
ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE 1

Algorithms and Arithmetic Operators for

Computing the ηT Pairing in Characteristic Three
Jean-Luc Beuchat, Nicolas Brisebarre, Jérémie Detrey, Eiji Okamoto, Masaaki Shirase, and Tsuyoshi Takagi

Abstract— Since their introduction in constructive crypto-
graphic applications, pairings over (hyper)elliptic curves are at
the heart of an ever increasing number of protocols. Software
implementations being rather slow, the study of hardware archi-
tectures became an active research area.

In this paper, we discuss several algorithms to compute the ηT

pairing in characteristic three and suggest further improvements.
These algorithms involve addition, multiplication, cubing, inver-
sion, and sometimes cube root extraction over F3m . We propose
a hardware accelerator based on a unified arithmetic operator
able to perform the operations required by a given algorithm.
We describe the implementation of a compact coprocessor for
the field F397 given by F3[x]/(x97 +x12 +2), which compares
favorably with other solutions described in the open literature.

Index Terms— ηT pairing, finite field arithmetic, elliptic curve,
hardware accelerator, FPGA.

I. INTRODUCTION

In 2001, Boneh, Lynn & Shacham [1] proposed a remarkable

short signature scheme whose principle is the following. They

consider an additive group G1 = 〈P 〉 of prime order q and a

map-to-point hash function H : {0, 1}∗ → G1. The secret key is

an element x of {1, 2, . . . , q − 1} and the public key is xP ∈ G1

for a signer. Let m ∈ {0, 1}∗ be a message, they compute the

signature xH(m). To do the verification, they use a map called

bilinear pairing that we now define.

Let G1 = 〈P 〉 be an additive group and G2 a multiplicati-

ve group with identity 1. We assume that the discrete logarithm

problem is hard in both G1 and G2. A bilinear pairing on (G1, G2)

is a map e : G1×G1 → G2 that satisfies the following conditions:

1) Bilinearity. For all Q, R, S ∈ G1,

e(Q+R,S) = e(Q,S)e(R,S) and

e(Q,R+ S) = e(Q,R)e(Q,S).

2) Non-degeneracy. e(P, P ) 6= 1.

3) Computability. e can be efficiently computed.

Modifications of the Weil and Tate pairings provide such maps.

The verification in the BLS scheme is done by checking if

the values e(P, xH(m)) and e(xP,H(m)) coincide. Actually, if

x′ ∈ {1, 2, . . . , q−1} satisfies e(xP,H(m)) = e(P, x′H(m)), then

we obtain e(P,H(m))x = e(P,H(m))x
′

thanks to the bilinearity

property of the pairing. From the non-degeneracy of the pairing

J.-L. Beuchat and E. Okamoto are with the Graduate School of Systems and
Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba,
Ibaraki, 305-8573, Japan.

N. Brisebarre is with Laboratoire LIP/Arénaire (CNRS – ENS Lyon –
INRIA – UCBL), ENS Lyon, 46, allée d’Italie, F-69364 Lyon Cedex 07,
France.

J. Detrey is with the Cosec group, B-IT (Bonn-Aachen International Center
for Information Technology), Dahlmannstraße 2, D-53113 Bonn, Germany.

M. Shirase and T. Takagi are with the School of Systems Information
Science, Future University-Hakodate, 116-2 Kamedanakano-cho, Hakodate,
Hokkaido, 041-8655, Japan.

we know that e(P,H(m))x = e(P,H(m))x
′

implies x = x′. The

total cost is one hashing operation, one modular exponentiation

and two pairing computations and the signature is twice as short

as the one in DSA for similar level of security.

A. Pairings in Cryptology

Pairings were first introduced in cryptology by Menezes,

Okamoto & Vanstone [2] and Frey & Rück [3] for code-breaking

purposes. Mitsunari, Sakai & Kasahara [4] and Sakai, Oghishi

& Kasahara [5] seem to be the first to have discovered their

constructive properties. Since the foundational work of Joux [6],

an already large and ever increasing number of pairing-based

protocols has been found. Most of them are described in the

survey by Dutta, Barua & Sarkar [7]. As noticed in that survey,

such protocols rely critically on efficient algorithms and imple-

mentations of pairing primitives.

According to [8], [9], when dealing with general curves pro-

viding common levels of security, the Tate pairing seems to be

more efficient for computation than the Weil pairing and we now

describe it.

Let E be a supersingular1 elliptic curve over Fpm , where p

is a prime and m a positive integer, and let E(Fpm) denote

the group of its points. Let ℓ > 0 be an integer relatively

prime to p. The embedding degree (or security multiplier) is

the least positive integer k satisfying pkm ≡ 1 (mod ℓ). Let

E(Fpm)[ℓ] denote the ℓ-torsion subgroup of E(Fpm), i.e. the set

of elements P of E(Fpm) that satisfy [ℓ]P = O, where O is the

point at infinity of the elliptic curve. Let P ∈ E(Fpm)[ℓ] and

Q ∈ E(Fpkm)[ℓ], let fℓ,P be a rational function on the curve

with divisor ℓ(P ) − ℓ(O) (see [10] for an account of divisors),

there exists a divisor DQ equivalent to (Q)− (O), with a support

disjoint from the support of fℓ,P . Then the Tate pairing2 of order

ℓ is the map e : E(Fpm)[ℓ] × E(Fpkm)[ℓ] → F
∗

pkm defined by

e(P,Q) = fℓ,P (DQ)(p
km

−1)/ℓ. The kind of powering that occurs

in this definition is called the final exponentiation; it makes it

possible to get values in a multiplicative subgroup of F
∗

pkm (which

is required by most of the cryptographic applications) instead of

a multiplicative subgroup of a quotient of F
∗

pkm .

In [11], Barreto et al. proved that this pairing can be computed

as e(P,Q) = fℓ,P (Q)
pkm

−1
ℓ , where fℓ,P is evaluated on a

point rather than on a divisor. Thanks to a distortion map ψ :

E(Fpm)[ℓ] → E(Fpkm)[ℓ] (the concept of a distortion map was

introduced in [12]), one can define the modified Tate pairing ê

by ê(P,Q) = e(P,ψ(Q)) for all P, Q ∈ E(Fpm)[ℓ].

Miller [13], [14] proposed in 1986 the first algorithm for com-

puting Weil and Tate pairings. Different ways for computing the

1See Theorem V.3.1 of [10] for a definition.
2We give here the definition from [11], slightly different from the initial

one given in [3].



2 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

Tate pairing can be found in [11], [15]–[17]. In [18], Barreto et

al. introduced the ηT pairing which extended and improved the

Duursma-Lee techniques [16]. It makes it possible to efficiently

compute the Tate pairing. The ηT pairing is presented in Section II

in which we recall the relation between it and the modified Tate

pairing.

B. Implementation Challenges

The software implementations of these successive algorithmic

improvements being rather slow, the need for fine hardware

implementations is strong. This is a critical issue to make pairings

popular and of common use in cryptography and in particular

in view of a successful industrial transfer. The papers [19]–[27]

address that problem.

In this paper, we deal with the characteristic three case and,

given a positive integer m coprime to 6, we consider E, a

supersingular elliptic curve over F3m , defined by the equation

y2 = x3−x+b, with b ∈ {−1, 1}. Following the discussion at the

beginning of Section 5 of [18], there is no loss of generality from

considering this case since these curves offer the same level of

security for pairing applications as any supersingular elliptic curve

over F3m . The considered curve has an embedding degree of 6,

which is the maximum value possible for supersingular elliptic

curves, and hence seems to be an attractive choice for pairing

implementation.

C. Our Contribution

The algorithm given in [18] for computing the ηT pairing

halves the number of iterations used in the approach by Duursma

& Lee [16] but has the drawback of using inverse Frobenius

maps. In [25] Beuchat et al. proposed a modified ηT pairing

algorithm in characteristic three that does not require any inverse

Frobenius map. Moreover, they designed a novel arithmetic

operator implementing addition, cubing, and multiplication over

F397 which performs in a fast and cheap way the step of final

exponentiation [26]. Then they extended in [27] this approach to

the computation of the reduced ηT pairing (i.e. the combination

of the ηT pairing and the final exponentiation).

In this article, we present a synthesis and an improvement of

the results of the papers [25]–[27]. The outline of the paper is the

following. In Section II, we define the ηT pairing and its reduced

form, we give different algorithms to compute them and we

provide exact cost evaluations for these algorithms. Section III is

dedicated to the presentation of a reduced ηT pairing coprocessor

that is based on a unified arithmetic operator that implements

the various required elementary operations over F3m . We want

to mention that all the material (i.e. algorithms and architectures)

presented in this section can be easily adapted to work on any field

Fp[x]/(f(x)) for any prime p and any polynomial f irreducible

over Fp. We implemented our coprocessor on several Field-

Programmable Gate Array (FPGA) families for the field F397

given by F3[x]/(x
97 + x12 + 2). We provide the reader with

a comprehensive comparison against state-of-the-art ηT pairing

accelerators in Section IV and conclude our article in Section V.

II. COMPUTATION OF THE ηT PAIRING IN CHARACTERISTIC

THREE

A. Preliminary Definitions

We use here the definition of the ηT pairing as introduced by

Barreto et al. in [18]. The interested reader shall find in that

article all the details related to the mathematical construction

of the pairing, which we will deliberately not mention here for

clarity’s sake.

Let E be the supersingular elliptic curve defined by the

equation E : y2 = x3 − x + b, where b ∈ {−1, 1}. Considering

a positive integer m coprime to 6, the number of rational points

of E over the finite field F3m is given by N = #E(F3m) =

3m + 1 + µb3
m+1

2 , with

µ =



+1 if m ≡ 1, 11 (mod 12), or

−1 if m ≡ 5, 7 (mod 12).

The embedding degree k of E is then 6.

Choosing T = 3m − N = −µb3
m+1

2 − 1 and an integer ℓ

dividing N , we define the ηT pairing of two points P and Q of

the ℓ-torsion E(F3m)[ℓ] as

ηT (P,Q) =



fT,P (ψ(Q)) if T > 0 (i.e. µb = −1), or

f−T,−P (ψ(Q)) if T < 0 (i.e. µb = 1),

where:

• ψ is a distortion map from E(F3m)[ℓ] to E(F36m)[ℓ] defined

as ψ(x, y) = (ρ−x, yσ) for all (x, y) ∈ E(F3m)[ℓ], as given

in [11], where ρ and σ are elements of F36m satisfying the

equations ρ3 − ρ− b = 0 and σ2 + 1 = 0.

