448

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

DIA: A Complexity-Effective
Decoding Architecture

Oliverio J. Santana, Member, IEEE, Ayose Falcon, Member, IEEE,
Alex Ramirez, and Mateo Valero, Fellow, IEEE

Abstract—Fast instruction decoding is a true challenge for the design of CISC microprocessors implementing variable-length
instructions. A well-known solution to overcome this problem is caching decoded instructions in a hardware buffer. Fetching already
decoded instructions avoids the need for decoding them again, improving processor performance. However, introducing such
special-purpose storage in the processor design involves an important increase in the fetch architecture complexity. In this paper, we
propose a novel decoding architecture that reduces the fetch engine implementation cost. Instead of using a special-purpose hardware
buffer, our proposal stores frequently decoded instructions in the memory hierarchy. The address where the decoded instructions are
stored is kept in the branch prediction mechanism, enabling it to guide our decoding architecture. This makes it possible for the processor
front end to fetch already decoded instructions from the memory instead of the original nondecoded instructions. Our results show that
using our decoding architecture, a state-of-the-art superscalar processor achieves competitive performance improvements, while
requiring less chip area and energy consumption in the fetch architecture than a hardware code caching mechanism.

Index Terms—Superscalar processor design, CISC instruction decoding, variable-length ISA, branch predictor, code caching.

1 INTRODUCTION

EVERAL current microprocessors like the Intel Pentium

family [1] implement CISC instruction set architectures.
Processing these CISC instructions requires higher design
complexity than processing simple fixed-size RISC instruc-
tions. A widespread strategy to deal with CISC instructions
is to decode them into simple RISC microoperations, which
can be efficiently managed and executed by the processor
back end. In this context, fast instruction fetch and decoding
becomes critical for feeding the processor back end with
enough instructions to keep the execution engine busy and
thus achieve high performance.

However, it is not easy to design a fast decoding
mechanism for CISC microprocessors. CISC instructions
can have variable length, and a complex logic is required to
decode instructions that can start at any byte address and can
be translated into one or several microoperations. The
decoding mechanism of the Intel P6 architecture is a clear
example [2]. A complex instruction that produces multiple
microoperations can only be decoded when it is the first
instruction decoded in a cycle. This means that the decoding

o O.]. Santana is with the Universidad de Las Palmas de Gran Canaria,
Edificio de Informdtica y Matemdticas, Campus Universitario de Tafira,
35017 Las Palmas de Gran Canaria, Spain.

E-mail: ojsantana@dis.ulpgc.es.

e A. Falcon is with the Barcelona Research Office, Hewlett-Packard
Laboratories, Avda Graells, 501, Sant Cugat del Valles, 08174 Barcelona,
Spain. E-mail: ayose.falcon@hp.com.

o A. Ramirez and M. Valero are with the Universitat Politécnica de
Catalunya and with Barcelona Supercomputing Center, Campus Nord
UPC, Jordi Girona, 1-3, 08034 Barcelona, Spain.

E-mail: {aramirez, mateo}@ac.upc.edu.

Manuscript received 15 June 2007; revised 22 Jan. 2008; accepted 28 July
2008; published online 8 Sept. 2008.

Recommended for acceptance by M. Gokhale.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-06-0239.
Digital Object Identifier no. 10.1109/TC.2008.170.

0018-9340/09/$25.00 © 2009 IEEE

logic stalls when it finds a complex instruction that is not in
the first decoding slot. The decoding process cannot continue
until the next cycle, when the complex instruction reaches
the first decoding slot after all the preceding instructions
have been decoded. On the average, we have found that
18 percent of dynamic instructions are complex instructions
in our benchmark programs. Consequently, this decoding
strategy seriously limits the decoding speed. In other words,
although the fetch architecture of a CISC processor provides
high instruction fetch bandwidth, it could be not enough if
decoding the fetched instructions becomes a bottleneck.

A well-known mechanism to overcome this problem is
the trace cache [3], [4], [5]. The trace cache fetch architecture
provides high fetch performance by buffering and reusing
dynamic instruction traces. These traces are portions of the
dynamic program execution that may contain multiple
basic blocks, that is, several branches regardless of them
being taken or not. Traces are dynamically built after their
instructions have been decoded. Thus, the instructions
stored in the trace cache are already decoded, which means
that there is no need to decode the instructions fetched from
it. As a result, the complexity of decoding instructions is
removed from the critical path most of the time, since the
instructions should only be decoded when there is a trace
cache miss.

Fig. 1 shows the performance slowdown caused by the
P6 decoding strategy in a processor implementing a trace
cache fetch architecture similar to the one described in [6].
These performance results, measured in microoperations
per cycle, are obtained using the superscalar processor
model described in Section 5. Data are provided for
10 programs from the SPECint2000 benchmark suite,
compiled using the x86 instruction set architecture, and
for two different processor widths. The baseline processor

Published by the IEEE Computer Society

SANTANA ET AL.: DIA: A COMPLEXITY-EFFECTIVE DECODING ARCHITECTURE 449

60% -
=
£ 50%
=
£ 40%
%

Fig. 1. Performance slowdown against ideal decoding of a superscalar
processor implementing a P6-like decoding strategy and a trace cache
assuming that the trace cache stores nondecoded instructions.

uses an ideal decoding mechanism able to decode as many
instructions per cycle as the processor width.

Assuming that the trace cache stores nondecoded
instructions, it is clear that the decoding bottleneck becomes
a serious performance limiting factor due to the frequent
appearance of instructions that should be decoded to
multiple microoperations. A 4-instruction-wide processor
suffers from an average of 8 percent performance degrada-
tion, which ranges from 3 percent in 175.vpr to 25 percent in
176.gcc. This bottleneck becomes more harmful for a wider
processor, since it requires more instructions per cycle to
keep its execution engine busy. An 8-instruction-wide
processor suffers from an average of 17 percent perfor-
mance degradation, which ranges from 6 percent in
300.twolf to 59 percent in 253.perlbmk.

However, if the trace cache is able to store already
decoded instructions, the average performance slowdown is
greatly reduced, being below 2 percent for all benchmarks in
both processor setups. This means that the trace cache fetch
architecture is an effective way for overcoming the instruc-
tion decoding bottleneck, but it is achieved at the cost of
increasing the complexity of the fetch architecture. The trace
cache needs more chip area and suffers from higher
temperature and energy consumption than simpler fetch
architectures organized around basic blocks. Fetching
instruction traces requires not only a special-purpose
storage—the trace cache—but also a secondary fetch me-
chanism for fetching instructions in case of a trace cache miss.

This paper proposes an alternative for exploiting the
benefits of fetching already decoded instructions, while
avoiding the increase in the fetch engine complexity caused
by hardware code caching techniques like the trace cache.
Our proposal is to store already decoded instructions in a
special memory area allocated by the operating system for
the program being executed. This memory area, namely, the
Decoded Instruction Area (DIA), is managed using the
branch prediction architecture. DIA contains blocks of
already decoded instructions that correspond to the fetch
blocks used as basic prediction units. When a new block of
decoded instructions is introduced in DIA, the branch
prediction mechanism is informed about the address where
the decoded instructions are stored. Thus, when the branch
prediction mechanism provides the address of a fetch block
containing already decoded instructions, the fetch engine

will be able to fetch decoded instructions from DIA instead
of the original nondecoded instructions.

The operating system involvement lets our proposal take
advantage from the hardware TLB translation and the
operating system paging mechanism, just requiring to
modify the operating system loader. In this sense, DIA is
not like traditional code caching designs implemented in
software. The main difference between DIA and other
software code caching techniques such as Dynamo [7] and
Code Morphing [8] is that the branch predictor is used to
guide the mechanism. Consequently, DIA does not require
any software overhead, since any code fragments are
created beyond the basic prediction units. Moreover, these
code fragments do not require to be rewritten in any way
because they are naturally linked at runtime by the branch
predictor itself.

Our decoding architecture can be implemented in
conjunction with any branch prediction architecture. In this
paper, we describe how to combine our proposal with the
Fetch Target Buffer (FIB) branch prediction architecture [9],
[10] and the stream fetch engine [11], [12]. Our results show
that both the FTB-DIA and the Stream-DIA combinations
are able to provide already decoded instructions most of the
time, which allows our decoding architecture to achieve an
important performance improvement over a processor
implementing the P6 decoding strategy.

On the average, an 8-wide processor achieves 14 percent
performance improvement when using either FTB-DIA or
Stream-DIA. This improvement is comparable to the
improvement achieved by a trace cache, but requiring lower
implementation cost and complexity. In particular, Stream-
DIA proves to be the most complexity-effective alternative.
FTB-DIA requires 18 percent more area and 21 percent more
energy consumption than Stream-DIA due to its more
complex predictor structure, while the trace cache requires
40 percent more area and 36 percent more energy con-
sumption than Stream-DIA due to its need for a secondary
fetch engine to build traces. These results make Stream-DIA
an excellent choice to balance cost and performance in front-
end design for CISC processors with variable-length
instructions.

2 THE DECODED INSTRUCTION AREA

Our proposal is based on storing already decoded instruc-
tions in the memory hierarchy. In order to do this, we use a
fixed-size memory area called the DIA. DIA is allocated for
the program being executed. When the operating system
loads the program, it allocates DIA just like it allocates other
segments. The DIA size is determined by the operating
system loader for each particular machine implementation.
The operating system communicates the DIA size to the
processor by storing it in a special-purpose register.

