
Deferrable Scheduling for Maintaining
Real-Time Data Freshness:

Algorithms, Analysis, and Results
Ming Xiong, Member, IEEE, Song Han, Student Member, IEEE,

Kam-Yiu Lam, and Deji Chen, Member, IEEE

Abstract—The periodic update transaction model has been used to maintain the freshness (or temporal validity) of real-time data.

Period and deadline assignment has been the main focus of past studies, such as the More-Less scheme [25], in which update

transactions are guaranteed by the Deadline Monotonic scheduling algorithm [16] to complete by their deadlines. In this paper, we

propose a deferrable scheduling algorithm for fixed-priority transactions, a novel approach for minimizing update workload while

maintaining the temporal validity of real-time data. In contrast to prior work on maintaining data freshness periodically, update

transactions follow an aperiodic task model in the deferrable scheduling algorithm. The deferrable scheduling algorithm exploits the

semantics of temporal validity constraint of real-time data by judiciously deferring the sampling times of update transaction jobs as late

as possible. We present a theoretical estimation of its processor utilization and a sufficient condition for its schedulability. Our

experimental results verify the theoretical estimation of the processor utilization. We demonstrate through the experiments that the

deferrable scheduling algorithm is an effective approach and it significantly outperforms the More-Less scheme in terms of reducing

processor workload.

Index Terms—Deferrable scheduling, real-time databases, temporal validity, fixed-priority scheduling.

Ç

1 INTRODUCTION

REAL-TIME and embedded systems are applied in many
application domains that require timely processing of a

massive amount of real-time data. Examples of real-time
data include sensor data in sensor networks, positions of
aircraft in air traffic control systems [14], and vehicle
velocity in adaptive cruise control applications [6]. Such
real-time data are typically managed in a real-time database
system (RTDBS). Those data values are used to model the
current status of entities in a system environment. How-
ever, real-time data are different from traditional data in
that they have time semantics in which sampled values are
valid only for a certain time interval [19], [18], [23]. The
concept of temporal validity is used to define the correctness
of real-time data [19]. A real-time data object is fresh (or
temporally valid) if its value truly reflects the current status
of the corresponding entity in the system environment.
Each real-time data object is associated with a validity
interval as the lifespan of the current data value defined

based on the dynamic properties of the data object. A new
data value needs to be installed into the database before the
validity interval of the old value expires, that is, the old one
becomes temporally invalid. Otherwise, the RTDBS cannot
detect and respond to environmental changes in a timely
manner. In recent years, there has been a tremendous
amount of work devoted to this area [5], [1], [12], [14], [30],
[19], [20], [21], [22], [26], [11], [25], [8].

To maintain temporal validity, sensor update transactions,
which capture the latest status of the entities in the system
environment, are generated to refresh the values of the real-
time data periodically [19], [14], [25]. A sensor update
transaction has an infinite number of periodic jobs, which
have fixed-length periods and relative deadlines. The
update problem for periodic update transactions consists
of two parts [25]: 1) the determination of the sampling periods
and deadlines of update transactions and 2) the scheduling of
update transactions. Prior work has proposed two ap-
proaches for minimizing the update workload while
maintaining real-time data freshness. As explained in [19],
[14], a simple method for maintaining the temporal validity
of real-time data is to use the Half-Half (HH) scheme in
which the update period for a real-time data object is set to
be half the validity interval of the object. To further reduce
the update workload, the More-Less (ML) scheme is
proposed and studied in [2], [25].

This paper presents Deferrable Scheduling for Fixed-
Priority transactions (DS-FP), a novel algorithm for main-
taining real-time data freshness, with the objective being to
minimize the update workload [27], [28]. We study the
problem of data freshness maintenance for firm real-time
update transactions in a single-processor RTDBS. Distinct
from the past work of HH and ML, which have a fixed

952 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

. M. Xiong is with Bell Labs, Alcatel-Lucent, 600 Mountain Avenue, Room
2D-512, Murray Hill, NJ 07974. E-mail: xiong@research.bell-labs.com.

. S. Han is with the Department of Computer Sciences, University of Texas
at Austin, Austin, TX 78712. E-mail: shan@cs.utexas.edu.

. K.-Y. Lam is with the Department of Computer Science, City University of
Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
E-mail: cskylan@cityu.edu.hk.

. D. Chen is with Emerson Process Management, 12301 Research Blvd.,
Research Park Plaza, Bldg. III, Austin, TX 78759.
E-mail: deji.chen@emerson.com.

Manuscript received 14 Nov. 2006; revised 1 Oct. 2007; accepted 18 Dec.
2007; published online 9 Jan. 2008.
Recommended for acceptance by A. Zomaya.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0440-1106.
Digital Object Identifier no. 10.1109/TC.2008.16.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



period and relative deadline for each transaction, DS-FP
adopts an aperiodic task model. In contrast to ML, in which a
relative deadline is always equivalent to the worst-case
response time of a transaction, DS-FP dynamically assigns
relative deadlines to transaction jobs by deferring the
sampling time of a transaction job as much as possible
while still guaranteeing the temporal validity of real-time
data. The deferral of a job’s sampling time results in a shorter
relative deadline than its worst-case response time, which, in
turn, increases the separation of two consecutive jobs. Thus,
the deferral of sampling time lends itself to a reduced
processor workload produced by update transactions. We
prove that DS-FP outperforms ML in terms of schedulability
and present a sufficient condition for the schedulability of a
set of transactions under DS-FP. We also analyze the average
processor utilization under DS-FP. Our experimental study
of DS-FP demonstrates that it is an effective algorithm for
reducing the workload of real-time update transactions. It
also verifies the accuracy of our theoretical estimation of
average processor utilization under DS-FP and demonstrates
the effectiveness of the DS-FP algorithms.

The rest of this paper is organized as follows: Section 2
reviews the existing approaches for real-time data freshness
maintenance. In Section 3, we propose the DS-FP algorithm.
Our detailed discussion on DS-FP includes an analysis of its
schedulability and nonoptimality, as well as an estimation
of its average processor utilization. Section 4 presents the
performance studies and Section 5 briefly describes the
related work. Finally, we conclude our study in Section 6
and present open questions for DS-FP.

2 BACKGROUND: DATA FRESHNESS MAINTENANCE

Real-time data, whose state may become invalid with the
passage of time, need to be refreshed by sensor update
transactions generated by intelligent sensors that sample
the values of real-world entities. To monitor the states of
entities faithfully, real-time data must be refreshed before
they become invalid. The actual length of the temporal
validity interval of a real-time data object is application
dependent. For example, real-time data with validity
interval requirements are discussed in [19], [20], [18]. One
of the important design goals of RTDBSs is to guarantee that
real-time data remain fresh, that is, they are always valid.

2.1 Temporal Validity for Data Freshness

As real-time data values change continuously with time, the
correctness of a real-time data object Xi depends on the
difference between the real-time status SðEiÞ of the real-
world entityEi and the current sampling valueV alðXiÞ ofXi.

Definition 2.1. A real-time data object Xi at time t is temporally
valid (or temporally consistent) if (for its update job, Ji;j,
finished last before t) the sampling time ri;j plus the validity
interval length (or validity length) Vi of the data object is not
less than t, that is, ri;j þ Vi � t [21], [19], [1].

A data value for real-time data object Xi sampled at any
time t will be valid for Vi following that t up to ðtþ ViÞ.
Next, we review existing approaches that adopt a periodic
task model for sensor update transactions.

2.2 Half-Half and More-Less

In this section, traditional approaches for maintaining
temporal validity, namely, the Half-Half (HH) and More-
Less (ML) approaches, are reviewed.

In this paper, T ¼ f�igmi¼1 refers to a set of periodic
update transactions f�1; �2; . . . ; �mg, and X ¼ fXigmi¼1 refers
to a set of real-time data objects. We assume that �i has a
higher priority than �j for i < j, unless specified otherwise.
All real-time data objects are assumed to be kept in the main
memory. Associated with Xi ð1 � i � mÞ is a validity
interval of length Vi: Transaction �i ð1 � i � mÞ updates
the corresponding data object Xi. Because each update
transaction updates a different data object, no concurrency
control is considered for update transactions. We assume
that a sensor always samples the value of a real-time data
object at the beginning of its period and the system is
synchronous (that is, all of the first jobs of update
transactions are initiated at the same time), unless stated
otherwise. For convenience, let di;j, fi;j, and ri;j denote the
absolute deadline, completion (finishing) time, and sam-
pling (release) time of job Ji;j of �i, respectively. We also
assume that jitter between the sampling time and the
release time of a job is zero for convenience of presentation
(readers are referred to Section 3.3 for how jitters can be
handled). Formal definitions of the frequently used symbols
are given in Table 1. Deadlines of update transactions are
firm deadlines. The goal of HH and ML, which adopt a
periodic task model, is to determine period Pi and relative
deadline Di so that all of the update transactions are
schedulable and the CPU workload resulting from periodic
update transactions is minimized.

