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Abstract
In this contribution we introduce a low-complexity bit-parallel algo-

rithm for computing square roots over binary extension fields. Our pro-
posed method can be applied for any type of irreducible polynomials. We
derive explicit formulae for the space and time complexities associated to
the square root operator when working with binary extension fields gener-
ated using irreducible trinomials. We show that for those finite fields, it is
possible to compute the square root of an arbitrary field element with equal
or better hardware efficiency than the one associated to the field squaring
operation. Furthermore, a practical application of the square root operator
in the domain of field exponentiation computation is presented. It is shown
that by using as building blocks squarers, multipliers and square root blocks,
a parallel version of the classical square-and-multiply exponentiation algo-
rithm can be obtained. A hardware implementation of that parallel version
may provide a speedup of up to 50% percent when compared with the tradi-
tional version.

∗Work partially supported by Mexican CONACYT under grant 45306
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1 Introduction
Arithmetic over binary extension fields GF(2m) has many important applications,
particularly in the theory of error control coding, symmetric block ciphers and
elliptic curve cryptosystems [1,2,3,4,5]. Those applications typically require high
performance implementation of most if not all of the basic finite field operations
such as field addition, subtraction, multiplication, division, exponentiation and
square root [6].

In particular, field square root computation has become an important building
block in the design of some elliptic curve primitives such as point compression
and point halving [1, 3, 4]. Moreover, recently, a novel parallel formulation of
the standard Itoh-Tsujii multiplicative inverse algorithm for multiplicative inverse
computation over GF(2m) using as main building blocks field multiplication, field
squaring and field square root operators was proposed in [7]. A speedup of nearly
30% with respect to the original Itoh-Tsuii was reported.

For most applications, the efficiency of finite field arithmetic implemented
in hardware is typically measured in terms of associated design space and time
complexities. The space complexity is defined as the total amount of hardware
resources needed to implement the circuit, i.e. the total number of logic gates
required by the design. Time complexity, on the other hand, is simply defined as
the total gate delay or critical path of the circuit, frequently formulated using gate
delay Tx units.

Let P(x) be an irreducible polynomial over GF(2). Then, the binary extension
field of degree m ∈ N+ GF(2m) can be defined as,

GF(2m) ∼= GF(2)[x]/ (P (x)) =
{
a0 + a1x + · · ·+ am−1x

m−1 mod P (x)|ai ∈ GF(2)
}

Field square root operation is defined as follows. Let A be an arbitrary element
in the field GF(2m) as described above. The square root of A, denoted as

√
A or

A
1
2 , is the element D ∈ GF(2m) such that D2 = A mod P (x).

A straightforward but rather expensive approach for computing
√

A is based
on Fermat’s Little Theorem which establishes that for any nonzero element A ∈
GF(2m), the identity A2m

= A holds. Therefore,
√

A may be computed as D =
A2m−1 with a computational cost of m− 1 field squarings [1].
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A more efficient algorithm based on a refining of the above Fermat’s Little
Theorem method was proposed by Fong et al. in [8, 9], and it is based on the ob-
servation that

√
A can be efficiently implemented by extracting the two half-length

vectors Aeven = (am−1, am−3, · · · , a2, a0) and Aodd = (am−2, am−4, · · · , a3, a1)
and by performing a field multiplication of length bm

2
c of Aodd with the pre-

computed value of the element x
1
2 followed by an addition with Aeven. The cost

of the algorithm presented in [8] consists of one field multiplication of length m/2
bits by a pre-computed constant, which is still an expensive operation.

However, if the irreducible polynomial P (x) is a trinomial, P (x) = xm+xn+
1 with m an odd prime number. The authors in [8] observed that the square root of
any arbitrary element A ∈GF(2m) can be computed using relatively few additions
and shift operations. In particular, in [8] is reported that the computational cost of
a square root in the field GF(2233), using P (x) = x233 + x74 + 1, requires roughly
1/8 the time of a field multiplication when both operations are implemented in a
software platform.

In this contribution, an alternative method for computing square roots over
binary finite field is proposed. The most important findings presented in this
paper are threefold. Firstly, after a careful analysis of the method proposed in
[8], we derive a closed expression for the square root operator when using irre-
ducible trinomials of the type P (x) = xm + xn + 1, with m odd, n even, and
dm−1

4
e ≤ n < bm−1

3
c. Secondly, we describe an alternative method for com-

puting
√

A which is based on the linear property exhibited by the field squaring
operation in binary extension fields. Our proposed method can be applied for any
type of irreducible polynomials. In particular, it is shown that for the important
practical case of finite fields generated using irreducible trinomials, the square
root operation can be performed with no more computational cost than the one
associated to the field squaring operation. Moreover, we derive explicit formulae
for both, field squaring and square root operations, detailing their corresponding
area and time complexities when implemented in hardware platforms. Thirdly, we
present a practical application of the square root operator in the domain of field
exponentiation computation.