Fig. 2 shows a simplified view of the structure of the
memory allocated for a program using our decoding
architecture. Like for the other segments, the loader assigns
a number of pages in the logical address space for DIA. This
means that DIA pages go through TLB translation, have the
same operating system protection mechanisms, and can be
swapped out just like any other memory page. Therefore, the
operating system just requires slight modifications in the

450
P TEXT DATA
. SEGMENT DIA SEGMENT P
ig== STACK HEAP impi
g § original decoded free § 3
L 3 nondecoded instructions | space I E
instructions | o poin!erﬂ :

Fig. 2. Simplified view of the structure of the memory allocated by the
operating system for a program using the DIA decoding architecture.

loader. It does not involve any compatibility problem with
legacy codes because after updating the operating system,
there is no need to modify the code of any application.

2.1 Interaction with the Branch Predictor

The storage of decoded instructions in DIA is guided by the
branch prediction mechanism. Modern branch prediction
architectures are organized to use sequences of instructions
as basic prediction units [9], [11], [12], [13]. Each of these
sequences of instructions constitutes a full fetch block
finalized by a branch instruction. The starting address of a
fetch block is used as index to access the branch prediction
tables. Then, the branch predictor generates a prediction,
which provides all the information required to fetch the full
sequence of instructions and determine the starting address
of the next fetch block.

Our decoding architecture takes advantage of the fact
that the branch predictor is updated during the commit
stage, when all the instructions belonging to a fetch block
have committed. At this point, all these instructions are
already decoded, and thus, our decoding architecture is
able to store them in DIA. Therefore, the branch predictor is
updated not only with the information required to predict
the fetch block in the future but also with the memory
address where a decoded version of the fetch block is
stored. The next time this fetch block is predicted, the fetch
architecture will search for the decoded version instead of
the original nondecoded version, avoiding the need for
decoding the instructions again.

The fetch blocks are stored in DIA following the order in
which they are decoded. When a program starts execution,
a pointer to the beginning of DIA is kept. As shown in
Fig. 2, this pointer indicates the first free memory position
of DIA where a decoded fetch block can be stored. When a
new decoded fetch block is stored in the memory, the
pointer is advanced to the end of the fetch block, that is, the
new beginning of the free space.

The pointer never goes backward. DIA is flushed if the
pointer reaches the end of the memory space assigned to
DIA, that is, all the decoded fetch blocks stored in DIA are
invalidated. Invalidating the fetch blocks stored in memory
does not require modifying the memory contents. It is only
necessary to return the DIA pointer to the beginning of DIA,
as well as to invalidate the starting addresses of the decoded
fetch blocks in the branch predictor. After that process, DIA
is ready again to store new decoded instructions.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

§

I Unified L2 Cache I

v v
I Instruction Cache I I Data Cache I

Write Buffer E

—>| Fetch

Fetch
Address

Branch

Predictor IIIIIIIIII>

Commit

Fig. 3. The DIA decoding architecture.

2.2 Interaction with the Memory Hierarchy

Fig. 3 shows a block diagram of our decoding architecture.
Like for the Pentium 4 processor [1], the pipeline has two
paths: the fast path and the slow path. The fast path assumes
that the instructions are already decoded, and thus, it does
not use the CISC decoders, which are energy-intensive and a
performance bottleneck. The slow path is the emergency path
containing the complex CISC decoders. The instructions in
the fast path must never arrive to rename before any older
instruction that is still in the slow path.

Our cache model is virtually indexed, as well as
physically tagged. Physical tags avoid the problem of
synonym aliasing, while virtual indexes enable fast access
to caches. Therefore, TLB accesses are not required to start
cache accesses, but they are required to check the tags. This
means that a TLB access is needed to update DIA contents
during commit. Fortunately, DIA just needs a few pages in
the logical memory space, and thus, the number of TLB
conflicts does not suffer from a significant increase.
Furthermore, a very small TLB could be included in the
commit stage. This commit TLB would be a low-cost solution
to avoid driving signals from the commit stage to the
instruction TLB, which could be laid out far away in the chip.

According to the locality principle, new decoded fetch
blocks must be kept near the processor to achieve high
performance. Therefore, they are not directly written to
main memory but to the second-level cache. In order to
minimize off-chip memory traffic, our second-level unified
instruction/data cache uses a write-back policy. Therefore,
the decoded fetch blocks are stored in the main memory
only when they are replaced from the second-level cache.

It is important to note that our proposal is absolutely
transparent to the first-level instruction cache, and thus, no
changes are required to the interface between this cache and
the rest of the pipeline. It is also interesting to note that our
second-level cache model has a single access port, which is
shared by both the first-level instruction and data caches.
This means that our decoding architecture does not need an
extra access port. Every new decoded fetch block is
introduced in a write buffer. The decoded fetch block will
be stored in the second-level cache when the access port is
free. Both instruction and data accesses are prioritized over
storing decoded fetch blocks in the second-level cache.

SANTANA ET AL.: DIA: A COMPLEXITY-EFFECTIVE DECODING ARCHITECTURE 451

Fetch
Address

Perceptron Predictor

FTQ

FTB

[[[D Instruction
Cache

Indirect Branch Predictor

> RAS 1

—l Next Address Logic |<—

Fetch
Block

Fetch Address

| Tag — Starting Address |

Fetch Block Length
| Target Address |

Hysteresis

Decoded Address

I

Decoded Length
| Decoded Valid |

Fig. 4. The FTB branch prediction architecture. (a) Block diagram. (b) FTB structure.

2.3 Consistency of the Decoded Instructions

The decoded instructions stored in DIA must always be
consistent with their associated original nondecoded ver-
sion, but programs that modify themselves during execu-
tion change this relationship. Modern processors feature
some kind of mechanism to invalidate instruction cache
entries when a change in the code is detected. In the
HP PA-RISC architecture [14], the program is expected to
explicitly invalidate the instruction cache contents, forcing
the cache to be refilled from memory. Other architectures
like the Transmeta Crusoe [8] or the Intel Pentium 4 [1]
feature some write-protecting mechanism of the memory
pages being used by the programs. Self-modifying code is
detected when a store tries to write in a protected page and
then the cache contents are invalidated.

Our proposal can profit from any of these synchronizing
techniques. Whatever the technique used, DIA is flushed
when the instruction cache is invalidated. This strategy has
the particular advantage that there is no need for detecting
accesses to the memory pages assigned to DIA, which would
be problematic because they are not write protected. More
efficient techniques could be developed, but it is out of the
scope of this work, since our benchmark programs do not
modify their code during execution. Nevertheless, as flush-
ing DIA is a very conservative model, it completely assures
consistency.

3 ComBINING DIA wiTH THE FETCH
TARGET BUFFER

The FTB branch prediction architecture [9] is shown in
Fig. 4a. This architecture constitutes a fully autonomous

prediction engine capable of following a speculative path
without further assistance. In each cycle, the branch
predictor generates the fetch address for the next cycle
and a fetch request that is stored in a Fetch Target Queue
(FTQ). The instruction cache is then driven by the requests
stored in the FTQ, effectively decoupling branch prediction
from the memory access.

3.1 FTB Design

The FTB itself is a buffer that stores the information required
to identify fetch blocks. A fetch block is composed by a
sequence of instructions, stored in memory, which starts at a
branch target and ends in a strongly biased taken branch.
This mechanism allows strongly biased not taken branches to
be embedded within a fetch block, increasing the fetch width
without increasing implementation cost; as such, not taken
branches can be easily predicted by simply ignoring them.
Given a fetch address, the FTB provides the length of the
fetch block starting at that address, that is, the number of
instructions belonging to the fetch block. The FIB also
provides the type of the branch instruction finalizing the
fetch block. If it is a conditional branch, then a conditional
branch predictor is used to decide whether the branch is
taken or not. Our model uses one of the most accurate state-
of-the-art conditional branch predictors: The perceptron
predictor [15]. If the branch finalizing the fetch block is a
return instruction, a Return Address Stack (RAS) is used to
obtain its target address [16]. Finally, if the branch
instruction is an indirect branch, a special-purpose indirect
branch predictor is used to obtain its target address [17]. All
together, these four structures determine the destination of

452

the branch finalizing the fetch block, which will be used as
fetch address in the next cycle.

Combining DIA with the FTB branch prediction archi-
tecture is straightforward [10]. As described in Section 2,
the FTB should keep not only the information required to
provide a fetch block but also the address where the
decoded version of the fetch block is stored. Storing the
information of decoded fetch blocks requires adding new
fields to the FTB, which are shown in Fig. 4b: The address
where the decoded fetch block is stored, the decoded fetch
block length (measured in bytes, since instructions may
have different sizes), and a bit that indicates whether this
information is valid or not. This bit is set to one when the
data of a new decoded fetch block is introduced in the FTB.
The valid bit is reset to zero if the fetch block is replaced
from the FIB or after a DIA flush. We have checked using
CACTI [18] that adding the new fields does not increase the
number of cycles required to access the FTB and obtain a
prediction. In addition, the increase in the branch predictor
area is less than 30 percent, since the tag array is
unmodified and no additional access port is required.