Both HH and ML assume a simple execution semantics
for periodic transactions: A transaction must be executed
once every period. However, there is no guarantee as to
when a job of a periodic transaction is actually executed
within a period. Throughout this paper, we assume that the
scheduling algorithms are preemptive and we ignore all

XIONG ET AL.: DEFERRABLE SCHEDULING FOR MAINTAINING REAL-TIME DATA FRESHNESS: ALGORITHMS, ANALYSIS, AND RESULTS 953

TABLE 1
Symbols and Definitions

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



preemption overhead. For convenience, we use the terms
transaction and task interchangeably.

Half-Half. In HH, the period and relative deadline of an
update transaction are each typically set to be half the data
validity length [19], [14]. In Fig. 1, the farthest distance of
two consecutive jobs of �i (based on the sampling time ri;j of
job Ji;j and the deadline di;jþ1 of its next job) is 2Pi. If
2Pi � Vi, then the validity of real-time object Xi is
guaranteed as long as jobs of �i meet their deadlines.
Unfortunately, this approach incurs an unnecessarily high
CPU workload of update transactions in the RTDBSs
compared to More-Less.

More-Less. Consider the worst-case response time for
any job of a periodic transaction �i, where the response time
is the difference between the transaction initiation time
ðIi þKPiÞ and the transaction completion time, where Ii is
the offset within the period and K is a natural number.

Lemma 2.1. For a set of periodic transactions T ¼ f�igmi¼1

ðDi � PiÞ with transaction initiation time ðIi þKPiÞ
ðK ¼ 0; 1; 2; . . .Þ, the worst-case response time for any job
of �i occurs for the first job of �i when I1 ¼ I2 ¼ . . . ¼
Im ¼ 0 [16].

For Ii ¼ 0 ð1 � i � mÞ, the transactions are synchronous.
A time instant after which a transaction has the worst-case
response time is called a critical instant. For example, time 0
is a critical instant for all of the transactions if those
transactions are synchronous.

To minimize the update workload and guarantee
temporal validity, ML uses Deadline Monotonic (DM) [16]
to schedule periodic update transactions [2], [25]. There are
three constraints to follow for �i ð1 � i � mÞ:

. Validity constraint. The sum of the period and the
relative deadline of transaction �i is always less than
or equal to Vi, that is, Pi þDi � Vi, as shown in
Fig. 2.

. Deadline constraint. The period of an update transac-
tion is assigned to be more than half the validity
length of the object to be updated, while its
corresponding relative deadline is less than half
the validity length of the same object. For �i to be
schedulable, Di must be greater than or equal to Ci,
the worst-case execution time of �i, that is,
Ci � Di � Pi.

. Schedulability constraint. For a given set of update

transactions, the DM scheduling algorithm [16] is

used to schedule the transactions. Consequently,Pi
j¼1ðdDi

Pj
e � CjÞ � Dið1 � i � mÞ if �j has a higher

priority than �i for i > j.

ML assigns priorities to transactions based on Shortest
Validity First (SVF), that is, in the inverse order of validity

length, and ties are resolved in favor of transactions with
less slack (that is, Vi � Ci for �i). It assigns deadlines and
periods to �i as follows:

Di ¼ fmli;0 � rmli;0 ; ð1Þ

Pi ¼ Vi �Di; ð2Þ

where fmli;0 and rmli;0 are the finishing and sampling times of
the first job of �i under ML, respectively. Note that, in a
synchronous system, rmli;0 ¼ 0 and the first job’s response
time is the worst-case response time in ML. In this paper,
superscript ml is used to distinguish the finishing and
sampling times in ML from those in DS-FP.

3 DEFERRABLE SCHEDULING

All schedulers discussed in this paper are work-conserving
for released jobs. In other words, the scheduler never idles
the processor while there is a job awaiting execution (that is,
after it is released). Next, we introduce the Deferrable
Scheduling algorithm for Fixed Priority transactions (DS-FP).
Section 3.1 presents the intuition of the algorithm and
Section 3.2 describes the details of the algorithm. Section 3.3
compares it with ML. Section 3.4 provides an estimation of
DS-FP’s average processor utilization. Section 3.5 discusses
whether the algorithm is optimal.

3.1 Intuition of DS-FP

In ML, Di is determined by the first job’s response time,
which is the worst-case response time of all of the jobs of �i.
Thus, ML is pessimistic on the deadline and period
assignment in the sense that it uses a periodic task model
that has a fixed period and relative deadline for each task,
and the relative deadline is equivalent to the worst-case
response time. It should be noted that the validity constraint
can always be satisfied as long as Pi þDi � Vi. However,
the processor workload is minimized only if Pi þDi ¼ Vi.
Otherwise, Pi can always be increased to reduce processor
workload as long as Pi þDi < Vi. Given the release time ri;j
of job Ji;j and the deadline di;jþ1 of job Ji;jþ1 ðj � 0Þ,

di;jþ1 � ri;j þ Vi ð3Þ

guarantees that the validity constraint can be satisfied, as
depicted in Fig. 3. Correspondingly, the following equation
follows directly from (3):

ðri;jþ1 � ri;jÞ þ ðdi;jþ1 � ri;jþ1Þ � Vi: ð4Þ

If ri;jþ1 is shifted onward to r0i;jþ1 along the time line in
Fig. 3, it does not violate (4) and Ji;jþ1 can still be completed
by its deadline. This shift can be achieved, for example, in
the ML schedule if preemption to Ji;jþ1 from higher priority

954 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Fig. 1. Extreme execution cases of Ji;j and Ji;jþ1. Fig. 2. Illustration of the ML scheme.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



transactions in ½ri;jþ1; di;jþ1� is less than the worst-case
preemption to the first job of �i. Thus, temporal validity can
still be guaranteed as long as Ji;jþ1 is completed by its
deadline di;jþ1.

The intention of DS-FP is to defer the sampling time ri;jþ1

of Ji;j’s subsequent job as late as possible while still
guaranteeing the validity constraint. Note that the sampling
time of a job is also its release time, that is, the time that the job
is ready to execute, as we assume zero cost for sampling and
no arrival jitter for a job for convenience of presentation.

The deferral of job Ji;jþ1’s release time reduces the relative

deadline of the job if its absolute deadline is fixed as in (3). For

example, although ri;jþ1 is deferred to r0i;jþ1 in Fig. 3, it still has

to be completed by its deadline di;jþ1 in order to satisfy the

validity constraint (3). Thus, its relative deadline Di;jþ1

becomes di;jþ1 � r0i;jþ1, which is less than di;jþ1 � ri;jþ1. The

deadline of Ji;jþ1’s subsequent job Ji;jþ2 can be further

deferred to ðr0i;jþ1 þ ViÞ to satisfy the validity constraint.

Consequently, the processor utilization for the completion

of three jobs Ji;j, Ji;jþ1, and Ji;jþ2 then becomes 3Ci
2Vi�ðdi;jþ1�r0i;jþ1

Þ .

It is less than the utilization 3Ci
2Vi�ðdi;jþ1�ri;jþ1Þ required for the

completion of the same amount of work in ML.

Definition 3.1. Let �iða; bÞ denote the total cumulative
processor demands made by all jobs of a higher priority
transaction �j for 8j ð1 � j � i� 1Þ during the time
interval ½a; bÞ from a schedule S produced by a fixed-priority
scheduling algorithm. Then,

�iða; bÞ ¼
Xi�1

j¼1

�jða; bÞ;

where �jða; bÞ is the total processor demands made by all jobs
of a single transaction �j during ½a; bÞ.