The rest of this paper is organized as follows. Section 2 provides an analysis
of the method proposed in [8]. Furthermore, a closed expression for the square
root operator when using irreducible trinomials of the type P (x) = xm + xn + 1,
with m odd, n even, and dm−1

4
e ≤ n < bm−1

3
c is derived. In Section 3, the squar-

ing and square root operations over binary finite fields generated by irreducible
trinomials are analyzed from a linear algebra perspective. Then, in Section 4, the
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proposed bit-parallel algorithm for square root computation is explained in detail.
Moreover, we give explicit formulae for the efficient computation of squaring
and square roots over binary extension fields generated by irreducible trinomials.
Section 5 includes several illustrative examples of field square root computation.
Section 6 describes how the square root operator can be applied for speeding up
the exponentiation operation in binary extension fields. Finally, in Section 7 some
conclusion remarks are drawn.

2 The Fong et al. Method for Computing Square
Roots

As it was mentioned in the previous Section, the Fong et al. method for comput-
ing square roots over binary extension fields is based on the observation that the
element

√
A can be expressed in terms of the square root of the monomial x as,

A
1
2 =

m−1
2∑

i=0

a2ix
i + x

1
2

m−3
2∑

i=0

a2i+1x
i mod P (x) (1)

Eq. (1) can be efficiently implemented by extracting the two half-length vec-
tors Aeven = (am−1, am−3, · · · , a2, a0) and Aodd = (am−2, am−4, · · · , a3, a1) and
by performing a field multiplication of length bm

2
c of Aodd with the precomputed

value x
1
2 followed by an addition with Aeven.

In the event that the irreducible polynomial P (x) is a trinomial, P (x) = xm +
xn + 1 with m an odd prime number, authors in [8] found the following handy
equations for

√
A,

A
1
2 =

{
Aeven + (x

m+1
2 + x

n+1
2 ) · Aodd n odd,

Aeven +
[
x−

m−1
2 (x

n
2 + 1) · Aodd

]
mod P (x) n even.

(2)

According to Eq. (2), when the middle coefficient n of the irreducible trinomial
P (x) is odd, the square root of any arbitrary element A ∈GF(2m) can be found
using few additions and shift operations 1. However, in the case that the middle
coefficient n is even, the square root computation becomes a bit more computa-
tional intensive. In the following we analyze the latter case in more detail.

1We stress that the polynomial (x
m+1

2 + x
n+1

2 ) ·Aodd has degree m− 1. Thus, in this case we
do not need to perform a polynomial modular reduction.
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Notice that in the quotient field GF(2)[x]/ (P (x)), isomorphic to GF(2m), the
element x−

m−1
2 can be computed by using the reduced identity x−s = xn−s+xm−s,

for 1 ≤ s ≤ n. If we impose now the restriction dm−1
4
e ≤ n ≤ m−1

2
, it follows

that m−1
2

< 2n. Then, in the field GF(2)[x]/ (P (x)) we can write, x−n = 1+xm−n

and letting t = m−1
2
− n we have the following identities modulo P (x):

x−t = xn−t + xm−t = x2n−m−1
2 + xn+m+1

2

Then, the element x−
m−1

2 = x−t · x−n can be written as,

x−
m−1

2 = x−t · x−n

= (x2n−m−1
2 + xn+m+1

2 ) · (1 + xm−n)

= x2n−m−1
2 + xn+m+1

2 + xn+m+1
2 + xm+m+1

2

Therefore,

x−
m−1

2 (x
n
2 + 1) = x2n−m−1

2 + x
m+1

2 + x
2n+m+1

2 + x
5n−(m−1)

2 + x
m+n+1

2 + x
3n+m+1

2

After examining above equation, it results convenient to impose an additional
restriction to the middle coefficient n, namely, n < bm−1

3
c. In this way, we assure

that the exponent 3n+m+1
2

will not exceed the value m.
Above result and Eq. (2) indicate us how to calculate the square root of an

arbitrary nonzero field element A ∈ GF(2m), when the field has been generated
using the irreducible trinomial P (x) = xm + xn + 1, with m an odd number and
n an even number such that dm−1

4
e ≤ n < bm−1

3
c. The explicit formula is given

as,

A
1
2 = Aeven +

Aodd

(
x2n−m−1

2 + x
m+1

2 + x
2n+m+1

2 +

x
5n−(m−1)

2 + x
m+n+1

2 + x
3n+m+1

2

)
. (3)

In the following Sections we will discuss alternative methods for deriving and
developing even further Eqs. (2) and (3).

3 A Linear Algebra Analysis of the Squaring and
Square Root Field Operations

Let P (x) = xm + xn + 1 be an irreducible trinomial with m ≥ 2 and 1 ≤
n ≤ m − 1. As it was done in last Section, we will consider that the Galois
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field GF(2m) is equivalent to the quotient field GF(2)[x]/ (P (x)). Thus in what
follows all polynomial identities shall be understood modulo P (x). Then, in the
field GF(2m) the following Reduction Rule holds:

k ≥ m =⇒ xk = xk−mxm = xk−m(1 + xn) = xk−m + xk−m+n, (4)

in other words, the power xk can be expressed as the addition of two lower powers
whose exponents differ in n.

Let A be an arbitrary element of the field GF(2m), represented in the canonical
basis as an m− 1 degree polynomial, namely,

A(x) =
m−1∑
i=0

aix
i , ai ∈ 0, 1, 0 ≤ i ≤ m− 1.