As already remarked in [20], this allows for repre-

senting F36m as an extension of F3m using the basis

(1, σ, ρ, σρ, ρ2, σρ2): F36m = F3m [σ, ρ] ∼= F3m [X,Y ]/(X2+

1, Y 3 − Y − b). Hence, all the computations over F36m can

be replaced by computations over F3m , as explicitly shown

in Appendices3 V and VI.

• fn,P , for n ∈ N and P ∈ E(F3m)[ℓ], is a rational function

defined over E(F36m)[ℓ] with divisor (fn,P ) = n(P ) −
([n]P )− (n− 1)(O).

In order to ensure that the obtained pairing values belong to

the group of the ℓth roots of unity of F
∗

36m , we actually have to

compute the reduced ηT pairing, defined as ηT (P,Q)M , where

M =
36m − 1

N
=
“

33m − 1
”

`

3m + 1
´

“

3m + 1− µb3
m+1

2

”

.

In the following, we will refer to this additional step as final

exponentiation.

One should also note that, in characteristic 3, we have the

following relation between the reduced ηT and modified Tate

pairings:
“

ηT (P,Q)M
”3T 2

=
“

ê(P,Q)M
”L

,

with L = −µb3
m+3

2 . Using v as a shorthand for ηT (P,Q)M , we

can compute the modified Tate pairing according to the following

formula:

ê(P,Q)M = v−2

 

v3
m+1

2
3m
q

v3
m−1

2

!

−µb

.

Noting T ′ = −µbT = 3
m+1

2 + µb and P ′ = [−µb]P , we

now have to compute ηT (P,Q)M = fT ′,P ′(ψ(Q))M . Using the

Duursma-Lee techniques [16] to simplify the computation of fn,P

3Appendices are available through the Digital Library of the IEEE Com-
puter Society.



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 3

in Miller’s algorithm, we obtain

fT ′,P ′(ψ(Q)) =

0

B

@

m−1
2
Y

i=0

g[3i]P ′(ψ(Q))3
m−1

2
−i

1

C

A
lP ′(ψ(Q)),

where:

• gV , for all V = (xV , yV ) ∈ E(F3m)[ℓ], is the rational func-

tion introduced by Duursma and Lee in [16], defined over

E(F36m)[ℓ] and having divisor (gV ) = 3(V ) + ([−3]V ) −
4(O). For all (x, y) ∈ E(F36m)[ℓ], we have

gV (x, y) = y3
V y − (x3

V − x+ b)2.

• lV , for all V = (xV , yV ) ∈ E(F3m)[ℓ], is the equation of the

line corresponding to the addition of
h

3
m+1

2

i

V with [µb]V ,

defined for all (x, y) ∈ E(F36m)[ℓ]:

lV (x, y) = y − λyV (x− xV )− µbyV ,

with

λ = (−1)
m+1

2 =



+1 if m ≡ 7, 11 (mod 12), or

−1 if m ≡ 1, 5 (mod 12).

We can also rewrite the equation of lV as

lV (x, y) = y + λyV (xV − x− νb),

introducing

ν = µλ =



+1 if m ≡ 5, 11 (mod 12), or

−1 if m ≡ 1, 7 (mod 12).

The remaining of this section will present and discuss various

algorithms that can be used to effectively compute the reduced ηT

pairing. The next three subsections will focus on the computation

of ηT (P,Q) only, the details of the final exponentiation being

given in Section II-E. Finally, cost evaluations and comparisons

will be presented in Section II-F.

B. Direct Approaches

1) Direct Algorithm: From the expression of fT ′,P ′ , noting

Q̃ = ψ(Q), we can write

fT ′,P ′(Q̃) =
„

. . .
“

gP ′(Q̃)3 · g[3]P ′(Q̃)
”3
. . .

«3

g»

3
m−1

2

–

P ′

(Q̃) · lP ′(Q̃).

Noting P ′ = (xP ′ , yP ′) and Q = (xQ, yQ), we have [3i]P ′ =
“

x32i

P ′ − ib, (−1)iy32i

P ′

”

and Q̃ = ψ(Q) = (ρ−xQ, yQσ). Injecting

these in the expressions of g[3i]P ′ and lP ′ and defining m′ =
m−1

2 , we obtain

g[3i]P ′(Q̃) =

(−1)iy32i+1

P ′ yQσ −
“

x32i+1

P ′ + xQ + (1− i)b− ρ
”2

, and

lP ′(Q̃) =

yQσ − (−1)m
′

y32m′+1

P ′

„

x32m′+1

P ′ + xQ + (1−m′)b− ρ
«

.

An iterative implementation of the ηT pairing following

this construction is given in Algorithm 1. The cost of each

pseudo-code instruction is given as comments in terms of addi-

tions/subtractions (A), multiplications (M) and cubings (C) over

the underlying field F3m .

A few remarks concerning this algorithm:

Algorithm 1 Direct algorithm for computing the ηT pairing.

Input: P,Q ∈ E(F3m)[ℓ].

Output: ηT (P,Q) ∈ F
∗

36m .

1. yP ← −µbyP ;

2. xP ← x3
P ; yP ← y3

P ; (2C)

3. t← xP + xQ + b; u← yP yQ; (1M, 2A)

4. R← (−t2 + uσ − tρ− ρ2)3; (1M, 2C, 3A)

5. xP ← x9
P ; yP ← −y9

P ; (4C)

6. t← xP + xQ; u← yP yQ; (1M, 1A)

7. S ← −t2 + uσ − tρ− ρ2; (1M)

8. R← R · S; (6M, 21A)

9. for i← 2 to m−1
2 do

10. R← R3; (6C, 6A)

11. xP ← x9
P − b; yP ← −y9

P ; (4C, 1A)

12. t← xP + xQ; u← yP yQ; (1M, 1A)

13. S ← −t2 + uσ − tρ− ρ2; (1M)

14. R← R · S; (12M, 59A)

15. end for

16. S ← −yP t+ yQσ + yP ρ; (1M)

17. R← R · S; (12M, 51A)

18. return R;

• The multiplication by −µb on line 1 is for free. Indeed, −µb
being a constant (1 or −1) for fixed m and b, one can just

compute the value of −µb when those parameters are chosen,

and propagate sign corrections on yP throughout the whole

algorithm.

• Similarly, multiplications by λ, ν and b do not have any

impact on the cost of the algorithm. The value of these

constants are known in advance, and actually only represent

sign changes in the algorithm.

• Since the representation of −t2+uσ−tρ−ρ2 as an element of

the tower field F36m is sparse, the cubing on line 4 involves

only 1 multiplication, 2 cubings and 3 additions over F3m ,

as detailed in Appendix V-B.

• Additionally, (−t2+uσ−tρ−ρ2)3 has the same sparsity, and

therefore the product of R and S on line 8 can be computed

by means of only 6 multiplications and 21 additions over

F3m , as per Appendix VI-C.

• Inside the loop, the cubing of R on line 10 is computed in

6 cubings and 6 additions over F3m (Appendix V-A).

• The multiplication of R by S on line 14 involves only 12

multiplications and 59 additions over F3m , as S is sparse

(Appendix VI-B).

• The final product on line 17 is in turn computed by means

of 12 multiplications and 51 additions, also thanks to the

sparsity of S, as detailed in Appendix VI-B.

2) Simplification using Cube Roots: Cubing the intermediate

result R ∈ F
∗

36m at each iteration of Algorithm 1 is quite

expensive. But one can use the fact that, due to the bilinearity

of the reduced ηT pairing,

ηT (P,Q)M =

0

@ηT

“

P,
h

3−
m−1

2

i

Q
”3

m−1
2

1

A

M

,



4 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

to compute instead

fT ′,P ′(Q̃)3
m−1

2
=

0

B

@

m−1
2
Y

i=0

g[3i]P ′(Q̃)3
m−1−i

1

C

A
lP ′(Q̃)3

m−1
2

,

with Q̃ = ψ
“h

3−
m−1

2

i

Q
”

=
“

ρ− x3
Q − (ν + 1)b,−λy3

Qσ
”

.

Expanding everything, we obtain the following expressions,

again with m′ = m−1
2 :

g[3i]P ′(Q̃)3
m−1−i

=

− λy3i

P ′y3−i

Q σ −
“

x3i

P ′ + x3−i

Q − νb− ρ
”2

, and

lP ′(Q̃)3
m−1

2
= y3−m′

Q σ + λy3m′

P ′

„

x3m′

P ′ + x3−m′

Q − νb− ρ
«

.

This naturally gives another iterative method to compute

ηT (P,Q), presented in Algorithm 2. Here, the cubings over F36m

are traded for cube roots (noted R) over F3m , which can be

efficiently computed by means of a specific operator (see III-E

for further details).

Algorithm 2 Simplified algorithm for computing the ηT pairing,

with cube roots.

Input: P,Q ∈ E(F3m)[ℓ].

Output: ηT (P,Q) ∈ F
∗

36m .

1. xP ← xP − νb; (1A)

2. yP ← −µbyP ;

3. t← xP + xQ; u← yP yQ; (1M, 1A)

4. R← −t2 − λuσ − tρ− ρ2; (1M)

5. xP ← x3
P ; yP ← y3

P ; (2C)

6. xQ ← 3
√
xQ; yQ ← 3

√
yQ; (2R)

7. t← xP + xQ; u← yP yQ; (1M, 1A)

8. S ← −t2 − λuσ − tρ− ρ2; (1M)

9. R← R · S; (6M, 21A)

10. for i← 2 to m−1
2 do

11. xP ← x3
P ; yP ← y3

P ; (2C)

12. xQ ← 3
√
xQ; yQ ← 3

√
yQ; (2R)

13. t← xP + xQ; u← yP yQ; (1M, 1A)

14. S ← −t2 − λuσ − tρ− ρ2; (1M)

15. R← R · S; (12M, 59A)

16. end for

17. S ← λyP t+ yQσ − λyP ρ; (1M)

18. R← R · S; (12M, 51A)

19. return R;

3) Tabulating the Cube Roots: Even if cube roots can be

computed with only a slight hardware overhead, it is sometimes

advisable to restrict the hardware complexity of the arithmetic

unit in order to achieve higher clock frequencies. The previous

algorithm can easily be adapted to cube-root-free coprocessors by

simply noticing that, as xQ and yQ ∈ F3m , x3−i

Q = x3m−i

Q and

y3−i

Q = y3m−i

Q .