Next, we discuss how much a job’s release time can be
deferred. We shall use ri;jþ1 instead of r0i;jþ1 to denote the
final deferred release time. According to the fixed-priority
scheduling theory, ri;jþ1 can be derived backward from its
deadline di;jþ1 as follows:

ri;jþ1 ¼ di;jþ1 �Ri;jþ1ðri;jþ1; di;jþ1Þ; ð5Þ

Ri;jþ1ðri;jþ1; di;jþ1Þ ¼ �iðri;jþ1; di;jþ1Þ þ Ci; ð6Þ

where Ri;jþ1ðri;jþ1; di;jþ1Þ denotes the response time of Ji;jþ1

in the time interval ½ri;jþ1; di;jþ1Þ. Note that the schedule of
all higher priority jobs that are released prior to di;jþ1 needs

to be computed before �iðri;jþ1; di;jþ1Þ is computed. This

computation can be invoked using a recursive process from

jobs of lower priority transactions to higher priority

transactions. Nevertheless, it does not require that a

complete schedule of all jobs should be constructed offline

before the task set is executed. Indeed, the computation of

job deadlines and their corresponding release times is

performed online while the transactions are being sched-

uled. We only need to compute the first jobs’ response times

when the system starts. Upon the completion of job Ji;j, the

deadline of its next job di;jþ1 is first derived from (3) and,

then, the corresponding release time ri;jþ1 is derived from

(5). If �iðri;jþ1; di;jþ1Þ cannot be computed due to incomplete

schedule information of release times and absolute dead-

lines from higher priority transactions, DS-FP computes

their schedule information online until it can gather enough

information to derive ri;jþ1. Job Ji;j’s DS-FP scheduling

information (for example, release time, deadline, and

bookkeeping information) can be discarded after it is

completed and no lower priority transactions need its

information for deriving their schedules. This process is

called garbage collection in DS-FP.
Let SJðtÞ denote the set of jobs of all transactions whose

deadlines have been computed by time t. Also, let LSDiðtÞ
denote the latest scheduled deadline of �i at t, that is, the

maximum of all di;j for jobs Ji;j of �i whose deadlines have

been computed by t. Then,

LSDiðtÞ ¼ max
Ji;j2SJ ðtÞ

fdi;jg ðj � 0Þ: ð7Þ

Given job Jk;j, whose scheduling information has been

computed at time t, and 8i ði > kÞ, if

LSDiðtÞ � dk;j; ð8Þ

then the information of Jk;j can be garbage collected.

Example 3.1. Suppose that there are three update transac-

tions whose parameters are shown in Table 2. The

resulting periods and deadlines in HH and ML are

shown in the same table. The utilizations of HH and ML

are Uml � 0:68 and Uhh ¼ 1:00, respectively. Figs. 4a and

4b depict the schedules produced by ML and DS-FP,

respectively. It can be observed from both schedules that

the release times of transaction jobs J3;1, J2;3, J2;4 are

shifted from times 14, 21, and 28 in ML to 18, 22, and 30

in DS-FP, respectively.

The DS-FP algorithm is described in Section 3.2.

XIONG ET AL.: DEFERRABLE SCHEDULING FOR MAINTAINING REAL-TIME DATA FRESHNESS: ALGORITHMS, ANALYSIS, AND RESULTS 955

Fig. 3. Illustration of DS-FP scheduling (ri;jþ1 is shifted to r0i;jþ1).

TABLE 2
Parameters and Results for Example 3.1

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



3.2 Deferrable Scheduling Algorithm

This section presents DS-FP, a fixed-priority scheduling
algorithm. Transaction priority assignment policy in DS-FP
is the same as in ML, that is, SFV. Given an update transaction
set T , it is assumed that �i has a priority higher than �j if i < j,
as we let Vi � Vj. Algorithm 3.1 presents the DS-FP
algorithm. For convenience of presentation, garbage collec-
tion is omitted in the algorithm. There are two cases for the
DS-FP algorithm: 1) At the system initialization time, lines 13-
20 iteratively calculate the first job’s response time for �i and
the first job’s deadline is set as its response time (line 21) and
2) upon the completion of �i’s job Ji;k ð1 � i � m; k � 0Þ, the
deadline of its next job Ji;kþ1, di;kþ1, is derived at line 27 so
that the farthest distance of Ji;k’s sampling time and Ji;kþ1’s
finishing time is bounded by the validity length Vi (3).
Finally, the sampling time of Ji;kþ1, ri;kþ1, is derived
backward from its deadline by accounting for the inter-
ferences from higher priority transactions (line 29).

Algorithm 3.1: the DS-FP algorithm

Input: a set of update transactions T ¼ f�igmi¼1 ðm � 1Þ with

known fCigmi¼1 and fVigmi¼1.

Output: construct a partial schedule S if T is feasible; otherwise,

reject.

1 case (|system initialization time|):

2 t 0; // Initialization

3 // LSDi—Latest Scheduled Deadline of �i’s jobs.

4 LSDi  0, 8i ð1 � i � mÞ;
5 ‘i  0, 8i ð1 � i � mÞ;
6 // ‘i is the latest scheduled job of �i
7 for i ¼ 1 to m do

8 // Schedule finish time for �i;0.
9 ri;0  0;

10 fi;0  Ci;

11 // Calculate higher priority (HP) preemptions.

12 oldHPPreempt 0; // initial HP preemptions

13 hpPreempt CalcHPPreemptði; 0; 0; fi;0Þ;
14 while ðhpPreempt > oldHPPreemptÞ do

15 // Accounting for the interferences of HP tasks

16 fi;0  ri;0 þ hpPreemptþ Ci;
17 if ðfi;0 > Vi � CiÞ then abort fi;

18 oldHPPreempt hpPreemptj;
19 hpPreempt CalcHPPreemptjði; 0; 0; fi;0Þ;
20 od

21 di;0  fi;0;

22 od

23 return;

24

25 case (upon the completion of Ji;k):

26 //Schedule release time for Ji;kþ1.

27 di;kþ1  ri;k þ Vi; // get the next deadline for Ji;kþ1

28 // ri;kþ1 is also the sampling time for Ji;kþ1

29 ri;kþ1  ScheduleRTði; kþ 1; Ci; di;kþ1Þ;
30 return;

Algorithm 3.2: ScheduleRTði; k; Ci; di;kÞ
Input: Ji;k, with Ci and di;k.

Output: ri;k.

1 oldHPPreempt 0; // initial HP preemptions

2 hpPreempt 0;

3 ri;k  di;k � Ci;
4 // Calculate HP preemptions backwards from di;k.

5 hpPreempt CalcHPPreemptði; k; ri;k; di;kÞ;
6 while ðhpPreempt > oldHPPreemptÞ do

7 // Accounting for the interferences of HP tasks

8 ri;k  di;k � hpPreempt� Ci;
9 if ðri;k < di;k�1Þ then abort fi;

10 oldHPPreempt hpPreempt;

11 hpPreempt GetHPPreempt ði; k; ri;k; di;kÞ;
12 od

13 return ri;k;

Algorithm 3.3: CalcHPPreemptði; k; t1; t2Þ
Input: Ji;k, and a time interval ½t1; t2Þ.
Output: total cumulative processor demands from HP transac-

tions �j ð1 � j � i� 1Þ during ½t1; t2Þ.
1 ‘i  k; // Record the latest scheduled job of �i.

2 di;k  t2;

3 LSDi  t2;

4 if ði ¼ 1Þ
5 then // No preemptions from HP tasks.

6 return 0;

7 elsif ðLSDi�1 � LSDiÞ
8 then // Get preemptions from �j ð8j; 1 � j < iÞ
9 // because �j’s schedule is complete before t2.

10 return GetHPPreemptði; k; t1; LSDiÞ;
11 fi

12 //build S up to or exceeding t2 for �jð1 � j < iÞ.
13 for j ¼ 1 to i� 1 do

14 while ðdj;‘j < LSDiÞ do

15 dj;‘jþ1  rj;‘j þ Vj;
16 rj;‘jþ1  ScheduleRTðj; ‘j þ 1; Cj; dj;‘jþ1Þ;
17 ‘j  ‘j þ 1;

18 LSDj  dj;‘j ;

19 od

20 end

21 return GetHPPreemptði; k; t1; LSDiÞ;
Function ScheduleRT ði; k; Ci; di;kÞ (Algorithm 3.2) calcu-

lates the release time ri;k with known computation time Ci
and deadline di;k. It starts with release time ri;k ¼ di;k � Ci,
then iteratively calculates �iðri;k; di;kÞ, which is the total

cumulative processor demands made by all higher priority

jobs of Ji;k during the interval ½ri;k; di;kÞ, and adjusts ri;k by

956 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Fig. 4. Comparing ML and DS-FP schedules. (a) An ML schedule. (b) A

DS-FP schedule.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



accounting for the interferences from higher priority
transactions (lines 5 to 12). The computation of ri;k
continues until the interferences from higher priority
transactions do not change in an iteration. In particular,
line 9 detects any infeasible schedule. A schedule becomes
infeasible under DS-FP if ri;k < di;k�1ðk > 0Þ, that is, the
release time of Ji;k becomes earlier than the deadline of its
preceding job Ji;k�1. Function GetHPPreemptði; k; t1; t2Þ
scans the interval ½t1; t2Þ, adds up the total preemptions
from �jð8j; 1 � j � i� 1Þ, and returns �iðt1; t2Þ, the cumu-
lative processor demands of �j during ½t1; t2Þ from schedule
S that has been built.

