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Communication Links for Distributed Quantum
Computation
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Abstract— Distributed quantum computation requires quan-
tum operations that act over a distance on error-correction
encoded states of logical qubits, such as the transfer of qubits via
teleportation. We evaluate the performance of several quantum
error correction codes, and find that teleportation failure rates of
one percent or more are tolerable when two levels of the [[23,1,7]]
code are used. We present an analysis of performing quantum
error correction (QEC) on QEC-encoded states that span two
quantum computers, including the creation of distributed logical
zeroes. The transfer of the individual qubits of a logical state
may be multiplexed in time or space, moving serially across a
single link, or in parallel across multiple links. We show that the
performance and reliability penalty for using serial links is small
for a broad range of physical parameters, making serial links
preferable for a large, distributed quantum multicomputer when
engineering difficulties are considered. Such a multicomputer will
be able to factor a 1,024-bit number using Shor’s algorithm with
a high probability of success.

I. I NTRODUCTION

D ISTRIBUTED quantum computation uses the physical
resources of two or more quantum computers to solve

a single problem [1]–[6]. These computers may be geograph-
ically distributed, or may be colocated, with the distributed
nature of the system used to overcome the inherent limitations
on the size of a single quantum computer [7], [8]. Distributed
quantum computation naturally depends on the development of
quantum networking technology to connect the computers [9],
[10].

A quantum computer is a device that uses non-classical,
quantum behavior of some physical phenomena to calculate
certain functions asymptotically faster than a purely classical
machine can [11], [12]. The fundamental unit of data in a
quantum computer is aqubit, which has two possible states,
written |0〉 and|1〉, analogous to the 0 and 1 of a classical bit.
These states may be the horizontal and vertical polarization
of a photon, the up and down spin of a single electron, or
the direction of a single quantum of magnetic flux; dozens of
quantum phenomena have been proposed as qubits, and many
of them are under experimental evaluation [7], [11], [12]. Most
systems, with the obvious exception of photons, hold qubits
in a register, and execute “gates” on the qubits, manipulating
their state like instructions in a classical computer manipulate
the bits of a register.

Perhaps the three most famous quantum algorithms are
Shor’s algorithm for factoring large numbers, Grover’s search
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algorithm, and the Deutsch-Jozsa algorithm for distinguishing
among certain classes of functions [13]–[15]. Shor’s algorithm
appears to offer a superpolynomial speedup for factoring,
compared to the best known classical algorithm. Grover has
shown that, for unstructured search problems, the best a
quantum computer can do is to search allN possible so-
lutions in O(

√
N) operations, while Deutsch-Jozsa turns a

probabilistic problem into one with a deterministic, certain
answer after a single iteration. All three have been demon-
strated experimentally at very small scales [16]–[18]. However,
designing and building quantum computers capable of solving
problems at scales that are classically intractable will require
many more years of effort from physicists working on the
basic technologies, theorists designing algorithms including
quantum error correction, and quantum computer architects.

Quantum computation utilizes the quantum characteristics
of superposition, entanglement, quantum interference, and
measurement to achieve its speedup in computational class.
Superposition, entanglement and interference refer to the
wavelike behavior of a quantum system. For our qubit, we
have two basis states,|0〉 and |1〉, which can be distinguished
by measurement in the computational basis, giving a classical
value. A superposition state contains amplitudes for|0〉 and
|1〉 at the same time. For instance, the superposition|0〉+ |1〉
has equal amplitudes for each basis state, meaning that there
is a 50% probability of measuring the qubit in|0〉 and a 50%
probability in |1〉. Superpositions of quantum states are the
source of the interference that drives a quantum computer;
quantum algorithms attempt to manipulate theamplitude and
phase of various states so that desirable states (the answers to
the problem being solved) have a high probability of being
measured while the undesirable states (the non-answers to
the problem being solved) have a low probability of being
measured.