3.2 Decoded Fetch Block Selection

It is not necessary to store in DIA all the fetch blocks that
appear during the execution of a program. Most program
execution is concentrated in a reduced number of fetch
blocks. In particular, we have found that 14 percent of the
static fetch blocks that appear during the execution of our
benchmark programs are responsible for 90 percent of the
whole execution. Therefore, in order to efficiently use DIA,
only those fetch blocks that are frequently executed should
be stored.

To achieve this, we have added a hysteresis counter to
each FIB entry, as shown in Fig. 4b. The hysteresis counter
is used to decide whether a fetch block should be replaced
from the FTB. When the predictor is updated with a new
fetch block, the corresponding counter is increased if the
new fetch block matches with the fetch block already stored
in the selected entry. Otherwise, the counter is decreased,
and if it reaches zero, the whole predictor entry is replaced
with the new data, setting the counter to one. If the
decreased counter does not reach zero, the new data are
discarded.

A fetch block is stored in DIA only when the counter
saturates, that is, when it reaches its maximum value. If the
counter saturates, the decoded fetch block is stored in DIA,
and the data required to access it are stored in the FTB, setting
the valid bit to one. We have found that 4-bit hysteresis
counters, increased and decreased by one, provide the best
results. Therefore, a decoded fetch block is not introduced in
DIA untilitis executed atleast 15 times. This number could be
higherif a different fetch block tries to use the same table entry
and decrements the hysteresis counter before it saturates.

If a decoded fetch block is replaced from the FTB, the
address where its decoded version resides is lost, and it
cannot be accessed again. However, it does not mean that
the decoded fetch block is removed from DIA. The decoded
fetch block remains in DIA and becomes garbage, since its
memory space cannot be reused until DIA is flushed. In
case the fetch block is decoded again, it should be stored a
second time in DIA, using a new memory position, thus

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

Fetch
Address Next g Instruction
> Stre_am {DII" Cache
Predictor
Stream

(a)
Address Indexed Table

Current Address (1 Level) ‘
Tag
Length
Path Indexed Table
Hash (2 Level) 1 Next Stream
1 Tag Hysteresis

Previous Stream Length Decoded Address

Previous Stream Next Stream Decoded Length

Previous Stream Hysteresis Decoded Valid

(b)

Fig. 5. The stream fetch engine. (a) Block diagram. (b) Cascaded stream
predictor.

wasting memory space. Fortunately, this situation happens
a negligible percentage of the time, since our FTB hit rate is
usually more than 98 percent.

4 CoMBINING DIA WITH THE STREAM
FETCH ENGINE

The stream fetch engine [11], [12], which is shown in Fig. 5a,
uses instruction streams as fetch blocks. A stream is a
sequence of instructions, physically adjacent in memory,
which starts at the target of a taken branch and finalizes at the
next taken branch. The behavior of the branches contained
inside the stream is implicit in the definition: All inter-
mediate branches are not taken, and the last branch is taken.

The combination of our decoding architecture with the
stream fetch engine will store decoded streams in DIA
instead of decoded FIB fetch blocks. The main difference
between an instruction stream and an FTB fetch block is that
while FTB fetch blocks ignore biased not taken branches, the
streams ignore all not taken branches. This means that
instruction streams are longer than FTB fetch blocks,
improving the fetch engine performance and, thus, the
overall processor performance.

The core of this fetch engine is the next-stream predictor,
a specialized branch predictor that provides stream-level
sequencing. Given a fetch address, i.e., the current stream
starting address, the stream predictor provides the current
stream length, which indicates where the taken branch that
finalizes the stream is. The predictor also provides the next
stream starting address, which is used as the fetch address
for the next cycle.

If the branch terminating the stream is a return
instruction, a RAS [16] is used to predict its target address.
However, unlike the FTB branch prediction architecture, the
stream fetch engine does not require a separate conditional

SANTANA ET AL.: DIA: A COMPLEXITY-EFFECTIVE DECODING ARCHITECTURE 453

branch predictor or a separate indirect branch predictor,
which simplifies the fetch engine design. The current stream
starting address and the current stream length form a fetch
request that is stored in an FTQ. The fetch requests stored in
the FTQ are then used to drive the instruction cache.

4.1 Stream Predictor Design

Accurate stream prediction requires using path correlation
with previously executed streams. To obtain an index into
the prediction table, the fetch address and the contents of a
history register with starting addresses of previous streams
are hashed together using the same Depth-Older-Last-
Current (DOLC) indexing scheme implemented in the trace
predictor [19].

However, not all streams need path correlation to be
accurately predicted. The next-stream predictor [11], [12]
exploits this fact by implementing a cascaded structure [20],
[21], which is shown in Fig. 5b. The prediction table is
divided into two: A first-level table indexed only by the
fetch address and a second-level table indexed using path
correlation. A stream is introduced in the second level only
if it is not accurately predicted by the first level. Therefore,
those streams that do not need correlation are kept in the
first level, preventing them from using correlation and thus
avoiding unnecessary aliasing.

In order to generate a prediction, both levels are looked
up in parallel. If there is a second-level table hit, its
prediction is used. Otherwise, the prediction of the first-
level table is used. The second-level prediction is prioritized
because it is supposed to be more accurate than the first
level due to the use of path correlation. However, the use of
correlation also involves redundancy, that is, each stream is
stored several times in the second-level table (one per each
path followed to its starting address).

If a decoded stream is stored in DIA each time the second
level is updated, the same decoded stream will be stored
several times, wasting the available memory space. To avoid
this, our stream decoding architecture only uses the first level
for storing the information of decoded streams. The first level
is indexed using just the fetch address, that is, the stream
starting address. This involves that a stream is stored once
and only once in the first-level table, avoiding unnecessary
redundancy in DIA. As described for the FTB-DIA combina-
tion in Section 3, storing the information of decoded streams
requires adding new fields to the first-level table: The
decoded stream starting address, the decoded stream length,
and a valid bit. We have also checked using CACTI [18] that
these new fields cause less than 30 percent area increase and
have no impact on the stream predictor access latency.

Therefore, only first-level predictions are able to provide
the address where a decoded stream is stored with all its
related information. If a stream is predicted by the first
level, the decoded stream data can be directly used to fetch
the stream. However, if a stream is predicted by the second
level, the decoded stream data should be found in the
corresponding first-level prediction. The length of both the
first-level and the second-level predictions must be com-
pared to assure that both levels predict the same sequence
of instructions. If both levels predict the same stream
length, the decoded stream data provided by the first level
can be used despite the fact that the real prediction is done

by the second level. Note that although the length provided
by both predictions is the same, the target address of the
two predicted streams could be different. Fortunately, more
than 85 percent of second-level predictions coincide with
the length provided by the first level, which makes this
technique an efficient way of reducing redundancy in DIA.

4.2 Efficient DIA Usage

In order to efficiently use the available memory, DIA should
keep only the frequently executed streams. As described in
Section 3, our decoding architecture achieves this by using
hysteresis counters. The original stream predictor design
[11], [12] used hysteresis counters to decide if a stream
should be replaced from the prediction table. Our decoding
architecture uses these counters for a new purpose: A
decoded stream is only stored in DIA when the correspond-
ing first-level table hysteresis counter saturates. We have
found that 4-bit hysteresis counters, increased and de-
creased by one, provide the best results.

However, there is an additional source of redundancy in
this architecture. When a decoded stream is replaced from
the first-level table, the address where its decoded version
resides is lost. If the stream is decoded again in the future, it
should be stored a second time in DIA, using a new memory
position and thus wasting memory space. This is not a
significant problem for the FTB branch predictor architec-
ture because it does not store overlapping fetch blocks. If a
taken branch is found halfway through a fetch block, the
fetch block is split into two smaller parts. On the contrary,
the stream fetch architecture allows for overlapping streams,
choosing the appropriate one for each instance. Overlapping
streams start at the same address so they should be kept in
the same first-level table entry. Therefore, the probability of
replacing a stream from the first-level table is higher than
the probability of replacing a fetch block from the FTB.

Intuitively, decoded streams should not be commonly
replaced. A stream is replaced because its 4-bit hysteresis
counter reaches zero. However, it is not easy that the counter
of a decoded stream reaches zero, not only because it has
previously reached the maximum value, but also because
the decoded stream is supposed to be frequently executed.
This means that another frequently executed stream is
trying to use the same table entry. Guided by this reasoning,
we have measured how often each prediction table entry is
replaced, finding that most replacements are concentrated in
a low number of entries where two frequently executed
streams collide.

Our stream decoding architecture takes advantage of this
fact by using a small decoded stream victim cache [22].
When an already decoded stream is replaced from the first-
level prediction table, it is stored in the victim cache. Each
time the information of a new decoded stream is stored in
the predictor, the victim cache is looked up. If the new
stream is in the victim cache, it has already been decoded
and stored in DIA. Therefore, the victim cache provides the
memory address where the decoded stream is stored,
removing the need for storing the decoded stream again.
This also means that the victim cache should be flushed
whenever DIA is flushed.

454

Trace
Identifier FTQ
Trace

_| Next Trace El:l:l]
| Predictor ' Cache

Trace

I Memory Hierarchy | Trace

Buffers

[Interleaved BTB |1| RAS |

Fig. 6. The trace cache fetch architecture.

5 EXPERIMENTAL METHODOLOGY

The results presented in this paper have been obtained
using a trace-driven simulation of a superscalar processor.
Our simulator uses a static basic block dictionary to allow
simulating the effects of wrong path execution. This model
includes the simulation of wrong speculative predictor
history updates, as well as the possible interference and
prefetching effects on the instruction cache. Wrong-path
instructions are never introduced in DIA, since they never
commit.