Function CalcHPPreemptði; k; t1; t2Þ (Algorithm 3.3) cal-
culates �iðt1; t2Þ, the total cumulative processor demands
made by all higher priority jobs of Ji;k during the interval
½t1; t2Þ. Line 7 ensures that ð8j; 1 � j < iÞ �j’s schedule is
completely built before time t2. This is because �i’s schedule
cannot be completely built before t2 unless the schedules of
its higher priority transactions are complete before t2. In this
case, the function simply returns an amount of higher
priority preemptions for �i during ½t1; t2Þ by invoking
GetHPPreemptði; k; t1; t2Þ, which returns �iðt1; t2Þ. If any
higher priority transaction �jðj < iÞ does not have a
complete schedule during ½t1; t2Þ, its schedule S up to or
exceeding t2 is built on the fly (lines 14-19). This enables the
computation of �iðt1; t2Þ. The latest scheduled deadline of
�i’s job LSDi indicates the latest deadline of �i’s jobs that
have been computed.

The worst-case complexity of ScheduleRT is Oðm � V2
mÞ,

assuming that VmV1
is a constant. An important property of

ScheduleRT ði; k; Ci; di;kÞ terminating at time t ¼ di;k is that
the latest scheduled deadline of �l ðLSDlðtÞÞ is not larger
than that of �j ðLSDjðtÞÞ if �l does not have a priority higher
than �j ðl � jÞ. This is proven in the following lemma.

Lemma 3.1. Given a synchronous update transaction set T and
ScheduleRT ði; k; Ci; tÞ ð1 � i � m& k � 0Þ, LSDlðtÞ �
LSDjðtÞ ði � l � jÞ holds when ScheduleRT ði; k; Ci; tÞ
terminates at time t.

Proof. This can be proven by contradiction.
Suppose that LSDlðtÞ > LSDjðtÞ ði � l � jÞ when
ScheduleRT ði; k; Ci; tÞ terminates at t. If LSDlðtÞ < t,
then CalcHPPreemptði; k; t1; t2Þ does not terminate
according to line 14 because dl;‘l < LSDiðtÞ ¼ t.
Thus, LSDlðtÞ � LSDiðtÞ ¼ t. Let LSDlðtÞ ¼ t2 in
CalcHPPreemptðl; kl; t1; t2Þ, which must be invoked
before ScheduleRT ði; k; Ci; tÞ terminates at t. As
we assume that LSDjðtÞ < LSDlðtÞ ¼ t2, similarly,
CalcHPPreemptðl; kl; t1; t2Þ has not reached the point to
terminate according to line 14. This contradicts the
assumption. tu

The next example illustrates how the DS-FP algorithm
works with the transaction set in Example 3.1.

Example 3.2. Table 3 presents the comparison of (release
time, deadline) pairs assigned by ML and DS-FP (Algo-
rithm 3.1) for the jobs of �1, �2, and �3 in Example 3.1. Note
that only release times and deadlines before time 40 are
depicted in the table. Note also that �1 has the same release
times and deadlines for all jobs under ML and DS-FP.

However, J2;3, J2;4, J2;5, J3;1, and J3;2 have different release
times and deadlines under ML and DS-FP. Algorithm 3.1
starts at the system initialization time. It calculates deadlines
for J1;0, J2;0, and J3;0. Upon the completion of J3;0 at time 6,
d3;1 is set to r3;0 þ V3 ¼ 20. Then, Algorithm 3.1 invokes
ScheduleRT ð3; 1; 2; 20Þ at line 29, which derives r3;1. At this
moment, Algorithm 3.1 has already calculated the com-
plete schedule up to d3;0 (time 6), but the schedule in the
interval ð6; 20� has only been partially derived. Specifi-
cally, only the schedule information of J1;0, J1;1, J1;2,
J1;3J2;0, and J2;1 has been derived for �1 and �2. Algo-
rithm 3.2 ðScheduleRT Þ obtains r3;1 ¼ 20� 2 ¼ 18 at line 3
and then invokes CalcHPPreemptð3; 1; 18; 20Þ. Algo-
rithm 3.3 ðCalcHPPreemptÞ finds that LSD2 ¼ 10 < t2 ¼
20 and, then, it jumps to the for loop starting at line 13 to
build the complete schedule of �1 and �2 in the interval
ð6; 20�, where the release times and deadlines for J1;4,
J1;5, J2;2, J1;6, and J2;3 are derived. Thus, higher priority
transactions �1 and �2 have a complete schedule before
time 20. Note that r1;6 and d1;6 for J1;6 are derived when
we calculate r2;3 and d2;3 such that the complete schedule
up to time d2;3 is built for transactions with priorities
higher than �2. As r2;2 is set to 14 by earlier calculation,
d2;3 is set to 24. It derives r2;3 backward from d2;3 and sets
it to 22 because �2ð22; 24Þ ¼ 0. Similarly, d3;1 and r3;1 are
set to 20 and 18, respectively.

3.3 Comparison of DS-FP and ML

Note that ML is based on the periodic task model, while DS-

FP adopts the aperiodic task model. The relative deadline of
a transaction in DS-FP is not fixed. Theoretically, the
separation of two consecutive jobs of �i in DS-FP ri;j � ri;j�1

satisfies the following condition:

Vi � Ci � ri;j � ri;j�1 � Vi �WCRTi ðj � 1Þ; ð9Þ

where WCRTi is the worst-case response time of the jobs of
�i in DS-FP. Note that the maximal separation of Ji;j and
Ji;j�1ðj � 1Þ, maxjfri;j � ri;j�1g, cannot exceed Vi � Ci,
which can be obtained when there are no higher priority
preemptions in the execution of jobs Ji;js (for example, the
highest priority transaction �1 always has separation V1 �
C1 for J1;j and J1;j�1). Thus, the processor utilization for DS-

FP should be greater than
Pm

i¼1
Ci
Vi�Ci , which is the CPU

XIONG ET AL.: DEFERRABLE SCHEDULING FOR MAINTAINING REAL-TIME DATA FRESHNESS: ALGORITHMS, ANALYSIS, AND RESULTS 957

TABLE 3
Release Time and Deadline Comparison

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



workload resulting from the maximal separation Vi � Ci of

each transaction.
If fmli;0 � Vi2 , where fmli;0 is the first job’s response time (that

is, the worst-case response time) of �i’s job in ML, ML can be

regarded as a special case of DS-FP in which the sampling

(or release) time rmli;jþ1 and deadline dmli;jþ1ðj � 0Þ can be

specified as follows:

dmli;jþ1 ¼ rmli;j þ Vi; ð10Þ

rmli;jþ1 ¼ dmli;jþ1 � ð�iðrmli;0 ; fmli;0 Þ þ CiÞ: ð11Þ

It is clear that �iðrmli;0 ; fmli;0 Þ þ Ci ¼ fmli;0 when rmli;0 ¼ 0 ð1 � i �
mÞ in ML.

Theorem 3.1. Given a synchronous update transaction set T
with known Ci and Vi ð1 � i � mÞ, if ð8iÞfmli;0 � Vi2 in ML,

then

WCRTi � fmli;0 ;

where WCRTi and fmli;0 denote the worst-case response times of

�i in DS-FP and ML, respectively.

Proof. This can be proven by contradiction. Suppose that �k

is the highest priority transaction such that WCRTk >

fmlk;0 holds in DS-FP. Also, it is assumed that the response

time of Jk;n ðn � 0Þ, Rk;n, is the worst for �k in DS-FP.

Note that schedules of �1 in ML and DS-FP are the same,

as, in both cases, �1 jobs have the same relative deadline

C1 and separation/period V1 � C1. Therefore, 1 < k � m
holds.

