derive a number of major extensions and analysis
techniques.

In Section 7, we develop a fast online fault-sensitive
admission test that does not require a priori knowledge of task
release times. In some dynamic systems, this information

may simply be unavailable and there may be a need to
dynamically decide if the admission of the new task will
compromise the timely completion of the existing tasks
(with possible fault scenarios in mind). This extension is
also motivated by the fact that, even if some information
about release times is available, possible jitter sources can
cause deviations in the actual task release times and this
may limit the accuracy of the feasibility test. Our online
solution also has the desirable feature of updating recovery-
related information dynamically as faults occur. If we have
to provision for a maximum of k faults during the
execution, then the detection of a single fault will decrement
the number of faults that we need to tolerate after this point.
Moreover, the worst-case recovery overhead of the remain-
ing recovery blocks is efficiently updated to incorporate the
knowledge of the most recent fault’s occurrence.

Although we build our fundamental results using an
aperiodic real-time task model, we also show how the
framework can be extended to periodic tasks in Section 8. We
believe this is particularly relevant for practical applications
as a significant number of safety-critical real-time tasks
(including those in digital control applications) are invoked
periodically. For this problem, we provide a sufficient
condition that guarantees whether a set of periodic tasks
can still meet their deadlines. The condition can be checked
in time Oðn2 � k2Þ, where n is the number of periodic tasks.

Finally, in Section 9, we analyze the settings where the
recovery blocks are to be executed nonpreemptively and
show that the problem is intractable under that assumption.
After reviewing related work in Section 10, we conclude in
Section 11.

2 SYSTEM MODEL AND ASSUMPTIONS

2.1 Task Model

We consider a uniprocessor system with a set of real-time
tasks � ¼ f�1; . . . ; �ng. The ready time (release time), dead-
line, and worst-case execution time of task �i are denoted by
ri, di, and ci, respectively. All tasks are assumed to be
independent. First, we derive our main results for aperiodic
real-time tasks; in Section 8, we show how the framework
can be extended to the case of periodic tasks.

Aperiodic and periodic tasks form the most common
workloads in real-time applications [33]. If the real-time
workload has both aperiodic and periodic tasks with hard
deadlines, then the illustrated analysis technique is still
applicable, but by considering each job of a periodic real-
time task separately.

2.2 Fault Model

Our fault model assumes transient faults as they occur much
more frequently than permanent faults [20], [21]. Further,
we assume that each transient fault is of short duration [10],
[31] and that it does not lead to a permanent fault. In
general, it is not possible to tolerate permanent faults
without using some form of spatial redundancy, for example,
through the modular redundancy techniques [30].

The faults are detected at the end of the execution of each
task through sanity or consistency checks [23], [30]. Upon
the detection of a fault in task �i, the first recovery block
associated with that task, namely, Bi;1, is activated. When

AYDIN: EXACT FAULT-SENSITIVE FEASIBILITY ANALYSIS OF REAL-TIME TASKS 1373

Bi;1 completes, the sanity/consistency checks are repeated
on the output of Bi;1; if there is another fault, then the
second recovery block, Bi;2, is initiated and so on. In other
words, z faults affecting �i and its recovery blocks trigger
Bi;1; . . . ; Bi;z. The result of the task/recovery block is
committed only when the test indicates that it is consistent
and/or within the allowed range. This can be achieved, for
example, by substituting the task’s output value to a
function and checking if it satisfies a certain (easily
verifiable) property [19] or by using checksums [30].

Following existing work on fault-tolerant real-time
systems [23], [24], [34], we assume that a given transient
fault affects only the task (or recovery block) that is
executing on the CPU and not other tasks. This is a
reasonable assumption since the transient faults that we
consider are short-lived and the result of a task is not
committed (hence, cannot propagate to other tasks) unless it
passes a sanity/consistency check.

Throughout the paper, we consider scenarios in which at
most k transient faults can occur during the execution of the
aperiodic task set � . We do not make any assumption about
the distribution of faults: For instance, all m � k faults can
occur during the execution of �i and its recovery blocks,
m distinct tasks can fail just once, and other combinations
are equally possible. This allows consideration of a rather
broad class of transient faults, including faults that arrive in
bursts or systems where the mean time between consecutive
faults can exhibit large variances because of environmental
factors. A brief comparison with alternative models that
assume knowledge about the probability distribution of
fault arrivals is given in Section 10.

Since we assume that at most k faults can occur during the
execution, there are k recovery blocksBi;1; . . . ; Bi;k associated
with task �i. The worst-case execution time of recovery
blockBi;j is denoted by bi;j. Note that the recovery blocks of a
given task may have different execution times. If it is known
in advance that the number of faults affecting a task �i and its
recovery blocks will not exceed z < k, we can simply set
bi;zþ1; . . . ; bi;k to 0 to reflect this fact. If not negligible, the time
overhead of running the sanity/consistency checks can be
incorporated into ci and bi;j values.

Our extension to periodic task systems in Section 8
involves the analysis of fault scenarios with at most k faults
affecting task instances (jobs) during each hyperperiod, which
is defined as the least common multiple of task periods. This
approach is called hyperperiod-oriented fault tolerance in [36].

2.3 Scheduling Model

We develop our framework by assuming preemptive EDF
scheduling for tasks and recovery blocks. All recovery
blocks associated with task �i will execute with deadline
(hence, priority) di. Note that this points to the possibility of
delaying and preempting the execution of recovery blocks:
If a task �h arrives during the execution of �i’s recovery
block Bi;j with dh < di, then Bi;j will be interrupted and
resumed later. As we show later in the paper (Corollary 1),
adopting a preemptive EDF policy for all of the tasks and
recovery blocks turns out to be optimal from the scheduling
point of view. The implications of executing the recovery
blocks in a nonpreemptive manner are explored in Section 9.

3 FAULT PATTERNS AND THEIR IMPACT ON

FEASIBILITY ANALYSIS

Formally, a sequence of faults affecting tasks in � and their
recovery blocks are denoted by a fault pattern f ¼ ff1; . . . ; fng,
where fi denotes the number of faults affecting �i and its
recovery blocks [23]. Further, we say that f is a k-fault
pattern (scenario) if the total number of faults is exactly k,
that is, if

Pn
i¼1 fi ¼ k.

Note that each fault pattern will induce an extra
workload (overhead) during recovery. Specifically, all of
the recovery blocks associated with this fault pattern will
need to be executed. We will use the notation xf to denote
the total execution time of the recovery blocks activated (or
the recovery overhead) due the fault pattern f . That is,

xfð�Þ ¼
Xn
i¼1

Xfi
j¼1

bi;j:

Throughout our analysis, we will be interested in finding
the worst-case k-fault pattern W that results in the largest
recovery overhead for a (sub)set of tasks. The recovery
overhead associated with the worst-case fault pattern W

over a task set � will be denoted by wkð�Þ. Formally,

wkð�Þ ¼ max
f
fxfð�Þg:

Note that wkð�Þ � wk�1ð�Þ for k � 1 since all recovery
blocks have nonnegative execution times. This implies that
we can restrict our analysis to the k-fault patterns (where we
have exactly k faults) when investigating the worst-case
recovery overhead of fault scenarios with at most k faults.

Definition 1. A task set � is said to be k-fault tolerant (or,
alternatively, � can be scheduled in a k-fault-tolerant manner)
if all tasks and potential recovery operations can be completed
before their corresponding deadlines under any fault scenario
with at most k transient faults.

Note that this definition subsumes that of a feasible task
set in conventional real-time scheduling theory: A task set is
feasible if and only if it is zero-fault tolerant.

Well-established results of the hard real-time scheduling
theory provide the means to analyze the feasibility under
worst-case execution time and phasings. However, in that
framework, each real-time task has a well-characterized
worst-case workload which can be assessed through a
worst-case execution time analysis. Hence, it is relatively
easy to characterize the worst-case total workload before
undertaking the feasibility analysis.

When the framework is extended to the k-fault settings,
the designer faces the additional challenge of analyzing the
feasibility for all of the k-fault scenarios, each of which may
potentially create a distinct additional burden on timing
constraints. In fact, the number of distinct k-fault patterns
itself points to the considerable difficulty of the problem,
even when one temporarily ignores the overhead of checking
the feasibility of the schedule for each pattern.

Proposition 1. The number of distinct k-fault patterns that can
affect a task set with n tasks is nþk�1

k

� �
.