Superposition can extend beyond single qubits and can be
seen in multi-qubit situations. Two qubits (labelledA andB)
can exist in a quantum state such as

|ψ〉AB = |0〉A|1〉B − |1〉A|0〉B. (1)

In this interesting state, if we measure the first qubit to be
in the state|0〉A, then the second qubit has to be in the
state |1〉B; conversely, getting the measurement result|1〉A
guarantees that we will find|0〉B. The A and B measured
results are perfectly anti-correlated. This multi-qubit super-
position described above is generally given the special name
entanglement because neither qubit can be said to be in a
state of its own, independent of the other. The state cannot be
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Fig. 1. A quantum multicomputer architecture with detail ofqubus connec-
tions.

factored into a product,|ψ〉AB 6= |χ〉A|η〉B , for any choice of
basis transformation. Many gates that act on two qubits can
change their level of entanglement, increasing or decreasing
it, depending on the gate and the initial state of the qubits.
Once a pair of qubits are entangled, they may be separated by
any distance, and will retain their shared state. This behavior
results in the “spooky action at a distance” that so disturbed
Einstein about quantum theory. The maximally entangled pair
of qubits are calledEPR pairs or Bell pairs, and can be used
to teleport quantum data, such that the unknown state of one
qubit can be moved from one location to another without
transporting the physical carrier of information of the qubit,
consuming an EPR pair in the process [19], [20].

It has been shown that entanglement between the separate
quantum computers, or nodes, of a distributed quantum system
is necessary if the system is to have the potential for exponen-
tial speedup over a classical computer (or cluster of classical
computers) [21]–[23]. At a practical level, this need for node-
spanning entanglement arises because application algorithms
require gates that act on data that is stored in separate
nodes [8], [24], [25]. This can be achieved by teleporting data
from node to node and performing computation locally (which
we refer to asteledata), or, alternatively, by using essentially
the same techniques to execute the equivalent of a local gate
over a distance, without bringing the two qubits together. This
technique is known as teleporting a gate (which we refer to
as telegate) [26]. We have found that, for some application
workloads and a reasonable set of physical assumptions, it is
better to teleport data than gates [8], [24].

Our quantum multicomputer (QMC) architecture is com-
posed of many small nodes, holding only a few logical qubits
each, with each node connected to two neighbors, left and
right, into a line, as shown in Figure 1. The connections
are assumed to bequbus links, which entangle distant qubits
using a strong probe laser beam that interacts weakly with
qubits connected to the bus, which we call thetransceiver
qubits [27]–[29]. The connections could also be made using
single photons instead of the qubus [3], [30]–[45], though the

TABLE I

NUMBER OF TELEPORTATIONS NECESSARY TO EXECUTE THE FULL

MODULAR EXPONENTIATION FORSHOR’ S FACTORING ALGORITHM FOR

DIFFERENT PROBLEM SIZES ON A QUANTUM MULTICOMPUTER[8], [24].

length teleportations (t)
16 14000–125000

128 8× 106–108

1024 4× 109–6× 1010

basic architecture is independent of this choice. The qubits
may be solid-state qubits (such as quantum dots or one of
several types of Josephson junction superconducting qubits),
and are assumed to be capable of interacting with their
neighbors inside a single node or with the qubus.

The performance of any computing system must be mea-
sured with respect to a particular workload; we have found
that this configuration works well for Shor’s factoring algo-
rithm [13]. The most computationally intensive portion of
the algorithm is the modular exponentiation [46]–[48]. This
modular exponentiation isO(n3) for factoring ann-bit num-
ber, both in local gate count and in teleportation operations.
Table I shows the number of logical qubit teleportations
necessary to execute the modular exponentiation portion of
Shor’s algorithm for 16, 128, and 1,024 bits. The design
choices of the number of qubits per node and the addition
algorithm to be used are important. The carry-lookahead adder
requires ten to fifteen times as many teleportations as the carry-
ripple adders (for 16 to 1,024 bits), but may produce results
faster under some circumstances; this accounts for the range
of values in Table I [48]–[50]. The numbers in this table are
used to choose the values for the results presented in Table III.

