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Abstract—The elastic task model is a powerful model for Despite the success of the abovementioned models in dlevia
adapting periodic real-time systems in the presence of uncer- ing overload situations, it is sometimes more suitable tecete
tainty. This paper generalizes the existing elastic scheduling jops |ess often instead of dropping them or allocating fewer
approach in several directions. It reveals that the original task cycles. For example, limitations on the throughput capaoit

compression algorithm in fact solves a quadratic programming T s ;
problem that seeks to minimize the sum of the squared deviation d NoC communication networks [2] make it highly desiralle t

of a task’s utilization from initial desired utilization. This finding ~ feduce overall network traffic by having control tasks atvet
indicates that the task compression algorithm may be applied to adjust their periods in response to the actual activityllefehe
efficiently solve other similar types of problems that often arise control application.
in real-time applications. In particular, an iterative approach _is The work in [21] was among the first to address this type of
e desdie te s mapoctos bt Evthammin, SGUIETENS. Set, e s, considered the problem of i
as . , - ] - :
the framework is generalized to ade:Jst taskpdeadlines instead of fea_S|bIe set of task _pe_nods as a_n_on-llnear programminglno
task periods. which seeks to optlmlzg a specific fo.rm of cpntrol perfqrrrtanc
measure [28]. In [29], finding all feasible periods of a givesat
of tasks was studied for the Rate Monotone (RM) scheduling
algorithm. Cervin et al. used optimization theory to solve pe-
riod selection problem online by adaptively adjusting tpekiods
while optimizing a specific form of control performance [12]
Recently, [6] offered an optimal search algorithm that eslthe
Desirable property of any real-time system is the guarantperiod selection problem for fixed-priority scheduling sstes.
that it will perform at least beyond some pre-specifietfhe algorithm may be applicable only during the design pliase
thresholds defined by system designers. This is usually noteaits potentially high complexity. Another interestingufnework
concern under normal situations where analysis has beea dors introduced in [20] where task periods are adjusted jporese
offline to ensure system performance based on the reguld-woto varying computation times.
load. However, in response to an event such as user’s input oButtazzo and his colleagues proposed an elegant and flexible
changing environment, the load of the system may dynargicaftamework known as the elastic task model [9] where deadline
change in such a way that a temporal overload condition sccumisses are avoided by increasing tasks periods. The worklij [
The challenge, then, is to provide some mechanism to gusanéxtends the basic elastic task model to handle cases where th
the minimum performance level under such circumstances. computation time is unknown, [10] incorporated a mechartism
Many periodic real-time task models have been proposed handle resource constraints within the elastic framewank, [8]
extend timing requirements beyond the hard and soft desslliprovided a means to smoothly adjust task execution rate. In
based on the observation that jobs can be dropped with@adition, [15] uses a control performance metric as a cositfon
severely affecting performance ([5], [19]). For examplea-R to find an optimal sampling interval for each task.
manathan et al. proposed both online [17] and offline [27] We will focus our attention on the elastic task model wheee th
scheduling algorithms that are based on the (m,k) modekiwisi selection of task periods is central. The existing elastieduling
analyzed in [18]. In this model, up te— m consecutive jobs are algorithm determines task periods based on an elegantgnalo
allowed to be dropped in any sliding window kfMoreover, [32] between spring systems and task scheduling in which a task’s
presented the Dynamic Window-Constrained Scheduling (B)VCresistance to changing its period is viewed as a springistegge
algorithm, which is similar except that the windaws fixed. Due to being compressed. In accordance with fnanciple of least
to their success, these scheduling algorithms have futiken action found in classical mechanics, this suggests that the elasti
enhanced. For example, [26] proposed a pattern rotatioenseh task model is really attempting to minimize some overall suee
to improve schedulability by avoiding some critical ingtan of task set'senergy, whose precise nature was not made clear in
Mok at. al. modified DWCS, which is primarily deadline-basedhe original work.
by incorporating the concept of pfairness [3] to improve the Based on our previous findings in [13], this paper generalize
success rate for tasks with unit-size execution time [25he® the existing elastic scheduling approach in several dowst
frameworks such as the imprecise computation model [14] aRitst, we re-examine the problem of period determinatiothiz
reward-based model [1] can be used to capture situationsewhelastic task model and show that the task compression #igori
the quality of service is proportional to the amount of wodd in [10] in fact solves a quadratic programming (QP) problem.
completed. The QP problem seeks to minimize the sum of the squared
deviation of every task’s utilization from its initial uidation.
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uncertainty for other task models. B. Elastic task model

Second, the proposed framework is extended to cases whergh [10], Buttazzo, et. al. modeled a task system as a spring
task deadlines are less than task periods. Such task sp8oific system, where increasing or decreasing a task period isguas
often arise in control systems to reduce jitter, for example compressing or decompressing a spring. The elastic ciefj
Moreover, in some situations, it is desirable that tasksslﬂiniei, introduced above hence has its intuitive meaning of the
executing sooner, even if their periods are not up. We foateul hardness of the spring. The purpose of increasing task gzerio
the problem of period determination as a constrained opditiin js to drive the total utilization of the system down to some
problem and propose a heuristic approach based on the tgskired utilization level{/,;, analogous to a spring system trying
compression algorithm in [10] to solve the problem. The tstigr to minimize its energy under an external force.
is guaranteed to find a feasible solution, if one exists. It is The attractiveness of the elastic task model is its accogipgn
quite efficient and is hence suitable for online period adjesit. ~task compression algorithm, which is quite effici¢at N?)) and
Experimental results show that the heuristic actually fitilts can readily be used online. (In fact, the elastic task model a
global optimal solution in many cases. the task compression algorithm have already been impledent

Finally, the proposed framework is generalized to solve the the S.Ha.R.K. kernel [16].) The task compression albanit
deadline selection problem whose objective is to find a sets works as follows. If it is possible to drive the system utilion
deadlines such that the task set is feasible. Solving tliblem down to U, without violating any period bounds, the algorithm
is useful for systems where the tasks have pre-specifiedd=eriwill return a set of feasible periodd, 75, ...,Ty) that can be
but some delays in task completions are tolerable. used by the system. Tasks whose periods are fixee} @ 0 or

The remainder of the paper is organized as follows. We bedliv = T;,,.,) are considered inelastic and are treated as special
by reviewing key background materials in Section Il. Sactip  cases. The amount of utilization that each remaining, netastic
presents the solutions to the period determination prodiem task should receive is computed based on its elastic ceeffici
tasks with deadlines equal to periods. The optimizatiorregugh initial period, and the amount of utilization that must beueed
is then extended in Section IV to treat the case where taskachieveU,. The resultant period of a task is guaranteed to
deadlines are less than task periods. In Section V, we demdéall somewhere betweeff;, and 7;, . . For completeness, the
strate how the proposed framework can be used to solve tagk compression algorithm is reproduced in Algorithm 1.
problem of deadline selection. Experimental results aesgmted
and discussed in Section VI. Finally, the paper concludeh wiAlgorithm 1 Task Compress(, Ug)
Section VII. 1 U= ,Ci/Tio
Unmin = 22121 Ci/Tipnax
if (Ud < Umin) then

return INFEASIBLE
s end if

This section describes the system under consideration bs we: repeat
as important assumptions pertaining to our task model. e al 7: Up=E,=0
briefly review the task compression algorithm used for merio 8:  for (each 7;) do