5.1 The Trace Cache Fetch Architecture

Our simulator models the combination of our decoding
architecture with the FTB branch prediction architecture [9],
[10] described in Section 3 and the stream fetch engine [11],
[12] described in Section 4. For comparison purposes, we
also model a well-known mechanism for providing high
fetch and decode bandwidth: The trace cache. We do not
model a real trace cache design like the one used by the
Intel Pentium 4 processor [1] because not all implementa-
tion details are public. Instead, we model the generic trace
cache fetch architecture originally described in [6], which is
shown in Fig. 6.

With the purpose of approximating the public details
known about the Pentium 4 fetch architecture, we com-
pletely substitute the first-level instruction cache with a
trace cache, and thus, trace cache misses are attended by the
second-level cache. In order to assure a fair comparison with
DIA, we have evaluated several trace cache setups, using
and not using a separate instruction cache. We have found
that the model presented here provides better results in
terms of both overall performance and energy consumption.

In addition, we have enhanced this model by adding an
FTQ [9] and hysteresis counters. Both the FTQ and the
hysteresis counters behave like the corresponding elements
in the DIA architecture: The FTQ decouples the next-trace
predictor from the trace cache, while the hysteresis counters
assure that only frequently executed traces are stored in the
trace cache.

We faithfully implement the trace predictor described in
[19], including alternate prediction. Trace predictions are
stored in the FTQ, which feeds the trace cache with trace
identifiers. An interleaved Branch Target Buffer (BTB) and a
RAS [16] are used to build traces in the case of a trace cache
miss. The BTB uses 2-bit saturating counters to predict the
direction of conditional branches when a trace prediction is
not available. This mechanism makes it possible to obtain

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

TABLE 1

Processors’ Setup

fetch width
rename/commit width
int & fp issue width
load/store issue width

4/8 instructions
4/8 instructions
4/8 instructions
2/4 instructions

int & fp issue queue
load/store issue queue
reorder buffer

32/64 entries
32/64 entries
128/256 entries

integer & fp registers

96/160

fetch target queue

4 entries

FTB

2048 entry 4-way FIB
256-entry perceptron pred.
2048 entry 4-way indirect pred.
32-entry overriding pred.

next stream predictor

1st level: 1024 entry 4-way
2nd level: 4096 entry 4-way

next trace predictor

1st level: 2048 entry 4-way
2nd level: 4096 entry 4-way

predictor latency

3 cycles

RAS and RHS

32 entries

L1 instruction cache

64Kb, 2-way, 1 port, 3 cycle

trace cache
maximum trace size

512 traces, 4-way
32 micro-op (10 branch)

L1 data cache

64Kb, 2-way, 2/4 port, 3 cycle

L2 unified cache

1Mb, 4-way, 1 port, 16 cycle

main memory latency 350 cycles
page size 8KB
TLB 64-entry instruction TLB

128-entry data TLB
8-entry commit TLB

instructions from the memory hierarchy and build new
traces at a fast rate.

All the evaluated prediction architectures use a RAS to
predict the target address of return instructions. However,
the trace cache fetch architecture only uses the RAS during
the trace building process. Instead of using a RAS, the trace
predictor manages return instructions using a Return
History Stack (RHS) [19], which keeps the trace history
before the corresponding function call. The trace predictor
does not use a history of previous trace starting addresses
but a history of previous trace identifiers, and thus, the RHS
is more efficient for trace prediction than a RAS.

5.2 Simulator Setup

We simulate two processor setups, a 4-wide and an 8-wide
superscalar processor, both having a 20-stage pipeline. All
microoperations are supposed to be 4 bytes long when they
are stored in DIA or in the trace cache. We assume that in
order to drive the corresponding signals, decoding requires
three stages no matter whether the processed instructions
are already decoded or not. This strategy also assures that
the instructions already decoded do not arrive to rename
before any older instruction that must be decoded using the
CISC hardware decoders. The main values of our simula-
tion setup are shown in Table 1.

The first-level instruction cache has a single access port
and 64-Kbyte hardware budget. The trace cache fetch
architecture replaces the instruction cache with a 64-Kbyte
trace cache. The trace predictor is indexed using the DOLC
scheme described in [19]. The stream predictor and the
separate indirect branch predictor needed by the FTB
architecture are indexed using the same DOLC scheme. We

SANTANA ET AL.: DIA: A COMPLEXITY-EFFECTIVE DECODING ARCHITECTURE 455

have explored a wide range of setups for all the evaluated
prediction structures and selected the best one found.

The prediction tables modeled have a realistic three-cycle
access latency, which has been calculated using CACTI [18]
for a 0.10-um technology. The overriding prediction
technique [23] is used for tolerating the FTB access latency.
The stream and trace predictors do not need an overriding
predictor due to the long size of traces [24]. In addition, all
predictors are decoupled from the corresponding instruc-
tion fetch mechanism using a four-entry FTQ. We have
found that a larger FTQ does not provide additional
performance improvements for the evaluated fetch models.

5.3 Benchmark Programs

We simulate 10 SPEC 2000 integer benchmarks.' Although
we were not able to include data for programs with larger
footprints, using SPECint2000 is not necessarily the best
scenario for our proposal. Larger footprints will stress DIA
more than integer programs, but they will also stress the
trace cache. The advantage of DIA is that its size could be
adjusted to find the optimal value for a particular program
type, while the trace cache size is fixed by hardware design.
Thus, larger footprints would highlight that DIA is still able
to provide similar performance to the trace cache, as we
show in Section 6 for the benchmark 186.crafty.

We have compiled our benchmarks using the gcc 3.3.2
compiler with -O2 optimization level in an Intel Pentium 4
server under Red Hat Linux 7.1. A better compiler using
code layout optimizations would have provided a higher
quality code. However, as shown in [12], this kind of
optimizations is less beneficial for the trace cache than for
the FTB and stream fetch architectures, since the trace cache
dynamically lays out the code together.

The x86 traces were collected from these benchmarks
using the PIN instrumentation tool [25]. These traces contain
300 million x86 instructions obtained by executing the
reference input set. We have analyzed the distribution of
basic blocks as described in [26] in order to find the most
representative execution segment for each benchmark.
Finally, since the actual x86 microoperation model is not
available for us, we translate the x86 instructions into
microoperations using a decoding scheme based on the
model provided by the rePLay transmogrifier tool [27]. The
transmogrifier model leads to a scenario where just 18
percent dynamic instructions generate multiple microopera-
tions, ranging from 11 percent in 176.gcc to 24 percent in
253.perlbmk.

6 DIA EVALUATION

In this section, we evaluate the DIA decoding architecture.
In order to understand DIA behavior, we explore the
relationship of our architecture with both the memory
hierarchy and the branch predictor. Then, we evaluate the
performance of our proposal, as well as its efficiency in
terms of chip area and energy consumption.

1. We do not simulate the benchmark 252.eon because we have been
unable to instrument it. In addition, we excluded 181.mcf because its
performance is very limited by data cache misses, being insensitive to
changes in the fetch and/or decoding architecture.

@ Not Using Victim Cache
M Using Victim Cache

+FTB-DIA
-Stream-DIA

Decoded Instructions (KB)

Fig. 7. Amount of memory (kilobytes) required to store all the
dynamically decoded fetch blocks. Both the 4-wide and the 8-wide
setup have similar behavior.

6.1 Memory Space Used
The total amount of memory space used by DIA determines
its potential. Fig. 7 shows the memory space required to
store all the instructions dynamically decoded by FTB-DIA
and Stream-DIA. Stream-DIA needs slightly more memory
space than FTB-DIA to store the decoded instructions due to
redundancy. The stream fetch engine allows overlapping
streams, and thus, it is more likely for Stream-DIA to store
the same decoded instructions several times. The hysteresis
counters make it possible to alleviate this problem, guaran-
teeing that only frequently executed instructions are stored
in DIA. Indeed, if the hysteresis counters are not used, the
memory space required would be six times higher due to the
waste caused by storing infrequently executed instructions.
Fig. 7 distinguishes between the memory required
whether or not Stream-DIA uses a decoded stream victim
cache (FTB-DIA does not need a victim cache). The victim
cache is an eight-entry fully associative cache having just
320 bits; we have found that it is enough for avoiding most
situations in which two frequently executed streams try to
use a single prediction table entry. On the average, the
victim cache provides 40 percent reduction in the amount
of memory required by Stream-DIA. Due to this reduction,
the streams decoded by the Stream-DIA architecture
require an amount of memory very similar to the one
required by FTB-DIA. Using a victim cache has a negligible
impact on the amount of memory required by FTB-DIA
because the FTB does not allow overlapping fetch blocks.
We have evaluated a wide range of DIA sizes, and we
have found that 64-Kbyte DIA achieves the best perfor-
mance for both FTB-DIA and Stream-DIA. Most bench-
marks require less than 64 Kbytes to store all their decoded
instructions. The memory space required by benchmarks
175.vpr and 256.bzip2 is even less than 10 Kbytes. Only the
benchmarks 186.crafty and 197.parser require more than
64 Kbytes, forcing to occasionally flush DIA. Nevertheless,
in spite of the high amount of memory space required,
DIA flushes are not common. The benchmark 186.crafty just
flushes DIA every 38 million executed instructions in
Stream-DIA and every 42 million executed instructions in
FTB-DIA, while the benchmark 197.parser flushes it every
100 million executed instructions in Stream-DIA and every
120 million executed instructions in FTB-DIA.

