
A Serial Memory by
Quantum-Dot Cellular Automata (QCA)

Vamsi Vankamamidi, Marco Ottavi, Member, IEEE, and Fabrizio Lombardi, Senior Member, IEEE

Abstract—Quantum-dot Cellular Automata (QCA) has been widely advocated as a new device architecture for nanotechnology. QCA

systems require extremely low power, together with the potential for high density and regularity. These features make QCA an

attractive technology for manufacturing memories in which the paradigm of memory-in-motion can be fully exploited. This paper

proposes a novel serial memory architecture for QCA implementation. This architecture is based on utilizing new building blocks

(referred to as tiles) in the storage and input/output circuitry of the memory. The QCA paradigm of memory-in-motion is accomplished

using a novel arrangement in the storage loop and timing/clocking; a three-zone memory tile is proposed by which information is

moved across a concatenation of tiles by utilizing a two-level clocking mechanism. Clocking zones are shared between memory cells

and the length of the QCA line of a clocking zone is independent of the word size. QCA circuits for address decoding and input/output

for simplification of the Read/Write operations are discussed in detail. An extensive comparison of the proposed architecture and

previous QCA serial memories is pursued in terms of latency, timing, clocking requirements, and hardware complexity.

Index Terms—QCA, memory architecture, emerging technologies.

Ç

1 INTRODUCTION

IN the past few decades, the exponential scaling in feature
size and increase in processing power have been

successfully achieved by CMOS as the most popular
technology for VLSI; however, there is substantial evidence
[13] that emerging technologies (mostly based at nanoscale
ranges) will be required to supersede the fundamental
physical limits of CMOS devices. Among these new
technologies, Quantum-dot Cellular Automata (QCA) gives a
solution at nanoscale and also offers a new method of
computation and information transformation using new
paradigms. For example, interconnections for signal transfer
are used for logic computation and manipulation by which
the so-called processing-in-wire paradigm is accomplished.

Orlov et al. [12] reported an experimental demonstration
of a metallic QCA cell; such a device is composed of four
metal dots, connected with tunnel junctions and capacitors.
Microsized QCA devices have been fabricated with metal
cells that operate at 50 mK [12] (that is, cryogenic).
Experiments have confirmed that the switching of a single
electron in a double-dot cell can control the position of a
single electron in another double-dot cell. The basic logic
behavior with these cells has been demonstrated in [10],
using its basic block as a majority voter (MV). It has been
reported [7] that room temperature operation requires QCA
cells to be fabricated in the range of 1-5 nm in size. Even

though the manufacturing of nanometer-scale QCA cells is
still being investigated, Lieberman et al. [7] have proposed
some possible realizations of molecular QCA; it describes
the progress toward making QCA molecules and establish-
ing the attachment chemistry for a substrate compatible
with QCA. There is strong evidence that QCA readily
adapts to assembly and molecular growth for self-assembly
at an extremely small cell size.

Many works have been reported on the system-level
features of QCA. Different devices and circuits have been
proposed for QCA implementation. These include a carry
look-ahead adder, a barrel shifter, microprocessors, and
FPGAs [6], [14], [15], [11]. A fundamental issue that must be
addressed when designing QCA circuits is timing and
clocking. Signal propagation in QCA systems can be
accomplished along serial timing zones using the one-
dimensional technique in [1]. This one-dimensional ar-
rangement results from the four phases required for
correctly operating the QCA cells by pipelining. Long
vertical lines consisting of many QCA cells are commonly
required to route signals, thus imposing stringent timing
constraints on the pipelining process. Moreover, correct
switching among cells (that is, kink-free operation) in a
timing zone is affected by thermal fluctuations. A trapezoid
clocking scheme has been proposed in [2] to provide
feedback paths while generating additional processing-in-
wire capabilities in QCA designs.

QCA have many desirable features for processing [1]; for
example, clocking and timing can be adjusted as a function
of the cells in a Cartesian layout. Low power consumption
(power gain has been demonstrated by the clocking of the
cells), high density, and regularity are readily applicable to
QCA; therefore, memory is well suited for implementation
using this technology. However, large memory designs in
QCA present unique characteristics due to their architec-
tural structure (such as the tournament bracket in cell

606 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

. V. Vankamamidi and F. Lombardi are with the Electrical and Computer
Engineering Department, Northeastern University, 360 Huntington
Avenue, Boston, MA 02115.
E-mail: {vvankama, lombardi}@ece.neu.edu.

. M. Ottavi is with Advanced Micro Devices Inc., Boston Design Center, 90
Central Street, Boxborough, MA 01719. E-mail: mottavi@ece.neu.edu.

Manuscript received 7 July 2005; revised 15 Jan. 2007; accepted 15 June 2007;
published online 26 Sept. 2007.
Recommended for acceptance by T. Brun.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-7-25-2005.
Digital Object Identifier no. 10.1109/TC.2007.70831.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

placement). Moreover, sequential circuits and memory
elements cannot be directly mapped into QCA using the
same criteria as conventional CMOS technology. For
storage, QCA utilizes the so-called paradigm of memory-
in-motion, that is, the state of a memory must be kept in
movement in the QCA cells.

The objective of this paper is to present a new serial
memory architecture for QCA implementation. The design
of this memory is based on the utilization of basic building
blocks referred to as tiles. Tiles are used in the memory cell
to construct a loop for moving the memory state in different
QCA circuits (memory-in-motion), as well as input/output
capabilities for the Read/Write operations. The combina-
tion of tile-based design and memory-in-motion by state
looping results in a novel timing/clocking arrangement by
which semi-adiabatic switching can be implemented using
two additional signals within a two-stage operational cycle.
The serial memory proposed in this paper uses different
tiles to allow bidirectional signal propagation. The closed
QCA loop, which is required to store data, is formed by
using a pair of parallel wires connected together at both
ends. The resulting rectangular-shaped loop is partitioned
into multiple columns of tiles. Each tile alternates between
one of the two stages in the operational cycle, Hold and
Switch; adjacent tiles are always in different stages, so, at
any given time, half of the tiles are in the Hold stage and the
other half are in the Switch stage. When a tile is in the Hold
stage, it holds 2 bits of data, one for each horizontal wire,
and, when it is in the Switch stage, it holds no data.

This paper is organized as follows: Section 2 presents a
brief review of QCA. In Section 3, the different QCA
memory designs [5], [3], [4] that have appeared in the
technical literature are discussed. In Section 4, the basic
principles of tiling for the proposed memory architecture
are outlined. Section 5 describes the clocking mechanism
and timing requirements for the proposed serial memory.
Section 6 presents in detail the operations of the different
tiles. Section 7 presents the evaluation of the proposed
memory cell by simulation using QCADesigner. A compar-
ison between the proposed memory architecture and other
serial designs found in the technical literature is pursued in
Section 8. Sections 9 and 10 analyze memory latency and
address decoding complexity as further figures of merit.
Memory density is addressed in Section 11.

2 REVIEW OF QCA

QCA is a new device architecture that is amenable to
nanometer scale [1]. QCA stores logic states not as voltage
levels but, rather, based on the position of individual
electrons [14]. A quantum cell can be viewed as a set of four
charge containers or dots, positioned at the corners of a
square cell. Computation is realized by the Coulombic
interaction of extra electrons in quantum dots. Each
quantum dot is a nanometer-scaled square with wells at
each corner of the cell. The two extra electrons that are
present in each cell can quantum mechanically tunnel
between wells, but they cannot tunnel out of the cell.
Electron repulsion causes the extra electrons to occupy
diagonally opposite wells. These two electron configura-
tions are used to encode binary information in the cells. Fig. 1

shows a QCA cell and the Boolean nature of the polarization
for its two electron configurations.