1374 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

The asymptotic behavior of binomial coefficients [12]

implies that the number of distinct fault patterns grows

rapidly with n; specifically, it is �ððnkÞ
kÞ.

Proposition 1 can be justified by observing that

k indistinguishable balls can be distributed to n distinguish-

able bins in nþk�1
k

� �
¼ ðnþk�1Þ!

k!ðn�1Þ! ways. As an example, if n ¼ 4

and k ¼ 2, there are 5
2

� �
¼ 10 different two-fault patterns.

The first four fault patterns correspond to the cases where

both faults occur in �i, i ¼ 1; 2; 3; 4. The last six fault patterns

are given by the set {{1, 1, 0, 0}, {1, 0, 1, 0}, {1, 0, 0, 1}, {0, 1, 1,

0}, {0, 1, 0, 1}, {0, 0, 1, 1}}, which covers the cases where each

task incurs at most one fault.
As a concrete example, consider the task set given in

Table 1. When scheduled with EDF in the absence of any

faults, all of the tasks complete well before their deadlines

(Fig. 1). With some effort, the reader may check that the task

set is 1-fault tolerant, that is, all tasks and one required

recovery operation can be completed before the correspond-

ing deadlines in case of any single fault. However, the

picture changes significantly when we consider the toler-

ance to any combination of two faults: There are 5
2

� �
¼ 10

different 2-fault scenarios that can occur during the

execution of the task set. Clearly, a sound methodology is

needed to address the combinatorial explosion to check the

feasibility of a task set for all k-fault scenarios. Throughout

the paper, the task set given in Table 1 will be used as a

running example to illustrate the components of our

solution framework.

4 FAULT-SENSITIVE PROCESSOR DEMAND

ANALYSIS

Our approach to the feasibility analysis in the presence of

faults will be based on extending the processor demand

analysis technique [3], [7], [18]. First, we introduce some

additional notation:

. Cð�Þ denotes the total execution time of the task set
� ¼ f�1; . . . ; �ng. Formally, Cð�Þ ¼

P
�i2� ci.

. �ðt1; t2Þ denotes the subset of tasks that are released
at or after t1 and having deadlines less than or equal
to t2. Formally, �ðt1; t2Þ ¼ f�i 2 � jt1 � ri � di � t2g.

A fundamental result in the feasibility analysis first
obtained by Baruah et al. in the context of sporadic task sets
[3] and later refined in many ways by other researchers [7],
[17], [18], is the following:

Theorem 1 (from [3] and [18]). A set of independent real-time

tasks � can be scheduled (by preemptive EDF) if and only if

Cð�ðt1; t2ÞÞ � t2 � t1 for all intervals ½t1; t2�.

Note that the quantity Cð�ðt1; t2ÞÞ above represents the
least upper bound on the amount of work that must be
completed in interval ½t1; t2� and it is referred to as the
processor demand of tasks in interval ½t1; t2� in [3], [7], [33].

Definition 2. Given a set of real-time tasks � and an interval of

time ½t1; t2�, the k-fault-sensitive processor demand of the
task set in the interval is

hkðt1; t2Þ ¼ Cð�ðt1; t2ÞÞ þ wkð�ðt1; t2ÞÞ:

Observe that the term wkð�ðt1; t2ÞÞ in the expression of
fault-sensitive processor demand effectively represents the
worst-case overhead of any k faults occurring exclusively
in the subset of tasks �ðt1; t2Þ. As a simple example, we
revisit the task set given in Table 1. Consider the interval
½t1 ¼ 5; t2 ¼ 45�. Applying the definitions above, we find
that �ðt1; t2Þ ¼ f�2; �3g, and Cð�ðt1; t2ÞÞ ¼ 13. Further,
w2ð�ðt1; t2ÞÞ ¼ 11, which corresponds to the fault pattern
f ¼ f0; 0; 2; 0g, where �3 incurs faults twice (in the following
section, we will illustrate how the function wkðÞ can be
computed efficiently for any task set).

A fundamental result of this research effort is given by
the following theorem:

Theorem 2. A set of real-time tasks � can be scheduled in a

k-fault-tolerant manner by EDF if and only if hkðt1; t2Þ �
t2 � t1 for every interval ½t1; t2�.

Proof. Only if part. Suppose the contrary, that is, there
exists a task set � that can be scheduled in a
k-fault-tolerant manner and there is an interval ½t1; t2�
such that hkðt1; t2Þ > t2 � t1. Consider the worst-case
k-fault pattern exclusively affecting tasks released at or
after t1 and with deadlines at or before t2. The recovery
overhead induced by this fault pattern is wkð�ðt1; t2ÞÞ.
Thus, hkðt1; t2Þ ¼ Cð�ðt1; t2ÞÞ þ wkð�ðt1; t2ÞÞ represents
the “augmented” workload that must be completed
within that interval. If hkðt1; t2Þ > t2 � t1, then no

scheduling algorithm can meet all of the deadlines with
this fault pattern since the total computational demand
exceeds the available CPU time. The same holds for the
EDF scheduling policy; hence, there is a contradiction.

AYDIN: EXACT FAULT-SENSITIVE FEASIBILITY ANALYSIS OF REAL-TIME TASKS 1375

TABLE 1
Example Task Set

Fig. 1. Feasible EDF schedule without faults.

If part. Again, we proceed by contradiction. Suppose
that there exists a task set � such that hkðt1; t2Þ � t2 � t1 for
all intervals ½t1; t2�, yet there is a k-fault pattern ðj � kÞ fw
resulting in deadline miss(es). Assume that the first
deadline miss occurs at t ¼ di. Now, let t0 be the latest
time preceding di such that

. the CPU is idle or

. a task (or recovery block) with deadline > di
executes.

Note that t0 is well defined and it must correspond to
a task release time. Further, during the interval ½t0; di�,
the CPU is continuously busy executing only tasks (and
recovery blocks) that are released at or after t0 and with
deadlines not exceeding di (namely, �ðt0; diÞ and their
recovery blocks induced by the fault pattern fw).

Now, let f0 � fw be the subset of faults affecting tasks
in �ðt0; diÞ. Observe that the number of faults in f0

cannot exceed k. Since EDF is a work-conserving
scheduling algorithm that never leaves the CPU idle
unless there are no ready tasks, the deadline miss at di
and the definition of t0 above imply that the available
CPU time in the interval ½t0; di� was not sufficient to
accommodate the augmented processor demand
Cð�ðt0; diÞÞ þ xf0ð�ðt0; diÞÞ (the second term shows the
extra recovery work induced by the fault pattern f0).

Thus, we obtain, di � t0 < Cð�ðt0; diÞÞ þ xf0ð�ðt0; diÞÞ.
Noting that, for any task set �, the relation wkð�Þ � xfð�Þ
holds for all fault patterns with up to k faults, we get

di � t0 < Cð�ðt0; diÞÞ þ wkð�ðt0; diÞÞ ¼ hkð�ðt0; diÞÞ;

contradicting our assumption that hkðt1; t2Þ � t2 � t1 for

all intervals ½t1; t2�. tu
Recall that, in the “only if part,” we established the

necessary nature of the condition specified in the theorem

for any scheduling algorithm that is able to recover from

any k-fault scenario occurring in � . Since, in the “if part,” we

established that the condition is also sufficient for EDF, we

have the following:1

Corollary 1. EDF is an optimal preemptive scheduling algorithm

for meeting the timing constraints in the presence of transient

faults.

5 COMPUTING THE WORST-CASE RECOVERY

OVERHEAD FUNCTION wkðÞ
In this section, we present an efficient technique to compute

the worst-case recovery overhead for a given task set under

any k-fault scenario. While developing our solution, we will

temporarily ignore the timing constraints and show how to

evaluate the function wkðÞ for a set of n tasks that are

simultaneously ready. However, the technique that we

consider will be instrumental in later sections, where we

develop the general fault-sensitive feasibility analysis

framework.

Clearly, a straightforward way of tackling the problem
would be to generate all different k-fault scenarios and
compute the recovery overhead associated with each fault
pattern. This brute-force technique is clearly infeasible from
a computational point of view, as hinted by Proposition 1.
Below, we outline the details of our solution that has a
worst-case time complexity of Oðn � k2Þ. Our solution will be
based on a dynamic programming technique.