Therefore, computing the m− 1 successive cubings of xQ and

yQ, it is possible to tabulate the pre-computed values of x3−i

Q and

y3−i

Q which will be looked-up on lines 6 and 12 of Algorithm 2

instead of computing the actual cube roots.

The m − 1 cube roots of Algorithm 2 are hence traded for

2m−2 cubings, at the expense of extra registers required to store

the tabulated values as m− 1 elements of F3m .

This idea, originally suggested by Barreto et al. [18], was for

instance applied by Ronan et al. in [23] in the case m ≡ 1

(mod 12), although they curiously do not compute the actual ηT

pairing, but the value

ηT

“

P, [3−m]Q
”3

m−1
2

= ηT (P,Q)3
−

m+1
2

.

C. Reversed-Loop Approaches

In [18], Barreto et al. suggest reversing the loop to compute

the ηT pairing. To that purpose, they introduce a new index j =

3
m−1

2 − i for the loop. Taking Q̃ = ψ(Q), we find

fT ′,P ′(Q̃) = lP ′(Q̃)

0

B

@

m−1
2
Y

j=0

g»

3
m−1

2
−j

–

P ′

(Q̃)3
j

1

C

A
.

1) Reversed-Loop Algorithm: Directly injecting the expression

of
h

3
m−1

2 −j
i

P ′ =
“

x3−2j−1

P ′ − (ν + 1− j)b,−λ(−1)jy3−2j−1

P ′

”

into the formulas, we obtain

lP ′(Q̃) = yQσ + λyP ′

`

xP ′ + xQ − νb− ρ
´

, and

g»

3
m−1

2
−j

–

P ′

(Q̃)3
j

=

−λy3−j

P ′ y3j

Q σ −
“

x3−j

P ′ + x3j

Q − νb− ρ
”2

.

Following this expression, a third iterative scheme for com-

puting the ηT pairing can be directly devised, as detailed in

Algorithm 3. In the case m ≡ 1 (mod 12), this is the exact same

algorithm as described by Barreto et al. in [18].

Algorithm 3 Reversed-loop algorithm for computing the ηT

pairing, with cube roots.

Input: P,Q ∈ E(F3m)[ℓ].

Output: ηT (P,Q) ∈ F
∗

36m .

1. xP ← xP − νb; (1A)

2. yP ← −µbyP ;

3. t← xP + xQ; (1A)

4. R← (λyP t+ yQσ − λyP ρ) · (−t2 − λyP yQσ − tρ− ρ2);
(6M, 1C, 6A)

5. for j ← 1 to m−1
2 do

6. xP ← 3
√
xP ; yP ← 3

√
yP ; (2R)

7. xQ ← x3
Q; yQ ← y3

Q; (2C)

8. t← xP + xQ; u← yP yQ; (1M, 1A)

9. S ← −t2 − λuσ − tρ− ρ2; (1M)

10. R← R · S; (12M, 59A)

11. end for

12. return R;

It is to be noted that given the expression of its operands,

the multiplication on line 4 is computed by means of only 6

multiplications, 1 cubing and 6 additions over F3m , as described

in Appendix VI-D.

As for Algorithm 2, Algorithm 3 also requires the computation

of cube roots. A similar technique of pre-computation and tabu-

lation of the cube roots thanks to successive cubings of xP and

yP can be also be used, although we will not detail it here.



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 5

2) Eliminating the Cube Roots: The apparent duality between

Algorithms 2 and 3 can be exploited to find another cube-

free algorithm, still based on the reversed loop but similar to

Algorithm 1.

For that purpose, we once again compute the reduced ηT

pairing of P and Q as

ηT (P,Q)M =

0

@ηT

“

P,
h

3−
m−1

2

i

Q
”3

m−1
2

1

A

M

.

Noting Q̃ = ψ
“h

3−
m−1

2

i

Q
”

, the reversed loop becomes

fT ′,P ′(Q̃)3
m−1

2

= lP ′(Q̃)3
m−1

2

0

B

@

m−1
2
Y

j=0

g»

3
m−1

2
−j

–

P ′

(Q̃)3
m−1

2
+j

1

C

A

= lP ′(Q̃)3
m−1

2

0

B

@

m−1
2
Y

j=0

hj,P ′(Q̃)3
m−1

2
−j

1

C

A

=

 

. . .

„

“

lP ′(Q̃) · h0,P ′(Q̃)
”3
h1,P ′(Q̃)

«3

. . .

!3

hm−1
2 ,P ′(Q̃),

with the rational function hj,P ′(Q̃) defined as

hj,P ′(Q̃) = g»

3
m−1

2
−j

–

P ′

(Q̃)3
2j

.

We then compute the explicit expressions of lP (Q̃) and

hj,P ′(Q̃):

lP ′(Q̃) = −λy3
Qσ + λyP ′

“

xP ′ + x3
Q + b− ρ

”

, and

hj,P ′(Q̃) =

(−1)jyP ′y32j+1

Q σ −
“

xP ′ + x32j+1

Q + (1− j)b− ρ
”2

.

Algorithm 4 is a direct implementation of the previous com-

putation of ηT (P,Q). Similarly to Algorithm 1, it uses cubings

over F36m in order to avoid the cube roots of Algorithm 3. In

the case m ≡ 1 (mod 12), this algorithm corresponds to the ηT

pairing computation described by Beuchat et al. in [25].

Algorithm 4 Cube-root-free reversed-loop algorithm for comput-

ing the ηT pairing.

Input: P,Q ∈ E(F3m)[ℓ].

Output: ηT (P,Q) ∈ F
∗

36m .

1. xP ← xP + b; (1A)

2. yP ← −µbyP ;

3. xQ ← x3
Q; yQ ← y3

Q; (2C)

4. t← xP + xQ; (1A)

5. R← (λyP t− λyQσ − λyP ρ) · (−t2 + yP yQσ − tρ− ρ2);
(6M, 1C, 6A)

6. for j ← 1 to m−1
2 do

7. R← R3; (6C, 6A)

8. xQ ← x9
Q − b; yQ ← −y9

Q; (4C, 1A)

9. t← xP + xQ; u← yP yQ; (1M, 1A)

10. S ← −t2 + uσ − tρ− ρ2; (1M)

11. R← R · S; (12M, 59A)

12. end for

13. return R;

D. Loop Unrolling

Granger et al. [28] proposed a loop unrolling technique for the

Duursma-Lee algorithm. They exploit the sparsity of gV in order

to reduce the number of multiplications over F3m , exactly in the

same way as we reduced the first two iterations of Algorithms 1

and 2.

By noting that hj,P ′(Q̃)3 is also as sparse as hj,P ′(Q̃) (see

Appendix V-B for details), we can apply the same approach to

Algorithm 4.

In two successive iterations 2j′ − 1 and 2j′ of the loop, for

1 ≤ j′ ≤ ⌊m−1
4 ⌋, we compute the new value of R as

R ←
“

R3 · h2j′
−1,P ′(Q̃)

”3
· h2j′,P ′(Q̃)

= R9 · h2j′
−1,P ′(Q̃)3 · h2j′,P ′(Q̃).

The values of h2j′
−1,P ′(Q̃) and h2j′,P ′(Q̃), computed at

iterations 2j′ − 1 and 2j′ respectively, are both of the form

−t2 + uσ − tρ − ρ2. Therefore, given t and u, the computation

of h2j′
−1,P ′(Q̃)3 requires only 1 multiplication, 2 cubings and

3 additions over F3m , as per Appendix V-B. Similarly, the

product of h2j′
−1,P ′(Q̃)3 and h2j′,P ′(Q̃) can be computed by

means of only 6 multiplications and 21 additions, as explained in

Appendix VI-C. Finally, multiplying this product by R9 requires

a full F36m multiplication, which can be performed with 15

multiplications and 67 additions over F3m (see Appendix VI-A).

Hence, the cost of such a double iteration would be of 25

multiplications (neglecting the other operations), whereas two

iterations of the original loop from Algorithm 4 cost 2× 14 = 28

multiplications.

Following this, we can unroll the main loop of Algorithm 4

in order to save multiplications by computing two iterations at a

time. The resulting scheme is shown in Algorithm 5, for the case

where m−1
2 is even. If m−1

2 is actually odd, one just has to restrict

the loop on j′ from 1 to m−3
4 , and compute the last product by

an extra iteration of the original loop, for the additional cost of

14 multiplications, 10 cubings and 68 additions over F3m .

It is to be noted that one could also straightforwardly apply

a similar loop unrolling technique to Algorithm 1. However, we

will not detail this point any further, for it is rigourously identical

to the previous case.

E. Final Exponentiation

As already stated in Section II-A, the ηT pairing has to be

reduced in order to be uniquely defined, and not only up to

ℓth powers. This reduction is achieved by means of a final

exponentiation, in which ηT (P,Q) is raised to the M th power,

with

M =
“

33m − 1
”

`

3m + 1
´

“

3m + 1− µb3
m+1

2

”

.

For this particular exponentiation, we use the scheme presented

by Shirase et al. in [29].

Taking U = ηT (P,Q) ∈ F
∗

36m , we first compute U33m
−1.

Writing U as U0 + U1σ, where U0 and U1 ∈ F
∗

33m , and seeing

that
U33m

= U0 − U1σ, and

U−1 =
U0 − U1σ

U2
0 + U2

1

,

we obtain the following expression for U33m
−1:

U33m
−1 =

(U2
0 − U2

1 ) + U0U1σ

U2
0 + U2

1

.



6 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

Algorithm 5 Unrolled loop for the computation of the ηT pairing

when m−1
2 is even.