456

B Decoded Instruction Misses
[Additional Instruction Misses | |
M Instruction Misses

+FTB-DIA
C- Stream-DIA

Cache Misses (millions)
—
)

Fig. 8. Instruction cache misses. Both the 4-wide and the 8-wide setup
have similar behavior.

6.2 Impact on the Memory Hierarchy

Storing decoded instructions in DIA avoids the need for
decoding them again the next time they should be fetched.
The first time a decoded fetch block is requested by the
fetch engine, there should not be a compulsory miss in the
second-level cache because new decoded fetch blocks are
always introduced in the second-level cache. However, this
first access causes a compulsory miss in the first-level
instruction cache, which limits the achievable benefit.

Fig. 8 shows the total number of misses in the instruction
cache (measured in millions). The bars are divided according
to the cause of each miss. The lower part of each bar shows
instruction cache misses caused by the original nondecoded
instructions. These misses would also happen in a similar
processor not using DIA. The middle part of each bar shows
the additional instruction misses caused by conflicts with the
decoded instructions. The higher part of each bar shows
decoded instruction misses, that is, cache misses caused by
fetching already decoded instructions from DIA.

As expected, storing decoded instructions in memory
involves an increase in the total number of instruction
cache misses. This increase is closely tied to the amount of
additional information introduced in the memory. Stream-
DIA suffers from more instruction cache misses because it
requires more memory space to store the decoded instruc-
tions. However, this higher number of instruction cache
misses is just relevant for the benchmarks 186.crafty and
197 parser, which are the ones that require more memory
space.

The increase in the number of instruction cache misses is
especially high for the benchmark 186.crafty. This bench-
mark flushes DIA several times. Every DIA flush forces our
architecture to start again the process of decoding instruc-
tions and storing them in memory, which causes more
instruction cache misses. There is also a high increase for
the benchmark 255.vortex due to the fact that the original
nondecoded instructions already cause a high number of
cache misses when DIA is not used. On the contrary, the
benchmark 197.parser suffers from a relatively low number
of cache misses. This benchmark requires a high amount of
memory to store all the decoded instructions, but there is
just a small subset of them that are frequently executed,
thus limiting the amount of cache misses caused.

On the average, more than 90 percent additional cache
misses are compulsory, that is, they are not due to conflicts
in the cache, but to the fact that the decoded instructions

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

0,6
0,5

+FTB-DIA
Stream-DIA

B Decoded Inst. Misses
O Instruction Misses
W Data Misses

Cache Misses (millions)
&
w

- § & $ & $ &
Q&g-& o &"@ & v& & &V S
SR (F G S P
N \q,\?}' DA

Fig. 9. Second-level cache misses. Both the 4-wide and the 8-wide
setup have similar behavior.

have never been introduced in the instruction cache before.
The benchmark 186.crafty is the only one that suffers from a
significant amount of additional misses due to conflicts
between the original nondecoded instructions and the
decoded instructions.

The higher number of instruction cache misses has little
impact on the dynamic energy consumption of the instruc-
tion cache. Although the number of instruction cache
misses is higher using DIA, it is still much lower than the
total number of instruction cache accesses. We have
measured, using CACTI [18], that the average increase in
the instruction cache energy consumption is less than
2 percent for 0.10-pum technology. This slight increase in
energy consumption is compensated by the overall reduc-
tion in the fetch architecture consumption due to our
simpler design, as we show in the next sections.

Moreover, the impact of our technique on the second-
level cache is minimal, in terms of both cache misses and
dynamic energy consumption. Fig. 9 shows the total number
of second-level cache misses (measured in millions). The
bars are divided according to the cause of each miss: The
program data, the decoded instructions, and the original
nondecoded instructions. Data misses are by far the most
important cause of second-level cache misses. There is just a
slight increase in the number of second-level cache misses
due to DIA. These misses should not be compulsory, since
every new decoded fetch block is introduced in the second-
level cache. Therefore, the additional misses are mostly
caused by conflicts with the data or original nondecoded
instructions stored in the second-level cache. Nevertheless,
this increase in the number of second-level cache misses is
absolutely negligible when compared with the number of
misses caused by data. Furthermore, data are the most
important source of write backs in the second-level cache,
and thus, the additional write backs generated by DIA have
no significant impact.

6.3 Decoded Instruction Coverage

Fig. 10 shows the decoded instruction coverage for
FTB-DIA, Stream-DIA, and the trace cache. We call coverage
to the percentage of correct-path executed instructions that
were fetched already decoded. The main observation from
this figure is that in spite of the increase in the number of
instruction cache misses caused by our proposal, both
FTB-DIA and Stream-DIA provides a high percentage of
already decoded instructions. On the average, the three

SANTANA ET AL.: DIA: A COMPLEXITY-EFFECTIVE DECODING ARCHITECTURE 457

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Coverage

Fig. 10. Percentage of correct-path instructions that were fetched
already decoded (coverage). Both the 4-wide and the 8-wide setup have
similar behavior.

evaluated architectures provide already decoded instruc-
tions more than 80 percent of the time.

Stream-DIA coverage is lower than FTB-DIA coverage
because redundancy is lower in the FTB. Although it would
seem that the presence of overlapping streams in the stream
predictor is a disadvantage, it is just this redundancy that
allows the stream fetch engine to provide higher fetch
bandwidth than the FTB fetch architecture [11], [12]. The
hysteresis counters and the decoded stream victim cache
alleviate DIA redundancy for Stream-DIA, but there is still
room for improvement.

It is interesting to note that FTB-DIA provides a coverage
close to the trace cache for the benchmark 186.crafty.
Although there is a great amount of instructions that
should be decoded for this benchmark, they are more
problematic for the trace cache than for DIA because the
total number and size of traces in the trace cache is limited
by the hardware implementation. Since the maximum trace
size is fixed, part of the available space in the trace cache is
wasted due to traces that are shorter than the maximum
size, while all the DIA space can be exploited to store
decoded instructions. These data make us think that
FTB-DIA would still provide close coverage to the trace
cache when executing benchmarks with larger workloads.

6.4 Branch Predictor Behavior

DIA depends not only on the memory hierarchy but also on
the branch predictor. Since DIA is guided by the branch
predictor, the length of the basic prediction unit determines
the length of the blocks of decoded instructions stored in
DIA, and thus, it is an important factor of front-end
performance.

Fig. 11 shows the average number of instructions per
prediction for the evaluated fetch architectures. Instruction
traces are the longer prediction unit. The higher number of
instructions per prediction enables the trace cache architec-
ture to achieve a higher fetch bandwidth. In other words,
the trace cache is the fastest fetch architecture evaluated.
Instruction streams are shorter than traces because they can
only contain a single taken branch. However, streams are
never broken by not taken branches, and thus, they are
longer than FTB fetch blocks, making the stream fetch engine
faster than the FTB architecture.

5 24
£ E FTB - DIA
5 20 [Stream - DIA
QE 16 B Trace Cache
2 121
w
S 8-
°
E o4
w
=0
I S S N L & » L
W o8 (& & I "‘Q o =
RN \’\%‘os'q\ﬁ & '\?)e, 6

Fig. 11. Prediction unit length. Both the 4-wide and the 8-wide setup
have similar behavior.

12%
. B FTB - DIA
10% O Stream - DIA
8% | M Trace Cache

Misprediction Rate

Fig. 12. Branch misprediction rate. Both the 4-wide and the 8-wide setup
have similar behavior.

However, a fast fetch architecture is not enough to assure
high performance. Providing a lot of instructions per cycle
is useless if these instructions do not belong to the correct
execution path. Therefore, branch prediction accuracy is
another vital factor of front-end performance.

Fig. 12 shows the branch misprediction rate of the three
evaluated branch predictors. On the average, all of them
provide accurate predictions, since the average mispredic-
tion rate is below 4 percent. However, they are not equally
accurate. The FIB provides the most accurate predictions
due to the perceptron algorithm, while the trace predictor is
the least accurate. This means that although the trace cache
provides more instructions per cycle, there are a higher
number of those instructions that are discarded due to
branch mispredictions.

The general trend in the evaluated fetch architectures is
that the more accurate the branch predictor is, the less
instructions per prediction it provides. It cannot be
considered a strict rule, since different fetch architectures
would have different behaviors, but evaluating it is out of
the scope of this work. The main observation from these
data is that, as we show in the next section, the ability of
fetching more instructions per cycle is compensated by a
lower accuracy, leading to a scenario in which the three
architectures provide similar performance.