Il. PRELIMINARIES

arwn

selection [10]. 9: if ((e;==0)or(T; ==1T,_,.)) then
10: Up=Us+U;
11 else
A. Periodic task model 12: Ey =FEy+e
. . 13: Uyo = Uy — Uf
We consider the system where each task is ., end if
periodic and is characterized by the following 6-tupleis. ong for
(Ci, Di, T;, Tyo, Ty €i), fOr @ = 1,...,N, where N is .o . _ 4
the number of tasks in the syste, is the worst case execution 17 for (each 7; € T'w) do
time of 7;, D; is its deadline, andr; is 7;’s actual period. ;g. if ((e; > 0)and (T, < T, ) then
Furthermore,T;, denotes the most desirable period of as ;4. U; = Usy — (Uvo _ Ud"‘j;fo) ei/Ev
specified by the application, whereds, ,  represents the . T, = C; JU;
maximum period beyond which the system performance is ng. if (T, > Ti/ ) then
longer acceptable. The elastic coefficiert, represents the ... T, =T, e
resistance of task; to increasing its period in face of changes,.. k=0
The smaller the elastic coefficient of a task, the harder ipis ,,. end if
increase that task’s period. Given a taskiSetasks are arranged .. end if
in a non-decreasing order of deadlines and all start at time 0 5.  ang for

Task deadlines are first assumed to be equal to task periogs. yntil (ok == 0)
This requirement will be relaxed in Section IV; in that seoli »g. return FEASIBLE
we treat the case where task deadlines are less than taskigeri
All task attributes are real values and are assumed to be rknOWThroughout this paper, we will assume that the Earliest Dead

a priori. The current utilization of; is U; = 7. Similarly, the |ine First (EDF) scheduling algorithm [22] is used. Furthere,
minimum and the desired utilizations ef is U; = T_Ci

min ~—and e will focus our attention on cases where tasks need to dsere
Uip = T% respectively. their utilization in response to either internal (e.g., & in




sampling rate of one or more tasks in the system) or external Proof: We prove the lemma by utilizing the Karush-Kuhn-

(e.g., network traffic) factors. Tucker (KKT) necessary conditions for the solution to theegi
problem, which can be written in terms of the Lagrangian fiomc
[1l. PERIOD SELECTION FOR THEBASIC TASK MODEL for the problem as

In this section, we focus on the basic periodic task modekehe
D; = T; for task r;, ¢ = 1,...,N. During an overload, task  Ju sz 0 — +uo (ZU Ud>
periods may be adjusted in such a way that the task set becomes
schedulable. Given a particular set of real-time taskgetineay
exist numerous sets of feasible periods. It is not difficalisee Zm Uipin— Us) + Z)\i (Ui —=Ui)  (5)
that different sets of periods would lead to different perfance i
of the resultant system. In general, the period selectioblpm \yhere ., 11;, and \; are Lagrange multipliersyo > 0, p; > 0,

can be expressed as an optimization problem. That is, and\; > 0, for i = 1,..., N. The necessary conditions for the
optimize: performance netric existence of a relative minimum &t* are, for alli = 1,..., N,
s.t.: tasks are schedul abl e 0Ja X
peri od bounds are satisfied 0 = ou; 2w (Uio =U7) +p0 = pi+2i - (6)
Below we introduce a specific performance metric and discuss N N -
its implications. We assume that task deadlines equal tas&gs. = Z Ui = Ua ™

Processor utilization by each task is an important measure f
any real-time system. It not only reveals the amount of syste 0 = (Uimn - Ui*) ®)
resource dedicated to the task but also impacts schedtyabil 0 = N (U;‘ — UZ-O) 9)
the elastic task model, one consequence of changing tagldper
is changing the utilization of tasks. From the stand point of ASSume that (2) is inactive, i.euo = 0 and S, Up < Uy,
performance preservation, it is desirable to minimize thenges Then at least one constraint in (3) or (4) must be active. 8s@p

in task utilization. This objective can be captured by thiofeing  the k-th constraint in (3) is active. That id/; = Uy, and
constrained optimization problem. ur > 0. Then, thek-th constraint in (4) must be |nact|ve, ie.,

Ar = 0. From (6), we obtain

N
min: E(U,---,Un) = Zwi (Uio — U;)? (2) pie = —2wg (Ugo — Ug,,;,,) <0 (10)

N =t which contradicts the assumption that > 0. Therefore, if any
st ; Vi< U L) UkN?)va gggﬁrﬁgﬁg?gérfg (r:r:)l:\Ssttr?i?n?(i:r?v(i) is active while others

U; > Ui fori=1,2,---,N @3) ae in_active. Supposk; = Uy (active) andUy, . < Uy < Ugg

U < Uy fori—1.2....N @ ﬂgsgtlve). Thenu, = 0, A, > 0, andug = A, = 0. From (6), we

In the formulation, NV is the number of tasks in the system, _ « _
Ujo is the desired utilization of task and Uyo > U, .., U; is Ho = 2wn(Uno = U’;) Tn = M= A (1)
the utilization ofr; to be determined, antl; is the desired total Ho 2wk (Uko — Uk) (12)
utilization. (U, is usually set to 1 for EDF scheduling.) Constan{ote that (11) and (12) cannot be simultaneously satisfied.
w; (> 0) is a weighting factor and reflects the criticality of a taskrherefore, we can either have all the constraints in (4) hiseac

More critical tasks would have larger;'s. The first constraint or a|l are inactive. If all the constraints in (4) are active have
simply states the schedulability condition under EDF. Thst r

of the constraints bounds the utilization, equivalentlyihds the .
task period byr;o andT;, .. whereTiy = C;/Uy andT;, . = Z Ui = Z Uio > Ua
Ci/Ui i

It :s worth noting that forw; = 0, (1) does not change Which contradicts the assumption that the resultant taskisse

regardless of what/; value is used. To help satisfying (2), i itschedulable. If all the constraints in (4) are inactive,) (Euires
is natural to simply usé/; = U, Hence, for the rest of the that o > 0, which contradicts the assumption that constraint

Tmin®

paper, we will focus on the case wherg > 0 forall 1 < i < N. (2) is inactive. Therefore, for any solution to the optintiaa
The problem in (1)—(4) belongs to the category of quadratR;romem constraint (2) must be active, i85, Uf = U, and

(13)

max

programs and can be solved in polynomial time. However, -solt/i # Uio- u
ing such a problem using a quadratic program solver (such as'heorem1: Given the constrained opt|m|zat|on pfOblem as
Logo [30]) during runtime can be too costly. What makes th&pecified in (1)—(4) SN Ui > Ugy and XN U, < Uy,
above formulation attractive is that its solution is exadihe letU = ZU* 10+ZU* Usppin - A solution to the
same as that found by the task compression algorithm in [1@foblem, U*, is optlmal if and’ onIy if'
We introduce a lemma and a theorem to support this argument. ~

Lemma 1: Given the constrained optimization problem as (U Ud)

(14)

*
specified in (1)~(4) ang_ " 10 > U, any solution,U}, to Ui =Uio - ZU o (iw)
the problem must satisfp .~ = Uy and U} # Uy, for R Imin ‘
i=1,...,N. for U > Uy andU;" > U; andU; = U;

tmin

otherwise.

min’!