Input: P,Q ∈ E(F3m)[ℓ].

Output: ηT (P,Q) ∈ F
∗

36m .

1. xP ← xP + b; (1A)

2. yP ← −µbyP ;

3. xQ ← x3
Q; yQ ← y3

Q; (2C)

4. t← xP + xQ; (1A)

5. R← (λyP t− λyQσ − λyP ρ) · (−t2 + yP yQσ − tρ− ρ2);
(6M, 1C, 6A)

6. for j′ ← 1 to m−1
4 do

7. R← R9; (12C, 12A)

8. xQ ← x9
Q − b; yQ ← y9

Q; (4C, 1A)

9. t← xP + xQ; u← yP yQ; (1M, 1A)

10. S ← (−t2 − uσ − tρ− ρ2)3; (1M, 2C, 3A)

11. xQ ← x9
Q − b; yQ ← y9

Q; (4C, 1A)

12. t← xP + xQ; u← yP yQ; (1M, 1A)

13. S′ ← −t2 + uσ − tρ− ρ2; (1M)

14. S ← S · S′; (6M, 21A)

15. R← R · S; (15M, 67A)

16. end for

17. return R;

This computation is directly implemented in Algorithm 6, where

the multiplication (line 3), the squarings (lines 1 and 2), and

the inversion (line 5) over F33m are performed following the

algorithms presented in Appendices II, III, and IV respectively.

Algorithm 6 Computation of U33m
−1 in F

∗

36m .

Input: U = u0 + u1σ + u2ρ+ u3σρ+ u4ρ
2 + u5σρ

2 ∈ F
∗

36m .

Output: V = U33m
−1 ∈ T2(F33m).

1. m0 ← (u0 + u2ρ+ u4ρ
2)2; (5M, 7A)

2. m1 ← (u1 + u3ρ+ u5ρ
2)2; (5M, 7A)

3. m2 ← (u0 + u2ρ+ u4ρ
2) · (u1 + u3ρ+ u5ρ

2); (6M, 12A)

4. a0 ← m0 −m1; a1 ← m0 +m1; (6A)

5. i← a−1
1 ; (12M, 11A, 1I)

6. V0 ← a0 · i; (6M, 12A)

7. V1 ← m2 · i; (6M, 12A)

8. return V0 + V1σ;

One can then remark that

(U2
0 − U2

1 )2 + (U0U1)
2

(U2
0 + U2

1 )2
= 1,

meaning that U33m
−1 is in fact an element of T2(F33m), where

T2(F33m) = {X0 + X1σ ∈ F
∗

36m : X2
0 + X2

1 = 1} is the torus

as introduced by Granger et al. for the case of the Tate pairing

in [28].

This is a crucial point here, since arithmetic on the torus

T2(F33m) is much simpler than arithmetic on F
∗

36m . Thus, given

U ∈ T2(F33m), Algorithm 7 computes U3m+1 in only 9 multi-

plications and 18 or 19 (depending on the value of m modulo 6)

additions over F3m .

Finally, Algorithm 8 implements the complete final exponenti-

ation. Given U ∈ F
∗

36m as input, it first computes U33m
−1 thanks

to Algorithm 6, then calls Algorithm 7 to obtain U (33m
−1)(3m+1).

Algorithm 7 Computation of U3m+1 in the torus T2(F33m).

Input: U = u0 +u1σ+u2ρ+u3σρ+u4ρ
2 +u5σρ

2 ∈ T2(F33m).

Output: V = U3m+1 ∈ T2(F33m).

1. a0 ← u0 + u1; a1 ← u2 + u3; a2 ← u4 − u5; (3A)

2. m0 ← u0 · u4; m1 ← u1 · u5; m2 ← u2 · u4; (3M)

3. m3 ← u3 · u5; m4 ← a0 · a2; m5 ← u1 · u2; (3M)

4. m6 ← u0 · u3; m7 ← a0 · a1; m8 ← a1 · a2; (3M)

5. a3 ← m5 +m6 −m7; a4 ← −m2 −m3; (3A)

6. a5 ← −m2 +m3; a6 ← −m0 +m1 +m4; (3A)

7. if m ≡ 1 (mod 6) then

8. v0 ← 1 +m0 +m1 + ba4; (3A)

9. v1 ← bm5 − bm6 + a6; (2A)

10. v2 ← −a3 + a4; (1A)

11. v3 ← m8 + a5 − ba6; (2A)

12. v4 ← −ba3 − ba4; (1A)

13. v5 ← bm8 + ba5; (1A)

14. else if m ≡ 5 (mod 6) then

15. v0 ← 1 +m0 +m1 − ba4; (3A)

16. v1 ← −bm5 + bm6 + a6; (2A)

17. v2 ← a3;

18. v3 ← m8 + a5 + ba6; (2A)

19. v4 ← −ba3 − ba4; (1A)

20. v5 ← −bm8 − ba5; (1A)

21. end if

22. return v0 + v1σ + v2ρ+ v3σρ+ v4ρ
2 + v5σρ

2;

Then W = U (33m
−1)(3m+1)3(m+1)/2

is computed by successive

cubings over F36m , while V = U (33m
−1)(3m+1)(3m+1) is ob-

tained by a second call to Algorithm 7. The value to be computed

is then

UM =



V ·W−1 when µb = 1, or

V ·W when µb = −1,

hence the computation of W ′ = W−µb on line 8. When µb = −1,

this is just a dummy operation, but it is an actual inversion when

µb = 1. However, as W ∈ T2(F33m), writing W = W0 + W1σ,

we have

W−1 =
W0 −W1σ

W 2
0 +W 2

1

= W0 −W1σ.

Inversion over T2(F33m) is therefore completely free, as it suffices

to propagate the sign corrections in the final product V · W ′,

implemented as a full multiplication over F
∗

36m .

Algorithm 8 Final exponentiation of the reduced ηT pairing [29].

Input: U = u0 + u1σ + u2ρ+ u3σρ+ u4ρ
2 + u5σρ

2 ∈ F
∗

36m .

Output: UM ∈ T2(F33m) ⊂ F
∗

36m , with the exponent M =

(33m − 1)(3m + 1)(3m + 1− µb3
m+1

2 ).

1. V ← U33m
−1; (40M, 67A, 1I)

2. V ← V 3m+1; (9M, 18 or 19A)

3. W ← V ;

4. for i← 1 to m+1
2 do

5. W ←W 3; (6C, 6A)

6. end for

7. V ← V 3m+1; (9M, 18 or 19A)

8. W ′ ←W−µb;

9. return V ·W ′; (15M, 67A)



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 7

TABLE I

COST OF THE PRESENTED ALGORITHMS FOR COMPUTING THE ηT PAIRING AND THE FINAL EXPONENTIATION,

IN TERMS OF OPERATIONS OVER THE UNDERLYING FIELD F3m .

Additions Multiplications Cubings Cube roots Inversions

Direct loop
No cube root (Algorithm 1) 67m−1

2 + 11 7m+ 2 5m− 7 0 0

With cube roots (Algorithm 2) 30m− 15 7m+ 2 m− 1 m− 1 0

Reversed loop
With cube roots (Algorithm 3) 30m− 22 7m− 1 m m− 1 0

No cube root (Algorithm 4) 67m−1
2 + 8 7m− 1 5m− 2 0 0

Unrolled loop m−1
2 is even 107m−1

4 + 8 25m−1
4 + 6 11m−1

2 + 3 0 0

(Algorithm 5) m−1
2 is odd 107m−3

4 + 76 25m−3
4 + 20 11m−1

2 + 2 0 0

Final exp. m ≡ 1 (mod 6) 3m+ 175 73 3m+ 3 0 1

(Algorithm 8) m ≡ 5 (mod 6) 3m+ 173 73 3m+ 3 0 1

F. Overall Cost Evaluations and Comparisons

The costs of all the previously detailed algorithms are sum-

marized in Table I, in terms of additions (or subtractions),

multiplications, cubings, cube roots and inversions over F3m .

From this table, we can see that the additional cost for cube-

root-free algorithms is approximately 4m extra cubings and 7m/2

extra additions, when compared to the equivalent algorithms with

cube roots. The choice of a type of algorithm instead of the other

will therefore depend on the practicality of the computation of

cube roots in the given finite field F3m (see the discussion in

Section III-E).

This table also shows a slight superiority of reversed-loop

algorithms versus direct-loop approaches. This is the reason why

we chose to apply the loop unrolling technique to Algorithm 4.

The advantage of such a loop unrolling becomes also clearer

when looking at Table I. From Algorithm 4 to Algorithm 5, we

trade approximately 27m/4 additions and 3m/4 multiplications

for m/2 cubings over F3m .

The costs of these algorithms for m = 97, on which we focus

more closely in this paper, is given in Table II. As detailed in

Section III-B, we can compute the inversion over F397 according

to Fermat’s little theorem in 9 multiplications and 96 cubings,

which allows us to express these costs in terms of additions,

multiplications, cubings and cube roots only. The total number

of operations for the complete computation of the reduced ηT

pairing, using Algorithm 5 for the ηT pairing and Algorithm 8

for the final exponentiation, is also given.

TABLE II

COST EVALUATIONS OF THE REDUCED ηT PAIRING FOR m = 97.

INVERSION OVER F
397 IS CARRIED OUT ACCORDING TO FERMAT’S

LITTLE THEOREM IN 9 MULTIPLICATIONS AND 96 CUBINGS.

A M C R

Direct loop
(Algorithm 1) 3227 681 478 0
(Algorithm 2) 2895 681 96 96

Reversed loop
(Algorithm 3) 2888 678 97 96
(Algorithm 4) 3224 678 483 0

Unrolled loop (Algorithm 5) 2576 606 531 0
Final exp. (Algorithm 8) 466 82 390 0

Total (Algorithms 5 and 8) 3042 688 921 0

III. A COPROCESSOR FOR ARITHMETIC OVER F3m

The ηT pairing calculation in characteristic 3 requires ad-

dition, multiplication, cubing, inversion, and sometimes cube

root extraction over F3m . We propose here a unified arithmetic

operator which implements the required operations, and describe

a hardware accelerator for pairing-based cryptography.