First, note that if we have a task set � ¼ f�xg consisting of
a single task �x, then the value of wjð�Þ can be trivially
computed by observing that a fault pattern exclusively
affecting �x will result in consecutive executions of recovery
blocks Bx;j. That is,

w0ðf�xgÞ ¼ 0; ð1Þ

wjðf�xgÞ ¼ wj�1ðf�xgÞ þ bx;j for 1 � j � k: ð2Þ

If the task set contains multiple tasks, then one can resort
to a recursive formula. Suppose that we have evaluated the
worst-case fault overhead functions wjð�Þ for j ¼ 1 . . . k for a
given task set � . Consider the k-fault patterns affecting the
augmented task set � ¼ � [f�xg. One possibility is that all
k faults will occur in � , whereas no fault occurs in �x. In this
case, wkð� [f�xgÞ would simply be equal to wkð�Þ. Alter-
natively, exactly one fault can affect �x (causing the recovery
overhead of bx;1 ¼ w1ðf�xgÞ) and the remaining k� 1 faults
can occur in � , of which the worst-case recovery overhead is
given by wk�1ð�Þ. Thus, in general, it is necessary and
sufficient to consider k different cases (that correspond to
the number of faults affecting �x): �x can incur j faults,
whereas tasks in � can collectively incur k� j faults
ð0 � j � kÞ. Hence, the worst-case k-fault recovery overhead
of � [f�xg can be evaluated by computing the maximum of
these k cases. Formally,

wkð� [f�xgÞ ¼ max
k

j¼0
wjðf�xgÞ þ wk�jð�Þ
� �

: ð3Þ

Assuming that we have already computed wjð�Þ and
wjðf�xgÞ for j ¼ 0; . . . ; k, computing wkð� [f�xgÞ requires an
additional OðkÞ operations. The formula above immediately
hints to an algorithm that computes the wjðÞ values over an
n-task set (see Fig. 2). The algorithm works in a bottom-up
manner: It starts with the task set containing just one task. It
augments the task set incrementally by adding one task at a
time and by updating all of the wjðÞ values ðj � kÞ along the
way according to (3). It is important to note that we need to

1376 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

1. We note that the optimality of EDF in the presence of faults was
already given in [22]. However, we find it useful to derive it formally in
light of fault-sensitive processor demand analysis.

Fig. 2. Algorithm to compute the worst-case recovery overhead function.

compute all of the wjðÞ values ðj < kÞ in addition to wkðÞ at

every iteration: They are used to evaluate the worst-case

recovery overhead functions in the next iteration. Finally,

observe that the order in which the tasks are processed in

this procedure does not affect the final outcome.

Complexity. First, we note that computing the worst-

case overhead of fault patterns exclusively affecting single

tasks requires Oðn � kÞ time (line 1). The nested loop in

lines 3-8 performs Oð
Pn

t¼2

Pk
h¼1 hÞ operations, implying an

overall time complexity of Oðn � k2Þ. The space complexity

of the algorithm is Oðn � kÞ.
Special cases. The analysis above addresses the most

general case, that is, the values of the wkðÞ function are

computed for arbitrary recovery block execution times.

However, we find it useful to further elaborate on two

special cases that may be relevant for practical applications

as the analysis is less complex.

5.1 Recovery Blocks with Identical Execution Times

Arguably, the simplest case corresponds to the one where

the recovery blocks of a given task all have the same

execution time, that is, bi;j ¼ bi 8j. This can happen if all the

recovery blocks are functionally equivalent, for example,

when they all consist of the reexecution of the main task.

We note that this is the underlying model in [23].

Proposition 2. If bi;j ¼ bi 8j, then wkð�Þ ¼ k �maxni¼1fbig.

Let �x be the the task with the largest recovery block

execution time bx (that is, bx � by 8x; y). Then, the scenario

under which �x fails k times causes a recovery overhead of

k � bx, which cannot be exceeded by the recovery overhead

of any other fault scenario. Hence, Proposition 2 is easily

justified.
Also, in this case, the problem of computing the worst-

case recovery overhead function is reduced to finding the

maximum among b1; . . . ; bn, which can be achieved in

time OðnÞ.

5.2 Recovery Blocks with Nonincreasing Execution
Times

As another interesting special case, we may have recovery

blocks that satisfy the property bi;j � bi;jþ1 8i; j for each task.

This can be the case, for example, when the first recovery

takes the form of reexecution of the task and successive

recoveries (if needed) consist of implementing increasingly

simpler versions of the original task, with decreasing

execution times and decreasing output accuracies.
Since, in this case, the recovery blocks of a given task will

already be ordered, then the algorithm to compute wkðÞmay

exploit this property. Let �bið�Þ denote the ith largest value

among all recovery block execution times b1;1; . . . ; bn;k.

Theorem 3. If bi;j � bi;jþ1 8i; j, then wkð�Þ ¼
Pk

j¼1
�bjð�Þ.

The proof of Theorem 3, as well as an algorithm of time

complexity Oðn lognþ k2Þ to compute the worst-case

recovery overhead function in this special case is presented

in the Appendix.

6 CHECKING THE FEASIBILITY OF THE TASK SET

UNDER ANY k-FAULT SCENARIO

Having extended the processor demand approach to

incorporate the recovery overhead in Section 4 and having

developed an algorithm to compute the worst-case recovery

overhead function for a given task set in Section 5, we can

address our fundamental problem: Given a task set � , can

all tasks and recovery operations be completed within

timing constraints under any k-fault scenario?
At first, the application of Theorem 2 does not look

promising from a computational point of view, because the

number of intervals to be examined for a fault-sensitive

processor demand can be fairly large. However, in real-time

scheduling theory, it is well known that, when checking

feasibility by the (non-fault-sensitive) processor demand

approach, it is sufficient to check the intervals that begin at

a task release time and end at a task deadline. In fact, the

same holds for the fault-sensitive processor demand.

Proposition 3. The fault-sensitive feasibility analysis of a real-

time task set � can be carried out exclusively on intervals

½t1; t2� such that t1 is a task release time and t2 is a task

deadline, without compromising correctness.

Proof. Suppose that the task set is not k-fault tolerant, that is,

hkðt1; t2Þ > t2 � t1 for an interval ½t1; t2�. First, since

hkðt1; t2Þ is always nonnegative and t2 > t1, it follows that

there must be at least one task �i such that t1 � ri � di � t2.
If t2 is not a task deadline, then consider

hkðt1; djÞ such that dj is the latest task deadline
that does not exceed t2. Clearly, �ðt1; djÞ ¼ �ðt1; t2Þ.
Thus, hkðt1; djÞ ¼ hkðt1; t2Þ > t2 � t1 > dj � t1, implying
that we would definitely be able to find another “over-
loaded” interval that ends at a task deadline. Thus, we can
safely restrict our analysis to intervals f½t1; t2�g such that t2
is a task deadline. Similarly, if t1 is not a task release time
and hkðt1; djÞ > dj � t1 for an interval ½t1; dj�, we can show
that hkðry; djÞ ¼ hkðt1; djÞ > dj � t1 > dj � ry, where ry is
the first task release time after t1. In other words, the
interval ½ry; dj� would be “overloaded” as well. In
conclusion, we can restrict our analysis to intervals that
begin at a task release time and end at a task deadline.tu

Proposition 3 implies that the number of intervals that

need to be checked does not exceed n2 for n tasks. However, a

straightforward application of the algorithm WC-Fault-Over-

head in Fig. 2 for each interval would result in an overall

complexity of at least Oðn3 � k2Þ. On the other hand, a closer

look reveals that the subsets of tasks that must be considered

for each interval are not completely independent.

Proposition 4. Suppose that ra is a task release time and

dj, dm are task deadlines such that ra � dj < dm. If

there are no other deadlines between dj and dm, then

�ðra; dmÞ ¼ �ðra; djÞ [f�ijdi ¼ dm and ri � rag.

Let us denote the set f�ijdi ¼ dm and ri � rag by �ðra; dmÞ.
Proposition 4 implies that, if one has already evaluated

hkðra; djÞ and now is willing to evaluate hkðra; dmÞ, where

dm is the first deadline after dj, then (s)he only has to

AYDIN: EXACT FAULT-SENSITIVE FEASIBILITY ANALYSIS OF REAL-TIME TASKS 1377

. add the computational demand of tasks having
release times � ra and deadline ¼ dm (namely,
Cð�ðra; dmÞ) and

. recompute wgð�ðra; djÞ [�ðra; dmÞÞ for g ¼ 1 . . . k.