Individual physical qubits are quite fragile and prone to
errors and deterioration over time; therefore, application-level
algorithms are generally assumed to run on logical qubits,
encoded in multiple physical qubits viaquantum error cor-
rection [51]–[55]. Such error codes are generally described
as [[n, k, d]] codes, wheren is the number of lower-level
qubits in a block,k is the number of logical qubits the
block represents, and(d − 1)/2 is the maximum number of
errors in the block that will not corrupt the state. The coding
efficiencyk/n of quantum codes is lower than classical codes
because quantum states must be protected from errors in both
value and phase, as well as being inherently more delicate
than classical states. Research has concentrated onk = 1
codes both because simulating larger systems is difficult, and
because executing logical operations onk = 1 encoded states
is substantially easier thatk > 1 states. Codes discovered early
in the development of quantum computing include the [[7,1,3]]
code based on a Hamming code, the quantum-unique [[5,1,3]]
code, and the [[9,1,3]] code derived from the simplest classical
triple-redundancy protocol. More recently, Steane has been
investigating larger known classes of classical codes for their
quantum suitability and has recommended a [[23,1,7]] code
based on a Golay code [56], and Brunet al. have shown how to
ease some of the restrictions on the choice of code by utilizing
entanglement [57]. In this paper, we examine the interaction
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of the [[7,1,3]] and [[23,1,7]] codes with the teleportation
necessary for distributed quantum computation. Because the
encoded states of the [[7,1,3]] code are easier to manipulate
than the states of the [[5,1,3]] code, it is generally considered
more attractive. The [[23,1,7]] code is efficient relative to the
strength of protection provided, as we will show in Section IV.
Therefore, we focus on these two codes.

This paper addresses two issues relevant to the design of
systems for distributed quantum computation: the necessary
strength of error correction to provide a high probability of
success of a lengthy but finite computation when teleportation
is used as described above; and whether the quantum error
correction-encoded block may be transmitted serially or must
be transmitted in parallel, which helps determine our hardware
design. Section II describes how distributed logical zero states
can be constructed, providing the basis for doing error correc-
tion on logical states that span multiple nodes. Section III
shows the use of distributed logical zeroes in maintaining
distributed states and performing the error correction while the
states are in motion. The next section discusses how different
error correction codes improve the allowable teleportation
error rate, assuming that each logical qubit is teleported in
its entirety as necessary. Section V shows that serial links
perform nearly as well as parallel links, before we conclude
in Section VI.

II. D ISTRIBUTED LOGICAL ZEROES

Figure 2 shows a circuit for taking seven qubits initialized
to zero and combining them into a logical zero state (|0〉L)
for the Steane [[7,1,3]] quantum error correcting code. This
state is used in the fault-tolerant construction of quantumerror
correction and in fault-tolerant logical gates on encoded states.
In distributed quantum computation, we may need to perform
QEC on states that span two (or more) nodes, such as during
data movement between nodes in a quantum multicomputer,
or to maintain the integrity of a static state that spans multiple
nodes. Thus, we must find a way to either

1) create a distributed|0〉L state;
2) do parity (error syndrome) measurements using only the

qubus’s weak nonlinearity approach or single photons on
four or more qubits; or

3) find some other way to do syndrome measurements
without the full, distributed|0〉L state.

Of these three options, we have chosen the first. We have
also invested some effort in looking for a way to calculate
the parity ofn qubits using the weak nonlinearity, but all of
the schemes we have found so far for more than three qubits
scale poorly in terms of noise; Yamaguchiet al. have designed
a method that works for three qubits but not more [58].
Bacon has developed a new method for creating self-correcting
memories, using the original Shor [[9,1,3]] code, that may not
require the creation of logical zeroes; its implications for actual
implementation are exciting but still poorly understood [59],
[60]. Thus, |0〉L states must be created, and this section
discusses the performance and error characteristics of the
creation process.

a
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Fig. 2. Distributed circuit to create the|0〉L state for the Steane [[7,1,3]]
code.