In the following, elements of the field extension F3m will be

represented using a polynomial basis. Given a degree-m irre-

ducible polynomial f(x) ∈ F3[x], we have F3m ∼= F3[x]/(f(x)).

Each element of F3m will then be represented as a polynomial

p(x) of degree (m− 1) and coefficients in F3:

p(x) = pm−1x
m−1 + . . .+ p1x+ p0.

Several researchers reported implementations of the Tate and

ηT pairings on a supersingular curve defined on the field F397 .

Therefore, we discuss the implementation of Algorithm 5 for the

field F3[x]/(x
97 + x12 + 2) and the curve y2 = x3 − x + 1 (i.e.

b = 1) on our coprocessor.

It is nonetheless important to note that the architectures and

algorithms presented here can be easily adapted to different

parameters. For instance a different irreducible polynomial f(x),

a different field extension degree m, or even a different char-

acteristic p (cubing and cube root extraction, being respectively

Frobenius and inverse Frobenius maps in characteristic 3, then

replaced by raising to the pth power and pth root extraction).

A. Multiplication over F3m

Three families of algorithms allow one to compute d0(x) ·
d1(x) mod f(x) (see for instance [30]–[32] for an account of

modular multiplication). In parallel-serial schemes, a single co-

efficient of the multiplier d0(x) is processed at each step. This

leads to small operators performing a multiplication in m clock

cycles. Parallel multipliers compute a degree-(2m−2) polynomial

and carry out a final modular reduction. They achieve a higher

throughput at the price of a larger circuit area. By processing D

coefficients of an operand at each clock cycle, array multipliers,

introduced by Song and Parhi in [33], offer a good trade-off

between computation time and circuit area and are at the heart

of several pairing coprocessors (see for instance [19], [20], [22],

[23], [25], [34]).

Depending on the order in which coefficients of d0(x) are

processed, array multipliers can be implemented according to



8 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

c2

c4

×x2

PPGPPG PPG

c5

c1

Generator

Product

Partial

Addition over F3m

(b) (c)(a)

d(x)

c(x)

Select

Load

Cubing

±

Register

1 0

Shift register
d0(x) Load

Shift
d03i+2

Load

Clear

p(x)

d03i d03i+1

R0R1

d1(x)

Load

c0

c1

c2

c3

c4

c3

c2

c1

c0

± ±

s(x)

d1(x) d0(x)

×2

1 0

0 1

0

Load Load

mod f(x) mod f(x)

Load

mod f(x)

×x

R0

×x3

R1

c1

c0

c3

Fig. 1. Arithmetic operators over F3m . (a) Multiplication (D = 3 coefficients of d0(x) are processed at each clock cycle) [22]. (b) Cubing. (c)
Addition/subtraction of two operands and accumulation. Boxes with rounded corners involve only wiring. The ci’s denote control bits.

two schemes: most-significant element (MSE) first and least-

significant element (LSE) first. Algorithm 9 summarizes the MSE-

first scheme proposed by Shu, Kwon & Gaj [22]. Figure 1a

illustrates the architecture of this operator for D = 3. It mainly

consists of three Partial Product Generators (PPGs), three modulo

f(x) reduction units, a multioperand adder, and registers to store

operands and intermediate results. Five bits allow for the control

of the multiplier. If the irreducible polynomial over F3m is a

trinomial or a pentanomial, modulo f(x) operations are easy to

implement. Consider for instance f(x) = x97 + x12 + 2 and

let u(x) = x · d1(x) be a degree-97 polynomial. It suffices to

remove u97 · f(x) = u97x
97 + u97x

12 + 2u97 from u(x) to get

u(x) mod f(x). This involves only two multiplications and two

subtractions over F3, namely u12 − 1 · u97 and u0 − 2 · u97.

Elements of F3 are often represented as 2-bit unsigned integers.

Let d0i = 2d0H
i + d0L

i and d1j = 2d1H
j + d1L

j . Multiplication

over F3 = {0, 1, 2} is then defined as follows:

d0i · d1j = 2
“

d0
H
i d1

L
j ∨ d0

L
i d1

H
j

”

+
“

d0
L
i d1

L
j ∨ d0

H
i d1

H
j

”

,

and can be implemented by means of two 4-input Look-Up Tables

(LUTs). Since d0i multiplies all coefficients of d1, the fanout of

our array multiplier is equal to 2m.

However, a careful encoding of the elements of F3 can reduce

the fanout of the operator [35]. Since 2 ≡ −1 (mod 3), we take

advantage of the borrow-save system [36] in order to represent the

elements of F3 = {0, 1,−1}: d0i is encoded by a positive bit d0+
i

and a negative bit d0−i such that d0i = d0+
i −d0−i . Multiplication

over F3 is now defined by:

d0i · d1j =
“

(1− d1−j )d1+
j d0+

i ∨ d1−j (1− d1+
j )(1− d0+

i )
”

−
“

(1− d1−j )d1+
j d0−i ∨ d1−j (1− d1+

j )(1− d0−i )
”

,

and requires two 3-input LUTs: the first one depends on d0+
i , and

the second one on d0−i . Thus, the fanout of the array multiplier is

now equal to m. Since it is performed component-wise, addition

over F3m is also a rather straightforward operation. If elements of

F3 are represented by two bits, addition modulo 3 is for instance

carried out by means of two 4-input LUTs.

Algorithm 9 Multiplication over F3m [22].

Input: A degree-m monic polynomial f(x) = xm +

fm−1x
m−1 + . . . + f1x + f0 and two degree-(m − 1) poly-

nomials d0(x) and d1(x). A parameter D which defines the

number of coefficients of d0(x) processed at each clock cycle.

The algorithm requires a degree-(m−1) polynomial a(x) for

intermediate computations.

Output: p(x) = d0(x)d1(x) mod f(x)

1. p(x)← 0;

2. for i← ⌈m/D⌉ − 1 downto 0 do

3. a(x)←
D−1
X

j=0

“

d0Di+j · d1(x) · xj
”

mod f(x);

4. p(x)← a(x) + (p(x) · xD mod f(x));

5. end for

6. return p(x);

B. Inversion over F3m

The final exponentiation of the ηT pairing involves a single

inversion over F3m . Instead of designing a specific operator

based on the Extended Euclidean Algorithm (EEA), we suggest

to keep the circuit area as small as possible by performing

this inversion according to Fermat’s little theorem and Itoh and

Tsujii’s work [37] (Algorithm 10). Since this scheme requires

only multiplications and cubings over F3m , we do not have to

include dedicated hardware for inversion in our coprocessor.

Starting with an element d of F3m , d 6= 0, we first raise it to

the power of the base-3 repunit (3m−1 − 1)/2 to obtain r. This



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 9

particular powering can be achieved using only m − 2 cubings

over F3m and a few multiplications over F3m as detailed below.

By cubing r and then multiplying the result by d, we successively

obtain
u = d(3

m
−3)/2, and

v = d(3
m
−1)/2.

A final product gives us the result

u · v = d(3
m
−3)/2 · d(3

m
−1)/2 = d3

m
−2 = d−1

.

Since v 6= 0 and v2 = d3
m
−1 = 1, v ∈ F3 and this

operation could be performed in a single clock cycle at the

price of a modification of our MSE-first multiplier: adding an

extra control bit and a multiplexer allows one to select the

value of the coefficient d03i between its normal value (the D

most significant coefficients of the multiplier) and the D least

significant coefficients of the multiplier. Indeed, as v ∈ F3, its

coefficients vi are zero for all i 6= 0. Therefore, we only need v0
to compute the final multiplication u ·v = u ·v0. As our multiplier

operates in a most-significant-coefficient-first fashion, instead of

performing the full multiplication over F3m , this multiplexer

would allow us to bypass the whole shift register mechanism and

compute the product u · v in a single iteration of the multiplier.

Since we consider m = 97 for our implementation, this trick

would allow us to save only ⌈m/D⌉ − 1 = ⌈97/3⌉ − 1 = 32

clock cycles at the price of a longer critical path and a larger

control word. Thus, we do not include this modification in our

coprocessor.

Algorithm 10 Inversion over F3m .

Input: A positive integer m, and d ∈ F3m , d 6= 0.

Output: d−1 ∈ F3m .

1. r ← d(3
m−1

−1)/2; (See Algorithm 11)

2. u← r3; (1C)

3. v ← u · d; (1M)

4. return u · v; (1M)

As already shown in [38] and [39], addition chains can prove to

be perfectly suited to raise elements of F3m to particular powers,

such as the radix-3 repunit (3m−1−1)/2 required by our inversion

algorithm. In the following, we will restrict ourselves to Brauer-

type addition chains4, whose definition follows.

A Brauer-type addition chain C of length l is a sequence of l

integers S = (j1, . . . , jl) such that 0 ≤ ji < i for all 1 ≤ i ≤ l.

We can then construct another sequence (n0, . . . , nl) satisfying


n0 = 1, and

ni = ni−1 + nji
, for all 1 ≤ i ≤ l.

C is said to compute nl, the last element of the sequence. From

[40], we also have the following additional property, for all 1 ≤
l′ ≤ l:

l′
X

i=1

nji
= nl′ − 1.

Moreover, we can see that we have, for n ≤ n′

d(3
n+n′

−1)/2 = d(3
n
−1)/2 ·

„

d(3
n′

−1)/2
«3n

.

4Brauer-type addition chains are proved to be optimal for all numbers up
to and including 12508 [40], which is more than enough for our needs.

Consequently, given a Brauer-type addition chain C of length l

for m − 1, we can compute the required d(3
m−1

−1)/2 as shown

in Algorithm 11. This algorithm simply ensures that, for each

iteration i, we have zi = d(3
ni−1)/2, where (n0, . . . , nl) is the

integer sequence associated with the addition chain C, verifying

nl = m−1. It requires l multiplications and nj1+· · ·+njl
= m−2

cubings over F3m .

Algorithm 11 Computation of d(3
m−1

−1)/2 over F3m .

Output: A positive integer m, d ∈ F3m , d 6= 0, a Brauer-type

addition chain S = (j1, . . . , jl) for m − 1, and the integer

sequence (n0, . . . , nl) associated with C.

Input: d(3
m−1

−1)/2 ∈ F3m .