Proof: Consider the KKT conditions given in (6)—(9). FromA. Smplify feasibility condition
Lemma 1, we know that any solutionNto trle given *optimization Baruah et al. considered the case where task deadlinessare le
problem must satisfy (2), i.et/y = > ;_, U}, andU; # Uio-  than or equal to task periods and derived a sufficient andssacg

Hence, we only need to consider the case whgre- 0, for all  congition for EDF schedulability [4], which is later imprest
i=1,...,N. Suppose that thi-th constraint in (3) is active. We jn [7]. The condition is restated in the following theorem.

haveUy: = U,,,,. and Theorem 2: [4] Given a periodic task set witlh; < T, the
task set is schedulable if and only if the following consttads

pk = po = 2wy, (Uko = Uk, ) (19 satisfiedvr, e {kT; + D; < min(Bp, H)} andk € N (the set of
Otherwise, we havey, = 0. By summing up (6) for alli and natgral numbers incl_uding 0), wljerlép and H denote the busy
using the conclusions above, period and hyperperiod, respectively,
R N
(00 (52 e
Ho = Z (1/wi)’ (16) i1 T;
Ui #Uinmin ‘ Based on Theorem 2, the period determination problem can be
As long asU > Uy, puo > 0, p; > 0, and constraints in (4) are formulated as follows:
satisfied. Therefore, a solutiofy,", to the optimization problem - N 9 9
either satisfie¢/; = U;,, or can be obtained by combining (16) min: - E(U,-,Un) = Zwi (Uio = Ui) (19)
with (6) for U > U;, .. (Note thaty; = 0 whenU; > U;, .. .) v =1
That is L — D;
' ~ s.t.: L> Qiﬁ + 1) C;
= (U — Ud) ; T;
Uit =Uio — S (/ay) (17) L e {kT; + D; < min(Bp, H)} ,k €N (20)
y _ T o U >U; . fori=1,2--- N (21)
Additionally, since the objective function and the inedtyal U, < Usp fori=1.2..- N 22)

constraints in (1)—(4) are convex, the necessary condition

optimality provided by the KKT conditions also become the Solving the above constrained optimization problem can be

sufficient conditions for optimality [24]. Hence, the sadut found extremely time consuming. Hence, we investigate solving th

in Theorem 1 is a global minimum. B problem approximately with an efficient algorithm below. An
Corollary 1. Consider a set oiv tasks wherdJ; is the utiliza- approximate solution is both acceptable and preferred,rapid

tion of theith task. LetU;o denote the initial desired utilization response allows the system to degrade gracefully instead of

of task r; and lete; = wi > 0 be a set of elastic coefficientsentering into potentially catastrophic states due to soymeauchic

for i = 1,...,N. Let U; be the desired utilization level andperturbations.

Zfil Uy > Ug. The task utilizationst;, for i = 1,...,N Since verifying the constraint in (18) for all values is the

obtained from the task compression algorithm in [10] mizieni main source of high complexity, we consider simplifying the

schedulability test by using the following stronger scHability

1 condition,
E(Uy,...,.Un) = Z ;(Uio —Uy)?
7

N
i=1 L> Z (L _T‘Di + 1) C; (23)
i=1 ¢

subject to the inequality constraingili1 U; <Uy, U; > U,

tmin?

andU; < Uyg, fori=1,...,N. Itis not difficult to see that if the inequality in (23) is ssfted then
The above corollary has several significant consequenass, Fthe original inequality in (18) must also be satisfied. Whakes

it reveals the optimization criterion inherent in the tasknpres- (23) an excellent candidate for online use is that the sdabdity

sion algorithm. Second, it provides guidance on the selectiof @ task set can be determined based on a singlalue, L”.

of other performance measures . Third, the task compressféflow, we introduce several lemmas and a theorem to support

algorithm may be modified and/or extended to solve simildpiS claim.

convex programming problems. An example of this extensitin w FOr simplicity, we denote the set of all possible valued.dfy
be described in the next section. a distinct ordered sef = {Lg, L1, ...} whereL; = kT;+D;, k €

N and L; < min(Bp, H).
Lemma 2: Given a sef” of N tasks withD; < T;, let L; and
IV. PERIOD SELECTION WITH ADDITIONAL DEADLINE Ljt1 € Land letL; < L;q. If the constraint in (23) is satisfied
CONSTRAINTS for L;, then it is satisfied for; ;.

In this section, we consider the case where task deadlimes ar Proof: By regrouping the terms in (23), we can rewrite the
less than task periods. This more general model is useful iffgquality as follows.

situations where it is desirable for a task to finish execuéarly N o _5N 1 p.

. . R .. . Zi=1 C; Zi=1 UiD;
(before its period ends). By using the optimization framewo L > N (24)
introduced in Section lll, we again formulate the periocesgbn 1= Ui

problem as a constrained optimization problem and proposeGéaven thatL; satisfies the constraint in (24) ad, > L;, it
novel heuristic based on the task compression algorithne Timmediately follows thaiZ;; satisfies the constraint in (24)m
algorithm is guaranteed to find a solution to the problemnéo Based on the above lemma, we can conclude that if the
exists, and is efficient enough for online use. constraint in (23) is satisfied fak;, then it is also satisfied for



all L, € £, whereL;, > L;. It may then seem natural to simplyif
set L* to be the minimum of allL values inZ. However, such a

choice can be extremely pessimistic, often resulting inifigaho s > Z (M + 1> C; (26)
feasible solutions to the problem. To avoid being too peission i1 T;
we introduce the next lemma, which identifies useful Nesyssy, hore
conditions for any feasible task set. The lemma helps toiedita
pessimistic choices of*. =y P2 b DitTi< D
Lemma 3: Let D; be the deadline of task in a given task set min;Z, (T; + D;) : otherwise

Proof: From Lemmas 4 and 5, we know that the orly
{hat needs to be checked against the constraint in (28)isf
D1+ kT < Do, k=0,1,..., andmin® , (T; + D;) otherwise.
Moreover, we have proved in Lemma 2 that if (23) is satisfied
for someL; then it is also satisfied fof;;, whereL; < L;;.

I,i=1,...,N. Assume that; € I" starts at time 0. Further, let
the tasks in’ be ordered in a non-decreasing order of deadlin
and suppose thab,,;, is unique. Regardless of the choices o
periods, any task set that is schedulable must satisfy thmviag

roperty:
property | This, in turns, implies that if (23) is satisfied fdr; then it is
J ' also satisfied for allL, € L, whereL;, > L;. Taken together,
Y Ci < DpVi=1,..,N (25) if the constraint in (23) is satisfied fat* then the task set is

achedulable. ]

The above theorem paves the way to finding a simpler con-
strained optimization problem for the purpose of period de-
termination. We present the actual problem formulationha t
following subsection.