TABLE II

BREAKPOINTS(CORRESPONDING TOFIGURE 2) AND THE COST OF

TELEGATE V. TELEDATA TO CREATE A LOGICAL ZERO STATE FOR THE

STEANE [[7,1,3]] CODE, IN EPRPAIRS CONSUMED. THE DIRECTION

QUBITS MUST BE TELEPORTED IS ALSO SHOWN FOR TELEDATA.

breakpoint telegate teledata
a 2 1 (B → A)
b 3 2 (B → A)
c 4 3 (B → A)
d 3 3 (A → B)
e 3 2 (A → B)
f 2 1 (A → B)

The logical|0〉L can be created using the same two methods
as any other distributed quantum computation: we can directly
create the state in a distributed fashion, using teleportedgates
(telegate), or we can create the state within a single node
and teleport several of the qubits to the remote node before
using the state in our QEC (teledata). First, consider the use
of teleported gates to create the|0〉L state. Figure 2 shows that
splitting the|0〉L state across two nodes, as at the line labeled
“c”, forces the execution of four teleported CNOTs, consuming
four EPR pairs; breaking at “d” would require only three.
In the figure, the subscripts represent the bit number in the
QEC block; the qubits have been reordered compared to the
common representation for efficiency. Our second alternative
is to teleport portions of a locally-created|0〉L state. If enough
qubits and computational resources are available at both nodes,
we are free to create the state in either location and teleport
some of the qubits; thus, the maximum number of qubits
that must be teleported is⌊n/2⌋, or 3 for the 7-bit Steane
code. Table II shows the number of gate or data teleportations
necessary, depending on the breakdown of qubits to nodes,
showing that teledata requires the same or fewer EPR pairs,
and so is preferred.

III. D ISTRIBUTED DATA

A. Static Distributed States

If a logical data qubit|ψ〉L is split between nodes A and
B in the same fashion as Figure 2, we will use distributed
|0〉L states to calculate the syndromes for the error correc-
tion. Each syndrome calculation consumes one|0〉L state,
first executing some gates to entangle it with the logical
data qubit, then measuring the zero state. The [[7,1,3]] code
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requires six syndrome measurements (three “value” and three
“phase” measurements), and Steane recommends measuring
each syndrome at least twice, so each QEC cycle consumes
at least a dozen logical zero states. With|ψ〉L divided at the
“d” point, each|0〉L creation requires three teleportations, for
a total of3×12 = 36 EPR pairs destroyed to execute a single,
full cycle of QEC.

The split described here allows a single logical qubit plus
its QEC ancillae, a total of fourteen physical qubits, to be
split between two nodes. The same principles apply to states
split among a larger number of nodes, potentially allowing
significantly smaller nodes to be useful, or allowing largerlog-
ical encoding blocks to used, spread out among small, fixed-
size nodes. More importantly for our immediate purposes, this
analysis serves as a basis for considering the movement of
logical states from node to node.

B. States in Motion

When considering the teleportation of logical qubits and
their error correction needs, two general approaches are pos-
sible:

1) Transfer the entire QEC block, then perform QEC lo-
cally at the destination; or

2) use one of the methods described above for distributed
QECbetween the teleportations of the component qubits.