Note that the computation of wgð�ðra; djÞ [�ðra; dmÞÞ for

g ¼ 1 . . . k can be achieved in Oðj�ðra; dmÞj � k2Þ total time by

using the dynamic programming technique in Section 5,

assuming that we already have wgð�ðra; djÞÞ values.
In summary, if we exclusively focus on intervals ½ra; dj�

that start at t ¼ ra, then we can first consider the interval

I1 ¼ ½ra; de1
�, where de1

is the first task deadline after ra, and

evaluate hkðra; de1
Þ. Then, we can iteratively evaluate

hkðra; deiÞ by using hkðra; dei�1
Þ and the procedure outlined

above.
It is clear that computing hkðra; de1

Þ; . . . ; hkðra; denÞ cannot

require more than Oðn � k2Þ operations since, at most, a total

of n tasks can be added throughout the iterations at distinct

deadlines. This observation immediately yields an algo-

rithm of total complexity Oðn2 � k2Þ since we can repeat the

iterations over deadlines for every release time.
The algorithm FT-feasibility, shown in Fig. 3, first orders

and puts task release times and deadlines into two lists,

A ¼ ½ra1
; . . . ; ran � and E ¼ ½de1

; . . . ; den �. We note that ai
denotes the index of the task with the ith earliest release

time, whereas ei denotes the index of task with the

ith earliest deadline. Clearly, both lists can be obtained in

Oðn � lognÞ time.
After computing the recovery overhead functions of

single tasks, a nested loop is invoked. The outer loop

iterates over increasing release times, whereas the inner

loop iterates over increasing deadlines. When we consider

an interval ½rai ; dej �, the set �ðrai ; dej�1
Þ is updated by tasks

having the deadline dej , provided that their release times

are not before rai (start point of the interval). Once the set of

tasks to be added is determined in this way, the worst-case

recovery overhead functions, cumulative execution time

functions, and, hence, the fault-sensitive processor demand

function can be updated efficiently by the technique

outlined above. The overall time complexity is Oðn2 � k2Þ,
as explained above.

Now, we return to the example task set in Table 1 and

check if it is 2-fault tolerant using the algorithm FT-

Feasibility. When we focus on the recovery overhead of

faults affecting exclusively single tasks, we easily compute

the values of w0ðÞ, w1ðÞ, and w2ðÞ functions:

w0ðf�1gÞ ¼ 0 w1ðf�1gÞ ¼ 5 w2ðf�1gÞ ¼ 10
w0ðf�2gÞ ¼ 0 w1ðf�2gÞ ¼ 1 w2ðf�2gÞ ¼ 4
w0ðf�3gÞ ¼ 0 w1ðf�3gÞ ¼ 6 w2ðf�3gÞ ¼ 11
w0ðf�4gÞ ¼ 0 w1ðf�4gÞ ¼ 10 w2ðf�4gÞ ¼ 15:

1378 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

Fig. 3. Algorithm to check the feasibility in the presence of multiple faults.

Then, we iterate over ½rai ; dej � intervals, defined over all
(release time, deadline) pairs. In Table 2, we provide the
information about each interval I, its length, the tasks that
form the fault-sensitive processor demand (the set � in the
algorithm), the values of w1ð�Þ, w2ð�Þ, and Cð�Þ, and the
total fault-sensitive demand h2ðIÞ ¼ Cð�Þ þ w2ð�Þ. Note that
the computation of w1ð�Þ and w2ð�Þ is performed by the
dynamic programming technique outlined in Section 5.

We observe that there is in fact one (and only one) 2-fault
scenario for which the fault-sensitive processor demand
exceeds the length of the interval: This is the interval ½r3; d4�.
In fact, as can be seen in Fig. 4, �4 will miss its deadline if �3

and �4 both fail just once. In other words, the only 2-fault
scenario that can cause a deadline miss is given by the fault
pattern f ¼ f0; 0; 1; 1g and the task set is not 2-fault tolerant.

7 EXTENSION TO ONLINE SETTINGS

The algorithm presented in Section 6 solves the feasibility
problem in the presence of k transient faults. However, it
has a limitation: It requires exact information about task
release times a priori. In many real-time applications, this
information may not be a priori available. Even if some
information about the release times is available, the effects
of jitter can shift the release times considerably. Thus, an
online algorithm that performs fault-sensitive feasibility
analysis as tasks arrive would be very useful for practical
real-time applications. The algorithm that we present in this
section is effectively equivalent to an online admission test

for real-time tasks that can be subject to transient faults at
runtime. One additional advantage of the algorithm is its
ability to dynamically perform adjustments for tasks that
complete without presenting their worst-case workload (a
common situation in many applications).

The concepts and techniques developed in the previous
sections can be adopted to dynamic settings as follows:
Whenever a task is released, the fault-sensitive feasibility
analysis will be carried out over the set of current ready tasks
by taking into account their remaining computational
demands (and recovery overheads). We note that our
approach is parallel to the algorithm presented by Buttazzo
and Stankovic [7] in their overload management framework
that uses (non-fault-sensitive) processor demand analysis.

The algorithm Online-Feasibility is shown in Fig. 5. It is
invoked at every task release time ta. The algorithm assumes
that the ready tasks are ordered according to their deadlines
(in fact, the task ready queue of the operating system will
directly provide this information when using EDF). At every
release time t ¼ ta, the new fault-sensitive processor demand
is evaluated by taking into account only the computational
demand (and the recovery overheads) in intervals
½ta; d1�; ½ta; d2�; . . . ; ½ta; dm�, where m is the number of ready
tasks, in a fashion similar to Algorithm FT-feasibility. One
major difference is that, since we run this test dynami-
cally, we consider each ready task as if it was released at
t ¼ ta but with remaining computational time ci when reeval-
uating the new fault-sensitive processor demand.

Online-Feasibility can be invoked at each release time to
check the tolerance to k faults. However, it still has a
drawback: It repeats the test at every release time anew for
k faults, regardless of the number of faults detected
previously. If (and according to our framework, since) we
know that at most k faults will occur during the entire
execution interval, then we can decrement k whenever we
detect a fault. Further, if this is the zth fault encountered in �i,
we must update the indices of the recovery blocks associated
with that task since the recovery block Bi;z will immediately
be activated and the following recovery blocks will be
executed in case Bi;z fails too.

The procedure Update-FT-parameters (Fig. 6) decre-
ments k, the number of faults to be tolerated after this point.
Then, it recomputes the remaining worst-case workload of
task �i: If the fault is encountered in �i, then Bi;1 will be
definitely executed as the immediate workload of the task
(this is established by setting ci to bi;1). Further, the indices
of the subsequent recovery blocks Bi;2; Bi;3 . . . are decre-
mented to reflect their running order in the case of any
additional faults that might occur in the future. Finally, we
update the whðf�igÞ values as a preparation for the
reinvocation of the algorithm at the next release time.

Complexity. When invoked, Online-Feasibility considers
only one release time, which is in fact the current time (as

AYDIN: EXACT FAULT-SENSITIVE FEASIBILITY ANALYSIS OF REAL-TIME TASKS 1379

TABLE 2
Trace of FT-feasibility on the Example Problem

Fig. 4. A worst-case 2-fault scenario resulting in a deadline miss.

opposed to FT-Feasibility that iterates over all release times

and deadlines during the offline analysis). Thus, the time

complexity of the algorithm Online-Feasibility is Oðm � k2Þ
per invocation, where m is the number of ready tasks and

k is the maximum number of faults to be tolerated after

this point. The procedure Update-FT-parameters requires

OðkÞ operations.

8 EXTENSION TO PERIODIC TASKS

Up to this point, our framework assumed a general real-

time task model in which each task has its distinct ready

time, arrival time, and worst-case execution time. However,

a large number of real-time applications are periodic in
nature; especially, widespread digital control and audio/
video processing tasks are invoked periodically. Hence, it is
worthwhile to investigate the extension of the framework to
the periodic execution settings.

A periodic task generates a sequence of task instances,
each with its own release time and deadline. The inter-
arrival time of the instances (that is, the time difference
between the arrivals of instances) is given by the period of
the task. Specifically, we consider a set of independent
periodic tasks � ¼ f�1; . . . ; �ng. The period and the worst-
case execution time of �i are denoted by pi and ci,
respectively. The jth instance of �i is denoted by �i;j. The

1380 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

Fig. 5. The online algorithm to check the feasibility in the presence of faults.

Fig. 6. Algorithm to update the recovery-related parameters.

release time and deadline of �i;j are given by ri;j ¼
ri;1 þ ðj� 1Þ pi and di;j ¼ ri;j þ pi, respectively. Without loss
of generality, we assume that all periodic tasks are ready at
t ¼ 0 (that is, ri;1 ¼ 0 8i). We still commit to the preemptive
EDF policy whose optimality in the presence of faults was
proven in Section 4.