The unique feature of QCA-based designs is that logic
states are not stored in voltage levels, as in conventional
electronics, but they are represented by the position of
individual electrons. Unlike conventional logic, in which
information is transferred by electron phenomena [14],
QCA operates by the Coulomb interaction that relates the
state of one cell to the state of its neighbors. This results in a
technology in which information transfer (interconnection) is
the same as information transformation (logic manipulation).

QCA cells can be designed to realize a binary wire, an
inverter, and an MV . The basic logic gate in QCA is the
MV . The MV with logic function MV ðA;B;CÞ ¼ ABþ
AC þBC can be realized by only five QCA cells (compared
to a CMOS implementation, which requires 16 transistors).
The MV is said to have three legs for the input signals. Logic
AND and OR functions can be implemented from an MV by
setting one input leg (the programming input) permanently
to 0 and 1, respectively. Let a control cell be that cell
controlling the behavior of an MV as an AND or OR logic
gate. Cells that are positioned adjacent to each other tend to
align and produce a binary wire, whereas cells positioned
diagonally from each other align in an opposite fashion and
produce logic complementation (that is, an inverter).

In VLSI systems, timing is controlled through a reference
signal (that is, the clock); however, timing in QCA is
accomplished by clocking in four distinct and periodic
phases [1]. A QCA circuit is partitioned into serial (one-
dimensional) zones and each zone is maintained in a phase.

The use of a quasi-adiabatic switching technique for
QCA circuits requires a four-phased clocking signal, which
is commonly supplied by conducting wires buried under
the QCA circuitry for modulating the electric field [17]. The
four phases are Relax, Switch, Hold, and Release. Fig. 2
depicts a cell in its four clock phases. During the Relax phase,
there is no interdot barrier and a cell remains unpolarized.
During the Switch phase, the interdot barrier is slowly
raised and a cell attains a definitive polarity under the
influence of its neighbors. In the Hold phase, barriers are
high and a cell retains its polarity. Finally, in the Release
phase, barriers are lowered and a cell loses its polarity.

The timing zones of a QCA circuit or system are
arranged by following the periodic concatenation of these
four clock phases. Zones in the Hold phase are followed by
zones in the Switch, Release, and Relax phases. This
clocking mechanism provides inherent pipelining and
allows multibit information transfer for QCA. As a zone
in the Hold phase is followed by a zone in the Switch phase
(and preceded by a zone in the Release phase), the

VANKAMAMIDI ET AL.: A SERIAL MEMORY BY QUANTUM-DOT CELLULAR AUTOMATA (QCA) 607

Fig. 1. Binary behavior of a QCA cell.

computation in QCA is strictly one-dimensional (that is,
unidirectional and consistent with signal propagation).

Currently, QCA circuits and systems follow the clocking
zone partition scheme in [1]. Designs are partitioned into
multiple clocking zones only along one dimension (say, the
x-axis), thus effectively creating columns (as zones). Clocking
and pipelining require designs to maintain sets of four
adjacent zones at any time (as according to the four phases,
that is, Switch, Hold, Release, and Relax). For the four
phases, clocking to a zone (and the design as a whole) is
applied through an underlying clocking circuitry by a
signal, as shown in Fig. 3 [9]. Such a signal generates the
required electric field to modulate the tunneling barrier of
all cells in the zone (adiabatic switching). To maintain zones
in sets of four phases, four conducting wires (carrying the
signal in Fig. 3) are required. Each clock has a phase that is
shifted by �

2 .

3 QCA AND MEMORIES

As a nanotechnology, QCA has been advocated for high-
density memories. QCA offers many features for designing
memories, such as regularity, fast switching, and low
power. A straightforward approach to implement a
memory by QCA is to maintain a cell (or a clocking zone)
in the Hold phase as long as its value must be retained for
storage. The main problem with this approach is the
requirement of an explicit control of the clock signal from
the memory decoder (which is implemented in QCA). This
is not viable because it causes problems in timing and a
significant increase in the complexity of the underlying
circuitry (as interface to CMOS). For a truly QCA-based
implementation, it is well known that memory must be kept
in motion, that is, the memory state has to be continuously
moved through a set of QCA cells (such as those connected
in a loop).

Traditionally, it is possible to distinguish two types of
memory architectures: parallel and serial architectures.
Table 1 summarizes the comparison of parallel and serial
QCA memory architectures. For a parallel architecture, the
one-bit-per-memory cell feature reduces latency, but the
duplication of the Read/Write circuitry for each memory
bit, the higher counts (QCA cell, Control cell, and Clocking

zone), and the more complex clocking circuitry result in a
faster operation at a reduced density.

The most obvious advantage of a serial over a parallel
architecture is with respect to hardware; in a parallel
architecture, each bit stored in the memory requires a
separate Read/Write circuitry. In QCA, the Read/Write
circuitry is more complex (requiring multiple logic gates)
than a QCA wire loop (for actually storing the data bit).
Therefore, compared to a serial design in which a single
Read/Write circuit is shared between multiple bits of data
(as stored in each QCA loop), a parallel design requires a
higher number of QCA and control cells. Moreover, the
Read/Write circuitry must be partitioned into multiple
clocking zones, which causes the number of clocking zones
and the complexity of the underlying clocking circuitry to
increase. Parallel designs also encounter problems with
synchronization and coordination of the clock phases of
different Read/Write circuits with the Control/Select
signals that are transferred to a common QCA line.

Many QCA memory designs have been proposed in the
technical literature. Researchers at Notre Dame University
have introduced the H-Memory architecture [4], whose
main objectives are high density and uniform access time.
The H-Memory is a complete binary tree structure with
control circuitry at each node. As the memory spirals at the
leaf nodes, an integration of logic and memory is accom-
plished in the layout, even though, logically (as encoun-
tered in conventional designs), control circuitry and storage
are separate. Fig. 4a shows this spiral architecture. How-
ever, unlike conventional designs, the control and data bits
are serialized. The bitstream enters the memory structure at
the root node and traverses down the tree by utilizing one
control bit for routing at every node in the path. The
architectural choice of dealing with serial bitstreams also
results in a complex control logic. The router at each
internal node has 10 gates and six feedback loops; each loop
requires four clocking zones for its implementation. The
circuitry at the leaf nodes (that is, the memory cells)
requires 11 gates per node. Also, the memory cell at each
leaf node is a spiral, allowing the storage of several bits

608 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

Fig. 2. QCA clock phases.

Fig. 3. Four-phased signal for clocking zones in QCA, adiabatic

switching.

TABLE 1
Comparison of Parallel and Serial QCA Memory Architectures

while sharing clocking zones between multiple concentric
loops. In this design, the memory size and the cell count at
each spiral do not have a linear relationship; each outer loop
has an increasing diameter, thus requiring more cells to
implement (although its storage capacity remains constant).

Berzon and Fountain [3] made an early attempt to design
a QCA memory using the so-called SQUARES formalism.
The basic principle of this technique is to define a set of
equally sized blocks, each performing a basic function in
QCA (such as logic or interconnect). The basic blocks can
then be tiled together to design more complex QCA circuits.
The obvious advantage of this technique is the ease in the
geometric layout; also, such formalism allows a design to be
modular such that the tiles (blocks) are effectively con-
sidered as black boxes. However, as all blocks are of the
same size (in SQUARES, a 5� 5 grid), an unutilized area
appears in each block, thus causing spatial redundancy and
lower density in the overall design. This results in a serial
memory architecture (shown in Fig. 4b) in which each
memory cell consists of a QCA wire connected as a loop.
The wire is divided into clocking zones whose number is
four times the number of bits stored in the loop. Even for a
modest memory size, this results in a large number of
zones, thus requiring a considerable amount of clocking
circuitry for the signals. Finally, additional control circuitry
(such as comparators) must be utilized to make the memory
bit addressable. This results in a quite high hardware
overhead per memory cell.