Proof: Welﬁ%ove Lemma 3 by contradiction. Suppose th
task set is schedulable ad’_, C; > D; for somej. By time
Dj, at least one instance of, ..., 7; must each finish executing.
Thus, The total processor demandZgtis at IeastZZ:1 C; time
units. However, since there are onfy; time units available and

Zle C; > Dj, at least one instance ef,..., 7; has to miss L o ) ) ) _

its deadline. This contradicts the assumption that the satks B. Minimize utilization perturbation with deadline constraints

schedulable. Hence, (25) must be true forja# 1,...,N. = By using Theorem 3, we can express the period selection
We are now ready to introduce two lemmas which form thgroblem where task deadlines are less than task periods as

basis for our selection of.*. a constrained optimization problem similar to that in (#)(
Lemma 4: Consider a sdf of N tasks that satisfy the condition Letting r; = L — D;, (23) can be rewritten as

in Lemma 3. Let the tasks iir be sorted in a non-decreasing N N

order of deadlines. ID; + T} < Do, and L* = D, satisfies the 7. _ ,

inequality constraint in (23), then the task set is guaethte be ;HUL =k ; i N

schedulable. - -

Proof: Let L, = L* = Dy. By Lemma 2, anyL; € £ Then the period determination problem where task deadines

with j > h satisfies constraint in (23) and hence satisfies (lé?.ss than task periods can be formulated as

Now considerj < h. Since D; > D, for < > 2, L; can only N

be equal toD; + kT (since the task set must satisfy Lemma 3) min:  E(Uy,---,Uy) = Zwi (Uio — Uy)? (28)
for somek € N. In order for L; to satisfy (18), noting that i=1

|D1+kTy — D;| < T; for i > 2, we needDy + kT > (k+1)-Ch, N N
which holds true according to Lemma 3. Therefore, for allesl st: Y nUi<L-)» Ci (29)
of L € £, (18) is satisfied. [ ] i=1 i=1

Lemma 5: Consider a sdf of N tasks that satisfy the condition I Do : D+ % < Dy (30)
in Lemma 3. Let the tasks in be sorted in a non-decreasing order N min(% + D;) : otherwise
of deadlines. IfD1+73 > Do, andL* = minjL, (T;+D;) satisfies U >Ui . fori=1,2,--- N (31)
the inequality constraint in (23), then the task set is guaed U < Usg fori=1,2,--.N (32)

to be schedulable.
Proof: Let L, = L* = minl_, (T; + D;). By Lemma 2, Note that the above constrained optimization problem woialce
any L; € £ with j > h satisfies constraint in (23) and hencexactly the same format as the QP problem in (1)—(4) &nd;
satisfies (18). Now consider< h. L; can only be equal t®, can be treated as constants. Unfortunately, this is notdke, @s
k=1,...,N,suchthatD, < Lj. In order forL; to satisfy (18), the actual value of. is dependent on variablg;. Consequently,
we needy 7_, C; < D;, which holds true according to Lemma 3the above optimization problem must be treated as a nomlinea
Therefore, for all values of. € £, (18) is satisfied. B program which can be too costly to solve in terms of both
From Lemmas 3-5, we can conclude that given an arbitrary tgstocessor time and memory usage.
setl’ of N tasks, a maximum number @¥ 4+ 1 checks need to  The challenge, then, is to solve the problem efficiently so as
be performed to test the schedulability of that task set. &lgm to allow the system to respond to dynamic changes in a timely
at most N checks must be performed to determine whethier manner. We propose using an iterative heuristic based otaghe
satisfies Lemma 3 and one check must be performed to determinpenpression algorithm to tackle the challenge. The maim ide
whether either Lemmas 4 or 5 is satisfied. We collect thesé our heuristic is as follows. Suppose at iteratibna set of
conclusions in the following theorem. periodsT;(h) is found by solving the optimization problem in
Theorem 3: Consider a sefl’ of N tasks that satisfy the (28)—(32). In iteratiorh + 1, we compute the value df based on
condition in Lemma 3. Let the tasks in be sorted in a non- Theorem 3 using’; (k). A check is then performed to see whether
decreasing order of deadlines. A given task set is schel@ulathe constraint in (23) is satisfied. If this is the case and;{h)



also minimizes the objective function till now, then theaithm

In order to satisfy (35) and (36), we must haug = )\, = 0,

keepsT;(h) as the current best solution to the problem. Otherwisehich will cause (38) to become

if the constraint in (23) is not satisfied, we modify the pdso
found in iterationh in some manner and use them as the periods

—2wp,(Upo — Up) = Dy, — Da. (39)

found in iteration + 1. This process is repeated in an attempthis is clearly a contradiction, sinde;, > Dy andUyo— U > 0.

to find the best set of periods that the heuristic can offeloBe

Now, assume that/; = U, . . Then, to satisfy (36), we need

min

we intrgdgce. a lemma an.d a couple of theorem; to show how = 0. However, this leads ta;, < 0 in (38), which violates
the optimization problem in (28)—(32) can be optimally smlv the KKT conditions. Therefore, for any task with;, > Do,
for a fixed value ofL.. We then give the details of our heuristicU; = Upp.

algorithm and discuss the solution quality.

For i = 1, we first note that\; must be equal ta@, since

Lemma 6. Given the constrained optimization problem as$/’ = Uy, fori = 2,..., N, and ZfilriUio > L — Zf;l C;.

specified in (28)—(32) andgjfilriUm > L — Z?;Ci! any

solution, U;", to the problem must satistiN,lriUi = L —
o i—

Zi:l Ci.

By replacingU;" = U;o for : > 2 in (32), we obtain the value of
Uy exactly as defined in Theorem 4. Moreoverlif > U,
then u; > 0. Otherwise, ifU] < U;

min

then the task set is

min?

We skip the proof for Lemma 6 since it can be provedifeasible andu; =0.In any casey; >0.
using the same technique as in Lemma 1. As Lemma 6 statedVe have shown that the values 6f as defined in Theorem 4
that the constraint in (29) must be active, we consider sglvi Satisfy the KKT conditions and form a feasible solution te th

the optimization problem in (28)—(32) wheb; + l% < Ds.
According to Lemma 4, we only need to cheék = D, for
schedulability, which indeed leads to a constantalue in (29).
It follows that we can solve the optimization problem effidig
by using the following theorem.

Theorem 4: Given the constrained optimization problem a¥

specified in (28)~(32), fof. = Dy, SN Uiy > L=V ¢,
andU; < U < Uy, a solution,U;, is optimal if and only if

N N
« D2_Zj:1 Cj_Zj:S riUjo
U; = D>—D;
Ui

for Dy > Z;\le C;+ Zivzg) r;Ujo.

Proof: Let L, = L—Zfil C;. The KKT conditions for the
solution to the optimization problem in (28)—(32) can betten
as follows:

=1
otherwise

0 = —2w; (Uio—Uj) +ripo — pi + Ag (33)
N
0 = uo erU;‘ — Ly (34)
j=1
= (Uimm - U;) (35)
= X (U7 = Un) (36)
fori=1,---,N, wherepug, u;'s and\;’s are Lagrange multipli-

ers,ug >0, u; >0,and); >0fori=1,---, N.
Consider first those tasks with,, = Ds. Thenry, = L— Dy, =
0. Now (33) reduces to

p — Ae = —2wy, (Upo — URy) (37)

Assume thatl/,,

min

assume that/;; = Uy, Then to satisfy (36), we neel, = 0.

min "

problem under consideration. Since the constrained opditioin
problem is convex, it follows that this feasible solutioraiso an
optimal one [24]. ]

Theorem 4 immediately leads to an efficient algorithm to solv
the optimization problem in (28)—(32) when; + T < D». Let
S next consider the case whefg + 77 > D2. According to
Lemma 5, one needs to check whetligr = minﬁil (T; + D;)
satisfies (23) to determine feasibility. The following them
forms the basis for solving the optimization problem in (28R)
when D; + Ty < Ds.