Then the square C = A2 mod P (x) in GF(2m) may be obtained by computing
first the polynomial product of A by itself, followed by a reduction step modulo
P (x). In fact, since the characteristic of the field is 2, the square map is linear,
thus the polynomial square of A is,

A2(x) =

(
m−1∑
i=0

aix
i

)
·
(

m−1∑
i=0

aix
i

)
=

m−1∑
i=0

aix
2i (5)

Let X1 = [1 x · · · xm−1]
T be the m-dimensional column vector whose entries

are the consecutive powers of x. Since squaring is linear and its kernel contains
only the element 0 ∈ GF(2m), the set of squares {x2i}m−1

i=0 is linearly independent,
thus it forms a basis of GF(2m). Let X2 =

[
1 x2 · · · x2(m−1)

]T be the column
vector whose entries are the elements of that basis. Then, there is a non-singular
(m×m)-matrix N we have X2 = NX1. The matrix N can be partitioned as

N =

[
L0

K0

]
(6)

where L0 is a matrix of order m1×m, K0 is a matrix of order m2×m, m1 = dm
2
e,

m2 = m−m1, and the rows of L0 are the canonical vectors with even indexes:

L0 = [`ij]
0≤j≤m−1
0≤i≤m1−1 and (`ij = 1 ⇐⇒ j = 2i) . (7)

Consequently, the odd-indexed columns of L0 are zero.

6



Furthermore, for 2i ≥ m, let us write r = 2i −m. Then, from the reduction
rule (4), we have x2i = xr + xn+r. Notice that whenever the second exponent of
last expression is not lower than m, the reduction rule may be reapplied.

Thus, the first rows, namely bm/2c− bn/2c, of K0 have just two values 1 and
they are at entries whose separation is n. Eq. (5) asserts that, with respect to the
polynomial basis, the column vector consisting of the coordinates, with respect to
the polynomial basis, of A2 is given as,

c = NT a (8)

where a is the coefficient vector of A.
Naturally, the inverse of NT will represent the square root linear map, with

respect to the polynomial basis. Let us calculate the inverse matrix N−1 of N . As
we did in Eq. (6), let us introduce the following partition

N−1 = [ L1 K1 ] (9)

where L1 has order m×m1, K1 has order m×m2, m1 = dm
2
e and m2 = m−m1.

From (6) and (9) we get,

1m = N N−1 =

[
L0

K0

]
[ L1 K1 ] =

[
L0L1 L0K1

K0L1 K0K1

]

where 1m is the (m×m)-identity matrix. From above equations, it follows that,

1m1 = L0L1 , 0m2×m1 = K0L1 (10)
0m1×m2 = L0K1 , 1m2 = K0K1. (11)

Eqs. (10) assert that the columns of L1 should, on the one hand, form a biortho-
normal system with the rows of L0, and, on the other, be orthogonal to the rows
of K0.

We observe that the rows of L0 form an orthonormal basis of a space S0 of
dimension m1 over GF(2m) considered as the m-dimensional vector space over
the prime field GF(2). Thus the orthogonal complement of S0 has dimension m2.
In other words, there are exactly 2m2 vectors which are orthogonal to all rows in
L0. Hence, there exist 2m1m2 matrices L of order m×m1 such that L0L = 0m1 .

Due to the special form of L0, if the even-indexed rows of a matrix L are
selected, a zero matrix is gotten. Let L⊥0 denote the collection of such matrices.
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Also we have L0L
T
0 = 1m1 . It follows that the general solution of the first equation

in (10) is given as,

L1 = LT
0 + L with L ∈ L⊥0 . (12)

In order to satisfy the second equation in (10) we must have

K0L
T
0 = K0L. (13)

Let us write K0 = (kij)
0≤j≤m−1
0≤i≤m2−1. From relation (7), it follows that the general

entry of K0L
T
0 is

∑m−1
µ=0 kiµ`jµ = ki,2j , for 0 ≤ i ≤ m2 − 1, 0 ≤ j ≤ m1 − 1.

Equation (13) will be satisfied if and only if the inner product of the i-th row of
K0 and the j-th column of L gives the value ki,2j , 0 ≤ i ≤ m2−1, 0 ≤ j ≤ m1−1.
Hence, matrix K0 should satisfy the following conditions:

ki,2j = 0 =⇒
(

there is an even number of 1’s in the i-th row of
K0 appearing at odd indexed entries

)
(14)

ki,2j = 1 =⇒ ∃ji odd : ki,ji
= 1 (15)

Conditions (14) and (15) along with the fact that the matrix N is non-singular,
determine uniquely the matrix L ∈ L⊥0 . As a consequence, the submatrix L1

that satisfies eqs. (10) is also uniquely determined. In a similar but more compli-
cated way, it can be verified that the submatrix K1 satisfying eqs. (11) is uniquely
determined.

Based on the conclusions obtained from the linear algebra approach just out-
lined, we derive in the next Section explicit formulae for the field square root
operation.

4 Explicit Formulae for the Squaring and Square
Root Field Operations

Once again, let us consider binary extension fields constructed using irreducible
trinomials of the form P (x) = xm + xn + 1, with m ≥ 2. It is convenient to
consider, without loss of generality, the additional restriction 1 ≤ n ≤ bm

2
c 2.