Walus et al. [5] proposed a conventional parallel memory
architecture (such as that encountered in CMOS-based
RAM design) for QCA, that is, by storing 1 bit at each
memory cell. The single-bit memory cells allow the design
of a simple Read/Write circuitry; each memory cell is
implemented using 158 QCA cells and the Select signals are
separately generated using decoders. This approach has the
same disadvantage as in [3]; as data in each memory cell is
stored using a closed QCA wire loop partitioned into four
clocking zones, it needs a large number of clocking zones,
thus complicating the underlying circuitry for clocking (the
dimensions of the clocking zones for the memory loop are
small, that is, a QCA wire with fewer than 10 cells).

However, the dimensions of the conducting wire distribut-
ing the clock is at least an order of magnitude higher, thus
making the clocking of such small zones very difficult if not
infeasible. Also, this memory architecture does not exploit
full parallelism in its operation: Unlike CMOS designs, the
Select signal in QCA takes multiple clock cycles to propagate
and does not simultaneously reach all cells in a row, that is,
bits in the same row are read at different clock cycles.

In the single-bit memory design introduced in [18], each
QCA line for a memory cell spans three clocking zones, as
required to retain its memory value. By increasing the
length of the QCA wire over a number of zones (in a
number given by a multiple of three), more than 1 bit of
data can be stored in the wire. The principle of memory-in-
motion is kept within a single-bit design by transferring the
stored value back and forth within the clocking zones.
During the Read cycle, multiple bits in a line must be
transferred to one end of the wire for output; however,
there is no feedback loop to transfer the bits back to the
beginning of the wire; consequently, they can be lost.
Therefore, a serial architecture that stores multiple bits at
each memory cell must have a feedback path (such as a
continuous loop).

4 MEMORY DESIGN BY TILING

In this section, the basic principles of a novel architecture
for a serial QCA memory are presented. The proposed
architecture still utilizes the concept of memory-in-motion
within a QCA loop. Some of the advantages of the proposed
serial architecture are the novel QCA design for storing the
memory bits and the associated Read/Write control
circuitry. The proposed design is independent of the
address decoding logic and can be used with the decoding
circuits proposed for other QCA memory architectures [3],
[4], [5]. QCA cells are arranged into simple basic QCA
blocks referred to as tiles. Three types of tiles are utilized:
1) Internal memory tile (shown in Fig. 5), 2) Output tile
(shown in Fig. 6), and 3) Input tile (shown in Fig. 7).

Tiles are connected in a loop using two horizontal wires
(referred to as the upper and lower wires) (Fig. 8). The
memory cell in the proposed serial architecture consists of
two long horizontal QCA wires connected at both of their
ends by two short vertical wires, which create a loop for the
memory-in-motion implementation. The Input and Output
tiles and related circuits (for the Read and Write operations)
are located at opposite sides of the horizontal wires. The
Internal memory tiles are located between the Input and
Output tiles. In this architecture, the loops are stacked, thus

VANKAMAMIDI ET AL.: A SERIAL MEMORY BY QUANTUM-DOT CELLULAR AUTOMATA (QCA) 609

Fig. 4. Serial memory cell architectures. (a) Memory spiral architecture

presented by Frost et al. (b) Memory loop architecture used by Berzon

and Fountain.

Fig. 5. QCA implementation of the Internal memory tile.

resulting in a highly compact memory layout. Together with a
novel clocking strategy, data is allowed to move in each
horizontal wire along two different directions while still
being connected into a continuous loop. Fig. 8 shows the
architecture for one memory loop using tiles; note that the size
of the register is equal to the number of tiles and clocking
zones are shared between all registers in the memory.

A memory loop partitioned into n tiles can store n bits of
data, that is, the number of tiles required to implement a
serial memory cell is equal to its word size. In the proposed
architecture, all memory cells are arranged into a column.
Tiles partition the loop of a particular memory cell and the
memory loops of all other memory cells in that column. The
exception is the Input tile, which is used to multiplex new
input values into the memory loop (and they cannot be
shared with other memory cells). Therefore, the number of
tiles that are required to implement a memory of m words
(for a word that is n-bits wide) is given by

Tm�n ¼ mþ ðn� 1Þ; ð1Þ

where m corresponds to the number of Input tiles required
for each of the m words and n� 1 corresponds to the tiles
that are shared between all memory cells for implementing
the remaining n� 1 bits.

For establishing the number of required QCA cells, the
number of bits stored in a memory loop must be equal to
the number of tiles. Therefore, the number of QCA cells
required per bit is equal to the number of QCA cells of the
memory loop in any tile. A total of 74 cells are required for
the Internal memory tile (Fig. 5), whereas 24 and 54 cells are
required for the Input and Output tiles (Figs. 6 and 7),
respectively. A total of 74 cells are required to store 1 bit of
data, that is, the QCA cell count is linearly related to the
memory size.

In the proposed serial architecture, timing and clocking
are implemented using a two-level arrangement; the first
level is tile based. Each tile is divided into zones which are
utilized for timing purposes for the different QCA phases.
The Internal memory tile has three zones, the Output tile
has two zones, and the Input tile has two zones. The
operational cycle consists of two stages (made of multiple
steps) that are tile dependent, affecting the different zones.
The second level is loop based; each loop is partitioned into
multiple columns of clocking zones; each column of
clocking zones spans the same section of all loops arranged
into a stack. The number of clocking zones into which the
horizontal wires of the loop are partitioned determines the
word size of each memory cell; the number of loops that are
stacked determines the memory size.

To store data in the loops, bits move in opposite
directions along the two horizontal wires. However, in the
proposed architecture, similar sections of the horizontal
wires are in the same clocking zone. Using a conventional
four-phased clocking mechanism, data always moves in the
same direction; to resolve this issue and retain the
advantages of a serial architecture, tiles with different
operational features must be utilized. The proposed
memory is depicted in block diagram form in Fig. 8; each
tile is alternatively in two different stages (referred to as the
Hold and Switch stages) of the operational cycle, that is,
adjacent tiles are always in different stages. When a tile is in
the Hold stage, it retains the bit values that are stored in the
two horizontal wires of the loop and holds them as input for
the next tile. When a tile is in the Switch stage, it switches to
the new input bit value, thus moving data among adjacent
tiles. The QCA cells in the tiles of a wire and the associated
clocking strategy allow bits to move only in one direction at
one time, that is, counterclockwise (right to left for the
upper wire) for the purpose of this paper. The Hold and
Switch stages involve different clocking zones for the tiles
and phases of the four-phased clock signal (which includes
Release and Relax).

Input and Output tiles require two clocking zones per
tile; all Internal memory tiles require three clocking zones
per tile. Therefore, the total number of clocking zones for
implementing a memory of size m� n using the proposed
architecture is given by

Zm�n ¼ ð2�mÞ þ ð3� ðn� 2ÞÞ þ 2; ð2Þ

where n� 2 is the number of intermediate memory tiles.
Therefore, the number of clocking zones required to
implement the proposed architecture is efficient. In the
proposed design, the maximum line length does not
increase with word or memory size. Moreover, the

610 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

Fig. 6. QCA implementation of the Output tile.

Fig. 7. QCA implementation of the Input tile.

Fig. 8. Proposed N-bit wide memory.

proposed architecture retains the advantages of single-bit
memory design, whereas clocking zones between all
memory cells are shared, thus reducing the complexity of
the control circuitry. A serial design has a single Read/
Write logic for multiple bits in each memory cell, so, when
the number of bits per cell increases, the hardware
overhead per bit is also reduced.

5 CLOCKING AND TIMING

The proposed serial memory requires clocking signals that
are different from the ones used in previous QCA memory
designs. Signals for this architecture also utilize the same four
phases for semi-adiabatic switching; however, for proper
clocking, the times of the signals for the Relax and Hold
phases must be substantially different. All three zones in each
Internal memory tile (that is,A,B, and C in Fig. 5), as well as
the other tiles, do not switch in the same fashion. Therefore,
multiple signals are required to clock the memory.