Each of the �is instances has the same set of recovery
blocks Bi;1; . . . ; Bi;k, with corresponding execution times
bi;1; . . . ; bi;k. That is, a single task instance �i;j may fail up to
k times. We assume that the faults affecting different
instances of �i are independent. Our objective is again to
determine whether � can be scheduled in a k-fault-tolerant
manner, that is, whether all of the task instances can
complete in a timely manner under any fault pattern with at
most k faults.

Since a periodic task generates (potentially) an infinite
sequence of task instances, we require that the task set
tolerate any k faults that occur in the interval ½0; P �, where P
is the least common multiple of all the periods (commonly
known as the hyperperiod). Since all of the tasks become
simultaneously ready again at t ¼ P , it is easy to see that
this will enable the system to tolerate any k-fault pattern in
any interval ½qP ; ðq þ 1ÞP �, where q is an integer.

To start with, observe that the methodology developed in
earlier sections can still be used by treating each instance of
�i as a different aperiodic task in the interval ½0; P �. In
particular, the necessary and sufficient condition for k-fault
tolerance given in Theorem 2 remains valid. This condition
can be rewritten as

hkðt1; t2Þ
t2 � t1

� 1 for all intervals ½t1; t2�: ð4Þ

Though accurate, the main problem with this straightfor-
ward approach is the computational complexity: Since there
may be a very large (potentially exponential) number of
task instances in the hyperperiod, the overhead may be
prohibitive. Specifically, if there are a total of N different
task instances (belonging to n periodic tasks), then the
application of the algorithm in Section 6 will involve a time
complexity of OðN2 � k2Þ, which may be exponential if N is
large compared to n. Therefore, a simpler and computa-
tionally more feasible approach is warranted.

A well-known result established by Liu and Layland’s
seminal paper [27] is that, in the absence of faults, a periodic
task set � is feasible if and only if its total utilization, defined
as Utotð�Þ ¼

Pn
i¼1

ci
pi

, does not exceed 100 percent when
scheduled by preemptive EDF. Along the same lines, our
research for k-fault tolerance of periodic tasks involves a
simple bound that can be computed efficiently while
providing a sufficient condition.

The main result of this section will involve an additional
definition: For every periodic task �i, we define a correspond-
ing aperiodic task �i with execution time ci

pi
and k recovery

blocks with execution times bi;1
pi
; . . . ;

bi;k
pi

. Let us denote by ��

the set of corresponding aperiodic tasks f�1; . . . ; �ng
obtained from � in this way. We can now present our main
result on k-fault-tolerant periodic tasks.

Theorem 4. A set of periodic real-time tasks � is k-fault tolerant
if Utotð�Þ þ wkð��Þ � 1:0.

Before giving the proof details, we remark that the

sufficient condition above can still be checked in time

Oðn2 � k2Þ, where the dominant term comes from the

computation of the worst-case recovery overhead of the

corresponding aperiodic task set ��.

Proof. We begin by introducing some additional notation.

Given an interval ½t1; t2�, we define:

. Yiðt1; t2Þ: The set of instances of the periodic
task �i whose release times and deadlines are
fully contained in the interval ½t1; t2�.

. �iðt1; t2Þ: The number of instances of the periodic
task �i whose release times and deadlines are
fully contained in the interval ½t1; t2�. Formally,
�iðt1; t2Þ ¼ jYiðt1; t2Þj.

In the following discussion, we omit the parameters of
YiðÞ and �iðÞ when the interval in question is clear.

From Definition 2, the k-fault-sensitive processor
demand in an interval ½t1; t2� is defined as
hkðt1; t2Þ ¼ Cð�ðt1; t2ÞÞ þ wkð�ðt1; t2ÞÞ. Using the periodic
invocation pattern and the definitions of YiðÞ and �iðÞ, we
can write

hkðt1; t2Þ ¼
Xn
i¼1

�iðt1; t2Þ � ci þ wk
[n
i¼1

Yiðt1; t2Þ
 !

: ð5Þ

Using (4), we can rewrite the necessary and sufficient
condition for k-fault tolerance asPn

i¼1 �iðt1; t2Þ � ci
t2 � t1

þ wkð
Sn
i¼1 Yiðt1; t2ÞÞ
t2 � t1

� 1:0

for all intervals ½t1; t2�:
ð6Þ

We will show the sufficient nature of the bound given
in the theorem by proving that, for each interval ½t1; t2�,Pn

i¼1 �i � ci
t2 � t1

� U�
tot ð7Þ

and

wkð
Sn
i¼1 YiÞ

t2 � t1
� wkð��Þ: ð8Þ

Consequently, whenever the inequalityUtotð�Þ þ wkð��Þ �
1:0 holds, the k-fault tolerance will be guaranteed.

We begin by showing the inequality in (7). Observe
that �i ¼ bt2�t1pi

c. Hence,

Pn
i¼1 �i � ci
t2 � t1

¼
Pn

i¼1bt2�t1pi
c � ci

t2 � t1
�Pn

i¼1
t2�t1
pi
� ci

t2 � t1
¼
Xn
i¼1

ci
pi
¼ U�

tot;

establishing the claim.
Validating the inequality in (8) is slightly more

involved. Let �f ¼ ff1; . . . ; fng be the k-fault pattern with
the largest recovery overhead in interval ½t1; t2�, where fi
denotes the number of faults affecting �i’s instances
whose release times and deadlines are totally confined in
the same interval. Observe that

P
fi ¼ k. We can write

AYDIN: EXACT FAULT-SENSITIVE FEASIBILITY ANALYSIS OF REAL-TIME TASKS 1381

wkð
Sn
i¼1 YiÞ

t2 � t1
¼
Pn

i¼1 wfiðYiÞ
t2 � t1

¼
Xn
i¼1

wfiðYiÞ
t2 � t1

�
Xn
i¼1

wfiðYiÞ
pi � �i

: ð9Þ

The latter inequality is justified by the fact that pi � �i is
the minimum interval length that can accommodate
exactly �i instances of �i in Yiðt1; t2Þ.

Moreover, wfiðYiÞ is certainly smaller than the
recovery overhead of the fi �i-fault pattern, where each
of the �i instances in Yi incurs exactly fi faults. However,
the latter is equal to wfiðf�i;mgÞ � �i, where wfiðf�i;mgÞ is
simply the (worst-case) recovery overhead of fi faults, all
occurring in a single instance of �i. Hence,

wfiðYiÞ
pi � �i

� wfiðf�i;mgÞ � �i
pi � �i

¼ wfiðf�i;mgÞ
pi

; ð10Þ

Xn
i¼1

wfiðYiÞ
pi � �i

�
Xn
i¼1

wfiðf�i;mgÞ
pi

: ð11Þ

Recalling the definition of the corresponding aperiodic

task �i, we observe that the quantity
wfi ðf�i;mgÞ

pi
is

equivalent to wfið�iÞ. Combining this observation with

(9) and (10), we prove (8) and the theorem. tu

9 NONPREEMPTIVE EXECUTION OF RECOVERY

BLOCKS

Our framework assumed a priority-driven real-time execu-
tion environment where preemption is allowed for both
main tasks and recovery blocks. As a result, a recovery
block activated upon the detection of a transient fault may
be preempted if a task with high priority (earlier deadline)
arrives. The recovery block will resume its execution only
when it again becomes the highest priority task in the
system. This approach has the merit of considering the
timing constraints as the sole criterion for priority assign-
ment and it leads to the result regarding the optimality of
the preemptive EDF policy for real-time task systems that
rely on a recovery block mechanism to tolerate transient
faults (Corollary 1).

However, it is also possible to imagine an environment
where the system, upon the detection of a fault, enters the
recovery mode and attempts to complete the execution of
the recovery block(s) as soon as possible, without any
preemption. This gives rise to a model where the recovery
blocks (unlike the main tasks) are executed in a non-
preemptive manner. The problem of determining whether a
given task set is k-fault tolerant in this new model can be
formally stated as follows:

Problem Nonpreemptive-FT. Consider a set � ¼
f�1; . . . ; �ng of n real-time tasks, where each task �i has
release time ri, deadline di, worst-case execution time ci,
and recovery blocks fBi;jg j ¼ 1; . . . ; k. The execution time
of Bi;j is given by bi;j. Is it possible to complete all tasks and
potential recovery operations within timing constraints
under any fault scenario with at most k faults with the
additional constraint that the recovery blocks are to be
executed in a nonpreemptive manner?