2It is known that if P (x) = xm + xn + 1 is irreducible over GF(2), so is P (x) = xm +
xm−n + 1 [10]. Hence, provided that at least one irreducible trinomial of degree m exists, it is
always possible to find another irreducible trinomial such that its middle coefficient n satisfies the
restriction 1 ≤ n ≤ bm

2 c.
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The rest of this Section is organized as follows. First, in Subsection 4.1, we
give the corresponding formulae needed for computing the field squaring opera-
tion when considering arbitrary irreducible trinomials. Those equations are then
used in Subsection 4.2 to find the corresponding ones for the field square root
operator.

4.1 Field Squaring Computation
Let A =

∑m−1
i=0 aix

i be an arbitrary element of GF(2m). Then, according to
Eq. (5) its square, A2, can be represented by the 2m-coefficient vector,

A2(x) =
[
0 am−1 0 am−2 . . . 0 a1 0 a0

]

=
[
a′2m−1 a′m−2 . . . a′m−1 a′m ; a′m−1 a′2 . . . a′1 a′0

]
(16)

where a′i = 0 for i odd. Let us reduce this vector using rule (4). Hence, the upper
half of A2 (i.e., the m most significant bits) in Eq. (16) is mapped into the first m
coordinates by performing addition and shift operations only. Let us write

C = A2 mod P (x)

= A′
[0,m−1] + A′

[m,2m−1] + A′
[m,2m−1−n]x

n

+
(
A′

[2m−n,2m−1] + A′
[2m−n,2m−1]x

n
)

(17)

Thus, the reduction step is computed by the addition of four terms,

W = A′
[0,m−1]

X = A′
[m,2m−1]

Y = A′
[m,2m−1−n]x

n

Z = A′
[2m−n,2m−1] + A′

[2m−n,2m−1]x
n

This procedure is shown schematically in Fig. 1. Notice that for those designs im-
plemented in hardware platforms, the field squaring computation procedure just
outlined can be instrumented by using XOR logic gates only. Nevertheless, the ex-
act computational complexity of this arithmetic operation depends on the explicit
form of m and the middle coefficient n in the trinomial P (x).

In order to investigate the exact cost of the field squaring operation, in this
contribution we categorize all the irreducible trinomials over GF(2) into four dif-
ferent types. For all four types considered and by means of Eqs. (16) and (17),
the following explicit formulae for the field squaring operation, which happened
to be consistent with Eq. (8), were found.
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(m−1 bits) (m bits)

m−1 02m−1 m

Z

(m bits)
2m−1

m−1−n n

(m bits)

(m−n bits)(n)

(n)(n)

X

Y

m−1 0

(m bits) CC = W xor X xor Y xor Z

m

W

A²

Figure 1: Reduction scheme.

Type I: Computing C = A2 mod P (x), with P (x) = xm + xn + 1, m even, n
odd and n < m

2
,

ci =





a i
2

+ am+i
2

i even, i < n or i ≥ 2n,

a i
2

+ am+i
2

+ am−n+ i
2

i even, n < i < 2n,

am+1−n+i
2

i odd, i < n,

am−n+i
2

i odd, i ≥ n,

(18)

for i = 0, 1, · · · ,m − 1. It can be verified that Eq. (18) has an associated
cost of m+n−1

2
XOR gates and 2Tx delays.

Type II: Computing C = A2 mod P (x), with P (x) = xm + xn + 1, m even,

n odd and n = m
2

,

ci =





a i
2

+ am+i
2

i even, i < n,

a i
2

i even, i > n,

am+1−n+i
2

i odd, i < n,

an+i
2

i odd, i ≥ n,

(19)

for i = 0, 1, · · · ,m − 1. It can be verified that Eq. (19) has an associated
cost of m+2

4
XOR gates and one Tx delay.

Type III: Computing C = A2 mod P (x), with P (x) = xm + xn + 1, m, n odd
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numbers and n < m+1
2

,

ci =





a i
2

i even, i < n,

a i
2

+ a i
2
+m−n

2
+ a i

2
+(m−n) i even, n < i < 2n,

a i
2

+ a i
2
+m−n

2
i even, i ≥ 2n,

am+i
2

+ am+i
2

+m−n
2

i odd, i < n,

am+i
2

i odd, i ≥ n,

(20)

for i = 0, 1, · · · ,m − 1. It can be verified that Eq. (20) has an associated
cost of m−1

2
XOR gates and 2Tx delays.

Type IV: Computing C = A2 mod P (x), with P (x) = xm + xn + 1, m odd, n
even and n < m+1

2
,

ci =





a i
2

+ a i
2
+m−n

2
i even, i < n,

a i
2

+ a i
2
+m−n i even, n ≤ i < 2n,

a i
2

i even, i ≥ 2n,

am+i
2

i odd, i < n,

am+i
2

+ am+i
2
−n

2
i odd, i > n,

(21)

for i = 0, 1, · · · ,m − 1. It can be verified that Eq. (21) has an associated
cost of m+n−1

2
XOR gates and one Tx delay.

The complexity costs found on Equations (18) through (21) are in consonance
with the ones analytically derived in [11, 12].