Consider initially the Internal memory tile. Zone 1 ðAÞ
and Zone 3 ðCÞ of each memory tile switch identically and
are always in the same phase. Therefore, a single signal can
be used to clock both of them. However, Zone 2 ðBÞ
switches differently, thus requiring a second clock signal.
Although the Output tile has only two zones (Fig. 6), its
switching mechanism is similar to the Internal memory
tiles. Therefore, its Zone 1 and Zone 2 can be clocked with
the same signals used for the memory tiles. The Input tile
(Fig. 7) is partitioned horizontally and is switched differ-
ently from the memory tiles; the Input tile must multiplex
the new memory state (as input) depending on the Select
signal. Therefore, the clock signal that is required to achieve
this switching strategy is the same as for Zone 2 ðBÞ of the
memory tile. The Input tile requires no separate clock signal
(for an Input tile, the clock signal for its Zone 2 is just a
phase-shifted version of the signal for its Zone 1). Thus, two
additional signals that are different from the conventional
clocking arrangement of QCA are required to clock the
proposed serial memory. The three signals that are required
for clocking the proposed memory architecture are periodic
in nature. The first half of the clock cycle corresponds to the
Switch stage, whereas the second half corresponds to the
Hold stage. Fig. 9 shows the waveforms of the two required
clock signals over one clock period (operational cycle).

All tiles in the memory architecture (including the Input
and Output tiles) are in one of the two stages of the
operational cycle, that is, Switch and Hold. When a tile is in
the Switch stage, its adjacent tiles are in the Hold stage. As all
tiles alternate in stages, during the kth ðkþ 1Þ operational

cycle all Internal memory tiles with an even index are in
the Switch (Hold) stage, whereas Internal memory tiles
with an odd index are in the Hold (Switch) stage.

The operational cycle consists of two so-called stages. For
an Internal memory tile, the two stages consists of four
steps (two per stage) as follows:

. Switch stage. In the Switch stage (Step 1, 0 to �
5), all

zones of the tile are in the Switch phase. At the same
time, the neighboring zones are in the Hold stage (�
to 6�

5) and act as inputs. Hence, the input values are
multiplexed and the output is moved to Zone 2 of
the Switch tile. During Step 2 (�5 to �), Zone 2 is
retained in the Hold phase and Zone 1 and Zone 3
are cycled through the remaining phases and
returned to the Switch phase. At the same time, the
neighboring zones that are in Step 4 of the Hold
stage (6�

5 to 2�) are released and retained in the Relax
phase. Therefore, the new multiplexed values of
Zone 2 are propagated to one of the desired zones
(either Zone 1 or 3).

. Hold Stage. During Step 3, Zone 1 and Zone 3 are
retained in the Hold phase such that they act as the
input for adjacent tiles (which are now in the Switch
stage). The previous memory values (corresponding
to the Switch stage in Zone 2) are released. During
Step 4, all zones are returned to the Relax phase such
that they can switch together again at the beginning
of the next operational cycle.

For an Input tile, its stages (made up of four steps) are as
follows: During Step 1 in the Switch stage, Zone 1 is in the
Switch phase (the neighboring zone of the memory tile on one
side and the new input signals on the other side are in the
Hold phase). Since the clock signal for Zone 2 is 3�

5 phase
delayed of Zone 1, Zone 1 is in the Relax phase; the MV in
Zone 1 multiplexes the input value and the old memory state,
thus resulting in the new memory state. During Step 2, Zone 1
is retained in the Hold phase until Zone 2 reaches the Switch
phase, so the new memory state is propagated from Zone 1 to
Zone 2. At this time, the neighboring zone of the memory tile
is in the Relax phase. During Step 3 (corresponding to the
Hold stage), Zone 2 is in the Hold phase and the new memory
state is propagated to the adjacent memory tile (which is in the
Switch stage). In Step 4, both zones in the Input tile are
returned to the Relax phase.

The Output tile has the same operational cycle as an
Internal memory tile, so the description of its operational
cycle is omitted.

6 QCA TILES

Consider initially the memory tile of the proposed QCA
architecture. Each memory tile consists of a column of three
clocking zones spanning the internal section of the two
horizontal wires; this is applicable to all memory cells that
have been arranged into a stack. When a tile is in the Switch
stage, its two adjacent tiles are in the Hold stage; therefore,
each horizontal wire in the Switch stage tile has two inputs
that are in the Hold phase at each of its two ends. To have a
counterclockwise memory motion, the upper horizontal
wire of each memory loop must be multiplexed with the

VANKAMAMIDI ET AL.: A SERIAL MEMORY BY QUANTUM-DOT CELLULAR AUTOMATA (QCA) 611

Fig. 9. Clock signals for the required switching mechanism.

two inputs, so it transfers the input from the previous tile
(on the right) to the next tile (on the left). As the lower
horizontal wire is multiplexed, it transfers the input from
the tile on the left to the tile on the right. This switching
mechanism can be achieved through an MV that function-
ally acts as a diode (that is, blocking the movement of data)
using the clocking zones available in each tile. This MV is
placed in the clocking zone near the input whose value
must be dominated (masked) to obtain the unidirectional
memory motion. The input whose value must be trans-
ferred is duplicated and connected to two inputs of the MV,
whereas the input whose value must be blocked is
connected to the third input only. Therefore, the two input
values are multiplexed by the MV and the output is the
desired value. Using the MV, this new output is forced back
to the wire whose input value was blocked. At the
beginning of the Switch stage, the horizontal wires of a
memory loop have the two inputs at both ends; however, at
the end of the Switch stage, the wire has only the value of
the required input.

Fig. 5 shows the QCA circuitry in a memory tile (referred
to as the Internal tile or tile i) for the two horizontal wires of
a memory loop. This tile operates over an operational cycle
made up of two steps:

. Step 1. All three clocking zones (A, B, and C) of
memory tile i in the Switch stage are in the Switch
phase, whereas clocking zones of adjacent tiles (i� 1
and iþ 1) are in the Hold phase. Therefore, the
desired input that is duplicated and connected to
two inputs of the MV (that is, x and y) is moved to
the output ðz0Þ.

. Step 2. The middle clocking zone of tile i (that is,
zone B) of the Switch stage is kept in the Hold phase,
whereas the other two zones (A and C) are cycled
through their phases and returned to the Switch
phase. At the same time, the adjacent two tiles (i� 1
and iþ 1) are relaxed from their Hold phase.
Therefore, the direction of signal propagation
changes; a wire that was previously an output for
the MV now becomes an input and vice versa.
However, two wires still remain as inputs to the MV;
as the three inputs of the MV have the same signal,
the output follows this value. The output is fan out,
that is, this signal is duplicated and propagated to
the next tile during the subsequent operational cycle.

By the end of Step 2, all cells of the upper horizontal wire
align to the input from the tile on the right while blocking
the input of the left tile; the lower horizontal wire aligns to
the input from the left tile while blocking the input from the
right tile. Thus, in one operational cycle, data in the memory
loop moves by one tile in a counterclockwise direction
(right to left). In the next operational cycle, the tile that was
in the Switch stage with new data on the horizontal wires is
changed to the Hold stage and the two adjacent tiles (which
were in the Hold stage) are changed to the Switch stage,
thus enabling further motion of data.

Two additional tiles are required for the input/output of
the memory loop, as well as connecting the upper and
lower horizontal wires.