Theorem 5: Given the constrained optimization problem as
specified in (28)—(32), for a fixed value aof (where L =
minij\il{% + Dz}) and Zf\il r;Ujo > L — Zf\il C;, let

2 2
ry rs
R = J _J
> ooyl
Uj*?éUj'rrz'i7L U;:Ujo
N
Vv = Z TjUjo—(L—ZCj)-‘r Z TjUj.
Uf FUjmin i=1 U; =Ujmin
If a solution,U;", is optimal then
* T
T — . 40
Uz UzO wiR ( )
for r;, >0 and0 < % < % (Ui — Ui, ), andU;" = Uy for

r; <0.

Proof: According to Lemma 6, the constraint in (29) must
be active. In other words, any solution to the given optiriza
problem must satisfyLy; = L — Z?LICZ- = Zf\il r;U;. We
considerr, < 0 andr, > 0 separately.

Case 1(r; < 0): Consider the KKT conditions given in (33)—
(36). Assume that both constraints in (31) and (32) are ivect

< U} < Uy In order to satisfy (35) and (ie., Uyo < Ui < Uy, .., bk = A, = 0). Then, (33) becomes
(36), we must have, = A\, = 0, which contradicts (37). Now

2w, (Upo — Up) = ripio. (41)

However, this leads tp;, < 0 from (37), which violates the KKT However, sincelU;; < Uy, ry < 0, and uo > 0, the above

conditions. Therefore, for those tasks with, = Da, U} = Uko.
(It can be readily proved that such a solution indeed sadisfie
KKT conditions.)

Similarly, consider next those tasks with, > Dy. Then,r;, =
L — Dy, < 0. Now (33) becomes

—2wp, (Uno = Upy) = pth — An — Thito (38)

equation cannot hold. Therefore, for any solutigj, either the
constraint in (31) or (32) must be active.

Let us first assume that, > 0 but A, = 0. Then (33) gives
2wy (Ugo — Ug) + pg = T pio, (42)

which contradicts the assumption that > 0. Consequently,
U]: =Uyg for r, <0.



Case 2(r;, > 0): Suppose that thé-th constraint in (31) is
active. That is,U;; = Uy, ., pr > 0, and A, = 0. Then, from
(33),

p = o — 2w (Ugo — U, (43)

If the constraint in (31) is inactive, them, = 0. Similarly, if the Aigorithm 2 Task CompresDeadiline(, maxiter)

h-th constraint in (32) is active, theli; =

Uno» A >0, pp =0 77
and 2:
Ah = —Tpfio (44) 3.

and \,, = 0 if the constraint in (32) is inactive. Multiplying (33) %

by r;, summing it up for alk, and using the conclusions above,
we have

2V 6:

By combining (45) with (33), we get 8
— 9:

« o TV 10:

Uz - UzO wiR (46) 11

To enforce the condition of; . < U < U, % must satisfy 12

wi
(U0 = Ui,

a solution to the optimization problem either satisfigs
for r; < 0 or U = Uj — 2%

w; R?
Ws

= (Uio —

7U’LO
forr; > 0 and0 < % <

heuristic in more details.

C. Our heuristic

A summary of the heuristic is given in Algorithms 2 and 3.
Algorithm 2 shows the main procedure and Algorithm 3 is chlle?°
by Algorithm 2 to perform a specific set of functions as will b
explained below.

We will first describe the main procedure (Algorithm 2). In

each iteration:, we fix the value ofL as eitherL(h) = Dy if 2+
T1(h—1)4D; < Dy or L(h) = minlY_, (T;(h—1)+D;) otherwise 25:
(Lines 14-18). For any task; whoser; = L(h) — D; < 0, 26:

its period is immediately set td@j, (Lines 32-37). For any
task 7, whoser; > 0, its utilization, U;(h), can be determined
using Theorem 4 (Line 26) or Theorem 5 (Line 39), respe(wvel
If L(h) = Dy and h = 0, our heuristic will only require

one iteration to find an optimal solution and exit immedigtel

since the solution set will remain unchanged in subseque‘?ﬁ

iterations. In the case df(k) = minl\ (T;(h — 1) + Dy), U; is
obtained by using a slightly modified task compression élgar
Mod_Task_Compress() (Line 39). The following modifications
were made to the original task compression algorithm: (@ th>
inputs to the task compression algorithm are task I3ednd
L(h), instead ofl’ and U,, and (ii) the equatiort/; = U;p —
(Uvo —Ug+ Uf) E;/E, in the original algorithm is replaced by
(40). For the case wheré(h) = D2, Theorem 4 is applied
straightforwardly.

As described in the last section, during iteratibn- 1, our
heuristic will perform a check to determine whether the det gt
periods found in iteratiork is feasible and if the solution is the 42

). Summarizing Case 1 and Case 2, we have thaf

15:
Uipin)- " e

Theorems 4 and 5 show how an optimal set of task periods.
can be determined given a fixed valuelofWe now explain our g.

19:

23:

31:

34:

40:

s sumC =0

for each(r; € ') do
sumC = sumC + C}
if (sumC > D;) then
return NULL // By Lemma 3, no feasible solution
exists
end if
end for
bestObjF = oo
for each(r; € I') do // Initialize some variables
prevT; = Tjp
currT; =15, .
end for
for h =0,h < mazlter,h = h+1 do
if (D1 + currTy < Ds) then /[ ComputeL using the set
of periods from the previous iteration
L =D
else
L = minlY; (currT; 4+ D;)
end if
status = CheckRecordRollback(, L,
bestT, bestObjF, h)
/I The following variables are passed by referenegrT,
bestT and bestObjF
if status = —1 then
return NULL // No feasible solution can be found
else if status = 1 then
break // Solution cannot be improved further
end if
if (D1 + currT; < D3) then
ComputecurrT following Theorem 4
if (h=0) then
break
end if
else
for each ¢; € I') do
T = L— Di
if (r; <0) then// For such a task, set its period to its
desired period
T; = Tio
€; = 0
prevT; =T
end if
end for
currT =
rem 5
end if
end for
return bestT

currT, prevT,

Mod _Task_.compresgI’, L) // Using Theo-

best one so far. Algorithm 3 is used to accomplish this task. |
the constraint in (23) is not satisfied, the heuristic wiltfpem a
period “rollback” (Lines 26—33 in Algorithm 3). Essentiglithe
idea behind a period rollback is to reconsider the currerst be
solution and reduce the corresponding periods by somerfacto