The general problem of nonpreemptive real-time sche-
duling is known to be intractable [14]. On the other hand,
Nonpreemptive-FT imposes the nonpreemptive execution

requirement only for recovery blocks; further, a given

recovery block is activated/scheduled only when a tran-

sient fault is detected at the end of the main task, which can

be executed preemptively and which, by definition, has a

nonzero execution time. Nevertheless, this new problem

can be shown to be intractable as well.

Theorem 5. Nonpreemptive-FT is NP-hard.

Proof. We prove that Nonpreemptive-FT is NP-hard by

reduction from PARTITION, which is known to be NP-

complete [14]:
Problem PARTITION. Consider a set 	 of n items,

fa1; . . . ; ang, where there is an integer “size” si associated
with each item ai and

Pn
i¼1 si ¼ 2 A. Is it possible to

partition 	 into two disjoint subsets, 	1 and 	2, such thatP
ai2	1

si ¼
P

ai2	2
si ¼ A?

We claim that if there were a polynomial-time
solution to Nonpreemptive-FT, then it would be possible
to solve PARTITION (which is NP-complete) in poly-
nomial time. Given an instance of PARTITION, we will
construct a corresponding instance of Nonpreemptive-FT
and show that the PARTITION instance admits a YES
answer if and only if the instance of Nonpreemptive-FT
admits a YES answer.

We define the corresponding Nonpreemptive-FT
instance as follows: We will have a set of real-time tasks,
� , where each task �i ði ¼ 1; . . . ; nÞ is given by

ci ¼
 where 0 <
 <
1

n

ri ¼ r ¼ 0

di ¼ d ¼ 2Aþ n
þ 2

bi;1 ¼ bi ¼ si
bi;j ¼ 0 ðj ¼ 2; . . . ; kÞ:

As can be seen, each task �i has only one recovery block,
Bi;1 ¼ Bi, whose execution time bi;1 ¼ bi is equal to the
“size” si of the corresponding item in the PARTITION
instance. That is, this construction implies that a given
task may be subject to at most one transient fault. The total
number of faults the tasks can incur, that is, the
parameter k, is set to n. Since bi;j ¼ 0 ðj � 2Þ, there is only
one k-fault (n-fault) scenario that we need to consider: This
is the scenario where all tasks �1; . . . ; �n fail exactly once.

In addition, we have a last task, �nþ1, with the
following parameters:

cnþ1 ¼ 2

rnþ1 ¼Aþ n

dnþ1 ¼Aþ n
þ 2

bnþ1;j ¼ 0 ðj ¼ 1; . . . ; kÞ:

We first show that if the Nonpreemptive-FT instance
has a YES answer, then the corresponding PARTITION
instance admits a YES answer as well.

Observe that the release time and deadline of �nþ1 are
different from those of �1; . . . ; �n. Further, it is assumed
that it will not be affected by any faults (bnþ1;j ¼ 0 8j).
Also, �nþ1 arrives at t ¼ n
þA and its execution time
cnþ1 ¼ 2 is equal to its laxity. It is clear that, under any

1382 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

k-fault-tolerant schedule, the time interval ½Aþ n
;Aþ
n
þ 2� will need to be exclusively reserved for �nþ1.
Hence, �1; . . . ; �n and, in the worst-case fault scenario,
their recovery blocks B1; . . . ; Bn need to be executed in
intervals ½0; Aþ n
� and ½Aþ n
þ 2; 2Aþ n
þ 2� (see
Fig. 7). Note that the entire timeline ½0; 2Aþ n
þ 2� will
have to be used for task and recovery block executions
(that is, there will not be any idle CPU time) in this
specific fault scenario.

We claim that all of the tasks �1; . . . ; �n need to be fully
executed in interval ½0; Aþ n
� if the task set is k-fault
tolerant. To see this, first observe that the total amount of
CPU time needed for task executions is n �
 < 1. Assume
that �1; . . . ; �n are not fully executed in ½0; Aþ n
�. Then,
the total amount of available CPU time for the
nonpreemptive execution of recovery blocks in the interval
½0; Aþ n
�, denoted by W , would be Aþ n
� y, where
0 < y < n
 < 1. This gives A < W < Aþ 1, where A is an
integer from the assumption. In turn, this implies that
one needs to come up with a subset of recovery blocks
whose total execution time W in ½0; Aþ n
� is a
noninteger. However, this is not possible in view of the
fact that all of the recovery block execution times are
integers (from the PARTITION instance) and any subset
of integer numbers has an integer sum.

Consequently, �1; . . . ; �n should all be scheduled in
interval ½0; Aþ n
�. Then, it becomes clear that the task
set is k-fault tolerant (in the nonpreemptive sense) only
when it is possible to partition all the recovery blocks
B1; . . .Bn (with execution times bi ¼ si i ¼ 1; . . . ; nÞ in
two subsets, each with total execution time exactly A.
This is true only if the original PARTITION instance
admits a YES answer.

Conversely, assume that the PARTITION instance has

a YES answer, that is, we can partition 	 into two disjoint

subsets 	1 and 	2 such that
P

ai2	1
si ¼

P
ai2	2

si ¼ A.

Further, define �1 ¼ fBijai 2 	1g and �2 ¼ fBijai 2 	2g.
We will show that this implies a YES answer for the

corresponding Nonpreemptive-FT instance.

Consider the schedule where �1; . . . ; �n are scheduled
one after the other in the interval ½0; n
�. Also, to
provision for the fault pattern where each task incurs
exactly one fault, we can execute the recovery blocks in

�1 in the interval ½n
; n
þA� and those in �2 in the
interval ½Aþ n
þ 2; 2Aþ n
þ 2� in a nonpreemptive
manner. The resulting schedule meets the timing con-
straints even with k faults (see Fig. 8); hence, the
corresponding Nonpreemptive-FT instance also has a
YES answer. tu

10 RELATED WORK

There is a significant body of literature on fault-tolerant

real-time systems. Our work falls along the lines of [23],

[25], [35], [36], where a maximum number of faults need to

be tolerated during the execution of the task set, without

any extra assumption about the fault distribution. The

approach is named job-level fault tolerance in [36] and fault

resilience in [25]. A number of studies assume that the fault

arrival rate follows a probability distribution (for example,

Poisson or Weibull distribution [10]) and/or that two

successive faults are separated by a minimum known time

interval [24], [29], [31]. The first approach (which is adopted

in our work) appears to be more general for settings where

the fault arrival pattern (or distribution) cannot be

predicted accurately, for example, on settings where faults

can occur in bursts. The second approach has the advantage

of exploiting a priori information about the fault arrivals in

order to reserve the system resources less conservatively for

potential recovery operations. Zhang and Chakrabarty

discuss the connections and possible transitions between

these two alternative fault models in [36].
It would be fair to state that most of the existing fault-

tolerant real-time scheduling literature deals with fixed-

priority settings. Ghosh et al. extended Rate Monotonic

Scheduling (RMS) feasibility bounds to account for the

overhead of transient faults in [15]. In [29], Pandya and

Malek adopted a recovery model where all unfinished tasks

are reexecuted upon the detection of a fault and they

derived a utilization bound equal to 50 percent for RMS.

Ramos-Thuel and Strosnider extended the slack stealing

technique to reserve time for potential recovery operations

[34]. Han et al. presented an algorithm for settings where

each periodic task has two versions: primary and alternate

[16]. Their algorithm attempts to complete as many

AYDIN: EXACT FAULT-SENSITIVE FEASIBILITY ANALYSIS OF REAL-TIME TASKS 1383

Fig. 7. The timeline for the task set with nonpreemptive recovery blocks.

Fig. 8. The hypothetical k-fault-tolerant schedule.

primaries as possible while attempting to complete the
alternate versions before the deadlines in the case of faults.

Researchers from the Real-Time Systems Group at the
University of York investigated various aspects of fault-
tolerant fixed-priority real-time computing. A well-known
response time analysis is extended to account for recovery
overhead in [4]. A framework to provide probabilistic
timing guarantees in fault-sensitive settings is proposed in
[5]. The effects of checkpointing on fixed-priority schedul-
ing analysis were studied in [31].