The analysis in Section IV assumes the first approach, which
is conceptually simpler; does the second approach, shown
in Figure 3, offer any advantages in either performance or
failure probability? Using this approach, we attempt to reduce
the overall error probability by incrementally correctingthe
logical state as it is teleported; to teleport the seven-bitstate we
perform local QEC before beginning, then do distributed QEC
after each of the first six teleportations, then local QEC again
after the seventh teleportation. Each distributed QEC (DQEC)
block performs twelve distributed syndrome measurements.
We can again choose telegate or teledata for the|0〉L state
creation; the figure illustrates teledata. Using telegate,we
would need the sum of the telegate column in Table II, or
2+3+4+3+3+2 = 17, inter-node gates, for each syndrome
that must be measured. To perform twelve measurements we
consume a total of12× 17 = 204 EPR pairs. Using teledata,
we would need only1 + 2 + 3 + 3 + 2 + 1 = 12 per
syndrome, or 144 EPR pairs for the full twelve syndromes
in a cycle. The worst-case DQEC block is3 × 12 = 36
teleportations. Obviously, the probability of error is higher for
36 teleportations than for seven. Therefore, unless someone
develops a means of measuring syndromes without using the
|0〉L states, this second approach does not achieve its goal
of reducing the total error probability. Performance-wise, the
penalty for doing step-wise QEC is also stiff; we conclude
that this approach is not useful, given our current knowledge.

IV. T ELEPORTATIONFAILURE RATES

Teleportation is composed of several phases: EPR pair cre-
ation, local gates, measurements, and classical communication.
The EPR pairs necessary for teleportation can be created over

a fiber, interacting with a qubit at each end via single-photon
methods, or a qubus that utilizes a strong probe beam and
a weak nonlinearity, as noted above. Until we take up the
issue of link design in Section V, we will assume that local
gates, memory, and measurements are perfect, or at least much
better than EPR pair creation. Therefore, when we talk about
limits on the failure rate of teleportation, we are really referring
to the fidelity (quality) of the EPR pair. The quality can be
improved via purification [3], [30], [61], [62], which has a
cost logarithmic in the starting fidelity; in this paper, we will
not pursue further the best way to achieve EPR pairs of the
necessary quality, though our results here may help to establish
the target fidelity for qubit purification.

The argument here falls much along the lines of the thresh-
old argument for quantum computation in general [63], [64].
Because we are dealing with a small number of levels of
concatenation and a finite computation, we are less interested
in the threshold itself than a specific calculation of the success
probability for a chosen arrangement. A more detailed estimate
considering all three separate error sources in memory, local
gates, and teleportation, along the lines of Steane’s simula-
tions [56] would differ slightly; here we restrict ourselves to
a simple analysis involving teleportation errors only, while in
later sections we will introduce memory errors, as well.

First, let us briefly consider the failure probability assuming
no error correction on our qubits. The probability of success of
the entire computation, then, rests on the success ofall of the
individual teleportation operations. Ift is the total number of
teleportations we must execute for the complete computation
and pt is the probability of failure of a single teleportation,
our success probability is

ps = (1− pt)
t = 1−

(

t

1

)

pt+

(

t

2

)

(−pt)2 · · · ≈ 1− tpt (2)

for tpt ≪ 1. Our failure probability grows linearly with the
number of teleportations we must execute, requiringpt ≪ 1/t.
Error rates of10−5 to 10−11 are unlikely to be experimentally
achievable in the near future, so we quickly conclude that error
correction on the logical states being transferred is necessary.

We have examined one-level QEC and two-level concate-
nated QEC. We have evaluated all of the one- and two-layer
combinations of [[7,1,3]] and [[23,1,7]]. Forpt ≪ 1, most
failures will occur in the lowest failure mode,((d − 1)/2) +
1 = (d + 1)/2 errors. We will approximate our total failure
probability as the probability of(d + 1)/2 errors occurring.
The [[7,1,3]] code can restore the correct state only when at
most one component qubit has been corrupted. The [[23,1,7]]
code can defend against three errors, so we are interested in
the probability of two and four errors, respectively, when using
these codes.