Algorithm 3 CheckRecordRollback(", L, currT, prevT, bestT, has encountered (Lines 23-25 in Algorithm 3). The same ractio

bestObjF', h) is taken by the heuristic when the constraint in (23) is activ
1: objF =0 (Lines 16-18 in Algorithm 3), whereis some small constant. To
2: for each(r; € T') do // Compute objective value handle the case where task periods do not converge to sonde fixe
3 objF = objF + = (Uio — Ci/currT;)? values (or when it may take too long for the solution to cogegr
4: end for the algorithm uses another user-defined parametex]ter, to
5 cns =0 limit the maximum number of iterations.
6: for each(r; € I') do // Compute the right-hand side of the An additional challenge is how to assign the initial valueLof
constraint in (23) to check for feasibility We propose to set the initial value 6fto min®Y | (7;, . +D;). In
7 ens=cns+ (L5 +1) G this way, if the task set is found to be infeasible, then tigedthm
8: end for immediately exits since the task set cannot be made scti#eula
9: if (cns > L) and h = 0 then // No feasible solution found without violating the given period bounds. The followingriema
10:  return -1 serves to support our choice bfas well as the iterative approach.
11: else if (ens < L) and (objF' < bestObsF') then // Best solu- Lemma 7: Let T; for 1 < ¢ < N be a set of periods that
tion seen so far, so keep it satisfy the constraint in (23) and lé&t = Dy if 71 + D1 < D>
12:  bestObjF = objF and L = min®_, (T; + D;) otherwise. Then any set af/ > T;
13: for each(r; € ') do also satisfy the constraint in (23).
14 bestT; = currT; Proof: Given thatT} > Tj, Vi, it follows that L' > L. Let
15:  end for L' = L+ AL whereAL > 0. SinceL andT;, foralli =1,...,N

16: if (e¢ns = L +¢€) then // The schedulability constraint is satisfy the constraint in (23), the following must hold true
active and the task set is feasible so quit

N
17: return 1
L+AL> ( 1) Ci+ AL 47
18 end if z; ' “n
19: for each(r; € T') do // Check whether task periods have o, )
converged to some fixed values Using the fact thad~." 1 70 < 1, we obtain
20: deltaT; = |currT; — prevT,| N LD
21: prevT; = currT; L+ AL > Z ( — g iAL + 1) C; (48)
22:  end for L T
23: if deltaT; < A then. It follows that
24: return 1 // Solution converges N
25.  end if L —
26: else if (ecns > L) then // The current set of periods is z_: ( ) G (49)

infeasible, perform a period rollback
27:  prec = prec — 1 I/ prec is a global variable
28: if (prec < 0) then

|
The above lemma has two significant consequences. First,
if our algorithm cannot find a feasible solution when setting

29: return 1 . . . )
20, end if L(0) = min | (T;, .+ D;), it is not fruitful to continue with
31: for each(r; € T') do the algorithm as any smallgt’s would not satisfy the constraints

: Z prec in (18). Second, even if a set of feasible periods is found, th
82:  currT = bestTi — Tgg - bestT; algorithm can still attempt to improve on the previouslyaibed
33 end for x . ptt b prs y
34: end if periods in the subsequent iterations. For such iterationge set

L(h) = minf (T, , + Dy).

To further improve on the quality of the solutions, we will
run our proposed algorithm twice. In the first run, we set the
initial value of L to be minl¥ (T}, .. + D;) for the reason
order to find an even better solution. In our heuristic, tHbbagk mentioned above. In the second run, the initial valueLofs
process is controlled by a user-defined paramegiesc, which  set to minlY, (7}, ,, + D;). The same heuristic can be used
denotes the starting percentage value for period redutibhe to accomplish this task with some small changes. (Additiona
iterative process will terminate when certain stoppingecion is  checkpoints merely need to be included.) In this way, if ddvet
met (to be discussed later). The solution thus found may 8ot §olution can be found at or near this second valueLpfthe
optimal but it is guaranteed to be schedulable by the EDFeyoli heuristic will be more likely to find it. Finally, the solutiofrom

On the other hand, if the set of periods found in iteration both runs are compared and the better one will be returned.
is feasible and if it is the best one we have seen so far, theThe following theorem states the correctness and complexit
heuristic will keep track of this solution (Line 14 in Algthim 3). of our proposed algorithm.

To improve on the feasible solution, if one has already beenTheorem 6: Consider the period selection problem of a task
discovered, the heuristic will continue until the periodsirid in  set with N periodic tasks whose deadline is less than period as
iterationsh andh + 1 are the same. To determine such a solutiofiprmulated in (28)—(32). If there exists a set of task pesisdch

a user-defined parameteX, is included as a stopping criterion;that the task set is schedulable, then Algorithm 2 will alsvay
if the difference betweer/; found in the current iteration and return a feasible solution. That is, the set of periods retdrby

U; found in the previous iteration is smaller thax for all 4, Algorithm 2 is guaranteed to be schedulable by the EDF pdiicy
the algorithm terminates and returns the best set of peiiodsaddition, the time complexity of Algorithm 2 i9(N?-maxIter).

35: return 0 // Continue improving on solution




Proof: We prove Theorem 6 by first considering the casis particularly useful when designing a system where aertai
where a feasible solution does not exist. In such a case, whanount of work must be done in a specific interval.
Algorithm 2 calls Algorithm 3 on Line 19, Algorithm 3 will retrn Given a range of allowable deadlines, we can redefine our task
—1, and consequently cause Algorithm 2 to return NULL in thenodel as follow. A taskr; is characterized by the following 6-
first iteration. According to Lemma 7, if the task set is irdide  tuple: (C;, D;, Dio, D;,,...,Ti,e;), whereD;o and D; ., is the
whenT; = T;, ., then it cannot be made feasible. Since oulesired and maximum allowable deadlines, and the rest are th
heuristic initialize the current set of periods to Bg,, , for all same as defined in Section II-A. The deadline selection probl
i =1,...,N (Line 11 in Algorithm 2), whenever our heuristiccan be formulated as follows.
returns an empty solution set, it is guaranteed that nobaset

of periods exists. N

Now let consider what happens when a solution exists. In such  min: J(Dy,...,Dy) = Zwi (Dio — D;)? (50)
a case, the first set of feasible periods, musthe, , sincecurrT’; i=1
is initialized toT;, . (Line 11). Additionally, In Algorithm 2, for N N N
the set of periods obtained in iteratiénour heuristic performs a s.t. Z UD; > L Z U; — 1)+ Z (o] (51)
check to see whether the task set is schedulable durindidgera i=1 i=1 i=1
h + 1 (Line 19). When the algorithm terminates, the set of task Dy - D1+ Ty < Do
periods that minimizes the objective functidrstT';, for all : = L= min(T; + D;) : otherwise (52)
1,..., N, is returned. From our heuristic, we can see that the only D;<D; Ni=1,...,N (53)
place wherebestT;’s is updated is on Line 14 of Algorithm 3; e

D; > Djy,Vi=1,...,N (54)

the update takes place when the task set Witth), for all i =

1,...,N, is feasible and if it is the best set of periods that Ooukhere (51) is obtained by movin@i’s in (23) to the left-hand
heuristic has seen so far (i.e., the set of periOdS that nEesn side of the inequa"ty and regrouping the terms.
the Objective value until nOW). In addition, the Valh&ObjF is The above optimization pr0b|em has the same form as the
initialized to 0, which means that the first set of feasible periOdéptimization prob|em in (28)_(32) Sincé cannot be treated
will be recorded agestT’;’s until a better set of feasible periodsas constant, the optimization problem in (50)—(54) belotws
is found. Hence, our heuristic will always return a solufidone the class of nonlinear programs. Hence, we can take the same
exists. In addition, if a solution is returned, then thatusioh is approach as in the last section. Namd[/y,can be treated as a
feasible. constant (in each iteration) and a heuristic can be usedie He