1. z0 ← d;

2. for i← 1 to l do

3. zi ← zji
· z3

nji

i−1 ; (1M, nji
C)

4. end for

5. return zl;

Therefore, our inversion scheme requires a total of l + 2

multiplications and m − 1 cubings over F3m . For m = 97, an

addition chain of length l = 7 allows us to compute d(3
96

−1)/2,

and the overall cost of inversion is equal to 9 multiplications and

96 cubings over F397 .

C. Cubing over F3m

Cubing over F3m consists in reducing the following expression

modulo f(x):

c(x) = d(x)3 mod f(x) =

m−1
X

i=0

dix
3i mod f(x).

This general expression can be seen as a sum of D′ elements

of F3m . The coefficients of those polynomials can be directly

matched to the coefficients of the operand, possibly multiplied

by 2. Thus, cubing requires a multioperand adder and some extra

wiring for the permutation of the coefficients. Multiplication by 2

consists in swapping the positive and negative bits of an element

of F3. For instance, if f(x) = x97 +x12 +2, we have to compute

a sum of D′ = 3 operands:

ν0(x) = d32x
96 + 2d60x

95 + d88x
94 + . . .+

d1x
3 + d33x

2 + 2d61x+ d0,

ν1(x) = d64x
95 + d92x

94 + . . .+ d90x
3 + d65x+ d89,

ν2(x) = d96x
94 + . . .+ d94x

3 + d93,

where νi(x) ∈ F397 , 0 ≤ i ≤ 2, and

c(x) = d(x)3 = ν0(x) + ν1(x) + ν2(x).

Recall that our inversion algorithm involves successive cubings.

Since storing intermediate results in memory would be too time

consuming, our cubing unit should include a feedback mechanism

to efficiently implement Algorithm 11. Furthermore, cubing over

F36m requires the computation of −u3
5, where u5 ∈ F3m (see

Appendix V-A for details). These considerations suggest the

design of the operator depicted by Figure 1b.

If we have a closer look at the scheduling of the reduced ηT

pairing algorithm, we note that there is no parallelism between

multiplications and cubings over F3m . If the array multiplier



10 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

0 0

R1

1

PPG PPGPPG

mod f(x)

0 1

×x2

mod f(x)

c0

c1

c3

c2

c4

c6

ν2(x)ν1(x) ×xν0(x)

d03i d03i+1 d03i+2

Shift register Load

Shift

Load

d1(x) d0(x)

c5

p(x)

R2

×x3

0

mod f(x)

1

R0

1

Fig. 2. Operator for multiplication and cubing over F3[x]/(x97 +x12 +2).
Boxes with rounded corners involve only wiring. The ci’s denote control bits.
Grayed boxes outline the modifications of the array multiplier of Figure 1a.

processes D ≥ D′ coefficients at each clock cycle, we could take

advantage of its multioperand adder to perform cubing. Figure 2

describes how to modify the multiplier when D = D′ = 3:

• The feedback loop responsible for the accumulation of

partial products must be deactivated while cubing. An array

of m AND gates performs this task and allows one to

carry out the initialization step of the modular multiplication

(instruction p(x)← 0 in Algorithm 9).

• Multiplexers select the input of the multioperand adders

between modulo f(x) reduced partial products and the

νi(x)’s.

• The shift register of the multiplier and the PPGs allow for

the control of cubing operations. If we store a control word

in register R0 such that d03i = d03i+1 = d03i+2 = −1, the

operator returns −d1(x)3. If d03i = d03i+1 = d03i+2 = 1,

we obtain d1(x)3.

D. Addition over F3m

The reduced ηT pairing algorithms discussed in this paper

involve additions, subtractions, and accumulations over F3m . Fig-

ure 1c describes an operator implementing these functionalities.

Again, a closer look at the reduced ηT pairing algorithms as

well as at the algorithms for arithmetic over F33m and F36m

indicates that there is almost no parallelism between additions

and multiplications over F3m . We suggest to further modify our

array multiplier to include addition, subtraction, and accumulation

(Figure 3):

• An additional register is needed to store the second operand

of an addition. Again, the shift register stores a control word

to control additions. Assume for instance that we have to

compute −d2(x) + d1(x). We respectively load d2(x) and

d1(x) in registers R2 and R1 and define a control word stored

in R0 so that d03i = 1, d03i+1 = 2, and d03i+2 = 0. We

will thus compute (d1(x)+2 ·d2(x)+0 ·d1(x)) mod f(x) =

(d1(x) − d2(x)) mod f(x). Since the reduced ηT pairing

algorithm involves successive additions and cubings, each

control word loaded in the shift register manages a sequence

of operations. Note that

– while performing a multiplication or a cubing, registers

R1 and R2 must store the same value;

– d03i+2 is always equal to zero in the case of addition.

• A multiplexer in the accumulation loop allows one to select

between the content of register R3 (accumulation) or the con-

tent of R3 shifted and reduced modulo f(x) (multiplication).

• An additional multiplexer is required to select the second

input of the multioperand adder: d2(x) (addition), (d2(x) ·
d03i+1 · x) mod f(x) (multiplication), or ν1(x) (cubing).

0 1

0

0 10

ν1(x)

PPG PPG

1

×x3

PPG

R3

10

×x2

mod f(x)

c1

mod f(x)

c0 c2

c5

c4

1

c6

c9

c8

c7

c3

Load

0

R1

ν2(x)ν0(x)

d03i d03i+1 d03i+2

Shift register Load

Shift

p(x)

d1(x) d2(x) d0(x)

Load

c10

mod f(x)

R0R2

0 1

×x

1

Fig. 3. Operator for addition, multiplication, and cubing over F3[x]/(x97 +
x12 + 2). Boxes with rounded corners involve only wiring. The ci’s denote
control bits. Grayed boxes outline the modifications of the operator of
Figure 2.

E. Cube Root over F3m

Some of the ηT pairing algorithms in characteristic 3 described

in Section II involve cube roots over F3m . This function is com-

puted exactly in the same way as cubing: first, the normal form of
3
p

d(x) mod f(x) is obtained by solving the m-dimensional linear



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 11

system given by the equation
“

3
p

d(x)
”3

mod f(x) = d(x). The

result is then expressed as a sum of polynomials, each one being a

permutation of the coefficients of the operand d(x) multiplied by

a constant. The number of polynomials we have to add depends

on f(x). Barreto gives a list of irreducible polynomials leading

to efficient cube root operators in [41].

F. Architecture of the Coprocessor

Figure 4 describes the architecture of our ηT pairing coproces-

sor. It consists of a single processing element (unified operator

for addition, multiplication, and cubing), registers implemented

by means of a dual-port RAM (6 Virtex-II Pro SelectRAM+

blocks or 13 Cyclone II M4K memory blocks), and a control unit

which consists of a Finite State Machine (FSM) and an instruction

memory (ROM). Each instruction consists of four fields: an 11-bit

word which specifies the functionality of the processing element,

address and write enable signal for port B of the dual-port RAM,

address for port A of the dual-port RAM, and a 6-bit control

word which manages jump instructions and indicates how many

times an instruction must be repeated. This approach makes it

possible for instance to execute the consecutive steps appearing

in the multiplication over F3m with a single instruction.

The architecture described by Figure 4 was captured in the

VHDL language and prototyped on several Altera and Xilinx

FPGAs. We selected the following parameters: m = 97, b = 1,

and f(x) = x97 + x12 + 2. Both synthesis and place-and-route

steps were performed with Quartus II 7.1 Web Edition and ISE

WebPACK 9.2i. The implementation on this coprocessor of the

reduced ηT pairing (using Algorithm 5 for the ηT pairing and

Algorithm 8 for the final exponentiation) takes 900 instructions

which are executed in 27800 clock cycles. Table III summarizes

the area (in slices on Xilinx FPGAs and Logic Elements (LEs)

on the Altera device) and the calculation time.

It is worth noticing that an operator for inversion over F397

based on the EEA occupies 3422 LEs on a Cyclone-II device [42],

and 2210 slices on a Virtex-II FPGA [43]. The implementation of

the algorithm based on Itoh and Tsujii’s work requires 394 clock

cycles on our coprocessor for m = 97. The EEA needs 2m =

194 clock cycles to return the inverse. Therefore, introducing

specific hardware for inversion would double the circuit area

while reducing the calculation time by less than 1%.

We also described a naive coprocessor embedding the multi-

plier, the cubing unit, and the adder depicted in Figure 1. The

outputs of the these operators are connected to the register file

by means of a 3-input multiplexer controlled by 2 additional bits.

Place-and-route results indicate that such a coprocessor (without

control unit) occupies 2199 slices on a Spartan-3 FPGA, and 3345

LEs on a Cyclone-II device. Furthermore, we need 17 bits to

control this ALU. Thus, our unified operator reduces both the

area of the coprocessor and the width of the control words.

In order to guarantee the security of pairing-based cryptosys-

tems in a near future, larger extension degrees will probably have

to be considered, thus raising the question of designing such

a unified operator for other extension fields. For this purpose,

we wrote a C++ program which automatically generates a

synthesizable VHDL description of a unified operator according

to the characteristic and the irreducible polynomial f(x).

IV. COMPARISONS

Grabher and Page designed a coprocessor dealing with arith-

metic over F3m , which is controlled by a general purpose pro-

cessor [19]. The ALU embeds an adder, a subtracter, a multiplier

(with D = 4), a cubing unit, and a cube root operator based on the

method highlighted by Barreto [41]. This architecture occupies

4481 slices and allows one to perform the Duursma-Lee algorithm

and its final exponentiation in 432.3µs. The main advantage is

that the control can be compiled using a re-targeted GCC tool-

chain and other algorithms should easily be implemented on

this architecture. Our approach leads however to a much simpler

control unit and allows us to divide the number of slices by 2.4.

Another implementation of the Duursma-Lee algorithm was

proposed by Kerins et al. in [20]. It features a parallel mul-

tiplier over F36m based on Karatsuba-Ofman’s scheme. Since

the final exponentiation requires a general multiplication over

F36m , the authors can not take advantage of the optimizations

described in this paper and in [21] for the pairing calculation.