6.5 Processor Performance

DIA fetches already decoded instructions from memory. This
makes it possible to bypass the decoding logic, which

458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009
4,0 FTQ
B FTB-DIA Stream Predictor "" I-Cache |
3,0 O Stream - DIA | [RAS |
B Trace Cache
Q
S FTQ
I-Cache |
7 — -
g Conditional Predictor
’
Z Indirect Predictor
FTQ
Trace Predictor "" —>| T-Cache |
(a) Trace
40 I Interleaved BTB b Construction
9
H FTB- DIA [RAS | .
3,0 O Stream - DIA |)))
B Trace Cache Fig. 14. Complexity comparison.
2 2,0 - y
= 7 Z close to the 16 percent improvement that can be achieved

am——y

[ANNNNNNNNNNNNNNNNNNNN

O—o—"
1
o
W 7

0,0 -
L & &S ¥ R & QL
M K & & > -
ugﬂ «%ﬁ ’\§.% g‘ 6)‘% ®& %b" Aé ’Q“} \4\ >
N N N %B' R Qé ¥ 6;5 %b’ %Q
NN '\??J‘ v v

Fig. 13. Processor performance (microoperations per cycle). The
shadowed part of each bar shows the performance achieved by any
of the fetch architectures when the decoding capabilities are disabled.
(a) 4-wide processor. (b) 8-wide processor.

improves performance and saves energy. However, the
disadvantage of our technique is that it increases the total
number of instruction cache misses, limiting the performance
gain. Fig. 13 examines this trade-off. It shows the perfor-
mance achieved by FIB-DIA and Stream-DIA, as well as the
performance achieved by our trace cache model as the
relative comparison point. Data are measured in micro-
operations per cycle (UPC) and provided for both the 4-wide
and the 8-wide processor setup. In addition, the shadowed
part of each bar shows the performance achieved by any of
the fetch architectures when the decoding capabilities are
disabled, i.e., when all fetched instructions must always be
decoded.

FIB-DIA and Stream-DIA provide important perfor-
mance improvements. The average improvement of adding
the DIA decoding capabilities in the 4-wide processor setup
is 5 percent for both DIA implementations. This improve-
ment is close to the 7 percent achieved by the trace cache.
The improvement provided by our decoding architecture is
higher for the 8-wide processor setup. The bottleneck
caused by decoding instructions is a more limiting factor
for this wider processor, which requires a higher number of
instructions to keep its execution engine busy. On the
average, the improvement of adding decoding capabilities
to the 8-wide processor is 14 percent for both FTB-DIA and
Stream-DIA. Once again, this performance improvement is

using a trace cache. Furthermore, these improvements are
very close to an ideal decoding mechanism (not shown in
the figures). On the average, FTB-DIA, Stream-DIA, and the
trace cache suffer from less than 2 percent slowdown
against an ideal decoding mechanism able to decode as
many instructions per cycle as the processor width.

6.6 Fetch Engine Complexity

Overall, both FTB-DIA and Stream-DIA achieve perfor-
mance close to our trace cache model: They are just around
2 percent slower than the trace cache. In addition, FTB-DIA
and Stream-DIA achieve these performance results at a
lower complexity than the trace cache. There are only two
structures in the critical path of the fetch engines used by
FTB-DIA and Stream-DIA: The branch predictor and the
instruction cache. In these fetch architectures, decoded
fetch blocks are mapped sequentially in memory and read
from the instruction cache. On the contrary, instruction
traces are not mapped sequentially in memory; they must
be built and stored in a special-purpose hardware buffer.
The need for a secondary fetch engine to build traces is
exactly the main source of complexity of the trace cache
architecture.

Fig. 14 shows a comparative diagram of the three
evaluated fetch architectures. It becomes intuitively clear
that Stream-DIA is the simpler implementation. The branch
predictor and the instruction cache are the only structures
in the critical path of the processor. In addition, there is just
a branch prediction structure—the stream predictor—that
works in conjunction with a RAS. FTB-DIA shares the same
simple predictor-cache structure, but the branch predictor is
more complex, since it requires separate tables for indirect
and conditional branches.

The trace cache is the more complex implementation.
The trace predictor (along with the RHS) and the trace cache
have a predictor-cache structure that is similar to the stream
predictor one. However, as mentioned above, a secondary
path is required to build traces. The complexity of the
interleaved BTB and the RAS is close to the trace predictor
itself, and thus, the trace cache architecture requires almost

SANTANA ET AL.: DIA: A COMPLEXITY-EFFECTIVE DECODING ARCHITECTURE

twice the prediction resources used by Stream-DIA.
Furthermore, additional resources are required to build
instruction traces (trace buffers). Nevertheless, the higher
complexity of the trace cache is alleviated by the lack of a
separate first-level instruction cache. This solution has been
adopted by real processor implementations [1].

We use CACTI [18] to measure the chip area required by
the three evaluated fetch architectures as an approximation
of their complexity. In order to increase the accuracy of the
obtained measures, we have modified CACTI to model
tagless structures and to work with setups expressed in bits
instead of bytes. Our tool allows modeling all the structures
required by the fetch engine of FTB-DIA, Stream-DIA, and
the trace cache, including the prediction tables, the
instruction and trace caches, the FTQ, etc. The full set of
modeled structures is shown in Fig. 14.

Using 0.10-pum technology parameters, our results point
out that Stream-DIA requires much less chip area than the
other fetch architectures. FTB-DIA requires 18 percent more
area than Stream-DIA due to its more complex predictor
structure, while the trace cache requires 40 percent more area
than Stream-DIA due to its need for a secondary fetch engine
to build traces. Although interconnection wires between
structures are not modeled, we consider that Stream-DIA
would not require more area for them than FTB-DIA or the
trace cache due to the relatively simpler bus layout.

6.7 Energy Consumption

Providing already decoded instructions makes it possible to
save energy consumption, since the decoding logic is
unused most of the time. We do not provide energy results
of the CISC decoders because their layouts depend on
particular machine implementations and not all details are
public. Nevertheless, since FTB-DIA, Stream-DIA, and the
trace cache provide already decoded instructions more than
80 percent of the time, it seems clear that using any of them
will involve an important reduction in the energy con-
sumption of the decoding hardware.

This reduction in the decoding consumption is not the only
benefit of DIA. The lower complexity of the fetch architecture
required by DIA also involves a reduction in the fetch engine
consumption if compared with the trace cache. The higher
trace cache consumption comes mainly from the need for a
secondary fetch engine to build traces. When there is a miss in
the trace cache, instructions must be fetched, decoded, and
packed into a trace from a secondary source. This second
fetch engine increases energy consumption compared to a
system that always fetches instructions from the same
location, like the FIB or the stream predictor. The latter has
the particular advantage that it only uses a next-stream
predictor, not needing the separate conditional and indirect
branch predictors required by FTB-DIA. The next-stream
predictor is not more complex that the trace predictor [19],
which guarantees that Stream-DIA can achieve the same
clock speed than the trace cache, if not higher.

In order to estimate the energy efficiency of the three
fetch engines evaluated in this paper, we use our modified
CACTI version to model the static energy consumption of
all the structures required by the three evaluated architec-
tures. These structures are shown in Fig. 14. Other
structures such as the L2 cache, the write buffer, and the

459

TLB suffer from minimal variation in energy consumption,
and thus, they have no significant impact.

The static consumption results provided by CACTI
represent, for each fetch engine structure, an approximation
to the average consumption per access. After getting these
results, we use our simulation tool to collect statistics about
the number of dynamic lookup and update accesses to each
structure. Both static consumption and dynamic accesses
are then combined to obtain a measure of energy efficiency
along program execution.

According to our estimations, Stream-DIA is the most
energy-efficient architecture evaluated. FTB-DIA consumes
21 percent more energy than Stream-DIA due to its more
complex predictor, while the trace cache consumes
36 percent more energy than Stream-DIA because a
secondary fetch engine is required to build traces. Conse-
quently, Stream-DIA proves to be an interesting complexity-
effective architecture to implement CISC processors with
variable-length ISAs due to its good performance results
and its lower overall complexity.

7 REeLATED WORK

The trace cache fetch architecture is the result of a two-
decade evolution. The fill unit [28] is one of the first
attempts to dynamically collect already decoded instruc-
tions and store them in a special-purpose cache. A lot of
research effort has been devoted to enhance the design of
this special-purpose storage, leading to strategies like the
decoded instruction cache [2], the microoperation cache
[29], or the trace cache itself [3], [4], [5]. Finally, this
evolution has made possible an actual physical implemen-
tation in the Intel Pentium 4 processor [1].

The trace cache does not eliminate the complex instruc-
tion decoder from the processor design, but it makes it
possible to remove instruction decoding from the critical
path, also allowing the decoder to be simplified. Our
decoding architecture exploits the same idea: Already
decoded instructions are fetched from DIA, allowing to
bypass the decoder. Although removing the complex
decoding logic from the critical path is not a new approach
for the design of CISC microprocessors, we propose an
innovative and straightforward implementation. The main
advantage of our proposal is its simplicity, since it requires
minimal hardware/software support. DIA uses hardware
mechanisms already existing in current processor designs,
not needing complex additional structures. Our proposal
just requires adding some fields to the branch prediction
tables, as well as to modify the L2 bus arbiter and include
the DIA pointer, whose management logic is simple.

In general, DIA requires less hardware implementation
cost than the trace cache. DIA does not need a special-
purpose buffer to store the decoded instructions, since they
are sequentially stored in the memory. As a consequence,
DIA does not need a secondary fetch engine for fetching
instructions in case of a miss in the special-purpose cache.
This involves reducing the chip area and energy consump-
tion, also avoiding problems with the chip temperature,
since the trace cache is a well-known hot spot.

460

7.1 Software Code Caching

Techniques for code caching have not only been implemented
in hardware. Dynamo [7] is a dynamic optimization system
thatisimplemented entirely in software. Frequently executed
instruction sequences are detected and stored in a fixed-size
memory area. These instructions, namely, the hot code, are
processed to create optimized sequences of instructions,
called fragments. Fragments are stored in the memory by a
linking mechanism, which also connects fragment exit
branches to other fragments in the memory if possible.