We now examine the time complexity of our heuristic. In [10]problem efficiently. The following theorem describes theiropl
Buttazzo et al. proved that the task compression algorititkest value of D} for the optimization problem in (50)—(54) whein
O(N?) time. Since the changes made to said algorithm dogsa constant.
not affect its complexityMod_Task compress()will also take  Theorem 7: Given the constrained optimization problem as
O(N?) time. In addition, since the modified task compressiogpecified in (50)—(54), for a fixed value df (where L = Dy
algorithm constitutes the most expensive step in the maitofip if p, + 7, < Dy, and L = minf\i A{T; + D;} otherwise) and
controlled by the user-defined parametetxzIter, the worst-case Z?\il U;Djo < Lz?\il (U; = 1) + Z%\Ll C;, let
running time of the proposed heuristicG§ N? - mazIter). ® = = ) =

Finally, with sufficiently smallmaxiter, the time complexity g - Z U73 and

’

makes the proposed algorithm suitable for online periodisté] DD wj
ments. In Section VI, we will provide some guidance on how to g7 Iman
adjust user-defined parametersaklter, A, and prec) based on N N
experimental results. = Z UjDjo + LZ (U —1) + ch
D#Dj 0 j=1 j=1
V. DEADLINE SELECTION FORREAL-TIME TASKS - Z UjDjias-

In real-time systems, task deadlines are usually considere 5= Pimas
fixed parameters. However, there exist situations whereay mA solution, D7, is optimal if and only if
be more suitable to treat the deadline as an adjustable pggam . U, —
while keeping the task period constant. For instance, foneso D;j = Dio — w;S (55)

control tasks, pre-determined sampling periods (e.g, pasiods) _

must be maintained to satisfy the performance requirenent. for & (D;o — D;,,,,) < % <o0.

such a case, it would make more sense to keep the executing Proof: The theorem can be proved by the same argument
interval unchanged while increasing task deadlines jusugh used in proving Theorem 5. ]

so that the task set becomes schedulable. Many controlnsyste The similarity between the solutions to the optimizatioolpr
are quite robust and slightly increasing the deadline ofr@rob lem in (50)—(54) and those to the one in (28)—(32) should be
task will usually not have a significant impact on the perfante apparent. Hence, the heuristic proposed in the last section

of the system. Since we assume that EDF is used to schededsily be modified to solve this problem with the same time
tasks, adjusting task deadlines really means adjustingdsting complexity. Namely, (55) is used instead of (40) and the tiead
priorities. Contrary to period adjustment, changing taskdlines bounds must be checked instead of the period bounds.

allows for the workload to be preserved. In other words, the Interestingly, the idea of deadline selection can be exdnd
amount of required work remains the same. This last observatto treat systems consisting of sporadic tasks. A sporadk it
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a real-time task whose arrival time is not knavpriori, but 600 : :

. . . . . —Task 1 (compress. alg.)
there exists some minimum inter-arrival time between ang tw o Task 1 (theorem 1) T1 =100
instances of such task [23]. Although sporadic tasks ugtaVe | |--Task 2 (compress. alg.) T1=33
hard deadlines, for systems where some delays are acaspiabl * Task 2 (theorem 1)
proposed framework can be used. Specifically, the optioizat f *IZZtggfﬁgféﬁfi) alg.)
problem in (50)—(54) can be straightforwardly applied tguatl ---Task 4 (compress. alg.) T3=1276.4
the deadline of sporadic tasks with a minor change. Thaljis, -  Task 4 (theorem 1)
now denotes the (known) minimum inter-arrival time of a sutic
task, instead of the period of a periodic task as originadifirebd.

An important implication of using the optimization problem
in (50)—(54) for a system with sporadic tasks is that, as lasg

A
o
o

IN
o
&)

T2=174.1

N

o

o
T

number of executed instances
w
o
o

) : . . 100F T1 =100 S T-“ 1
I, >T;, forall: =1,...,N, wherel; is the actual inter-arrival
time of a sporadic task;, the system will remain schedulable ‘ ‘ T4:500 ‘ ‘
using the set of deadlines obtained from solving the opttion 0 0.5 1 ti1n-15e 2 25 3
problem in (50)—(54). Lemma 7 can be straightforwardly sgupl x 10

to validate this claim. Fig. 1. Utilization perturbation example

VI. EXPERIMENTAL RESULTS

In this section, we begin by verifying our claims made iyer time. First of all, the data verifies that the resultsaoted
Section Il with regards to the optimality of the task congsien  from the task compression algorithm and those from Theorem 1
algorithm in [10]. We then compare our simplified sufficient,aich perfectly.
condition_ presented in _Sgct_ion v to the exact formula in)(18 Fyrthermore, it can be seen from the graph that the number
The quality of our heuristic is also discussed. of executed instances of a task is inversely proportionaitso

elastic coefficient. Recall that the weight of a task is theeige
A. Period selection with deadlines equal to periods of its elastic coefficient. Although, 73, and 74 all have the

To demonstrate that the task compression algorithm sohes $2Me computation time, initial period, and period rangejs
optimization problem in (1)—(4), we reuse the task set pfedi determined Fo haye the smallest (e.g., best) sampling gberio
in the experimental results section of [10] (reproducedlyen  P€cause of its weight. On the other hands,has the largest
Table 1). The task compression algorithm was writtenGir, sampling period because it is considered to be of least itapce.
while Mat Lab was used to obtain the results for the constrained
optimization problem in (1)—(4). B. Period selection with deadlines less than or equal to periods
To illustrate the practicality and performance of our hstigi

approach, we present the following comparisons in thisi@ect
First, we compare the simplified sufficient condition in (28}h

TABLE |
TASK SET PARAMETERS USED

[Task [ Ci [ Two | Tio | Tompaw | €i | the original necessary and sufficient condition in (18).ddec we
T | 24 | 100 | 30 500 1 demonstrate the capability of the proposed heuristic byparing
T2 | 24 | 100 | 30 500 ! the number of problems it is able to solve with what can be
7> | 24 | 100 | 30 | 500 | 15 problem with v
74 | 24 | 100 | 30 500 2 solved by an optimization solver for the optimization perhl

in (28)—(32). Third, to assess the performance of the hiuyris

In this experiment, all tasks start at time 0 with an initiatipd we compare the quality of the solutions obtained by using the
of 100 time units and the task set is schedulable under ED&. Tieuristic with that of the optimal solutions.
required minimum utilization of the overall system%Jrg%Jr To perform the aforementioned comparisons, 1000 task sets
2 522;‘6 = 0.192. Since the current utilization isi; + 5 + consisting of 5 tasks each were randomly generated for Oreiit
25+ 15 = 0.96, the task set is schedulable under EDF. Assumailization levels Ujc,e; = 0.1, . .., 0.9) with a total of 9000 task
that, at time 100005, needs to reduce its period to 33 time unitssets in overall. The utilization level is defined to bg.,.;, =
perhaps due to some changes in system dynamics not expmtierE;.V:1 TJC’I ¢ = 0.1,...,0.9. Each task set is made to be
by other tasks. Since the new required minimum utilizatibthe initially unschedulable withr;y = D;, Vi, but at least a feasible
system is24 + 24 + 24 + 2L = 0.871, which is less than 1, schedule can be found by settily = 7;,.., Vi using the
71 will be allowed to change its periods as desired. Howewgr, necessary and sufficient condition in (18). This setup aims t
73, andr, can no longer execute with their initial period, as thigliminate all trivial solutions. In addition to the utilitan level,
would drive the system utilization t§§+%+%+% =1.45. the maximum hyperperiod, minimum period, maximum period,
In other words, To allow forr; to change its period, the periodprecision, and maximum number of tries must also be specified
of tasksms, 73, and 74 must increase for the system to remairin our experiment, we set the maximum hyperperiod, minimum
schedulable. It is worth noting that althoughhas the exact same period, and maximum period to 500,000, 10,000, and 40,000,
parameters as;, we made the assumptions that the system whosespectively. The precision was specified to be 100, whereas
task isTy is not in as critical state as that ef and hence it is the maximum number of tries was set to 10,000. The precision
possible forry to increase its period temporarily. At time 20000denotes the minimum increment in any task period. For exampl
71 goes back to its original period. Figures 1 shows the curwvelat if the precision is set to 100, a task period could be 5200nbut
number of executed instances for each task as its periodjeban5010.
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Fig. 2. Performance of simplified sufficient condition Fig. 3. Heuristic vs. Logo solver