. The Output tile. The Output tile propagates data in the
lower horizontal wire to the output read logic. It also
has a vertical QCA wire to transfer data to the upper
horizontal wire such that the loop is established.
However, when the Output tile switches to accept
a signal from the lower horizontal wire (which is in
the Hold stage), the upper horizontal wire is also
in the Hold stage. Therefore, duplication of the
lower horizontal wire (to dominate the upper wire)
and an appropriate switching strategy for the
memory tiles are required. As the Output tile
performs only one transfer (that is, from the lower
to the upper horizontal wires), it only requires two
clocking zones and one MV.

Fig. 6 shows the QCA implementation of the
Output tile; the operational cycle of the Output tile is
the same as that of the internal memory tile. In Step 1,
the MV is switched and, due to the duplication, the
signal of the lower horizontal line dominates and is
transferred to the output. In Step 2, the previous
output line acts as an input and transfers the signal
to the upper horizontal wire. Having aligned the
signal on the lower horizontal wire, in the next
operational cycle, the Output tile alternates to the
Hold stage and loops the signal to the upper
horizontal wire.

. The Input tile. The Input tile has a vertical wire to
connect the two horizontal wires; this transfers the
signal between them such that the memory loop is
constructed at the other end too. However, it is
different from the Output tile because, prior to
transferring data, the old memory state has to be
multiplexed with the input data based on the Write
control signal for acquiring the new memory state.
Multiplexing is achieved through an MV, as shown
previously. However, the Input tile can be affected if
no horizontal partitioning is implemented for tim-
ing. The implementation of the Input tile is shown in
Fig. 7. Since the tile is horizontally partitioned into
two clocking zones (upper and lower), they cannot
be shared with other memory loops. The function-
ality of the Input tile over one operational cycle is
also given by a two-step process:

1. Step 1. The lower clocking zone of the Input tile
is in the Relax phase; the upper clocking zone is
in the Switch phase. Its two inputs (from the
memory tile on one side and the Write circuitry
on the other side) are in the Hold phase. Hence,
the output of the MV in the top zone switches to
the new memory state as input value.

2. Step 2. The upper clocking zone is kept in the
Hold phase and the lower zone is in the Switch
phase (while keeping the adjacent memory tile
in the Relax phase). Therefore, the new memory
value is propagated to the QCA wire connected
to the lower horizontal wire. In the next
operational cycle, the Input tile is in the Hold
stage and the new memory value is moved back
to the memory tile, which is changed to the
Switch stage.

612 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

As an Input tile must implement the logic to

multiplex between the old memory value and the

new input value, it requires two separate clocking

zones.

7 SIMULATION

QCADesigner [16] provides a design and simulation

environment for QCA circuits; it has multiple simulation

engines and CAD capabilities. This tool has been used to

verify the design of the proposed QCA memory cell. A

QCA memory loop that consists of an Input tile, one

Internal memory tile (1 bit), and an Output tile (Fig. 10) was

assembled. As the Input and Output tiles store 1 bit each

and the Internal memory tile stores 2 bits, the size of the

memory cell in Fig. 10 is 4 bits. Simulation has been

performed using the bistable engine of QCADesigner with a

cell dimension of 18 nm and a dot size of 5 nm. However,

QCADesigner does not support the clocking scheme and

clock zone partitioning of the proposed memory cell;

therefore, minor adjustments (mostly of a functional nature)

were implemented to establish compatibility with this CAD

tool. The proposed QCA memory cell has been evaluated

and simulated for logic and clocking (timing) verification.

In both cases, minor modifications were required; these

modifications are introduced only for compatibility with

QCADesigner, that is, the modified memory circuit/clock-

ing is isomorphic to the proposed circuit/clocking scheme,

as presented in the previous sections.
For logic verification, Fig. 11 shows the simulation results

for the memory cell; the phase of the output waveform is

shifted by two clock cycles with wraparound (that is, the

output waveform for clock cycles 7 and 8 is shown in clock

cycles 1 and 2 too). During the first four clock cycles, the

output is determined only by the two inputs that are

connected to the two legs of the MV in the Input tile; the

third leg of this MV is not connected because it takes four

cycles for the first bit to loop through the memory cell.

Therefore, during this period the MV behaves as an AND

gate. For the next four clock cycles (labeled five through

eight in the waveform diagrams), all three legs of the MV

are connected (active) and the MV inputs are 000, 010, 100,

and 111. Hence, this will result in a majority function with

an output of the same value as during the first four clock

cycles. As observed in the simulation results, the QCA

circuit behaves as expected, that is, data is looped in a

correct manner through the tiles.

For the timing verification of the QCA memory cell, a
slight modification to the clocking strategy must be
performed because QCADesigner only provides the cap-
ability of clocking circuits using a conventional four-phased
clock signal, as shown previously in Fig. 3. This limiting
feature is also found in other CAD tools for QCA, such as
AQUINAS [17]. In the proposed clocking strategy, the
clocking zones next to a zone in the Switch phase must be in
the Hold phase so that all three legs of the MV can be
driven. To simulate this feature, the arrangement shown in
Fig. 12 was utilized. The third leg of each MV in the Internal
memory and Output tiles is permanently set to a value and
placed in the same clock phase as the other two legs of the
MV. The value of this third leg is dominated by the
duplicated value on the other two legs and the resulting
output of the MV is propagated through the memory loop.
Thus, the counterclockwise motion of data as required by
the proposed clocking strategy is still achieved within the
memory loop. This modified memory cell has been
simulated using QCADesigner with the above-mentioned
configuration; the resulting waveforms are the same as the
memory cell design (shown previously in Figs. 10 and 11).

8 COMPARISON

In this section, an analysis is pursued to compare the
proposed serial memory with other serial memories found
in the technical literature [3], [4]. The serial QCA memory
architecture in [4] uses a spiral (squared shaped) that loops
back to itself for storing data. The main advantage of a
spiral over a loop is that the sections of each layer of the
spiral can be in the same clocking zone. Even though the
word size of each memory cell is increased by adding extra
layers, the number of clocking zones is not increased. As

VANKAMAMIDI ET AL.: A SERIAL MEMORY BY QUANTUM-DOT CELLULAR AUTOMATA (QCA) 613

Fig. 10. Design of the proposed memory cell for a simulation by

QCADesigner (logic verification).

Fig. 11. Simulation waveforms for the proposed memory cell (logic and

timing verification).

Fig. 12. Design of the proposed memory cell for simulation by

QCADesigner (timing verification).

clocking zones span multiple layers, their dimensions are
sufficiently large to be clocked by the underlying wires.
However, the spiral architecture in [4] has some inherent
drawbacks. As the word size at each memory cell is
increased by adding layers, the number of QCA cells for
implementing them increases, that is, the number of QCA
cells required per data bit is not constant and depends on
the word size at each memory cell.

The problem of increasing the QCA cell count for
additional layers leads to another drawback, that is, the
number of clocking zones into which the memory spiral is
partitioned is constant. Therefore, as the dimensions of each
additional layer increases, their length in some clocking
zones (corners) also increases. This could be a significant
problem because the probability of kink occurrence in-
creases with the maximum line length of a clocking zone. To
avoid kinks, the switching frequency must be reduced too
to ensure that the QCA cells remain in the ground state.

The first significant difference between the memory
spiral [4] and the tile-based memory proposed in this paper
is that the memory spiral shares clocking zones within a
memory cell and, hence, it is independent of word size. In
the memory presented in this paper, clocking zones are
shared between different memory cells, so this scheme is
independent of memory size (that is, the number of words),
but it depends on the word size. As the number of memory
cells is usually much larger than the number of bits in each
cell, then the proposed architecture provides a better
arrangement for the number of clocking zones required for
timing a QCA memory. The SQUARES technique in [3] is also
evaluated and compared. The modular design of this
technique is different from the tiling proposed in this paper;
the basic block in [3] is designed to improve different QCA
functionalities. In SQUARES, the number of clocking zones is
four times the number of bits stored in memory and the
number of QCA cells (per bit) to implement the loop is 20. The
density is low because of the complex decoding and control
circuitry, as well as the low area utilization due to the
SQUARES formalism. The tiles of the proposed approach are
tailored to memory design and its performance.