As WCRTk > fmlk;0, there must be a transaction �l such
that 1) �l has a priority higher than �k ð1 � l < kÞ, 2) at
least two consecutive jobs of �l, Jl;j�1 and Jl;j overlap
with Jk;n, and 3) the separation of Jl;j�1 and Jl;j satisfies
the following condition:

rl;j � rl;j�1 < V l � fmll;0 ðj > 0Þ; ð12Þ

where Vl � fmll;0 is the period (that is, separation) of the

jobs of �l in ML.
Claim 1 is true because k > 1. It is straightforward that

if each higher priority transaction of �k only has one job
overlapping with Jk;n, then Rk;n � fmlk;0. This implies that
Claim 2 is true. Finally, for ð8l < kÞ and Jl;j�1 and Jl;j
overlapping with Jk;n, if

rl;j � rl;j�1 � Vl � fmll;0 ðj > 0Þ;

then Rk;n > fmlk;0 cannot be true because the amount of

preemptions from higher priority transactions received

by Jk;n in DS-FP is not more than that received by Jk;0 in

ML. Thus, Claim 3 is also true.
We know that the release time rl;j in DS-FP is derived

as follows:

rl;j ¼ dl;j �Rl;j; ð13Þ

where Rl;j is the calculated response time of job Jl;j, that

is, �lðrl;j; dl;jÞ þ Cl. Following (12) and (13),

dl;j �Rl;j ¼ rl;j fby ð13Þg
<rl;j�1 þ Vl � fmll;0 fby ð12Þg
¼ dl;j � fmll;0 fby ð3Þg:

Finally,

Rl;j > fmll;0 : ð14Þ

Equation (14) contradicts the assumption that �k is the

highest priority transaction such that WCRTk > fmlk;0

holds. Therefore, the theorem is proven. tu
The following theorem gives a sufficient condition for

the schedulability of DS-FP.

Theorem 3.2. Given a synchronous update transaction set T
with known Ci and Vi ð1 � i � mÞ, if ð8iÞ fmli;0 � Vi2 in ML,

then T is schedulable with DS-FP.

Proof. If fmli;0 � Vi2 , then the worst-case response times of �i
ð1 � i � mÞ in DS-FP WCRTi satisfy the following

condition (by Theorem 3.1):

WCRTi � fmli;0 �
Vi
2
:

That is, WCRTi is not more than Vi
2 . Because the

following equations hold in DS-FP, according to (5)

and (6):

ri;j ¼ di;j �Ri;j; ð15Þ

di;jþ1 ¼ ri;j þ Vi; ð16Þ

di;jþ1 ¼ ri;jþ1 þRi;jþ1: ð17Þ

Replacing ri;j and di;jþ1 in (16) with (15) and (17),

respectively, it follows that

ri;jþ1 þRi;jþ1 ¼ di;j �Ri;j þ Vi:

That is,

ri;jþ1 � di;j þRi;jþ1 þRi;j ¼ Vi: ð18Þ

Because

Ri;jþ1 þRi;j � 2 �WCRTi � Vi;

it follows from (18) that ri;jþ1 � di;j � 0 holds. This

ensures that it is schedulable to schedule two jobs of �i
in one validity interval Vi under DS-FP. Thus, T is

schedulable with DS-FP. tu
The following corollary states the correctness of DS-FP.

Corollary 3.1. Given a synchronous update transaction set T
with known Ci and Vi ð1 � i � mÞ, if ð8iÞ fmli;0 � Vi2 in ML,

then DS-FP correctly guarantees the temporal validity of real-

time data.

Proof. As deadline assignment in DS-FP follows (3), the

largest distance of two consecutive jobs di;jþ1 � ri;j ðj �
0Þ does not exceed Vi. The validity constraint can be

satisfied if all jobs meet their deadlines, which is

guaranteed by Theorem 3.2. tu

958 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



If T can be scheduled by ML, then by ML definition, ð8iÞ
fmli;0 � Vi2 . Thus, Corollary 3.2, which states a sufficient
schedulability condition for DS-FP, directly follows from
Theorem 3.2.

Corollary 3.2. Given a synchronous update transaction set T
with known Ci and Vi ð1 � i � mÞ, if T can be scheduled by
ML, then it can also be scheduled by DS-FP.

However, the converse statement of Corollary 3.2 is not
true. That is, if T can be scheduled by DS-FP, then it is not
necessarily true that T can also be scheduled by ML. This is
demonstrated in the following example.

Example 3.3. Consider a set of three transactions f�1; �2; �3g
with computation times 2, 3, and 3 and validity intervals 6,
15, and 47, respectively. Fig. 5a depicts a schedule of the
transactions under ML. The first job of �3, J3;0, completes at
time 24, which is greater than V3

2 (that is, 23.5). Thus, the set
of transactions is not schedulable by ML.

Fig. 5b depicts a schedule of the transactions under
DS-FP. The same transaction set is schedulable by DS-FP,
because the schedule pattern between times 26 and 50
repeats itself forever.

In summary, if a set of synchronous update transactions
can be scheduled by ML to satisfy the validity constraint,
then it can also be scheduled by DS-FP. However, the
converse statement is not true, which implies that DS-FP
outperforms ML in terms of schedulability. Thus, the following
corollary directly follows from both Corollary 3.2 and
Example 3.3.

Corollary 3.3. DS-FP outperforms ML in terms of schedulability
for satisfying the validity constraint.

Discussion of jitters. Our results can be easily extended
to the case where jitter between the sampling time and the
release time of a job is nonzero if the maximum jitter of a
transaction is known. In the presence of nonzero jitters, we
can transform a transaction � 0i (with validity length V0i and
maximum jitter �i) to a transaction �i (with validity length

Vi ¼ V0i � �i and zero jitter). Such a transformation guaran-
tees that if �i can meet its validity constraint, then � 0i can also
meet its validity constraint.

3.4 Theoretical Estimation of Processor Utilization
for DS-FP

This section presents means of estimating the average CPU
utilization. Note that DS-FP does not usually schedule
transactions periodically. Thus, it is hard to derive its exact
CPU utilization unless there is a fixed pattern that repeats
itself in a DS-FP schedule. In what follows, we shall
investigate two cases in order: 1) a DS-FP schedule that has
a detected pattern repeating itself from a certain point in
time and 2) a DS-FP schedule that has no detected pattern.

3.4.1 DS-FP with a Detected Pattern

We introduce a fixed pattern in a DS-FP schedule with a
simple example, which is shown in the following:

Example 3.4. Consider a DS-FP schedule for two transac-
tions �1 and �2 in Fig. 6a. Note that transaction
parameters (Cis and Vis) are given in the figure. We
observe that there is a fixed pattern repeating itself in the
schedule every three time units, starting from time 8. If
time goes to infinity, we can estimate that the average
CPU utilization of the DS-FP schedule is about 66.7 per-
cent. Similarly, given the three transactions in Fig. 6b, we
observe a fixed pattern repeating itself in the schedule
every four time units, starting from time 13. Again, we
can easily estimate that its CPU utilization is close to
100 percent.

Needless to say, the average CPU utilization for a DS-FP
schedule can be approximated based on a fixed pattern if
such a pattern exists in the schedule. However, it is not true
that we can always easily detect a fixed pattern in every DS-
FP schedule. It becomes harder to detect a fixed pattern in a
DS-FP schedule if the size of the transaction set is larger.
This is because the complexity of pattern detection grows
exponentially with the size of the transaction set. Indeed, it
remains open whether there is always a fixed pattern in

XIONG ET AL.: DEFERRABLE SCHEDULING FOR MAINTAINING REAL-TIME DATA FRESHNESS: ALGORITHMS, ANALYSIS, AND RESULTS 959

Fig. 5. A transaction set schedulable by DS-FP but not by ML. (a) ML is

unschedulable. (b) DS-FP is schedulable.

Fig. 6. DS-FP schedules with fixed patterns. (a) A DS-FP schedule for

two transactions. (b) A DS-FP schedule for three transactions.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



every DS-FP schedule or not. As many DS-FP schedules

may not be detected to have such fixed patterns, it becomes

more important to estimate the average CPU utilization for

such DS-FP schedules.