Lima and Burns presented an algorithm to find the
optimal priority assignment during recovery operations,
again for fixed-priority systems [24] by assuming a
minimum time interval between faults. In [25], they
extended the framework by removing this restriction: They
perform the schedulability analysis as a function of a fault
resilience metric, which represents the maximum number of
faults that the task may experience.

A framework to provide probabilistic timing guarantees
in fault-sensitive settings is proposed in [5]. In [6], Burns
et al. provide a generalized framework that assumes
probabilistic fault and task arrival patterns, as well as
worst-case execution time estimations. Their analysis is
formulated in terms of the probability of failure for each
task execution.

Research studies built on the EDF policy were much less
numerous. Among such studies, we can mention the early
work of Chetto and Chetto [11], where an offline schedule
for alternates is generated and modified at runtime,
depending on the occurrence (or absence) of faults. The
work in [23] was the first to characterize the feasibility of a
real-time task set with EDF under transient faults, although
the assumption was that all recovery blocks of a given task
have the same execution time. Caccamo and Buttazzo
exploited the paradigm of skippable real-time tasks to
provision for faults while improving the user-perceived
quality of service whenever possible [9]. Existing fault-
tolerant real-time resource management techniques were
revisited to incorporate the effects of low-power design
techniques in [26], [35].

After its introduction in [2], [3], the processor demand
analysis for deadline-driven systems was extended by
Jeffay and Stone to various settings such as scheduling
with shared resources [17] and accounting for interrupt
handling costs [18]. Buttazzo and Stankovic proposed an
online scheme to perform an admission test as tasks arrive
dynamically, using the fundamental principles of the
processor demand analysis [7]. One main advantage of this
technique is that it does not suppose a priori knowledge of
release times. More recently, Buttazzo et al. made use of the
processor demand analysis to validate their elastic scheduling
framework [8].

11 CONCLUSION

In this paper, we considered and effectively solved the
problem of checking the feasibility of a real-time task set
under any k-fault scenario. We showed how the well-
known processor demand analysis can be extended to take
into account the CPU time that must be reserved for
(potential) recovery operations. That is, we provided an

exact characterization of fault-tolerant real-time schedules
under worst-case fault scenarios.

Based on this characterization, we provided an efficient
and dynamic programming-based algorithm that checks
whether an aperiodic real-time task set is k-fault tolerant.
Unlike previous solutions, our approach does not assume
that the recovery blocks of a given task have the same
worst-case execution time. We also provided an online
extension of the algorithm that performs the feasibility test
at every task release time without requiring the knowledge
of future arrivals. The algorithm has the additional feature
of adjusting its recovery-related parameters on the fly as
faults are detected and recovered from.

Building on this framework, we extended the solution to
the periodic execution settings and derived a sufficient
condition for the k-fault tolerance of periodic tasks. The time
complexity of the solution is Oðn2 � k2Þ for n periodic tasks.
Finally, we proved that the problem becomes intractable if
the recovery blocks are forced to execute in a nonpreemp-
tive fashion.

Our research has some distinct features in that it does not
assume 1) identical execution times for recovery blocks,
2) any specific fault arrival pattern, or 3) fault-free execution
for recovery blocks. However, the analysis is limited to
independent tasks. We hope that it will stimulate further
research on the analysis of extended task models in the
presence of transient faults, such as those given with
complex precedence constraints. Nevertheless, another
research avenue is to consider extension to multiprocessor
systems. For settings where the recovery blocks have to be
executed nonpreemptively, further research on polynomial-
time approximation algorithms is warranted.

APPENDIX

CASE OF RECOVERY BLOCKS WITH NONINCREASING

EXECUTION TIMES

In this part of the paper, first we restate and prove
Theorem 3. Then, we show how a fast solution can be
devised using the property stated in the theorem.

Theorem 6. If bi;j � bi;jþ1 8i; j, then wkð�Þ ¼
Pk

j¼1
�bjð�Þ.

Proof. We will show the theorem by induction on n, the
number of tasks in � . Recall that �bið�Þ denotes the
ith largest value among all recovery block execution
times b1;1; . . . ; bn;k. Observe that, for a single task �x,
if bx;j � bx;jþ1, as was assumed, then �biðf�xgÞ ¼ bx;i.
Then, the base case is easily established: For n ¼ 1
(that is, for a task set containing only one task �x),
wkðf�xgÞ ¼

Pk
j¼1 bx;j ¼

Pk
j¼1

�bjðf�xgÞ.
Assume that the statement holds for all task sets

containing less than n tasks. We will show that it remains
valid for any task set � 0 with n tasks.
� 0 can be written as � [f�xgwhere � is a set with n� 1

tasks. From (3), we can write

wkð� 0Þ ¼ max
k

j¼0
wk�jðf�xgÞ þ wjð�Þ
� �

: ð12Þ

Let h be the value of j for which wk�jðf�xgÞ þ wjð�Þ is

maximized. In other words, in the worst-case fault

1384 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

pattern �f for � 0, � incurs exactly h faults and �x incurs

exactly k� h faults. Since � has n� 1 tasks, by

induction assumption, whð�Þ ¼
Ph

j¼1
�bjð�Þ. Similarly,

wk�hðf�xgÞ ¼
Pk�h

j¼1
�bjðf�xgÞ ¼

Pk�h
j¼1 bx;j.

Hence, the proof will be complete if we show that
�b1ð�Þ . . . �bhð�Þ and �b1ðf�xgÞ . . . �bk�hðf�xgÞ together corre-
spond to �b1ð� 0Þ . . . �bkð� 0Þ. Observe that showing the
validity of the following two propositions is sufficient
for that purpose:

1. All of the elements in �b1ðf�xgÞ . . . �bk�hðf�xgÞ are all

greater than or equal to �bhþ1ð�Þ . . . �bkð�Þ (when

h < k).
2. All of the elements in �b1ð�Þ . . . �bhð�Þ are all greater

than or equal to �bk�hþ1ðf�xgÞ . . . �bkðf�xgÞ (when
h > 0).

To justify proposition 1 of the proof, we need to show

that the smallest element in �b1ðf�xgÞ . . . �bk�hðf�xgÞ, namely,

bk�hðf�xgÞ, is greater than the largest element in
�bhþ1ð�Þ . . . �bkð�Þ, which is �bhþ1ð�Þ. This is valid for the

following reason: Suppose otherwise, that is, �bk�hðf�xgÞ ¼
bx;k�h < �bhþ1ð�Þ when h < k, then, the recovery overhead

of another k-fault scenario whþ1ð�Þ þ wk�h�1ðf�xgÞ would

be larger than whð�Þ þ wk�hðf�xgÞ, contradicting the
assumption that h is the value that maximizes (12) above.

Similarly, to show proposition 2 of the proof, we need

to establish that �bk�hþ1ðf�xgÞ � �bhð�Þ when h > 0. Sup-

pose otherwise, that is, �bk�hþ1ðf�xgÞ ¼ bx;k�hþ1 > �bhð�Þ
when h > 0. Then, consider the recovery overhead of

another k-fault scenario, namely, wh�1ð�Þ þ wk�hþ1ðf�xgÞ.
This would again be larger than whð�Þ þ wk�hðf�xgÞ,
contradicting the definition of h. tu
According to Theorem 3, for any task set � , the worst-case

recovery overhead of k-fault patterns may be computed by

finding the summation of the largest k recovery blocks over

all of the tasks in � if bi;j � bi;jþ1 8i; j. Algorithm WC-Fault-

Overhead-2 (Fig. 9) provides a fast solution. The algorithm

exploits the fact that the recovery blocks of a given task �i
are already in a nonincreasing order by assumption. Hence,

sorting the execution times of all first recovery blocks

(step 2) will also enable us to choose the largest among all

recovery block execution times (say, by;1). By using the same

property, we can infer that the second largest recovery

block execution time will be either by;2 or a first recovery

block of another task �z, z 6¼ y. In this way, we can identify

and sum up the largest k recovery blocks in k iterations

(Steps 3-8).
Initial sorting takes Oðn lognÞ time, whereas the loop

(Steps 3-8) can be executed in time Oðn � kÞ. The total time

complexity is therefore Oðn lognþ n � kÞ.

ACKNOWLEDGMENTS

A preliminary version of this paper was published in the

Proceedings of the IEEE Real-Time Systems Symposium (RTSS),

2004.

REFERENCES

[1] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Power-
Aware Scheduling for Periodic Real-Time Tasks,” IEEE Trans.
Computers, vol. 53, no. 10, pp. 584-600, Oct. 2004.