Fig. 13 shows the cell count versus word size for the QCA
memories proposed in [4] (Mem Spiral) and [3] (Mem Loop),
as well as the design in this paper (Mem Tiles). The linearity of
both the proposed approach and [3] is evident even though

the Memory Loop [3] requires a small number of cells. A
comparison is also performed with respect to clocking zone
count. Fig. 14 shows the relationship between the clocking
zone count and the memory size for the same three QCA
architectures. In this case, [3] requires the largest number of
zones, thus reducing the switching speed of the QCA
memory, whereas the proposed scheme needs the least.

For QCA designs, the logic-level effects caused by the
interference of the electric field from adjacent clocking wires
are a significant issue because QCA cells that are located at
the boundary must be in a clocking zone. This depends on
the strength of the electric field in the adjacent clocking
wires [9]. In [9], wave clocking was first introduced such
that circuits can be designed with QCA cells at clocking
zone boundaries with no modification in logic functionality;
these cells must belong to either of the clocking zones to
tolerate the interference in the electric fields [19].

9 LATENCY CONSIDERATIONS

By the memory-in-motion paradigm, storage is implemen-
ted in QCA by continuously moving bits in a loop. In serial
architectures, multiple bits are stored in each loop. Each
memory loop is associated with a single Read/Write logic
circuitry. When the first bit of a memory word reaches this
circuitry, the memory operation can be performed, that is,
bits in the loop can be read and transferred to an output line
or new input bits can be written into the loop. However, if
the first bit passes the Read/Write circuitry, then a delay is
incurred to account for cycling through the loop and
returning it back to the Read/Write circuitry. On average,
this delay (generally referred to as memory latency) is equal
to half the time required to complete one revolution
through the loop. However, the time required to pass
through the loop depends on the loop size, which is a
function of the number of stored bits (that is, the word size).
Therefore, the word size of a memory cell must be small to
reduce latency.

The serial architecture presented in this paper is only word
addressable (although, with additional circuitry, the indivi-
dual bits of a word in each memory loop could also be made
addressable). Memory latency is incurred only for the first bit
of the word, that is, all subsequent bits are accessed in
successive clock cycles with no latency. However, the serial

614 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

Fig. 13. QCA cell count versus word size. Fig. 14. Clocking zone count versus memory size.

memory designs presented in [3] are bit addressable (that is,
individual bits within the memory loop can be addressed).
For random bit access, these designs incur a penalty for
memory latency on every bit access; therefore, if bit
addressing is required, parallel QCA architectures are better
suited. If serial architectures are selected for bit-addressable
memories, latency considerations provide an added reason to
keep the word size at each memory cell small.

For a memory design with a small word size, clocking
considerations (which also affect the underlying clocking
circuitry) make the serial architecture presented in this
paper more advantageous than the serial designs in [3] and
[4] because clocking zones are shared between memory
cells rather than within a memory cell, that is, a reduction in
word size by one bit accomplishes a reduction of three in the
number of clocking zones. Therefore, the reduction in word
size at each memory cell and the increase in the total number
of memory cells (to preserve a constant memory size) reduce
the total number of clocking zones required for implementing
the QCA memory. However, the QCA memory design in [4]
uses a closed QCA spiral which shares clocking zones within
but not between memory cells; its reduction in word size does
not reduce the number of clocking zones for the memory cell.
Moreover, the reduction in word size and the increase in
memory cell count result in an increase in the total number of
clocking zones for the serial memory (in [3], the clocking zone
requirement is rather high because it is a function of the total
memory size).

In addition to the word (loop), another characteristic that
affects latency is the time for moving bits in the QCA loops.
In the serial designs in [3] and [4], one bit of the memory
loop passes through the Read/Write circuitry at every clock
cycle. For the proposed serial architecture, one bit passes
every half cycle because the Hold stage of one tile coincides
with the Switch stage of the adjacent tile (Fig. 8). However,
[3] and [4] use a conventional clock signal which has four
phases in each cycle (the proposed architecture uses a
different clock signal which has a repetition of four phases
for a total number of 10 phases per clock cycle, as shown in
Fig. 9). Therefore, the designs in [3] and [4] require four
clock phases (one cycle) for bit movement, whereas the
proposed architecture requires slightly more, that is, five
clock phases (or half cycle).

A further feature that must be considered is the time
period for each phase of the clock signal. This is determined
by the longest QCA line of a clocking zone [1] as

Ts / C1:16; ð3Þ

where Ts is the switching time for the clocking zone and C
is the number of QCA cells in the longest wire of the zone.
This equation shows that the dependency is nearly linear
(the slightly higher exponent is attributed to approxima-
tions in the calculation).

Using the number of clock phases per bit movement and
the time period of each phase, the average memory latency of
the proposed scheme is given by the product of these terms
times half the word size (moving the first bit to the Read/
Write circuitry). Fig. 15 shows the plot of memory latency
with the word size (loop size) for different serial architec-
tures. The nonlinear behavior of the spiral architecture is due

to the increase in word size with each additional layer and
the length of the QCA line in a clocking zone. As the time
period increases, the bit movement rate is also reduced.
However, for the loop and tile architectures, the length of
the QCA line of a clocking zone is independent of the
word size and, therefore, the bit movement rate remains
unchanged, that is, it is linear with the word size.

10 ADDRESS DECODING

The circuitry that decodes signals on the address lines and
selects the corresponding memory cell is generally referred
to as the address decoder. This is an important functional part
of a memory because it ultimately affects its performance,
as well as density. In the proposed architecture, the
m signal lines address n memory cells, where n ¼ 2m. In
traditional CMOS memories, address decoding is usually
achieved through standard blocks such as m-to-n demulti-
plexers, lookup tables (PROM), or programmable logic
devices (PAL, PLA, and FPGA). As in the early stage of
research, a QCA memory will require simple circuits using
combinational logic for address decoding purposes. In this
section, a logic block for address decoding is presented.
Issues associated with its design are discussed for improve-
ment in reliability and performance. The characteristics and
hardware requirements of the proposed architecture are
then compared with other QCA decoding circuits presented
in the literature.

The operation of a decoder is based on selecting one of
the n Output lines by the m Select signal lines, where
n ¼ 2m. Decoders usually are the preferred devices for
generating mutually exclusive signals as required for
addressing. In QCA, decoders can be designed using MVs
that implement the AND/OR functions. Each m-to-n
decoder requires a total of ðn� 1Þ 2-to-1 decoders which
are implemented using two MVs (as AND gates) and an
inverter. Fig. 16 shows the QCA design of a 3-to-8 decoder
(in this case, Enable ¼ 1 and Sel1;2;3 ¼ 0, so only Outo ¼ 1).
The input A is the Enable of the memory cell and is
propagated depending on the values of the Select lines (Seli,
i ¼ 1; 2; 3), that is, at any given time, only one of the eight
memory cells that are connected to the outputs (Outj,
j ¼ 0; . . . ; 7) is enabled. By changing the value of A, each
memory cell can be enabled/disabled.

VANKAMAMIDI ET AL.: A SERIAL MEMORY BY QUANTUM-DOT CELLULAR AUTOMATA (QCA) 615

Fig. 15. Comparison of latency for bit access.