3.4.2 DS-FP without a Detected Pattern

We now present an approximation of the average processor

utilization of DS-FP from a statistical perspective in the

absence of detected patterns in DS-FP schedules. Note that our

approximation only works provided that T can be scheduled by

ML. This implies that the approximation is applicable to

transaction sets where all deadlines are not greater than

their corresponding periods in ML. Our approximation is

quite close to the average CPU utilization obtained in our

experiments. The CPU utilization approximation depends

on the approximate values of the average deadline D and

period P of transactions, which is described as follows.
Given a set of transactions T ¼ f�igmi¼1, let UDS denote

the average processor utilization in DS-FP and let Pj be the

average period for �j. The average relative deadline of �i,

namely, Di, is approximated as follows:

Di ¼ Ci þ
Xi�1

j¼1

Di

Pj

 !
� Cj

" #
ð1 � i � mÞ: ð19Þ

Let Pi;j and Di;jþ1 ð1 � i � m ^ j � 0Þ denote ri;jþ1 � ri;j and

di;jþ1 � ri;jþ1 in (4), respectively. It follows that

Pi;j þDi;jþ1 ¼ Vi: ð20Þ

Thus, the following equation holds, given an arbitrarily

large n ðn!1Þ, where n is the number of jobs in

averaging:

Pi þDi ¼ Vi: ð21Þ

Following (19) and (21), Di and Pi ð1 � i � mÞ can be

calculated (from the highest priority transaction �1 to the

lowest priority transaction �m), respectively, as follows:

Di ¼
Ci

1�
Pi�1

j¼1
Cj

Pj

ð1 � i � mÞ; ð22Þ

Pi ¼ Vi �Di ð1 � i � mÞ: ð23Þ

Finally, UDS , which is the average utilization of the

transaction set T under DS-FP, can be approximated as

UDS ¼
Xm
i¼1

Ci

P i

¼
Xm
i¼1

Ci

Vi � Ci

1�
Pi�1

j¼1

Cj

Pj

0
BB@

1
CCA: ð24Þ

The following example illustrates how the average

utilization is estimated.

Example 3.5. Given the transaction set in Table 2, we

calculate the average relative deadline and period of �i

ði ¼ 1; 2; 3Þ as follows:

D1 ¼C1 ¼ 1; P 1 ¼ V1 �D1 ¼ 4;

D2 ¼
C2

1� C1

P 1

¼ 2:7; P 2 ¼ V2 �D2 ¼ 7:3;

D3 ¼
C3

1� C1

P 1
þ C2

P 2

� � ¼ 4:2; P 3 ¼ V3 �D3 ¼ 15:8:

The average processor utilization is UDS ¼
Pm

i¼1
Ci
P i
¼ 0:65.

Given the transaction set in Table 2, it can be verified that

the processor utilization for the first 200 time units is

63 percent, which is very close to our theoretical

estimation and lower than the processor utilization from

ML (68 percent).

Discussion of fixed patterns. A fixed pattern in a DS-FP

schedule may be exponentially long (with respect to the
number of transactions). Thus, it can be very expensive to

detect. Assume that the minimal number of jobs per
transaction in this pattern is n. If n is large, then (24) can

be used to estimate the average CPU utilization of the fixed
pattern, which, in turn, is the utilization estimation of the

schedule.
In summary, the average CPU utilization of a DS-FP

schedule can be approximated based on a fixed pattern if

such a pattern exists in the schedule. Otherwise, the CPU
utilization can be estimated by (24) if the transaction set is

schedulable according to Corollary 3.2.

3.5 The Nonoptimality of DS-FP

We have proven in Section 3.4 that DS-FP is close to optimal
in terms of minimizing the CPU workload from a statistical

perspective. Intuitively, DS-FP should be very close to an
optimal algorithm because it always defers the execution of

a job as late as possible, hence reducing the workload as
much as possible. We have also proven that DS-FP can

schedule any transaction set that is schedulable by ML in
Section 3.3. Now, it is interesting to know if DS-FP is an

optimal algorithm in terms of schedulability. That is, given

any transaction set, if it is schedulable by a fixed-priority

scheduler, can it be scheduled by DS-FP? Unfortunately, the
answer to the aforementioned question is negative, which

can be demonstrated with the following example.

Example 3.6. Consider a set of three transactions f�1; �2; �3g
with computation times 4, 4, and 3 and validity

intervals 12, 22, and 36, respectively. This set is not
schedulable by DS-FP as it fails at time 36, as shown in

Fig. 7a. In this case, the second job of �3 cannot be
completed by the end of its first validity interval.

However, if J1;2 is scheduled two time units earlier, this
transaction set can be successfully scheduled because

there is a fixed pattern repeating itself every 32 time units
starting from time 27, as depicted in Fig. 7b. Note that

such a schedule is also a fixed-priority schedule because
no lower priority jobs may interrupt a higher priority job

once the higher one is released. By doing so, the release
time of J2;1 is postponed to time 18, as shown in Fig. 7b

(from time 14 in Fig. 7a). Hence, the deadline of J2;2 is
also postponed.

960 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



DS-FP requires that every transaction �i should finish its
first two jobs in ½0;ViÞ. If the requirement is relaxed so that
the first two jobs are allowed to finish in ½ri;0; ri;0 þ ViÞ,
where ri;0 denotes the time at which Ji;0 actually starts, then
DS-FP can schedule the set in Example 3.6. In this case, the
first jobs of transactions start asynchronously. An asynchro-
nous schedule for the same transaction set in Example 3.6 is
depicted in Fig. 7c, in which there is a fixed pattern between
times 16 and 48 repeating itself forever. In general, whether
the asynchronous DS-FP algorithm is optimal in terms of
schedulability remains an open question.

Another interesting observation is that the transaction set
in Example 3.6 is schedulable by DS-FP if a priority order
different from SVF is used. For example, if we swap the
priorities of �1 and �2, DS-FP can schedule the set, as
depicted in Fig. 8. In this case, there is a fixed pattern
between times 27 and 207 repeating itself forever.

In summary, DS-FP is not optimal for a set of
synchronous update transactions in terms of schedulability,
but it remains open if it is optimal for asynchronous
transactions or transaction priorities assigned differently
from SVF.

4 PERFORMANCE EVALUATION

This section presents the important results from our
simulation studies. Section 4.1 describes our simulation

model and parameters. Section 4.2 compares DS-FP with
the ML algorithm. ML is known to outperform Half-Half
[25], which is not compared here. The experiments
demonstrate that our proposed approaches reduce CPU
utilization while guaranteeing data validity constraints.

4.1 Simulation Model and Parameters

Our experiments compare the update transaction work-
loads produced by DS-FP and ML. It is demonstrated that
DS-FP produces a lower CPU workload than ML. Also, the
experiments demonstrate that the increase in the average
sampling period from DS-FP is the main reason for its lower
workload. The primary performance metric used in the
experiments is the CPU workload.

A summary of the parameters and default settings used in
the experiments is presented in Table 4. The baseline values
for the parameters follow those used in [25], which are
originally from air traffic control applications. We consider a
single CPU main memory-based RTDBS. The number of real-
time data objects varies from 10 to 300 and the validity
interval of each real-time data object is uniformly distributed
between 4,000 and 8,000 ms. Each transaction updates one
real-time data object and the CPU time for each transaction is
uniformly distributed between 5 and 15 ms. In the experi-
ments, 95 percent confidence intervals have been obtained,
whose widths are less than 	5 percent of the point estimate
for the performance metrics.

4.2 Experimental Results

In our experiments, the CPU workloads of update transac-
tions produced by ML and DS-FP are quantitatively
compared. Update transactions are generated randomly
according to the parameter settings in Table 4.

The resulting CPU workloads generated from ML and
DS-FP are depicted in Fig. 9. From the results, we observe
that the CPU workload produced by DS-FP is consistently
lower than that of ML. In fact, the difference widens as the
number of update transactions increases. The difference
reaches 18 percent when the number of transactions is 300.
It is also observed that the CPU utilization of DS-FP

measured in our experiments (DS-FP(Expt.)) nearly
matches the CPU workload estimation UDS (24), shown as
DS-FP(Est.) in the figure. Moreover, the DS-FP CPU
workload is only slightly higher than

Pm
i¼1

Ci
Vi�Ci , which is

the CPU workload resulting from the maximal separation
Vi � Ci ð1 � i � mÞ of each transaction (see Section 3.3). In
fact, the difference is insignificant in Fig. 9. The improve-
ment in the CPU workload of DS-FP is due to the fact that
DS-FP adaptively samples real-time data objects at a lower

XIONG ET AL.: DEFERRABLE SCHEDULING FOR MAINTAINING REAL-TIME DATA FRESHNESS: ALGORITHMS, ANALYSIS, AND RESULTS 961

Fig. 8. SVF is not optimal for DS-FP.