In a nutshell, the following steps were taken to generatesla teoptimization problem by an optimization solver. Our heititis
set. First of all, a set of periods were randomly generatesg:dba was implemented irC++. For the optimization solver, we used
on the minimum period, maximum period, hyperperiod boundl,ogo [30], a nonlinear solver with an interior-point algorithm.
and precision. Task periods are generated in such a wayhbat fin this experimentmaxiter and A in our heuristic were set to
hyperperiod is no larger than the maximum hyperperiod. {Th200 and1 x 10~°, respectively. The precision parametprec,
could take a number of tries.) Each task is randomly assigmedused in period rollback as described in the last section,seaso
execution time such that the total utilization equals theicified 20 (denoting 20% period reductions). We limited the maximum
by the user. No task will have an utilization that is greateant number of iterations allowed blzogo to be 200. We did not
half of the specified total utilization. Then, each task isigreed allow Loqgo to run longer, as, according to [31], it is unlikely
a deadline that ensure th{t:fil g— > 1. As a final step, the that an optimal solution would be found after the #/0@eration.
random task generator tests the schedulability of a tasksiey Figure 3 compares the number of solutions foundLlmgo
the necessary and sufficient condition in (18). If the task sand that found by our heuristic. As before, the x-axis shows
is unschedulable, task deadlines are randomly increaseld sthe different utilization levels, whereas the y-axis shothe
that the new deadline is greater than the previous deadlibe percentage of solutions found. It is clear from the plot ttiet
Zf;l g:j is still greater than 1. This final step is repeated untieuristic is able to find a much larger number of solutiong tha
either a feasible task set has been found or the maximum numbeqo. This is not surprising, as an optimization software dods no
of tries has been reached. guarantee that a solution to a non-linear programming probl

To perform experiments for comparing the simplified suffitie will be found, even if one exists. This is one important adage
condition in (23) with the original condition in (18), we mak of the heuristic; according to Theorem 6, it is guaranteed to
the following observation. We know that the task sets gerdra always return a feasible task set if one exists.
pass the test in (18), provided that we uSe . as the period  The last experiment examines the quality of the solutionsido
for each taskr, for i = 1,..., N. Hence, we only need to testby our heuristic in comparison with that found tqo. For
the condition in (23) in the same fashion. the 9000 task sets (1000 task sets for each utilization )level

Figure 2 compares the condition in (23) to that in (18). Theoqo only solved 1416 task sets. Therefore, we could only
x-axis shows each utilization level and the y-axis indisatee compare the results from the heuristic to these solutidnswubt
percentage of task sets that were found to be feasible by the emphasized, however, that the solutions from the heuisst
condition in (23). (Recall that the percentage of schedaltdsk a superset of those fromogo.
sets using the test in (18) is 100% for each utilization I9vel Figure 4 shows a bar chart depicting the performance of the
As can be seen from the plot, the simplified sufficient conditi proposed heuristic as compared to the optimal solutionsdday
in (23) found that a feasible solution exists for all taskssel.oqo. The x-axis shows the differences in the objective function
with Upeper < 0.3. As expected, said condition becomes morealues (from the heuristic anlogo). The y-axis shows the
pessimistic ad/;.,.; increases. However, it still finds over 50%percentage of the solutions by our heuristic that result givan
of the task set witlv;..,..; Of 0.6 to be feasible. Note that we coulddifference. The first, and most obvious, observation is that
have tested each task set against the existing sufficiemlittwn heuristic is able to find the global optimal solution to ové@®%

(a task set is schedulable Ef\il gi < 1 [23]), but said test of the solutions, ignoring numerical errors. Second, ain3®8%6
will determine all task sets to be infeasible, since the tesk of the solutions found by the heuristic is very close to thebgl
generator returns a task set while guaranteeingﬁlji%it1 gg > 1. optimal ones.

Indirectly, we can conclude that, our modified sufficientdition The above experimental results demonstrate that our Hieuris
is less pessimistic than the existing sufficient condition. performs well enough to be deployed in real applicationg; no

In the second experiment, we compare the percentage oofly has the heuristic found the global or close to globairoak
solutions found by our heuristic, as opposed to solving theolution in many cases, it also guarantees to always retfeasi
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Fig. 4. Comparison of the heuristic ah@qo in terms of objective function
values
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(5]
ble schedule if one exists. In addition, the low time comihjeaf (6]
our heuristic makes it suitable for online use for dynamidqae
adjustments. The experiment also suggests that the maximum
number of iterationsmaxiter, need not be greater than 200 for [7]
the heuristic to find a solution. The user-defined param&tean
be set to be equal to the time granularity used by the operatin
system, since this time granularity is the smallest time thrat
the operating system can handle. Finally, we suggest getttia
period rollback precisiorprec, to some small value in comparison

El

to the value ofmaxiter. It does not make sense to g®Ec to be [10]
a large value (e.g. 50) ifmaxlter is relatively small (e.g. 200),
as the heuristic will then be performing the rollback precés [11]
most of the time.

[12]

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, the following main contributions were maddl3l
First, we introduced a general framework which formulates Ay
trade-off between task set schedulability and a specific per
formance metric (such as task utilization) as an optimirati
problem. Such a framework allows for real-time systems uft°!
der temporal overloads to graciously adapt by adjustingr the
performance level. Second, we proved the optimality of thes]
existing task compression algorithm in [10]. Said algarithllows
for the period selection problem for tasks with deadlinesatq [17]
periods to be solved optimally in an online manner. Third; ou
framework is further generalized to consider situationgrghask
deadlines are less than task periods. In this case, we m@apos [18]
efficient heuristic to solve the problem online while makirsg of
the slightly modified task compression algorithm. Experitaé
results show that our heuristic performs satisfactorilyd an
many cases finds the global optimal solution. Fourth, we igeov 20

. . - [20]
and motivate the use of a framework for solving the deadhr#e
selection problem, which can be applied to some controksyst
with pre-determined sampling time. Last, our flexible fravoek
can be used to solve other problems where the schedulabili%l]

(19]

performance trade-off is central. The framework will perthie [22]
development and comparisons of efficient algorithms.
Since the algorithm presented in Section IV is best-effibrt, 23]

would be interesting to study whether there exists a way lecse o4
the value ofL at every iteration such that the solution found will

12

always be optimal. Finally, as future work, it would be irsting
to explore different classes of objective functions andst@ints
that may be even harder to solve.
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