Transferring the seven-qubit error correction code word
from one quantum computer node to another, illustrated in
Figure 4, consumes seven EPR pairs. The probability ofm
errors occurring is

pe(n,m) =

(

n

m

)

(1− pt)
n−mpmt ≈

(

n

m

)

pmt (3)
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for small pt.
If pf is the failure probability of our total algorithm andt

is the total number oflogical qubit teleportations we use in
the computation, then

pf = 1− ps = 1− (1− pe)
t ≈

(

t

1

)

pe = tpe. (4)

For this approximation to be valid, we requiretpe ≪ 1. For
the [[7,1,3]] code,

pe(7, 2) =

(

7

2

)

(1 − pt)
5p2t ≈ 21p2t (5)

is the probability of two errors occurring in our block of seven
qubits. Two qubit errors, of course, is more than the [[7,1,3]]
code can correct. Our probability of algorithm failure becomes

pf ≈ tpe = 21tp2t . (6)

Thus, we can say that, to have a reasonable probability of
success, we should havept ≪ 1/

√
21t. This is a significant

improvement over the case with no error correction seen
above, but is still a stringent physical condition to meet if

t is large. For the stronger [[23,1,7]] code,

pe(23, 4) =

(

23

4

)

(1− pt)
19p4t ≈ 8855p4t (7)

implying a desiredpt ≪ 1/ 4
√
8855t = 1/9.7 4

√
t.

For two levels of the [[7,1,3]] code, our total encoding
will consist of seven blocks of seven qubits each, and the
computation will fail only if two or more of those blocks fail.
Of course, when using concatenation, the two codes need not
be the same. Adapting Steane’s terminology and notation, will
refer to the physical-level code as the “inner” code, and the
code built on top of that as the “outer” code [56]. [[ni,ki,di]]
or [[n,k,d]] i is the inner code, and [[no,ko,do]] or [[n,k,d]]o is
the outer code. Approximating the error probability according
to Equations 3 and 4, we have

pf ≈ t

(

no

mo

)((

ni

mi

)

pm
i

t

)mo

(8)

wheremi = (di + 1)/2 and likewise formo.
Table III shows the estimates for the teleportation failure

probabilitypt that will give us a total algorithm failure proba-
bility of pf ≤ 0.1. The column titled “scale-up” is the number
of physical qubits necessary to represent a logical qubit.
Although [[23,1,7]]i+[[7,1,3]]o and [[7,1,3]]i+[[23,1,7]]o are
different, by coincidence, their failure probabilities are almost
identical. Note that [[23,1,7]] offers essentially the same
error protection as [[7,1,3]]i+[[7,1,3]]o, despite using half the
number of qubits and being conceptually simpler.

From this analysis, we see that teleportation errors of1%
or more allow factoring of a 1,024-bit number on a quantum
multicomputer. In this multicomputer, each of the 1,024 nodes
contains nine logical qubits at a scale-up of 529, for a total
of almost 5,000 physical qubits per node, when the Vedral-
Barenco-Ekert (VBE) modular exponentiation algorithm is
used. Seven of these logical qubits are used for the VBE
algorithm, and one as a buffer for each teleportation link.
Requirements for additional ancillae used for fault tolerance
may increase the needed number of physical qubits by an
amount dependent on the speed of the underlying technology
at creating high-quality zero states and the need for local error
correction.
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TABLE III

AN ESTIMATE OF THE NECESSARY ERROR RATE OF TELEPORTATION(pt) TO ACHIEVE A SPECIFIC NUMBER OF LOGICAL TELEPORTATIONS WITH90%

PROBABILITY OF SUCCESS(pf = 0.1) FOR THEentire COMPUTATION, FOR DIFFERENT ERROR-CORRECTION SCHEMES.

error-correcting code scale-up teleportations (t) allowable teleportation error ratept for pf = 0.1
(none) 1 10