A further issue that must be considered for address
decoding is the synchronization between accessing the

memory cell and the operational cycle. The memory cycle
for parallel and serial designs consists of multiple conven-

tional (four-phased, equally timed) QCA clocking cycles.
Although the operational cycle of a parallel architecture
consists of two QCA clocking cycles, for a serial architec-

ture, the operational cycle is made of multiple QCA
clocking cycles depending on the number of bits stored in

each memory cell.
The Control signals for the cells must be asserted and valid

during the first clock cycle of the operational cycle of the

memory when the bit (which is stored in the memory cell)
reaches the input clocking zone. For a serial architecture, the
Control signals must only be asserted during the first clock

cycle, when the start bit reaches the Input tile. If the signals are
asserted in the middle of the memory cycle, the value on the

input line could be written at an arbitrary position of the loop,
thus corrupting the data in the memory cell.

Using address decoders, synchronization can be accom-

plished with relative ease by using a counter at its input. If
the input of the decoder is enabled, then the Control signals
to the addressed memory cell are effectively asserted; if the

input is disabled, the Control signals to all memory cells
(including the addressed cell) are not asserted. A counter

(with a count equal to the number of QCA clocking cycles in
the operational cycle of the memory) can be used to enable

the decoder input at the correct time, that is, the signals at
the memory cell are asserted only at the beginning of the
memory cycle. Thus, only a single counter is required to

maintain synchronization for all memory cells.
The proposed circuitry can be compared with previous

works. Walus et al. [5], for example, use separate decoding

logic for each row of the memory cells in a row-addressed
two-dimensional architecture. A memory with N rows that

is addressed by M (where M ¼ log2N) address lines would
therefore require N M-to-1 decoders. As each decoder
requires M � 1 two-input gates (for AND and OR), the total

number of QCA gates (or MV) required to address the
N locations using this decoding scheme is

GM�to�1 ¼ N � ðM � 1Þ ¼ 2M � ðM � 1Þ: ð4Þ

The use of separate decoding to address each location
(row) has an advantage in terms of latency. As it involves
N M-to-1 decoders (connected in parallel), the latency in
address decoding is only equal to that of an M-to-1 decoder
(which requires signal propagation through log2M levels of
two-input gates). So,

LM�to�1 ¼ log2M: ð5Þ

The decoding logic presented in this paper uses a single
M-to-N decoder that propagates the Select signal to one of
the N locations (based on the signals in the M address
lines). The hardware requirements for this architecture are
considerably lower than that in [5], which uses a separate
circuit for each of the N locations. The total number of two-
input QCA gates (or MVs) required for the proposed
decoding scheme is

GM�to�N ¼ 2Mþ1 � 2: ð6Þ

However, as a single block is used for decoding the
addresses of all N memory locations, the latency is also
increased. As latency is related to the number of levels of
two-input QCA gates (required for signal propagation to
complete the decoding process by using the M-to-N
decoder), the latency is given by

LM�to�N ¼M: ð7Þ

Therefore, the proposed decoding circuit requires sig-
nificantly less hardware for implementation, thus accom-
plishing a higher density (albeit requiring additional clock
cycles).

For comparison, consider next the memory architecture
in [4]. The H-memory structure in [4] uses a different
approach for QCA signal propagation because it exploits
microlevel pipelining in QCA wires. In previously pre-
sented designs, each bit of the memory address space is
transferred through a different QCA line, similarly to
CMOS designs. Therefore, the decoding circuits of CMOS
can be readily adapted to QCA. In the H-memory, the
address and data bits are serialized and transferred through
a single QCA wire; hence, the decoding circuitry is
substantially different. The H-memory is a complete binary
tree, with memory cells at the leaf nodes and decoding logic
at the root and all other internal nodes. As the address and
data bits enter the structure at the root node and depending
on the address value, data bits are routed to a particular
memory cell; therefore, one address bit is needed for
making a decision at each node.

In another serial architecture, the decoding circuitry
effectively implements a binary tree with simple QCA logic
gates at each node, that is, one two-input gate in the case of
the M-to-1 decoder [5] and two gates for the M-to-N
decoder. In the H-memory, as the address is serialized, the
QCA circuitry at each node is complicated; a total of six
QCA gates are required with multiple feedback loops.
Therefore, the number of QCA gates (that is, MVs) required
for decoding the M-bit address for the N memory cell space
is given by

GM�to�N ¼ 6� ð2M � 1Þ: ð8Þ

616 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

Fig. 16. The 3-to-8 QCA decoder under the one-dimensional clocking

scheme.

Latency in decoding is also increased: Although the
number of levels of the nodes is the same as in previous
decoding designs, the complexity and computation at each
node are high (in previous designs, the signal must pass
through a single QCA gate at each level). Therefore, the
latency in memory address decoding is also high.

11 MEMORY DENSITY

Fig. 17 shows the projected memory densities for DRAM
using CMOS technology and for serial memory architec-
tures using QCA technology. DRAM density projections are
obtained from [13]. When calculating QCA memory
densities, cell sizes in the range of 1 nm up to 10 nm are
assumed (through either molecular or metallic implementa-
tions). The memory spiral architecture in [4] requires an
area of 15d� 15d QCA cells per memory cell, whereas the
architecture proposed in this paper takes an area of 18:5d�
18:5d QCA cells (where d is the interdot distance). The area
requirements per bit are calculated for a memory of size 256
with 12-bit words (inclusive of input/output and decoding
circuitry). For decoding, the spiral memory architecture uses
router cells [4], whereas the proposed tile-based architecture
uses the decoder presented in a previous section.

The memory architecture designed using the SQUARES
formalism [5] exhibits a relatively low density. It requires an
area of 32d� 32d QCA cells. This low density occurs
because, even though the number of QCA cells for
implementing the memory loop is small, there is still a
substantial amount of wasted area (the goal of SQUARES is
to simplify the engineering design process using uniformly
sized logic blocks; it has been shown that, in each block, the
wasted area accounts for more than 50 percent); moreover,
the feature of making data in each loop bit addressable
results in complex control and decoding circuits.

In Fig. 17, it can be observed that the proposed serial
QCA memory architecture, even with metal-dot implemen-
tations (at a cell size of 10 nm), allows memory densities
that can only be matched after some years by using
conventional CMOS technology. For molecular implemen-
tations (at a 1 nm range), QCA memory architectures offer
incredible densities, placing them well above the range of
CMOS technology.

12 CONCLUSIONS

This paper has proposed a novel serial memory architecture

for QCA implementation. This architecture is based on

utilizing new building blocks (referred to as tiles) in the

storage and input/output circuitry of the memory. The

QCA paradigm of memory-in-motion has been accom-

plished using a novel arrangement in the storage loop and

timing/clocking; a three-zone memory tile has been

proposed by which information is moved across a con-

catenation of tiles by utilizing a two-level clocking

mechanism. In the proposed memory, clocking zones are

shared between memory cells and the length of the QCA

line of a clocking zone is independent of the word size.

QCA circuits for address decoding and input/output for

simplification of the Read/Write operations have been

discussed in detail. An extensive comparison of the

proposed architecture and previous QCA serial memories

has been pursued in terms of latency, timing, clocking

requirements, and hardware complexity. This analysis has

shown that the proposed memory architecture is readily

applicable to QCA implementation and provides excellent

figures of merit compared with other QCA-based serial

memories.

REFERENCES

[1] C.S. Lent and P.D. Tougaw, “A Device Architecture for Comput-
ing with Quantum Dots,” Proc. IEEE, vol. 85, pp. 541-557, 1997.

[2] M.T. Niemier and P.M. Kogge, “Problems in Designing with
QCAs: Layout=Timing,” Int’l J. Circuit Theory and Applications,
vol. 29, no. 1, pp. 49-62, 2001.

[3] D. Berzon and T.J. Fountain, “A Memory Design in QCAs Using
the SQUARES Formalism,” Proc. Ninth Great Lakes Symp. VLSI,
pp. 168-172, 1999.

[4] S.E. Frost, A.F. Rodrigues, A.W. Janiszewski, R.T. Rausch, and
P.M. Kogge, “Memory in Motion: A Study of Storage Structures in
QCA,” Proc. First Workshop Non-Silicon Computation, 2002.