TABLE 4
Experimental Parameters and Settings

Fig. 7. DS-FP is not optimal. (a) An unsuccessful DS-FP schedule. (b) A

successful schedule. (c) An asynchronous DS-FP schedule.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



rate. This is verified by the average sampling periods of
update transactions obtained from experiments.

Fig. 10 shows the average sampling period for each
transaction in DS-FP when the number of update transac-
tions is 300. Given a set of update transactions, the period of
transaction �i in ML Pml

i is a constant and it can be
calculated offline [25], while the separation of the sampling
times of two consecutive jobs from the same transaction in
DS-FP is dynamic and it is obtained online in the
experiments. The mean value of the separations, that is,
the average sampling period, P

ds

i for transaction �i is
calculated as follows, where n is the number of jobs
generated by �i in the experiments:

P
ds

i ¼
1

n� 1

Xn�1

j¼1

ðri;j � ri;j�1Þ: ð25Þ

In Fig. 10, it is observed that P
ds

i is consistently larger than

Pml
i , while the difference ðPds

i � Pml
i Þ increases with the

decrease in the transaction’s priority. DS-FP reduces the

average sampling rate more for lower priority transactions,

thus reducing the workload of CPU. Fig. 10 also shows that

the trend of ðP
ds

i

Pml
i

Þ increases similarly to that of ðPds

i � Pml
i Þ,

although it fluctuates.
Fig. 11 depicts how much the CPU workload estimation

DS-FP(Est.) differs from the actual CPU utilization obtained
from the experiments DS-FP(Expt.) in finer granularity. The
x-axis depicts the size of update transactions and the y-axis

depicts the relative difference between DS-FP(Est.) and DS-
FP(Expt.), which is defined as

jDS-FP ðExpt:Þ �DS-FP ðEst:Þj
DS-FP ðExpt:Þ � 100%:

Both the maximum and mean relative differences are
depicted in the figure. In our experiments, it is observed
that DS-FP(Expt.) is consistently higher than DS-FP(Est.).
As observed in the figure, our CPU workload estimation
nearly matches the measured CPU utilization in our
experiments as the maximum relative difference never
exceeds 0.6 percent.

We also conducted a set of experiments by varying Vi
Ci

and fixing
Pm

i¼1
Ci
Vi of the update transaction set at

45 percent. The results are depicted in Fig. 12, which

compares ML, DS-FP,
Pm

i¼1
Ci
Vi , and

Pm
i¼1

Ci
Vi�Ci . Similarly to

Fig. 9, the actual utilization for DS-FP is very close to the

utilization estimation UDS (shown as DS-FP(Est.)). Note thatPm
i¼1

Ci
Vi�Ci is the CPU workload resulting from the possible

maximum separation Vi � Ci satisfying the validity con-

straint for each transaction �i. It is a CPU lower bound

ignoring transaction interference. It is observed in Fig. 12

that a CPU workload of DS-FP is very close to that ofPm
i¼1

Ci
Vi�Ci . The larger ViCi is, the closer DS-FP and

Pm
i¼1

Ci
Vi�Ci

are. This is because the probability of transaction inter-

ference decreases for DS-FP when ViCi increases.
We have conducted more experiments to study the

performance of DS-FP with different experimental settings.

962 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Fig. 9. CPU workload comparison.

Fig. 10. Average sampling period comparison.

Fig. 11. CPU workload estimation error.

Fig. 12. CPU workloads with fixed
Pm

i¼1
Ci
Vi

.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



The results are reported in [29] and they are omitted here
due to space limitations.

In summary, when a set of update transactions is
scheduled by DS-FP to maintain the temporal validity of
real-time data objects, it produces a schedule with a much
lower CPU workload than ML does. Thus, more CPU
capacity is available for improving the performance of other
workloads (for example, triggered transactions [27]) in the
system.

5 RELATED WORK

There has been a lot of work on RTDBSs in which validity
intervals are associated with real-time data [21], [22], [1],
[12], [13], [14], [5], [26], [11], [30], [8], [7], [25], [10]. In [6], a
safety-critical automotive application, that is, adaptive
cruise control, is studied. It deals with critical data and
involves deadline-bound computations on data gathered
from the automobiles’ environment. These applications
have stringent requirements on the freshness of data objects
and completion times of the tasks. In [8], a vehicular
application with embedded engine control systems is
presented and an on-demand scheduling algorithm is
proposed for enforcing base and derived data freshness.
In [7], an algorithm (ODTB) is proposed for updating data
items that can skip unnecessary updates, allowing for better
utilization of the CPU in the vehicular application. Such
systems introduce the need to maintain data temporal
consistency in addition to logical consistency.

In the model introduced in [22], a real-time system
consists of periodic tasks which are either read-only, write-
only, or update (read/write) transactions. Data objects are
temporally inconsistent when their ages or dispersions are
greater than the absolute or relative thresholds allowed by
the application. Two-phase locking and optimistic concur-
rency control algorithms, as well as rate-monotonic and
earliest deadline first scheduling algorithms are studied in
[22]. In [12], [13], real-time data semantics are investigated,
and a class of real-time data access protocols, called
Similarity Stack Protocols (SSP), is proposed. The correct-
ness of SSP is based on the concept of similarity, which
allows different but sufficiently timely data to be used in a
computation without adversely affecting the outcome.

In [14], similarity-based principles are coupled with the
Half-Half approach to adjust the real-time transaction load
by skipping the execution of task instances. The concept of
data deadline is proposed in [26]. It also proposes data-
deadline-based scheduling, forced-wait, and similarity-
based scheduling techniques to maintain the temporal
validity of real-time data and to meet transaction deadlines
in RTDBSs. In [10], Jha et al. study whether, given an update
transaction schedule, a periodic query would read mutually
consistent data. They propose design approaches to decide
the period and relative deadline of a query so that it satisfies
mutual consistency. They then suggest ways of reducing the
complexity of the solution approach by using harmonic
periods in general.

Our work is related to the ML scheme in [2], [25], [30].
ML guarantees a bound on the sampling time of a periodic
transaction job and the finishing time of its next job, but, as
we showed, the deadline and the period of a periodic

transaction are derived from the worst-case response time
of the transaction. This is different from the aperiodic task
model-based DS-FP algorithm in which the deadline of a
transaction job is derived adaptively and the separation of
two consecutive jobs is not a constant. DS-FP further
reduces the CPU workload resulting from update transac-
tions by adaptively adjusting the separation of two
consecutive jobs while satisfying the validity constraint.
DS-FP is also different from the distance constrained
scheduling, which guarantees a bound of the finishing times
of two consecutive instances of a task [9]. The EDL
algorithm proposed in [4] processes tasks as late as possible
based on the Earliest Deadline scheduling algorithm [17].
However, EDL assumes that all deadlines of tasks are given,
whereas DS-FP derives deadlines dynamically. Finally, our
DS-FP algorithm is applicable to the scheduling of age
constraint tasks in real-time systems [24].

6 CONCLUSIONS AND FUTURE WORK

This paper proposes a novel algorithm, namely, deferrable
scheduling for fixed priority transactions (DS-FP). Distinct
from past studies of maintaining the freshness (or temporal
validity) of real-time data in which the periodic task model
is adopted, DS-FP adopts the aperiodic task model. The
deadlines of jobs and the separation of two consecutive jobs
of an update transaction are adjusted judiciously so that the
farthest distance of the sampling time of a job is achieved
and the completion time of its next job is bounded by the
validity length of the updated real-time data. This paper
presents a sufficient condition for its schedulability. It also
proposes a theoretical estimation of the processor utilization
of DS-FP, which is verified in our experimental studies. It is
also demonstrated in our experiments that DS-FP greatly
reduces update workload compared to ML, while guaran-
teeing the validity constraint.

However, there are still many open questions to be
answered for DS-FP. For example, it is not clear what a
sufficient and necessary condition for the schedulability of
DS-FP is, if time 0 is a critical instant for a synchronous
transaction set scheduled by DS-FP, and if there is a least
upper bound of CPU utilization for DS-FP. Moreover, the
concept of deferrable scheduling is only used to schedule
update transactions with fixed priority in this paper. It is
possible for the same concept to be used in the scheduling
of update transactions with dynamic priority, for example,
in the Earliest Deadline scheduling [17], [4] of update
transactions.