4.2 Field Square Root Computation
In the following, we keep the assumption that the middle coefficient n of the
generating trinomial P (x) = xm + xn + 1 satisfies the restriction 1 ≤ n ≤ m

2
.

Clearly, Eqs. (18)-(21) are a consequence of the fact that in binary extension
fields, squaring is a linear operation. The linear nature of binary extension field
squaring, allow us to describe this operator in terms of an (m×m)-matrix as,

C = A2 = MA (22)

where M = NT , and N is as described in Eq. (6).
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Furthermore, based on Eq. (22), it follows that computing the square root of
an arbitrary field element A means finding a field element D =

√
A such that

D2 = MD = A. Hence,
D = M−1A (23)

Eq. (23) is especially attractive for fields GF(2m) with order sufficiently large,
i.e., m >> 2, where the matrixes M corresponding to Eqs. (18)-(21) are all highly
spare (each row has at most three nonzero values).

Hence, for the trinomial types I, II, III and IV as described above, the element
D =

√
A given by Eq. (23) can be found by using the matrix form of Eqs. (18)-

(21), respectively, followed by the computation of the inverse of the corresponding
matrix M .

Using Eqs. (10) and (11), together with the fact that M−1 = (N−1)T allow us
to determine the m coordinates of the field element

√
a = d = M−1a as described

bellow.

Type I: Computing D such that D2 = A mod P (x), with P (x) = xm + xn + 1,
m even, n odd, and n < m

2
:

di =





a2i + a2i+n i ≤ bn
2
c,

a2i + a(2i+n) mod m + a2i−n bn
2
c < i < n,

a2i + a(2i+n) mod m n ≤ i < m
2
,

a(2i+n) mod m
m
2
≤ i < m

(24)

for i = 0, 1, · · · ,m − 1. It can be verified that Eq. (24) has an associated
cost of m+n−1

2
XOR gates and 2Tx delays.

Type II: Computing D such that D2 = A mod P (x), with P (x) = xm + xn + 1,
m even, n odd and n = m

2
:

di =





a2i + a2i+m
2

i < m+2
4

,

a2i
m+2

4
≤ i < m

2

a(2i+m
2

) mod m
m
2
≤ i < m

(25)

for i = 0, 1, · · · ,m − 1. It can be verified that Eq. (25) has an associated
cost of m+2

4
XOR gates and one Tx delay.
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Type III: Computing D such that D2 = A mod P (x), with P (x) = xm +xn +1,
m, n odd numbers and n < m+1

2
,

di =





a2i i < n+1
2

,

a2i + a2i−n
n+1

2
≤ i < m+1

2
,

a2i−n + a2i−m
m+1

2
≤ i < m+n

2
,

a2i−m
m+n

2
≤ i < m

(26)

for i = 0, 1, · · · ,m − 1. It can be verified that Eq. (26) has an associated
cost of m−1

2
XOR gates and one Tx

delay.

Type IV: Computing D such that D2 = A mod P (x), with P (x) = xm +xn +1,
m, odd, n even and dm−1

4
e ≤ n < bm−1

3
c.

di =





a2i + a2i+(m−n) + a2i+(m−2n) + a2i+(m−3n) i < 4n−(m−1)
2

,

a2i + a2i+(m−n) + a2i+(m−2n) + a2i+(m−3n)

+a2i+(m−4n)
4n−(m−1)

2
≤ i < n

2
,

a2i + a2i+(m−2n) + a2i+(m−3n) + a2i+(m−4n)
n
2
≤ i < 5n−(m−1)

2
,

a2i + a2i+(m−2n) + a2i+(m−3n) + a2i+(m−4n)

+a2i+(m−5n)
5n−(m−1)

2
≤ i < n,

a2i n ≤ i ≤ m−1
2

,

a2i−m
m+1

2
≤ i < n+m+1

2
,

a2i−m + a2i−(m+n)
n+m+1

2
≤ i < 2n+m+1

2

a2i−m + a2i−(m+n) + a2i−(m+2n)
2n+m+1

2
≤ i < 3n+m+1

2

a2i−m + a2i−(m+n) + a2i−(m+2n) + a2i−(m+3n)
3n+m+1

2
≤ i < m

(27)

for i = 0, 1, · · · ,m − 1. At first glance, Eq. (27) can be implemented with
an XOR gate cost of,

3 · 4n− (m− 1)

2
+ 4 · m− 3n− 1

2
+ 3 · 4n− (m− 1)

2
+

4 · m− 3n− 1

2
+

n

2
+ 2 · n

2
+ 3 · m− 3n− 1

2
= 5 · m− n− 1

2
− n

2
.