DAISY [30] is a system designed to emulate existing
architectures, making it possible that binaries generated
for a particular architecture run on a simple VLIW core
without requiring any modification. When a new part of
the code is executed for the first time, it is translated to the
VLIW instruction set and stored in a special part of the
main memory by a virtual machine monitor. Caching the
translated instructions in the memory prevents subsequent
executions of the same part of the code from requiring
translation again.

DELI [31] also caches a copy of the program being
executed, but this is done for a different purpose. DELI
makes it possible to observe and manipulate the instruc-
tions of the running program just before they are executed.
In this way, DELI allows fine-grain control over the
execution of programs by providing an interface to the
layer between hardware and the execution of software,
simplifying the design of client programs such as micro-
architecture emulators.

The Transmeta Crusoe processor [8] uses a software layer,
namely, Code Morphing, which is similar in spirit to DAISY.
Code Morphing enables x86 instructions to be executed in a
VLIW hardware core. The native instruction set of the VLIW
core bears no resemblance to the x86 instruction set.
However, Code Morphing translates the instructions and
stores them in the memory, making it possible to reutilize
them and, at the same time, enabling dynamic optimization.

BOA [32] is a second-generation DAISY architecture that
is based on collecting and exploiting runtime system
information in order to dynamically optimize code and
reoptimize it for specific workload behavior. The dynamic
runtime optimization system is executed on a simple
architecture designed to achieve high frequency. In addi-
tion, the dynamic compilation system allows customizing
the underlying execution engine and completely redefines
the hardware interface, while maintaining binary compat-
ibility at the software level.

It is interesting to note that all these systems suffer from
software overhead. On the contrary, DIA takes advantage of
hardware mechanisms already existing in the processor, not
needing a software layer to manage its operation. In this
sense, DIA is an interesting contribution to code caching
systems because it could automatize critical tasks and
reduce software overhead. Although evaluating particular
alternatives is out of the scope of this paper, this would be
an interesting research field for future work.

For instance, in the case of Dynamo, fragment manage-
ment would be considerably simpler using DIA. Since our
proposal is guided by the branch predictor, the instruction
sequences are naturally linked by the program control flow.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

DIA relies on the inherent capability of the branch predictor
and the instruction cache to detect instruction locality and
keep the most frequently executed instructions.

An additional advantage of our proposal is that DIA is
not allocated in a fixed architecture-specified address. DIA
is allocated by the operating system for the program being
executed. The operating system involvement makes it
possible for our architecture to use the hardware TLB
translation and benefit from the operating system paging
mechanism, just requiring to modify the operating system
loader. Therefore, our technique does not need a software
layer to manage DIA. Combining DIA with Code Morphing
or DAISY would not allow entirely removing the software
layer, but it would allow simplifying it and reducing the
overhead.

7.2 Dynamic Code Optimization

Dynamic code optimization is a common feature of all these
techniques. Both Dynamo and Code Morphing can dynami-
cally optimize the instruction sequences stored in the
memory. The trace cache functionality can also be expanded
to include dynamic code optimization [33] but without
suffering from software overhead. The rePLay [34] archi-
tecture uses a front end derived from the trace cache to
generate long traces, called frames, which are dynamically
optimized. Frames are stored in a frame cache and treated as
atomic regions, potentially increasing the aggressiveness of
the optimizations. PARROT [35] is a more recent proposal
that gradually optimizes instruction traces, using a selective
approach to apply complex mechanisms only upon the most
frequently executed traces. This allows not only to improve
the processor performance but also to reduce the trace cache
energy consumption.

In-pipeline dynamic optimizers [36], [37] do not require
any additional special-purpose storage; they just need a
table-based hardware optimizer. These techniques do not
divide the program into traces or frames but do continuous
optimization, considering the full program as a whole and
thus improving the quality of the optimizations performed.
However, in-pipeline optimizers are on the critical path of
the processor. Although it is out of the scope of this paper,
dynamically optimizing instruction sequences before storing
them in DIA is an interesting research topic for future work.
DIA could be used to combine the best of the two worlds:
Optimizations are done out of the critical path, in the commit
stage like in trace cache architectures, but without needing a
hardware trace cache to store the optimized code. Contin-
uous optimization techniques can also be applied to improve
the quality of the optimized code stored in DIA.

8 CoONCLUSIONS AND FUTURE WORK

The decoding logic is a performance bottleneck not only for
x86-based processors but also for other CISC processors
and vector processors. This bottleneck will become more
severe due to the current technology trend toward deeper
pipelines and higher clock frequencies. Hardware code
caching architectures like the trace cache [3], [4], [5]
overcome this problem by storing and fetching already
decoded instructions. This approach removes the decoding

SANTANA ET AL.: DIA: A COMPLEXITY-EFFECTIVE DECODING ARCHITECTURE 461

logic from the critical path, but it is achieved at the cost of
increasing the processor front-end complexity.

In this paper, we propose to store the decoded instruc-
tions not in a special-purpose hardware buffer but in a
fixed-size memory area allocated by the operating system,
reducing the front-end design complexity. Our proposal
takes advantage of hardware structures already existing in
the processor, extending the branch prediction mechanism
with the ability to provide the memory address where a
decoded version of the predicted instructions is stored. This
strategy enables the fetch engine to provide already
decoded instructions from the memory hierarchy, over-
coming the decoding bottleneck.

In addition, our proposal can be combined with any
branch prediction mechanism. We describe how to combine
our decoding architecture with the FTB branch prediction
architecture [9], [10] and with the stream fetch engine [11],
[12]. Both combinations provide an average of 14 percent
performance improvement in an 8-wide processor, which is
comparable to the improvement achieved by using the
more complex trace cache, but requiring less chip area and
less energy consumption. On the average, our results show
that Stream-DIA is the best trade-off between performance
and complexity.

Furthermore, this is only a first step in this research line.
Although we focus on storing decoded instructions, our
proposal enables a plethora of future possibilities. It is
possible to apply dynamic optimizations before storing the
instructions in the memory, in a similar way as done by
rePLay with frames [34] but without needing a special-
purpose frame cache. It is also possible to apply continuous
optimization techniques [36], [37] out of the critical
processor path. More elaborate possibilities can be designed,
such as rescheduling instructions to increase the available
instruction-level parallelism, remapping instructions to
improve the performance of the fetch engine, and even
translating instructions into a different instruction set
architecture.

These alternatives can be implemented using our archi-
tecture in isolation or combining it with existing systems like
DAISY [30], Dynamo [7], and Code Morphing [8]. Our
technique can contribute to the design of such systems with
a straightforward way of selecting frequently executed
instructions and managing control transfers between them.
All these possibilities, along with the relatively low im-
plementation cost required, turn our proposal into a
worthwhile complexity-effective front end architecture.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education of
Spain under Contracts TIN2007-60625 and CSD2007-00050,
the HIPEAC European Network of Excellence, the Barcelona
Supercomputing Center, and an Intel fellowship. The authors
would like to thank Adrian Cristal, Germén Rodriguez,
and Jeroen Vermeulen for their valuable help during the
development of this work, as well as Daniel Ortega,
Paolo Faraboschi, Tanaust Ramirez, and Alex Pajuelo for
their worthwhile comments on the manuscript.

REFERENCES

[1] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Caerman, A. Kyker,
and P. Roussel, “The Microarchitecture of the Pentium 4
Processor,” Intel Technology ., vol. 5, no. 1, 2001.

[2] M. Smotherman and M. Franklin, “Improving CISC Instruction
Decoding Performance Using a Fill Unit,” Proc. 28th Int’l Symp.
Microarchitecture (MICRO), 1995.

[3] A. Peleg and U. Weiser, Dynamic Flow Instruction Cache Memory
Organized Around Trace Segments Independent of Virtual Address
Line, US Patent 5381533, 1995.

[4] E. Rotenberg, S. Benett, and J.E. Smith, “Trace Cache: A Low
Latency Approach to High Bandwidth Instruction Fetching,” Proc.
29th Int’l Symp. Microarchitecture (MICRO), 1996.

[5] D.H. Friendly, S.J. Patel, and Y.N. Patt, “Alternative Fetch and
Issue Techniques for the Trace Cache Mechanism,” Proc. 30th Int’l
Symp. Microarchitecture (MICRO), 1997.

[6] E. Rotenberg, S. Bennett, and J.E. Smith, “A Trace Cache
Microarchitecture and Evaluation,” IEEE Trans. Computers,
vol. 48, no. 2, Feb. 1999.

[71 V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A
Transparent Dynamic Optimization System,” Proc. ACM SIG-
PLAN Conf. Programming Language Design and Implementation
(PLDI), 2000.

[8] J.C. Dehnert, BK. Grant,].P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The Transmeta Code Morphing
Software: Using Speculation, Recovery, and Adaptive Retransla-
tion to Address Real-Life Challenges,” Proc. First Int’l Symp. Code
Generation and Optimization (CGO), 2003.

[9] G. Reinman, T. Austin, and B. Calder, “A Scalable Front-End
Architecture for Fast Instruction Delivery,” Proc. 26th Int’l Symp.
Computer Architecture (ISCA), 1999.