5 pt ≤ pf/t = 0.1/t = 10
−6

10
8

10
−9

10
11

10
−12

[[7,1,3]] 7 105 pt ≤
p

pf/21t =
p

0.1/21t = 2.2× 10−4

108 7× 10−6

1011 2.2× 10−7

[[23,1,7]] 23 105 pt ≤ 4
p

pf/8855t = 1/17 4
√
t ≈ 3.3× 10−3

108 5.8× 10−4

1011 1× 10−4

[[7,1,3]]i+[[7,1,3]]o 49 105 pt ≤
q

p

pf/21t/21 = 0.057/t1/4 ≈ 3.2× 10−3

108 5.7× 10−4

10
11

1× 10
−4

[[23,1,7]]i+[[7,1,3]]o 161 10
5 pt ≤ 4

q

p

pf/21t/8855 = 0.053/t1/8 ≈ 0.013

10
8

5.3× 10
−3

10
11

2.2× 10
−3

[[7,1,3]]i+[[23,1,7]]o 161 10
5 pt ≤

q

4
p

pf/8855t/21 = 0.053/t1/8 ≈ 0.013

10
8

5.3× 10
−3

1011 2.2× 10−3

[[23,1,7]]i+[[23,1,7]]o 529 105 pt ≤ 4

q

4
p

pf/8855t/8855 = 0.051/t1/16 ≈ 0.025

108 0.016
1011 0.010

V. I MPLICATIONS FORL INK DESIGN

The performance of error correction influences an important
hardware design decision: should our network links be serial
or parallel? We can multiplex the transfer of the qubits either
temporally or spatially, as shown in Figure 1. The figure shows
qubus fibers or wave guides coupling to one or more qubits.
In the figure, the fiber and qubit are drawn approximately the
same size, but in reality the fiber or wave guide is likely to
be many times the size of the qubit. Thus, these connections
may require large amounts of die space, force large qubit-qubit
spacing (which affects the quality of interaction for some types
of qubits), and make high-quality connections difficult, reduc-
ing manufacturing yield. Each qubus connection is therefore
expensive, and minimizing their number is desirable. We argue
that the difference in both reliability and performance is likely
to be small, assuming that the reliability of teleportationis
less than that of quantum memory and that teleportation times
are reasonable compared to the cycle time of locally-executed
QEC.

Figure 4 shows a [[7,1,3]] state being transferred in parallel
and Figure 5 shows the serial equivalent. In these diagrams,
each line represents a qubit that is a member of a code
block, essentially following the variable rather than the storage
locations; at aT block, representing teleportation, of course
the qubit moves from one node to the other. If the transfer
is done serially, the wait tostart the QEC sequence is seven
times as long, but thetotal time for transfer plus QEC (that
is, time from the start of one QEC cycle to the next, from the
first |ψ〉L to the point marked “b” in the figures) won’t grow
by nearly as large a factor if local QEC requires significant
time compared to a teleportation. Thus, we need to determine

T

LQ
E

C

T

T

T

T

T

T

LQ
E

C

local logical operations

LQ
E

C

a b

time

|ψ〉L

|ψ〉L

Fig. 5. Temporally multiplexed, logical circuit for encoded state transfer over
a serial interface. LQEC, local quantum error correction. Teleporting logical
state using local QEC only, no intermediate QEC. The box holding a “T” is
the teleportation circuit. Each line represents a qubit variable, independent of
its location, so that the teleportation operation does not explicitly show the
movement of the qubit from one node to another.

if the increase in wait time caused by the lengthening of the
interval from the point marked “a” to the point marked “b”
in Figures 4 and 5 has an unacceptably large impact on our
overall failure rate.