However, taking advantage of the high redundancy of the terms involved
in Eq. (27), it can be shown (after a tedious long derivation) that actually
m+n−1

2
XOR gates are sufficient to implement it with a 2Tx gate delays.
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Table 1: Summary of complexity results
Type Trinomial P (x) = xm + xn + 1 Operation XOR gates Time delay

I m even, n odd Squaring (m + n− 1)/2 2Tx

II m even, n = m/2 Squaring (m + 2)/4 Tx

III m odd, n odd Squaring (m− 1)/2 2Tx

IV m odd, n even Squaring (m + n− 1)/2 Tx

I m even, n odd Square root (m + n− 1)/2 2Tx

II m even, n = m/2 Square root (m + 2)/4 Tx

III m odd, n odd Square root (m− 1)/2 Tx

IV m odd, n even Square root (m + n− 1)/2 2Tx

Table 2: Irreducible trinomials P (x) = xm + xn + 1 of degree m ∈ [160, 571] encoded
as m(n), with m a prime number

m(n) Type m(n) Type m(n) Type
167(35) III 281(93) III 439(49) III
191(9) III 313(79) III 449(167) III
193(15) III 337(55) III 457(61) III
199(67) III 353(69) III 463(93) III
223(33) III 359(117) III 479(105) III
233(74) IV 367(21) III 487(127) III
239(81) III 383(135) III 503(3) III
241(70) IV 401(152) IV 521(158) IV
257(41) III 409(87) III 569(77) III
263(93) III 431(120) IV
271(70) IV 433(33) III

14



Table 1 summarizes the area and time complexities just derived for the cases
considered. Furthermore, in Table 2 we list all preferred irreducible trinomials
P (x) = xm + xn + 1 of degree m ∈ [160, 571] with m a prime number. In all the
instances considered the computational complexity of computing the square root
operator is comparable or better than that of the field squaring.

5 Illustrative Examples
In order to illustrate the approach just outlined, we include in this Section sev-
eral examples using first the artificially small finite field GF(215) and then more
realistic fields, in terms of practical cryptographic applications.

Table 3: Squaring matrix M of Eq. (22)

M =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0




Example 5.1. Field Square Root Computation over GF (215)

Let us consider GF(215) generated with the irreducible Type III trinomial
P (x) = x15 + x7 + 1. As it was discussed before, one can find the square root of
any arbitrary field element A ∈ GF(215) by applying Eq. (23). In order to follow
this approach, based on Eq. (20), we first determine the matrix M of Eq. (22) as

15



Table 4: Square root matrix M−1 of Eq. (23)

M−1 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0




Table 5: Square and square root coefficient vectors.

C =




a0

a8 + a12

a1

a9 + a13

a2

a10 + a14

a3

a11

a4 + a8 + a12

a12

a5 + a9 + a13

a13

a6 + a10 + a14

a14

a7 + a11




, D =




a0

a2

a4

a6

a1 + a8

a3 + a10

a5 + a12

a7 + a14

a1 + a9

a3 + a11

a5 + a13

a7

a9

a11

a13



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shown in Table 3. Then, the inverse matrix of M modulus two, M−1, is obtained
as shown in Table 4. Afterwards, the polynomial coefficients, in terms of the co-
efficients of A, corresponding to the field square C = A2 and the field square root
D =

√
A elements can be found from Eqs. (22) and (23) as shown in Table 5.

As predicted by Eq. (20), field squaring can be computed at a cost of (m −
1)/2 = (15− 1)/2 = 7 XOR gates and one Tx delay. In the same way, the square
root operation can be computed at a cost of (m−1)

2
= (15−1)

2
= 7 XOR gates with

an incurred delay time of one Tx, which matches Eq. (26) prediction. It is noticed
that in this binary extension field, computing a field square root requires the same
computational effort than the one associated to field squaring.

Example 5.2. Field Square Root Computation over GF(2162)

Let us consider GF(2162) generated using the irreducible Type II trinomial,
P (x) = x162 + x81 + 1. Using the same approach as for the precedent example,
we can obtain the square root polynomial coefficients of an arbitrary element A
from the field GF(2162) as,

di =





a2i + a2i+81 i < 41,

a2i 41 ≤ i < 81

a(2i+81) mod 162 81 ≤ i

(28)

for i = 0, 1, · · · , 161. As predicted by Eq. (25) the associated cost of the field
square root computation for this field is given as, (m+2)

4
= (162+2)

4
= 41 XOR

gates with an incurred delay time of one Tx.

Example 5.3. Field Square Root Computation over GF(2409)

Let GF(2409) be a field generated with the Type III irreducible trinomial,
P (x) = x409 + x87 + 1 3. The square root of any arbitrary field element A is
given as,

di =





a2i i < 44,

a2i + a2i−87 44 ≤ i < 205,

a2i−87 + a2i−409 205 ≤ i < 248,

a2i−409 248 ≤ i

(29)

3This is a NIST recommended finite field for elliptic curve applications [13]. It was used as an
illustrative example in [8, 9]
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for i = 0, 1, · · · , 408. Eq. (29) can be implemented with an XOR gate cost of
m−1

2
= 204 XOR gates with a 2Tx gate delay, which agrees with the value pre-

dicted by Eq. (26).