[10] O.J. Santana, A. Falcon, A. Ramirez, and M. Valero, “Branch
Predictor Guided Instruction Decoding,” Proc. 15th Int’l Conf.
Parallel Architectures and Compilation Techniques (PACT), 2006.

[11] A. Ramirez, O.J. Santana, J.L. Larriba-Pey, and M. Valero,
“Fetching Instruction Streams,” Proc. 35th Int’l Symp. Microarchi-
tecture (MICRO), 2002.

[12] O.J.Santana, A. Ramirez, J.L. Larriba-Pey, and M. Valero, “A Low-
Complexity Fetch Architecture for High-Performance Superscalar
Processors,” ACM Trans. Architecture and Code Optimization, vol. 1,
no. 2, 2004.

[13] T.Y. Yeh and Y.N. Patt, “A Comprehensive Instruction Fetch
Mechanism for a Processor Supporting Speculative Execution,”
Proc. 25th Int’'l Symp. Microarchitecture (MICRO), 1992.

[14] A. Kumar, “The HP PA-8000 RISC CPU: A High Performance
Out-of-Order Processor,” Proc. IEEE Symp. High-Performance Chips
(Hot Chips), 1996.

[15] D.A. Jimenez and C. Lin, “Dynamic Branch Prediction with
Perceptrons,” Proc. Seventh Int’l Conf. High-Performance Computer
Architecture (HPCA), 2001.

[16] D. Kaeli and P. Emma, “Branch History Table Prediction of
Moving Target Branches Due to Subroutine Returns,” Proc. 18th
Int’l Symp. Computer Architecture (ISCA), 1991.

[17] P.Y. Chang, E. Hao, and Y.N. Patt, “Target Prediction for Indirect
Jumps,” Proc. 24th Int’l Symp. Computer Architecture (ISCA), 1997.

[18] P. Shivakumar and N.P. Jouppi, “CACTI 3.0: An Integrated Cache
Timing, Power and Area Model,” Technical Report Research
Report 2001/2, Western Research Laboratory, 2001.

[19] Q.Jacobson, E. Rotenberg, and J.E. Smith, “Path-Based Next Trace
Prediction,” Proc. 30th Int’l Symp. Microarchitecture (MICRO), 1997.

[20] K. Driesen and U. Holzle, “The Cascaded Predictor: Economical
and Adaptive Branch Target Prediction,” Proc. 31st Int’'l Symp.
Microarchitecture (MICRO), 1998.

[21] O.J. Santana, A. Falcon, E. Fernandez, P. Medina, A. Ramirez, and
M. Valero, “A Comprehensive Analysis of Indirect Branch
Prediction,” Proc. Fourth Int’l Symp. High Performance Computing
(ISHPC), 2002.

[22] N.P. Jouppi, “Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” Proc. 17th Int’l Symp. Computer Architecture (ISCA), 1990.

[23] D.A.Jimenez, S.W. Keckler, and C. Lin, “The Impact of Delay on
the Design of Branch Predictors,” Proc. 33rd Int'l Symp. Micro-
architecture (MICRO), 2000.

[24] OJ. Santana, A. Ramirez, and M. Valero, “Latency Tolerant
Branch Predictors,” Proc. Int’l Workshop Innovative Architecture for
Future Generation High-Performance Processors and Systems, 2003.

462

[25] R. Cohn, D. Connors, W.C. Hsu, C.K. Luk, T. Moseley, H. Patil,
and V.J. Reddi, “Software Instrumentation as a Tool for
Architecture and Compiler Research,” Tutorial at the 11th Int’l
Conf. Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2004.

[26] T. Sherwood, E. Perelman, and B. Calder, “Basic Block Distribu-
tion Analysis to Find Periodic Behavior and Simulation Points in
Applications,” Proc. 10th Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT), 2001.

[27] Replay Transmogrifier, http:/ /www.crhc.uiuc.edu/acs/tools/rpt/,
2007.

[28] S.W. Melvin, M.C. Shebanow, and Y.N. Patt, “Hardware Support
for Large Atomic Units in Dynamically Scheduled Machines,”
Proc. 21st Int’l Symp. Microarchitecture (MICRO), 1988.

[29] B. Solomon, A. Mendelson, D. Orenstien, Y. Almog, and R. Ronen,
“Micro-Operation Cache: A Power Aware Frontend for Variable
Length Instruction Length ISA,” Proc. Int'l Symp. Low Power
Electronics and Design (ISLPED), 2001.

[30] K. Ebcioglu and E. Altman, “DAISY: Dynamic Compilation for
100 Percent Architectural Compatibility,” Proc. 24th Int’l Symp.
Computer Architecture (ISCA), 1997.

[31] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and
J.A. Fisher, “DELIL: A New Run-Time Control Point,” Proc. 35th
Int’l Symp. Microarchitecture (MICRO), 2002.

[32] E. Altman and M. Gschwind, “BOA: A Second Generation DAISY
Architecture,” Tutorial at the 31st Int’l Symp. Computer Architecture
(ISCA), 2004.

[33] D.H. Friendly, S.J. Patel, and Y.N. Patt, “Putting the Fill Unit to
Work: Dynamic Optimizations for Trace Cache Microprocessors,”
Proc. 31st Int’l Symp. Microarchitecture (MICRO), 1998.

[34] SJ.Patel, T. Tung, S. Bose, and M.M. Crum, “Increasing the Size of
Atomic Instruction Blocks Using Control Flow Assertions,” Proc.
33rd Int’l Symp. Microarchitecture (MICRO), 2000.

[35] R. Rosner, Y. Almog, M. Moffie, N. Schwartz, and A. Mendelson,
“Power Awareness through Selective Dynamically Optimized
Traces,” Proc. 31st Int’l Symp. Computer Architecture (ISCA), 2004.

[36] B. Fahs, T. Rafacz, S.J. Patel, and S.S. Lumetta, “Continuous
Optimization,” Proc. 32nd Int’l Symp. Computer Architecture (ISCA),
2005.

[37] V. Petric, T. Sha, and A. Roth, “RENO—A Rename-Based

Instruction Optimizer,” Proc. 32nd Int’l Symp. Computer Architecture
(ISCA), 2005.

Oliverio J. Santana received the BSc and the
MSc degree in computer science in 2000 from
the Universidad de Las Palmas de Gran Canaria
(ULPGC), Spain, and the PhD degree from the
Universitat Politecnica de Catalunya (UPC),
Barcelona, Spain, in 2005. He is an associated
professor in the Computer Science and Systems
Department at ULPGC. His research interests
include complexity-effective fetch and decoding
architectures, performance evaluation methodol-
ogies, and exploiting program semantic informa-
tion. He has coauthored 25 international publications and is currently
supervising two PhD students. He has served in the organization of
several international conferences as an external reviewer, submission
webmaster, and a member of the program committee. He is a member
of the |IEEE.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

Ayose Falcon received the BSc and MSc
degrees in computer science from the Universi-
dad de Las Palmas de Gran Canaria in 1998 and
2000, respectively, and the PhD degree in
computer science from the Universitat Politecni-
ca de Catalunya (UPC) in 2005. His PhD
research included fetch unit optimization, espe-
cially branch prediction and instruction prefetch-
ing. During his PhD years, he was a summer
intern and then a consultant at Intel Micropro-
cessor Research Laboratories and worked as a teach assistant at UPC
for one year. Since 2004, he has been a research scientist at the
Barcelona Research Office, Hewlett-Packard Laboratories, Barcelona.
His current research interests include simulation and virtualization
technologies, disciplines in which he has published several papers and
disclosed six patents. He is an active member of the computer
architecture community, serving as a reviewer of the most important
conferences and being a member of the program committee of the
Second Championship Branch Prediction Competition. He is a member
of the |IEEE.

Alex Ramirez received the BSc, MSc, and PhD
(awarded the extraordinary award to the best
PhD) degrees in computer science from the
Universitat Politécnica de Catalunya in 1995,
1997, and 2002, respectively. He is an
associated professor in the Computer Architec-
ture Department, Universitat Politécnica de
Catalunya, and a research manager in the
Computer Architecture Group, Barcelona Super-
computing Center. He was a summer student
intern with Compaqg’s WRL, Palo Alto, California, in 1999 and 2000 and
with Intel's Microprocessor Research Laboratory, Santa Clara, in 2001.
His research interests include compiler optimizations, high-performance
fetch architectures, heterogeneous multicore architectures, and vector
architectures. He has coauthored more than 80 papers in international
conference proceedings and journals and supervised three PhD
students.

Mateo Valero has been a full professor in the
Computer Architecture Department, Universitat
Politécnica de Catalunya (UPC), since 1983.
Since May 2004, he has been the director of the
Barcelona Supercomputing Center (the National
Center of Supercomputing in Spain). His re-
search topics are centered in the area of high-
performance computer architectures. He has
coauthored more than 400 publications. He
has served in the organization of more than
200 international conferences. His research has been recognized with
several awards, including two National Awards on Informatics and on
Engineering, the Rey Jaime | Award in basic research, and the Eckert-
Mauchly Award. He received a Favourite Son Award from his hometown,
Alfamén (Zaragoza), which named their public college after him. He is a
fellow of the IEEE and the ACM. He is an academic of the Royal Spanish
Academy of Engineering, a correspondant academic of the Royal
Spanish Academy of Sciences, an academic of the Royal Academy of
Science and Arts, and a doctor honoris causa at Chalmers University.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