The gray areas in Figure 5 indicate increased wait time for
the qubits. They totaln(n−1) for an [[n,k,d]] QEC code. For
the [[7,1,3]] code, each qubit spends one cycle teleporting, and
six waiting for the other teleportations. Ifpm is the probability
of error for a single qubit during the time to execute a single
teleportation, then the probability of no error on one bit during
that time is(1− pm)6 for the [[7,1,3]] code. For an [[n,k,d]]
code, the failure probability of that qubit during the serial
transfer waiting time isp′m = 1−(1−pm)n−1. The probability
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of m memory errors is

pM (n,m) =

(

n

m

)

p′m
m
(1 − p′m)n−m

≈
(

n

m

)

p′m
m

≈
(

n

m

)

(n− 1)pmm.

(9)

Combining Equations 9 and 3, we need the two error
sources together to generate less thanm = (d + 1)/2 errors.
We will constrain the final combined memory and teleportation
error ratepf for the serial link to be similar to the teleportation
errors for the parallel link,

pf (n,m) =

m
∑

i=0

pM (n, i)pe(n,m− i) ∼ pe(n,m). (10)

For the error codes we are considering, [[7,1,3]] and
[[23,1,7]], numeric evaluation forpm = pt/10(n − 1) gives
25% and 50% increase in failure probability, respectively,
compared to thepm = 0 (perfect memory) case. Thus, we
can say, very roughly, that a memory failure probability two
orders of magnitude less than the failure probability of the
teleportation operation will mean that the choice of serialor
parallel buses has minimal impact on the overall system error
rate.

Although this section has focused on reliability rather than
performance, the choice of serial or parallel links also affects
performance. It is easy to see that choosing a serial link does
not result in a factor ofn degradation in system performance
when QEC is taken into account. Lettt be our teleportation
time, andtLQEC be the time to perform local error correction.
tt is related to the detector time for measuring the probe beam
on the long-distance links, whiletLQEC is related to the local
qubit measurement time.

If ntt ≪ tLQEC , then in accordance with Amdahl’s Law
the choice also has minimal impact on our overall perfor-
mance [65]. Moreover, for Shor’s algorithm on the quantum
multicomputer, we have shown that breaking down the tele-
portation operation into its component phases of EPR pair
creation and the measurement and classical operations allows
application-level performance to be relatively independent of
the quantum link operation time [8]. Therefore, we recommend
using serial links.

VI. SUMMARY

This paper has tackled two important issues in the design of
distributed quantum computing systems, both centering around
the need to correct errors that occur during teleportation,
analyzed in the context of a long but finite computation such
as Shor’s factoring algorithm. We have shown that a relatively
high failure rate for teleportation is tolerable, and that using
serial links rather than parallel has only a modest impact onthe
probability of failure and the performance of the computation.

The results in Table III show that a teleportation error
rate (related to the EPR pair infidelity) of> 1% will allow
computations as large as the factoring of a 1,024-bit number

to proceed with a high probability of success. This estimateis
for a data encoding of [[23,1,7]]i+[[23,1,7]]o on the link. Our
analysis supports Steane’s recommendation of the [[23,1,7]]
code. Replacing one level with the [[7,1,3]] code still allows an
error rate of one part in a thousand or better, with a noticeable
savings in storage requirements. Of course, we do not have to
compute or store data using the same encoded states that we
use during data transport, as noted by Thakeret al. [60]. In
this paper, for simplicity, we have assumed that the system
uses only a single choice of encoding.

We have argued that the difference in both performance
and reliability between serial and parallel network links will
be small for a reasonable set of assumptions. A memory error
rate in the time it takes to perform a teleportation at least
two orders of magnitude better than the teleportation failure
rate results in a25− 50% increase in the computation failure
rate, an increase we consider acceptable in exchange for the
benefits of serial links. Serial links will dramatically simplify
our hardware design by reducing the number of required
transceiver qubits in each node, and eliminating concerns such
as jitter and skew between pairs of conductors or wave guides.
Moreover, if we do choose to have multiple transceiver qubits
in each node, system performance on some workloads may be
boosted more by creating a richer node-to-node interconnect
topology than by creating parallel channels between pairs of
nodes in a simpler topology.
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