Example 5.4. Field Square Root Computation over GF(2233)

Let GF(2233) be a field generated with the Type III irreducible trinomial,
P (x) = x233 + x74 + 1 4. The square root of any arbitrary field element A is
given as,

di =





a2i + a2i+159 + a2i+85 + a2i+11 i < 32,

a2i + a2i+159 + a2i+85 + a2i+11 + a2i−63 32 ≤ i < 37,

a2i + a2i+85 + a2i+11 + a2i−63 37 ≤ i < 69,

a2i + a2i+85 + a2i+11 + a2i−63 + a2i−137 69 ≤ i < 74,

a2i 74 ≤ i ≤ 116,

a2i−233 116 ≤ i < 154,

a2i−233 + a2i−307 154 ≤ i < 191

a2i−233 + a2i−307 + a2i−381 191 ≤ i < 228

a2i−233 + a2i−307 + a2i−381 + a2i−455 228 ≤ i < 233

(30)

for i = 0, 1, · · · , 232. Eq. (30) can be implemented with an XOR gate cost of
m+n−1

2
= 153 XOR gates with a 4Tx gate delay, which agrees with the value

predicted by Eq. (27).

6 Applications
The square root operation has several relevant applications in the domain of ellip-
tic curve cryptography, particularly as an important building block for implement-
ing the so-called point halving primitive [14, 15, 3].

In the rest of this Section we describe how the square root operator can be
applied for speeding up the computation of the exponentiation in binary extension
fields.

4This is a NIST recommended finite field for elliptic curve applications [13]. It was used as an
illustrative example in [8, 9]
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6.1 Exponentiation over binary finite fields
Exponentiation over binary finite fields is used for inverse computation via Fer-
mat Little theorem [7] and key agreement schemes such as the Diffie-Hellman
protocol, among other applications.

For binary extension fields GF(2m), generated using the m-degree irreducible
polynomial P (x), irreducible over GF(2). Let e be an arbitrary m-bit positive
integer e, with a binary expansion representation given as,

e = (1em−2 . . . e1e0)2 = 2m−1 +
m−2∑
i=0

2iei.

Then,

b = ae = a2m−1+
Pm−2

i=0 2iei (31)

= a2m−1 · a2m−2em−2 · · · · · a21e1 · a20e0 = a2m−1 ·
m−2∏
i=0

a2iei

Algorithm 1 MSB-first binary exponentiation.
Require: The irreducible polynomial P (x), a ∈ GF(2m), e = (em−1 . . . e1e0)2

Ensure: b = ae mod P (x)
1: b = a ;
2: for i = m− 2 downto 0 do
3: b = b2 ;
4: if ei == 1 then
5: b = b · a mod P (x);
6: Return b

Binary strategies evaluate (31) by scanning the bits of the exponent e one by
one, either from left to right (MSB-first binary algorithm) or from right to left
(LSB-first binary algorithm) applying the so-called Horner’s rule. Both strategies
require a total of m − 1 iterations. At each iteration a squaring operation is per-
formed, and if the value of the scanned bit is one, a subsequent field multiplication
is performed. Therefore, the binary strategy requires a total of m − 1 squarings
and H(e) − 1 field multiplications, where H(e) is the Hamming weight of the
binary representation of e. The pseudo-code of the MSB-first binary algorithm is
shown in Algorithm 1.
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Figure 2: An illustration of the squaring and square root Abelian Groups (with A an
arbitrary field element and m an even number)

On the other hand, it is known from Fermat Little Theorem that for any nonzero
a ∈ GF(2m), we have a2m−1 = 1 which implies a2m

= a and by taking square
root in both sides of the last relation we get a2m−1

=
√

a = a2−1 . In general, the
i-th square-root of a, with i ≥ 1 can be written as,

a2m−i

= a2−i

.

In other words, the squaring and the square root operators form a multiplica-
tive Abelian group of order m as is depicted in Fig. 2. Considering an arbitrary
element A ∈ GF(2m), with m even, Fig. 2 illustrates, in the clockwise direction,
all the m field elements that can be generated by repeatedly computing squarings,
i.e., A2i for i = 0, 1, · · · ,m−1. On the other hand, in the counterclockwise direc-
tion, Fig. 2 illustrates all the m field elements that can be generated by repeatedly
computing the square root operator, i.e., A2−i for i = 0, 1, · · · ,m− 1.
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Hence, Eq. (31) can be reformulated in terms of the square root operator as,

ae = a2m−1 ·
m−2∏
i=0

a2iei = a2m−1 · a2m−2em−2 · · · · · a21e1 · a20e0 (32)

= a2−1 · a2−2em−2 · · · · · a2−(m−1)e1 · a20e0 =
√

a ·
m−1∏
i=2

a2−iei · ae0

Algorithm 2 Square root LSB-first binary exponentiation.
Require: The irreducible polynomial P (x), a ∈ GF(2m), e = (em−1 . . . e1e0)2

Ensure: b = ae mod P (x)
1: b = a ;
2: em = e0 ;
3: for i = 1 to m do
4: b =

√
b ;

5: if ei == 1 then
6: b = b · a mod P (x);
7: Return b

Therefore, the novel square root LSB-first binary strategy requires a total of
m − 1 square root computations and H(e) − 1 field multiplications, where H(e)
is the Hamming weight of the binary representation of e. The pseudo-code of the
square root LSB-first binary algorithm is shown in Algorithm 2.

Algorithms 1 and 2 suggest a parallel version that can combine both ideas.
This parallel version is especially attractive for hardware platforms implementa-
tions. Algorithm 3 shows this suggesting algorithm. Notice that both loop com-
putations can be performed in parallel provided that the architecture has two inde-
pendent field multiplier units. The computational time speedup can be estimated
in about 50% when compared with Algorithms 1 and 2.