[5] K. Walus, A. Vetteth, G.A. Jullien, and V.S. Dimitrov, “RAM
Design Using Quantum-Dot Cellular Automata,” Technical Proc.
Nanotechnology Conf. and Trade Show, vol. 2, pp. 160-163, 2003.

[6] M.T. Niemier, A.F. Rodrigues, and P.M. Kogge, “A Potentially
Implementable FPGA for Quantum Dot Cellular Automata,” Proc.
First Workshop Non-Silicon Computation, 2002.

[7] M. Lieberman, S. Chellamma, B. Varughese, Y. Wang, C.S. Lent,
G.H. Bernstein, G. Snider, and F. Peiris, “Quantum-Dot Cellular
Automata at a Molecular Scale,” Annals of the New York Academy of
Sciences, vol. 960, pp. 225-239, 2002.

[8] C.S. Lent, P.D. Tougaw, and W. Porod, “Quantum Cellular
Automata: The Physics of Computing with Arrays of Quantum
Dot Molecules,” Proc. Workshop Physics and Computation, 1994.

[9] K. Hennessy and C.S. Lent, “Clocking of Molecular Quantum-Dot
Cellular Automata,” J. Vacuum Science and Technology B, vol. 19,
no. 5, pp. 1752-1755, 2001.

[10] I. Amlani, A.O. Orlov, G. Toth, C.S. Lent, G.H. Bernstein, and G.L.
Snider, “Digital Logic Gate Using Quantum-Dot Cellular Auto-
mata,” Science, vol. 284, no. 5412, pp. 289-291.

[11] S.E. Frost, A.F. Rodrigues, A.W. Janiszewski, R.T. Rausch, and
P.M. Kogge, “Memory in Motion: A Study of Storage Structures in
QCA,” Proc. First Workshop Non-Silicon Computation, 2002.

[12] A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, and G.L. Snider,
“Realization of a Functional Cell for Quantum-Dot Cellular
Automata,” Science, vol. 277, pp. 928-930, 1997.

[13] R. Compano, L. Molenkamp, and D.J. Paul, “Technology Road-
map for Nanoelectronics,” European Commission IST Programme,
Future and Emerging Technologies, 2000.

[14] P.D. Tougaw and C.S. Lent, “Logical Devices Implemented Using
Quantum Cellular Automata,” J. Applied Physics, vol. 75, no. 3,
pp. 1818-1825, 1994.

VANKAMAMIDI ET AL.: A SERIAL MEMORY BY QUANTUM-DOT CELLULAR AUTOMATA (QCA) 617

Fig. 17. Density comparisons of CMOS/QCA serial memory architec-

tures (projected).

[15] K. Walus, A. Vetteth, G.A. Jullien, and V.S. Dimitrov, “RAM
Design Using Quantum-Dot Cellular Automata,” Technical Proc.
Nanotechnology Conf. and Trade Show, vol. 2, pp. 160-163, 2003.

[16] K. Walus QCADesigner Homepage, ATIPS Laboratory, Univ. of
Calgary, Canada, http://www.qcadesigner.ca/index.html, 2004.

[17] E.P. Blair and C.S. Lent, “An Architecture for Molecular
Computing Using Quantum-Dot Cellular Automata,” Proc. Third
IEEE Conf. Nanotechnology, vol. 1, pp. 12-14, 2003.

[18] V. Vankamamidi, M. Ottavi, and F. Lombardi, “A Line-Based
Parallel Memory for QCA Implementation,” IEEE Trans. Nano-
technology, vol. 4, no. 6, pp. 690-698, Nov. 2005.

[19] V. Vankamamidi, M. Ottavi, and F. Lombardi, “Clocking and Cell
Placement for QCA,” Proc. Sixth IEEE Conf. Nanotechnology, vol. 1,
pp. 343-346, June 2006.

Vamsi Vankamamidi received the BS degree in
computer engineering from the University of
Mumbai, India, in 2000 and the MS degree in
electrical engineering and computer science
from the University of Toledo, Ohio, in 2001.
He is currently working toward the PhD degree
in computer engineering at Northeastern Uni-
versity, Boston. As part of his dissertation, he is
working on quantum-dot cellular automata
(QCA), a nanoscale device architecture to

supersede conventional silicon-based technology. His research inter-
ests include the design of nanoscale circuits and systems, electronic
design automation, defect tolerance, and reliability.

Marco Ottavi received the Laurea degree in
electronic engineering from the University of
Rome “La Sapienza,” Rome, in 1999 and the
PhD degree in microelectronic and telecommu-
nications engineering from the University of
Rome “Tor Vergata,” Rome, in 2004. In 2000,
he was with the ULISSE Consortium, Rome, as
a designer engineer of digital systems for space
applications. In 2003, he was a visiting research
assistant with the Electrical and Computer

Engineering Department at Northeastern University, Boston. From
2004 to 2007, he was a postdoctoral research associate at Northeastern
University and, in 2006, he was a visiting research scholar at Sandia
National Laboratories, Albuquerque, New Mexico. He is currently a
senior design engineer with Advanced Micro Devices, Boxborough,
Massachusetts. His research interests include yield and reliability
modeling, fault-tolerant architectures, and online testing and design of
nanoscale circuits and systems. He is a member of the IEEE.

Fabrizio Lombardi received the BSc (Hons.)
degree in electronic engineering from the Uni-
versity of Essex, United Kingdom, in 1977 and
the master’s degree in microwaves and modern
optics in 1978, the diploma in microwave
engineering in 1978, and the PhD degree in
1982 from University College London, University
of London. He joined the Microwave Research
Unit at the University College London in 1977.
He is currently the holder of the International

Test Conference (ITC) Endowed Chair Professorship at Northeastern
University, Boston. At the same institution, during the period 1998-2004,
he served as the chair of the Department of Electrical and Computer
Engineering. Prior to joining Northeastern University, he was a faculty
member at Texas Tech University, the University of Colorado, Boulder,
and Texas A&M University. His research interests are bio-inspired
nanomanufacturing/nanocomputing, VLSI design, testing, and fault/
defect tolerance of digital systems. He has extensively published in
these areas and coauthored/edited seven books. Since 1 January 2007,
he has been the editor-in-chief of the IEEE Transactions on Computers.
He is also an associate editor of IEEE Design and Test magazine and
the ACM Journal of Emerging Technology in Computing Systems. He
has been the chair of the Committee on “Nanotechnology Devices and
Systems” of the Test Technology Technical Council of the IEEE since
2003. He was an associate editor from 1996 to 2000 and an associate
editor-in-chief from 2000 to 2006 of the IEEE Transactions on
Computers. He was a guest editor of special issues in archival journals
and magazines such as the IEEE Transactions on Computers, IEEE
Transactions on Instrumentation and Measurement, IEEE Transactions
on VLSI, IEEE Micro magazine, and IEEE Design and Test magazine.
He has been involved in organizing many international symposia,
conferences, and workshops sponsored by professional organizations.
He is the founding general chair of the IEEE Symposium on Network
Computing and Applications. He was a Distinguished Visitor of the IEEE
Computer Society twice (1990-1993 and 2001-2004). He has received
many professional awards, including the Visiting Fellowship at the
British Columbia Advanced System Institute, University of Victoria,
Canada (1988), two Texas Experimental Engineering Station Research
Fellowships (1991-1992 and 1997-1998), the Halliburton Professorship
(1995), the Outstanding Engineering Research Award at Northeastern
University (2004), and an International Research Award from the
Ministry of Science and Education of Japan (1993-1999). He was the
recipient of the 1985/86 Research Initiation Award from the IEEE/
Engineering Foundation and a Silver Quill Award from Motorola-Austin
(1996). He is a senior member of the IEEE and a member of the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

618 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