Therefore, the hardware architecture consists of 18 multipliers

and 6 cubing circuits over F397 , along with, quoting [20], “a

suitable amount of simpler F3m arithmetic circuits for performing

addition, subtraction, and negation”. Since the authors claim that

roughly 100% of available resources are required to implement

their pairing accelerator, the cost can be estimated to 55616

slices [22]. The approach proposed in this paper reduces the area

and the computation time by 30 and 4.4 respectively. Note that

a multiplier over F36m based on the fast Fourier transform [44]

would save three multipliers over F3m . Since all multiplications

over F3m are performed in parallel, this approach would only

slightly reduce the circuit area without decreasing the calculation

time.

Beuchat et al. described a fast architecture for the computation

of the ηT pairing [25]. The authors introduced a novel multiplica-

tion algorithm over F36m which takes advantage of the constant

coefficients of R1. Thus, this design must be supplemented with a

coprocessor for final exponentiation and the full pairing acceler-

ator requires around 18000 LEs on a Cyclone II FPGA [26]. The

computation of the pairing and the final exponentiation require

4849 and 4082 clock cycles respectively. Since both steps are

pipelined, we can consider that a new result is returned after 4849

clock cycles if we perform a sufficient amount of consecutive

full ηT pairings. In order to compare our accelerator against this

architecture, we implemented it on an Altera Cyclone II 5 FPGA

with Quartus II 7.1 Web Edition. Our design occupies 3216 LEs

and the maximal clock frequency of 152 MHz allows one to

compute a pairing in 183µs. The architecture proposed in this

paper is therefore 6 times slower, but 5.6 times smaller.

In order to study the trade-off between circuit area and calcula-

tion time of the ηT pairing, Ronan et al. wrote a C program which

automatically generates a VHDL description of a coprocessor and

its control unit according to the number of multipliers over F3m to

be included and the parameter D [23]. An architecture embedding

five multipliers processing D = 4 coefficients at each clock cycle

computes for instance a full pairing in 187µs. Though slightly

faster, this design requires five times the amount of slices of

our pairing accelerator. Our approach offers a better compromise

between area and calculation time.

To our best knowledge, the fastest ηT pairing processor de-

scribed in the open literature was designed by Jiang [24]. Unfortu-

nately, Jiang does not give any detail about his architecture. Since



12 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

Wen

Addr

Data

Processing

element

c31

0

p(x)

194 bits11 bits

194 bits

Q

c30

Q

10 bits

c29 c28 c27 c26

32 bits

7 bits

198 bits

P, Q

Select

Addr

Wen

ROM Addr

Q
W

enControl

ηT (P, Q)M

d1(x)

d0(x)

c5c6 c4c7 c3c8 c2c9 c1c10 c0c18 c17c19 c16c20 c15c21 c14c22 c13c23 c12c24 c11

7 bits

Start

Control

d2(x)

Address Address

Port APort B Processing element

Done

Finite State

Machine

c25

RAM

P
or

t
B

P
o
rt

A

1 10 0

1
9
8

b
it

s

1
9
4

b
it

s

Data

Addr

Wen

Fig. 4. Architecture of the coprocessor for arithmetic over F3m .

TABLE III

AREA AND CALCULATION TIME OF A F
397 REDUCED ηT PAIRING COPROCESSOR.

Virtex-II Pro 4 Virtex-4 LX 15 Spartan-3 200 Cyclone-II 5

Area 1833 slices 1851 slices 1857 slices 3216 LEs

Clock cycles 27800 cycles

Clock frequency 145 MHz 203 MHz 100 MHz 152 MHz

Calculation time 192 µs 137 µs 278 µs 183 µs

a pairing is computed in 1627 clock cycles and that multiplication

over F3m is based on an LSE array multiplier processing D = 7

coefficients at each clock cycle, we can however guess that

the design includes a hardwired multiplier over F36m . Though

6.5 faster than the coprocessor based on our unified arithmetic

operator, the design by Jiang requires 40 times more slices.

V. CONCLUSION

We discussed several algorithms to compute the ηT pairing

and its final exponentiation in characteristic three. We proposed a

compact implementation of the reduced ηT pairing in characteris-

tic three over F3[x]/(x
97 +x12 +2). Our architecture is based on

a unified arithmetic operator which leads to the smallest circuit

proposed in the open literature while demonstrating competitive

performances.

Future works should include studies of the ηT pairing in

characteristic 2, where the wired multipliers embedded in most

of the current FPGAs should allow for cheaper and faster array-

and even fully parallel multipliers over F2m . Such more efficient

architectures would then allow us to investigate the ηT pairing

over hyperelliptic curves.

The study of the Ate pairing [45] would also be of interest, for

it presents a large speedup when compared to the Tate pairing

and also supports non-supersingular curves.

ACKNOWLEDGMENT

The authors would like to thank Guillaume Hanrot, Fran-

cisco Rodrı́guez-Henrı́quez, Guerric Meurice de Dormale, and

the anonymous referees for their valuable comments. This work

was supported by the New Energy and Industrial Technology

Development Organization (NEDO), Japan.

REFERENCES

[1] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Advances in Cryptology – ASIACRYPT 2001, ser. Lecture
Notes in Computer Science, C. Boyd, Ed., no. 2248. Springer, 2001,
pp. 514–532.

[2] A. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic
curves logarithms to logarithms in a finite field,” IEEE Transactions

on Information Theory, vol. 39, no. 5, pp. 1639–1646, Sept. 1993.

[3] G. Frey and H.-G. Rück, “A remark concerning m-divisibility and the
discrete logarithm in the divisor class group of curves,” Mathematics of

Computation, vol. 62, no. 206, pp. 865–874, Apr. 1994.

[4] S. Mitsunari, R. Sakai, and M. Kasahara, “A new traitor tracing,” IEICE

Trans. Fundamentals, vol. E85-A, no. 2, pp. 481–484, Feb 2002.

[5] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on
pairing,” in 2000 Symposium on Cryptography and Information Security

(SCIS2000), Okinawa, Japan, Jan. 2000, pp. 26–28.

[6] A. Joux, “A one round protocol for tripartite Diffie-Hellman,” in Al-

gorithmic Number Theory – ANTS IV, ser. Lecture Notes in Computer
Science, W. Bosma, Ed., no. 1838. Springer, 2000, pp. 385–394.

[7] R. Dutta, R. Barua, and P. Sarkar, “Pairing-based cryptographic proto-
cols: A survey,” 2004, cryptology ePrint Archive, Report 2004/64.



J.-L. BEUCHAT, N. BRISEBARRE, J. DETREY, E. OKAMOTO, M. SHIRASE, AND T. TAKAGI 13

TABLE IV

FPGA-BASED ACCELERATORS OVER F
397 IN THE LITERATURE. THE PARAMETER D REFERS TO THE NUMBER OF COEFFICIENTS PROCESSED AT EACH

CLOCK CYCLE BY A MULTIPLIER.

Grabher and Kerins Beuchat

Page [19] et al. [20] et al. [25], [26]

Algorithm Modified Tate pairing Modified Tate pairing Reduced ηT pairing

FPGA Virtex-II Pro 4 Virtex-II Pro 125 Cyclone II 35

Multiplier(s) 1 (D = 4) 18 (D = 4) 9 (D = 3)

Area 4481 slices 55616 slices ∼ 18000 LEs

Clock cycles 59946 12866 4849

Clock frequency 150 MHz 15 MHz 149 MHz

Calculation time 432.3µs Estimated to 850µs 33µs

Ronan et al. [23] Jiang [24]

Algorithm Reduced ηT pairing Reduced ηT pairing Reduced ηT pairing

FPGA Virtex-II Pro 100 Virtex-II Pro 100 Virtex-4 LX200

Multiplier(s) 5 (D = 4) 8 (D = 4) (D = 7)

Area 10540 slices 15401 slices 74105 slices

Clock cycles 15853 15529 1627

Clock frequency 84.8 MHz 84.8 MHz 77.7 MHz

Calculation time 187µs 183µs 20.9µs

[8] R. Granger, D. Page, and N. P. Smart, “High security pairing-based
cryptography revisited,” in Algorithmic Number Theory – ANTS VII, ser.
Lecture Notes in Computer Science, F. Hess, S. Pauli, and M. Pohst,
Eds., no. 4076. Springer, 2006, pp. 480–494.

[9] N. Koblitz and A. Menezes, “Pairing-based cryptography at high security
levels,” in Cryptography and Coding, ser. Lecture Notes in Computer
Science, N. P. Smart, Ed., no. 3796. Springer, 2005, pp. 13–36.

[10] J. H. Silverman, The Arithmetic of Elliptic Curves, ser. Graduate Texts
in Mathematics. Springer-Verlag, 1986, no. 106.

[11] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient
algorithms for pairing-based cryptosystems,” in Advances in Cryptology

– CRYPTO 2002, ser. Lecture Notes in Computer Science, M. Yung,
Ed., no. 2442. Springer, 2002, pp. 354–368.

[12] E. R. Verheul, “Evidence that XTR is more secure than supersingular
elliptic curve cryptosystems,” Journal of Cryptology, vol. 17, no. 4, pp.
277–296, 2004.

[13] V. S. Miller, “Short programs for functions on curves,” 1986, available
at http://crypto.stanford.edu/miller.

[14] ——, “The Weil pairing, and its efficient calculation,” Journal of

Cryptology, vol. 17, no. 4, pp. 235–261, 2004.

[15] S. D. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate
pairing,” in Algorithmic Number Theory – ANTS V, ser. Lecture Notes
in Computer Science, C. Fieker and D. Kohel, Eds., no. 2369. Springer,
2002, pp. 324–337.

[16] I. Duursma and H. S. Lee, “Tate pairing implementation for hyperelliptic
curves y2 = xp

− x + d,” in Advances in Cryptology – ASIACRYPT

2003, ser. Lecture Notes in Computer Science, C. S. Laih, Ed., no. 2894.
Springer, 2003, pp. 111–123.

[17] S. Kwon, “Efficient Tate pairing computation for elliptic curves over
binary fields,” in Information Security and Privacy – ACISP 2005, ser.
Lecture Notes in Computer Science, C. Boyd and J. M. González Nieto,
Eds., vol. 3574. Springer, 2005, pp. 134–145.