7 Conclusion
In this work, a low-complexity bit-parallel algorithm for computing square roots
over binary extension fields was presented. Although our proposed method can
be applied for any type of irreducible polynomials, we were particularly interested
in studying the case of irreducible trinomials. Hence, in order to investigate the
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Algorithm 3 Squaring and Square root parallel exponentiation.
Require: The irreducible polynomial P (x), a ∈ GF(2m), e = (em−1 . . . e1e0)2

Ensure: b = ae mod P (x)
1: b = c = a ;
2: em = 0 ;
3: N = bm

2
c ;

4: for i = N downto 0 do for j = N + 1 to m do
5: b = b2 ; c =

√
c;

6: if ei == 1 then if ej == 1 then
7: b = b · a; c = c · a;
8: b = b · c;
9: Return b

exact cost of the square root operator, we categorized irreducible trinomials over
GF(2) into four different types. For all four types considered, explicit area and
time complexity formulae were found for both, field squaring and field square
root operators. It was shown that for the important practical case of finite fields
generated using irreducible trinomials, the square root operation can be performed
with no more computational cost than the one associated to the field squaring
operation

It results instructive to also study the important practical case of finite fields
generated by irreducible pentanomials. Unfortunately, our experiments show that
the square root computation becomes much more expensive for this case. As a
means of illustrating the pentanomial case, we applied the method described in
Section 4.2 to the finite field GF(2163) generated with the irreducible pentanomial
P (x) = x163 +x7 +x6 +x3 +1. The corresponding formulae for the square root
computation of an arbitrary field element A are shown in Appendix A. The total
gate count is of about 1028 two-input XOR gates with a 6 Tx gate delays.

Field square root operator has several relevant applications in cryptography. In
this contribution, we propose a novel application of the square root operator in the
domain of exponentiation computation over binary extension fields. It was shown
that by using as building blocks squarers, multipliers and square root blocks, a
parallel version of the classical square-and-multiply exponentiation algorithm can
be obtained. A hardware implementation of that parallel version may provide a
speedup of up to 50% percent when compared with the traditional version.

Future work includes exploring other promising applications for the square
root operator. In particular, we are interested in studying applications in elliptic
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curve cryptography.
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Appendix A: Field Square Root Computation over
GF(2163)
Let GF(2163) be a field generated with the irreducible pentanomial, P (x) = x163+
x7 +x6 +x3 +11 5. Given any arbitrary field element A, the m coefficients of the
field element D =

√
A can be computed as shown in Table 7.

d0 =
∑24

j=0 a159−6j ⊕ a9 ⊕ a3 ⊕ a0

d1 =
∑26

j=0 a6j+5 ⊕ a2

d2 =
∑25

j=0 a6j+7 ⊕ a4

d3 = a6 ⊕ a3

d4 = a8 ⊕ a5 ⊕ a1

d5 = a10 ⊕ a7 ⊕ a3 ⊕ a1

d6 =
∑24

j=0 a159−6j ⊕ a12 ⊕ a5

d80 =
∑26

j=0 a6j+5 ⊕ a160
∑25

j=0 a6j+3

d81 =
∑26

j=0 a6j+1 ⊕ a162
∑25

j=0 a6j+5

d160 =
∑26

j=0 a6j+3

d161 =
∑26

j=0 a6j+5

d162 =
∑26

j=0 a6j+1

d3i+7 =
∑26

j=0 a6j+3 ⊕
∑24−i

j=0 a161−6j ⊕ a6i+14 ⊕
∑i+1

j=0 a6j+1, for i ∈ [0, 24]
d3i+8 =

∑26
j=0 a6j+5 ⊕

∑23−i
j=0 a6(i+j)+19 ⊕ a6i+16 ⊕

∑i+1
j=0 a6j+3, for i ∈ [0, 23]

d3i+9 =
∑26

j=0 a6j+1 ⊕
∑23−i

j=0 a6(i+j)+21 ⊕ a6i+18 ⊕
∑i+1

j=0 a6j+5,for i ∈ [0, 23]
d3i+82 =

∑26
j=0 a6j+3 ⊕

∑25−i
j=0 a157−6j , for i ∈ [0, 25]

d3i+83 =
∑26

j=0 a6j+5 ⊕
∑25−i

j=0 a159−6j , for i ∈ [0, 25]
d3i+84 =

∑26
j=0 a6j+1 ⊕

∑25−i
j=0 a161−6j , for i ∈ [0, 25]

Table 6: m-coordinates of the GF(2163) field element D =
√

A

We synthesized the equations shown in Table 7 using Xilinx ISE 8.1i design
tool, targeting the FPGA virtex2v3000 device. The obtained area and Timing
performance figures are shown below.

• The incurred area cost on xor’s gates is:

Total number of XOR gates : 524
1-bit xor7 : 1

5This is a NIST recommended finite field for elliptic curve applications [13].

25



1-bit xor9 : 1
1-bit xor12 : 2
1-bit xor4 : 57
1-bit xor5 : 15

1-bit xor6 : 67
1-bit xor3 : 45
1-bit xor2 : 336

• Maximum combinational path delay: 21.243ns
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