[2] S. Baruah, A. Mok, and L. Rosier, “Preemptively Scheduling
Hard-Real-Time Sporadic Tasks on One Processor,” Proc. IEEE
Real-Time Systems Symp. (RTSS ’90), Dec. 1990.

[3] S. Baruah, R. Howell, and L. Rosier, “Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic, Real-Time
Tasks on One Processor,” Real-Time Systems, vol. 2, no. 4, pp. 301-
324, Nov. 1990.

[4] A. Burns, R. Davis, and S. Punnekkat, “Feasibility Analysis of
Fault-Tolerant Real-Time Task Sets,” Proc. Eighth Euromicro
Workshop Real-Time Systems, June 1996.

[5] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright, “Probabilistic
Scheduling Guarantees for Fault-Tolerant Real-Time Systems,”
Proc. Seventh IFIP Int’l Working Conf. Dependable Computing for
Critical Applications (DCCA ’99), Jan. 1999.

[6] A. Burns, G. Bernat, and I. Broster, “A Probabilistic Framework for
Schedulability Analysis,” Proc. Third ACM Int’l Embedded Software
Conf. (EMSOFT ’03), pp. 1-15, Oct. 2003.

[7] G. Buttazzo and J. Stankovic, “Adding Robustness in Dynamic
Preemptive Scheduling,” Responsive Computer Systems: Steps toward
Fault-Tolerant Real-Time Systems, D.S. Fussell and M. Malek, eds.,
Kluwer Academic, 1995.

[8] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
Scheduling for Flexible Workload Management,” IEEE Trans.
Computers, vol. 51, no. 3, pp. 289-302, Mar. 2002.

[9] M. Caccamo and G. Buttazzo, “Optimal Scheduling for Fault-
Tolerant and Firm Real-Time Systems,” Proc. Fifth Int’l Workshop
Real-Time Computing Systems and Applications (RTCSA ’98), Oct.
1998.

[10] X. Castillo, S.P. McConnel, and D.P. Siewiorek, “Derivation and
Calibration of a Transient Error Reliability Model,” IEEE Trans.
Computers, vol. 31, no. 7, pp. 658-671, July 1972.

[11] H. Chetto and M. Chetto, “Some Results of the Earliest Deadline
Scheduling Algorithm,” IEEE Trans. Software Eng., vol. 15, no. 10,
pp. 1261-1269, Oct. 1989.

[12] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. MIT Press, 1997.

[13] M.L. Dertouzos, “Control Robotics: The Procedural Control of
Physical Processes,” Information Processing, 1974.

[14] M. Garey and D. Johnson, Computers and Intractability. W.H.
Freeman, 1979.

[15] S. Ghosh, R. Melhem, D. Mossé, and J. Sansarma, “Fault-Tolerant
Real-Time Scheduling,” Real-Time Systems J., vol. 15, no. 2, pp. 149-
182, Sept. 1998.

[16] C. Han, K.G. Shin, and J. Wu, “A Fault-Tolerant Scheduling
Algorithm for Real-Time Periodic Tasks with Possible Software
Faults,” IEEE Trans. Computers, vol. 52, no. 3, pp. 362-372, Mar.
2003.

[17] K. Jeffay, “Scheduling Sporadic Tasks with Shared Resources in
Hard-Real-Time Systems,” Proc. IEEE Real-Time Systems Symp.
(RTSS ’92), Dec. 1992.

[18] K. Jeffay and D.L. Stone, “Accounting for Interrupt Handling
Costs in Dynamic Priority Task Systems,” Proc. IEEE Real-Time
Systems Symp. (RTSS ’93), Dec. 1993.

[19] K.-H. Huang and J.A. Abraham, “Algorithm-Based Fault Toler-
ance for Matrix Operations,” IEEE Trans. Computers, special issue
on reliable and fault-tolerant computing, vol. 33, no. 6, pp. 518-
528, June 1984.

AYDIN: EXACT FAULT-SENSITIVE FEASIBILITY ANALYSIS OF REAL-TIME TASKS 1385

Fig. 9. Algorithm to compute the worst-case recovery overhead function

for recovery blocks with nonincreasing execution times.

[20] R.K. Iyer and D.J. Rossetti, “A Measurement-Based Model for
Workload Dependence of CPU Errors,” IEEE Trans. Computers,
vol. 35, no. 6, pp. 511-519, June 1986.

[21] R.K. Iyer, D.J. Rossetti, and M.C. Hsueh, “Measurement and
Modeling of Computer Reliability as Affected by System
Activity,” ACM Trans. Computer Systems, vol. 4, no. 3, pp. 214-
237, Aug. 1986.

[22] F. Liberato, S. Lauzac, R. Melhem, and D. Mossé, “Global Fault-
Tolerant Real-Time Scheduling on Multiprocessors,” Proc. 11th
Euromicro Workshop Real-Time Systems, June 1999.

[23] F. Liberato, R. Melhem, and D. Mossé, “Tolerance to Multiple
Transient Faults for Aperiodic Tasks in Hard Real-Time Systems,”
IEEE Trans. Computers, vol. 49, no. 9, pp. 906-914, Sept. 2000.

[24] D.A. Lima and A. Burns, “An Optimal Fixed-Priority Assignment
Algorithm for Supporting Fault-Tolerant Hard Real-Time Sys-
tems,” IEEE Trans. Computers, vol. 52, no. 10, pp. 217-231, Oct.
2003.

[25] G. Lima and A. Burns, “Scheduling Fixed-Priority Hard Real-Time
Tasks in the Presence of Faults,” Proc. Second Latin-American Symp.
Dependable Computing (LADC ’05), pp. 154-173, Oct. 2005.

[26] R. Melhem, D. Mossé, and E. Elnozahy, “The Interplay of Power
Management and Fault Recovery in Real-Time Systems,” IEEE
Trans. Computers, vol. 53, no. 2, pp. 217-231, Feb. 2004.

[27] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[28] A. Maheshwari, W. Burleson, and R. Tessier, “Trading Off
Transient Fault Tolerance and Power Consumption in Deep
Submicron (DSM) VLSI Circuits,” IEEE Trans. Very Large Scale
Integration Systems, vol. 12, no. 3, pp. 299-312, Mar. 2004.

[29] M. Pandya and M. Malek, “Minimum Achievable Utilization for
Fault-Tolerant Processing of Periodic Tasks,” IEEE Trans. Compu-
ters, vol. 47, no. 10, pp. 1102-1112, Oct. 1998.

[30] D.K. Pradhan, Fault-Tolerant Computer System Design. Prentice
Hall, 1996.

[31] S. Punnekkat, A. Burns, and R. Davis, “Analysis of Checkpointing
for Real-Time Systems,” J. Real-Time Systems, vol. 20, no. 1, pp. 83-
102, Jan. 2001.

[32] B. Randell, “System Structure for Software Fault Tolerance,” IEEE
Trans. Software Eng., vol. 1, no. 2, pp. 220-232, June 1975.

[33] Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms, J. Stankovic, M. Spuri, K. Ramamritham, and
G. Buttazzo, eds. Kluwer Academic, 1998.

[34] S. Ramos-Thuel and J.K. Strosnider, “Scheduling Fault Recovery
Operations for Time-Critical Applications,” Proc. Fifth IFIP Int’l
Conf. Dependable Computing for Critical Applications (DCCA ’95),
Sept. 1995.

[35] Y. Zhang, K. Chakrabarty, and V. Swaminathan, “Energy-Aware
Fault Tolerance in Fixed-Priority Real-Time Embedded Systems,”
Proc. Int’l Conf. Computer-Aided Design (ICCAD ’03), Nov. 2003.

[36] Y. Zhang and K. Chakrabarty, “A Unified Approach for Fault
Tolerance and Dynamic Power Management in Real-Time
Embedded Systems,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 1, pp. 111-125, Jan. 2006.

Hakan Aydin received the BS and MS degrees
in control and computer engineering from
Istanbul Technical University in 1991 and
1994, respectively, and the PhD degree in
computer science from the University of Pitts-
burgh in 2001. He is currently an assistant
professor in the Computer Science Department
at George Mason University, Fairfax, Virginia.
He has served on the program committees of
several conferences and workshops, including

the IEEE Real-Time Systems Symposium and IEEE Real-time
Technology and Applications Symposium. He was a recipient of the
US National Science Foundation (NSF) Faculty Early Career Develop-
ment (CAREER) Award in 2006. His research interests include real-time
systems, low-power computing, and fault tolerance. He is a member of
the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1386 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