[18] P. S. L. M. Barreto, S. D. Galbraith, C. Ó hÉigeartaigh, and M. Scott,
“Efficient pairing computation on supersingular Abelian varieties,” in
Designs, Codes and Cryptography. Springer Netherlands, Mar. 2007,
vol. 42(3), pp. 239–271.

[19] P. Grabher and D. Page, “Hardware acceleration of the Tate pairing in
characteristic three,” in Cryptographic Hardware and Embedded Systems

– CHES 2005, ser. Lecture Notes in Computer Science, J. R. Rao and
B. Sunar, Eds., no. 3659. Springer, 2005, pp. 398–411.

[20] T. Kerins, W. P. Marnane, E. M. Popovici, and P. Barreto, “Efficient
hardware for the Tate pairing calculation in characteristic three,” in
Cryptographic Hardware and Embedded Systems – CHES 2005, ser.
Lecture Notes in Computer Science, J. R. Rao and B. Sunar, Eds., no.
3659. Springer, 2005, pp. 412–426.

[21] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi, “Parallel hardware
architectures for the cryptographic Tate pairing,” in Proceedings of

the Third International Conference on Information Technology: New

Generations (ITNG’06). IEEE Computer Society, 2006.

[22] C. Shu, S. Kwon, and K. Gaj, “FPGA accelerated Tate pairing based
cryptosystem over binary fields,” in Proceedings of the IEEE Inter-

national Conference on Field Programmable Technology (FPT 2006).
IEEE, 2006, pp. 173–180.

[23] R. Ronan, C. Murphy, T. Kerins, C. Ó hÉigeartaigh, and P. S. L. M.
Barreto, “A flexible processor for the characteristic 3 ηT pairing,” Int.

J. High Performance Systems Architecture, vol. 1, no. 2, pp. 79–88,
2007.

[24] J. Jiang, “Bilinear pairing (Eta T Pairing) IP core,” City University of
Hong Kong – Department of Computer Science, Tech. Rep., May 2007.

[25] J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto, “An algorithm
for the ηT pairing calculation in characteristic three and its hardware
implementation,” in Proceedings of the 18th IEEE Symposium on Com-

puter Arithmetic, P. Kornerup and J.-M. Muller, Eds. IEEE Computer
Society, 2007, pp. 97–104.

[26] J.-L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and E. Okamoto,
“A coprocessor for the final exponentiation of the ηT pairing in
characteristic three,” in Proceedings of Waifi 2007, ser. Lecture Notes in
Computer Science, C. Carlet and B. Sunar, Eds., no. 4547. Springer,
2007, pp. 25–39.

[27] J.-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto, “Arithmetic
operators for pairing-based cryptography,” in Cryptographic Hardware

and Embedded Systems – CHES 2007, ser. Lecture Notes in Computer
Science, P. Paillier and I. Verbauwhede, Eds., no. 4727. Springer, 2007,
pp. 239–255.

[28] R. Granger, D. Page, and M. Stam, “On small characteristic algebraic
tori in pairing-based cryptography,” LMS Journal of Computation and

Mathematics, vol. 9, pp. 64–85, Mar. 2006.

[29] M. Shirase, T. Takagi, and E. Okamoto, “Some efficient algorithms for
the final exponentiation of ηT pairing,” in 3rd International Information

Security Practice and Experience Conference, (ISPEC’07), ser. Lecture
Notes in Computer Science, E. Dawson and D. S. Wong, Eds., no. 4464.
Hong Kong, China: Springer-Verlag, May 2007, pp. 254–268.

[30] J.-L. Beuchat, T. Miyoshi, J.-M. Muller, and E. Okamoto, “Horner’s rule-
based multiplication over GF(p) and GF(pn): A survey,” International

Journal of Electronics, 2008, to appear.

[31] S. E. Erdem, T. Yamk, and Ç. K. Koç, “Polynomial basis multiplication
over GF(2m),” Acta Applicandae Mathematicae, vol. 93, no. 1–3, pp.
33–55, Sept. 2006.

[32] J. Guajardo, T. Güneysu, S. Kumar, C. Paar, and J. Pelzl, “Efficient
hardware implementation of finite fields with applications to cryptog-



14 ALGORITHMS AND ARITHMETIC OPERATORS FOR COMPUTING THE ηT PAIRING IN CHARACTERISTIC THREE

raphy,” Acta Applicandae Mathematicae, vol. 93, no. 1–3, pp. 75–118,
Sept. 2006.

[33] L. Song and K. K. Parhi, “Low energy digit-serial/parallel finite field
multipliers,” Journal of VLSI Signal Processing, vol. 19, no. 2, pp. 149–
166, July 1998.

[34] R. Ronan, C. Ó hÉigeartaigh, C. Murphy, M. Scott, T. Kerins, and
W. Marnane, “An embedded processor for a pairing-based cryptosys-
tem,” in Proceedings of the Third International Conference on Informa-

tion Technology: New Generations (ITNG’06). IEEE Computer Society,
2006.

[35] G. Meurice de Dormale, personal communication.
[36] J.-C. Bajard, J. Duprat, S. Kla, and J.-M. Muller, “Some operators

for on-line radix-2 computations,” Journal of Parallel and Distributed

Computing, vol. 22, pp. 336–345, 1994.
[37] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative

inverses in GF(2m) using normal bases,” Information and Computation,
vol. 78, pp. 171–177, 1988.

[38] J. von zur Gathen and M. Nöcker, “Computing special powers in finite
fields,” Mathematics of Computation, vol. 73, no. 247, pp. 1499–1523,
2003.

[39] F. Rodrı́guez-Henrı́quez, G. Morales-Luna, N. A. Saqib, and N. Cruz-
Cortés, “A parallel version of the Itoh-Tsujii multiplicative inversion
algorithm,” in Reconfigurable Computing: Architectures, Tools and Ap-

plications – Proceedings of ARC 2007, ser. Lecture Notes in Computer
Science, P. C. Diniz, E. Marques, K. Bertels, M. M. Fernandes, and
J. M. P. Cardoso, Eds., no. 4419. Springer, 2007, pp. 226–237.

[40] D. E. Knuth, The Art of Computer Programming, 3rd ed. Addision-
Wesley, 1998, vol. 2, Seminumerical Algorithms.

[41] P. S. L. M. Barreto, “A note on efficient computation of cube roots in
characteristic 3,” 2004, cryptology ePrint Archive, Report 2004/305.

[42] A. Vithanage, “Personal communication.”
[43] T. Kerins, E. Popovici, and W. Marnane, “Algorithms and architectures

for use in FPGA implementations of identity based encryption schemes,”
in Field-Programmable Logic and Applications, ser. Lecture Notes in
Computer Science, J. Becker, M. Platzner, and S. Vernalde, Eds., no.
3203. Springer, 2004, pp. 74–83.

[44] E. Gorla, C. Puttmann, and J. Shokrollahi, “Explicit formulas for
efficient multiplication in F

36m ,” in Selected Areas in Cryptography –

SAC 2007, ser. Lecture Notes in Computer Science, C. Adams, A. Miri,
and M. Wiener, Eds., no. 4876. Springer, 2007, pp. 173–183.

[45] F. Hess, N. Smart, and F. Vercauteren, “The Eta pairing revisited,” IEEE

Transactions on Information Theory, vol. 52, no. 10, pp. 4595–4602,
Oct. 2006.

Jean-Luc Beuchat received his M.Sc. and his Ph.D.
in computer science from the Swiss Federal Insti-
tute of Technology, Lausanne, in 1997 and 2001,
respectively. He is an associate professor in the
Graduate School of Systems and Information En-
gineering at the University of Tsukuba. His current
research interests include computer arithmetic and
cryptography.

Nicolas Brisebarre was born in Bordeaux, France,
in 1971. He received his Ph.D. in pure mathematics
from the Université Bordeaux I, France, in 1998. He
is Chargé de recherche (junior researcher) at CNRS,
France, and he is a member of the LIP laboratory
(LIP is a joint computer science laboratory of CNRS,
École Normale Supérieure de Lyon, INRIA, and
Université Claude Bernard Lyon 1). His research
interests are in computer arithmetic and number
theory.

Jérémie Detrey received his M.Sc. and his Ph.D. in
computer science at the LIP of ÉNS Lyon (France)
in 2003 and 2007 respectively, under the supervision
of Florent de Dinechin and Jean-Michel Muller. He
is now working as a postdoctoral fellow in the Cosec
group at the B-IT in Bonn (Germany). His research
interests cover the various hardware aspects of com-
puter arithmetic, from floating-point and elementary
functions to finite fields and cryptography.

Eiji Okamoto Professor Eiji Okamoto received his
B.S., M.S. and Ph.D degrees in electronics engi-
neering from the Tokyo Institute of Technology in
1973, 1975 and 1978, respectively. He worked and
studied communication theory and cryptography for
NEC central research laboratories since 1978. From
1991 he became a professor at Japan Advanced
Institute of Science and Technology, then at Toho
University. Now he is a professor at Graduate School
of Systems and Information Engineering, University
of Tsukuba. His research interests are cryptography

and information security. He is a member of IEEE and a coeditor-in-chief of
International Journal of Information Security.

Masaaki Shirase received the B.Sc. in mathematics
from Ibaraki University in 1994, and M.I.S. and
Dr.I.S degrees from JAIST (Japan Advanced Insti-
tute of Science and Technology) in 2003 and 2006,
respectively. He is now working as a postdoctoral
fellow in the School of Systems Infomation Sci-
ence at Future University-Hakodate. He is currently
interested in the implementation of cryptographic
algorithms.

Tsuyoshi Takagi received the B.Sc. and M.Sc.
degrees in mathematics from Nagoya University in
1993 and 1995, respectively. He had engaged in the
research on network security at NTT Laboratories
from 1995 to 2001. He received the Dr.rer.nat degree
from Technische Universität Darmstadt in 2001. He
was an Assistant Professor in the Department of
Computer Science at Technische Universität Darm-
stadt until 2005. He is currently a Professor in the
School of Systems Infomation Science at Future
University-Hakodate. His current research interests

are information security and cryptography. Dr. Takagi is a member of IEICE,
IPSJ, and IACR.