ACKNOWLEDGMENTS

Preliminary versions of this paper appeared in [27], [28].
The authors would like to thank Professor Krithi Ramamri-
tham and Professor Aloysius K. Mok for fruitful discussions
on this work. This work was partially done while Song Han
was at City University of Hong Kong.

REFERENCES

[1] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings,
“Data Consistency in Hard Real-Time Systems,” Informatica,
vol. 19, no. 2, 1995.

XIONG ET AL.: DEFERRABLE SCHEDULING FOR MAINTAINING REAL-TIME DATA FRESHNESS: ALGORITHMS, ANALYSIS, AND RESULTS 963

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



[2] A. Burns and R. Davis, “Choosing Task Periods to Minimize
System Utilization in Time-Triggered Systems,” Information
Processing Letters, vol. 58, pp. 223-229, 1996.

[3] D. Chen and A.K. Mok, “Scheduling Similarity-Constrained Real-
Time Tasks,” Proc. Int’l Conf. Embedded Systems and Applications and
Int’l Conf. VLSI, pp. 215-221, 2004.

[4] H. Chetto and M. Chetto, “Some Results of the Earliest Deadline
Scheduling Algorithm,” IEEE Trans. Software Eng., vol. 15, no. 10,
pp. 1261-1269, Oct. 1989.

[5] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing End-to-End
Timing Constraints by Calibrating Intermediate Processes,” Proc.
15th IEEE Real-Time Systems Symp., 1994.

[6] G. Goud, N. Sharma, K. Ramamritham, and S. Malewar, “Efficient
Real-Time Support for Automotive Applications: A Case Study,”
Proc. 12th IEEE Int’l Conf. Embedded and Real-Time Computing
Systems and Applications, 2006.

[7] T. Gustafsson and J. Hansson, “Data Management in Real-Time
Systems: A Case of On-Demand Updates in Vehicle Control
Systems,” Proc. 10th IEEE Real-Time and Embedded Technology and
Applications Symp., pp. 182-191, 2004.

[8] T. Gustafsson and J. Hansson, “Dynamic On-Demand Updating of
Data in Real-Time Database Systems,” Proc. 19th ACM Symp.
Applied Computing, 2004.

[9] C.C. Han, K.J. Lin, and J.W.-S. Liu, “Scheduling Jobs with
Temporal Distance Constraints,” SIAM J. Computing, vol. 24,
no. 5, pp. 1104-1121, Oct. 1995.

[10] A.K. Jha, M. Xiong, and K. Ramamritham, “Mutual Consistency in
Real-Time Databases,” Proc. 28th IEEE Real-Time Systems Symp.,
2006.

[11] K.D. Kang, S. Son, J.A. Stankovic, and T. Abdelzaher, “A QoS-
Sensitive Approach for Timeliness and Freshness Guarantees in
Real-Time Databases,” Proc. 14th Euromicro Conf. Real-Time
Systems, 2002.

[12] T. Kuo and A.K. Mok, “Real-Time Data Semantics and Similarity-
Based Concurrency Control,” Proc. 13th IEEE Real-Time Systems
Symp., 1992.

[13] T. Kuo and A.K. Mok, “SSP: A Semantics-Based Protocol for Real-
Time Data Access,” Proc. 14th IEEE Real-Time Systems Symp., 1993.

[14] S. Ho, T. Kuo, and A.K. Mok, “Similarity-Based Load Adjustment
for Real-Time Data-Intensive Applications,” Proc. 18th IEEE Real-
Time Systems Symp., 1997.

[15] J.P. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines,” Proc. 11th IEEE Real-Time Systems
Symp., 1990.

[16] J. Leung and J. Whitehead, “On the Complexity of Fixed-Priority
Scheduling of Periodic Real-Time Tasks,” Performance Evaluation,
vol. 2, pp. 237-250, 1982.

[17] C.L. Liu and J. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, 1973.

[18] D. Locke, “Real-Time Databases: Real-World Requirements,” Real-
Time Database Systems: Issues and Applications, A. Bestavros,
K.-J. Lin, and S.H. Son, eds., pp. 83-91, Kluwer Academic, 1997.

[19] K. Ramamritham, “Real-Time Databases,” Distributed and Parallel
Databases, vol. 1, pp. 199-226, 1993.

[20] K. Ramamritham, “Where Do Time Constraints Come From and
Where Do They Go?” Int’l J. Database Management, vol. 7, no. 2,
pp. 4-10, Spring 1996.

[21] X. Song and J.W.S. Liu, “How Well Can Data Temporal
Consistency Be Maintained?” Proc. IEEE Symp. Computer-Aided
Control Systems Design, 1992.

[22] X. Song and J.W.S. Liu, “Maintaining Temporal Consistency:
Pessimistic versus Optimistic Concurrency Control,” IEEE Trans.
Knowledge and Data Eng., vol. 7, no. 5, pp. 786-796, Oct. 1995.

[23] J.A. Stankovic, S. Son, and J. Hansson, “Misconceptions about
Real-Time Databases,” Computer, vol. 32, no. 6, pp. 29-36, June
1999.

[24] S. Vestal, “Real-Time Sampled Signal Flows through Asynchro-
nous Distributed Systems,” Proc. 11th IEEE Real-Time and
Embedded Technology and Applications Symp., pp. 170-179, 2005.

[25] M. Xiong and K. Ramamritham, “Deriving Deadlines and Periods
for Real-Time Update Transactions,” Proc. 20th IEEE Real-Time
Systems Symp., 1999.

[26] M. Xiong, K. Ramamritham, J.A. Stankovic, D. Towsley, and R.M.
Sivasankaran, “Scheduling Transactions with Temporal Con-
straints: Exploiting Data Semantics,” IEEE Trans. Knowledge and
Data Eng., vol. 14, no. 5, pp. 1155-1166, Sept./Oct. 2002.

[27] M. Xiong, S. Han, and K.Y. Lam, “A Deferrable Scheduling
Algorithm for Real-Time Transactions Maintaining Data Fresh-
ness,” Proc. 26th IEEE Real-Time Systems Symp., 2005.

[28] M. Xiong, S. Han, and D. Chen, “Deferrable Scheduling for
Temporal Consistency: Schedulability Analysis and Overhead
Reduction,” Proc. 12th IEEE Int’l Conf. Embedded and Real-Time
Computing Systems and Applications, 2006.

[29] M. Xiong, S. Han, D. Chen, and K.Y. Lam, “Deferrable Scheduling
for Maintaining Real-Time Data Freshness: Algorithms, Analysis,
and Results,” Technical Report TR-07-44, Dept. of Computer
Sciences, Univ. of Texas at Austin, Sept. 2007.

[30] M. Xiong, B. Liang, K.Y. Lam, and Y. Guo, “Quality of Service
Guarantee for Temporal Consistency of Real-Time Transactions,”
IEEE Trans. Knowledge and Data Eng., vol. 18, no. 8, pp. 1097-1110,
Aug. 2006.

Ming Xiong received the PhD degree in
computer science from the University of Massa-
chusetts, Amherst, in 2000. He is currently a
member of technical staff at Bell Laboratories.
His research interests include database sys-
tems, real-time systems, and mobile computing.
He is a member of the IEEE.

Song Han received the BS degree in computer
science from Nanjing University, Nanjing, Peo-
ple’s Republic of China, in 2003 and the MPhil
degree incomputerscience fromCityUniversityof
HongKong in2006.He iscurrentlyworking toward
the PhD degree in the Department of Computer
Sciences at the University of Texas at Austin. His
research interests include real-time systems,
database systems, wireless networks, and data
mining. He is a student member of the IEEE.

Kam-Yiu Lam received the BSc (Hons; with
distinction) degree in computer studies and the
PhD degree from City University of Hong Kong
in 1990 and 1994, respectively. He is currently
an associate professor in the Department of
Computer Science at City University of Hong
Kong. His research interests include real-time
database systems, real-time active database
systems, mobile computing, and distributed
multimedia systems.

Deji Chen received the PhD degree in computer
science from the University of Texas at Austin in
1999. He is currently a senior principal software
engineer at Emerson Process Management. His
research interests include real-time systems and
wireless process control. He is a member of the
IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

964 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27, 2009 at 22:49 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


