
1

Generalized Elastic Scheduling for Real-Time Tasks
Thidapat Chantem, Xiaobo Sharon Hu, and M.D. Lemmon

Abstract— The elastic task model is a powerful model for
adapting periodic real-time systems in the presence of uncer-
tainty. This paper generalizes the existing elastic scheduling
approach in several directions. It reveals that the original task
compression algorithm in fact solves a quadratic programming
problem that seeks to minimize the sum of the squared deviation
of a task’s utilization from initial desired utilization. This finding
indicates that the task compression algorithm may be applied to
efficiently solve other similar types of problems that often arise
in real-time applications. In particular, an iterative approach is
proposed to solve the task compression problem for real-time
tasks with deadlines less than respective periods. Furthermore,
the framework is generalized to adjust task deadlines instead of
task periods.

Index Terms— Real-time and embedded systems, Sequencing
and scheduling, Performance of systems

I. I NTRODUCTION

A Desirable property of any real-time system is the guarantee
that it will perform at least beyond some pre-specified

thresholds defined by system designers. This is usually not a
concern under normal situations where analysis has been done
offline to ensure system performance based on the regular work-
load. However, in response to an event such as user’s input or
changing environment, the load of the system may dynamically
change in such a way that a temporal overload condition occurs.
The challenge, then, is to provide some mechanism to guarantee
the minimum performance level under such circumstances.

Many periodic real-time task models have been proposed to
extend timing requirements beyond the hard and soft deadlines
based on the observation that jobs can be dropped without
severely affecting performance ([5], [19]). For example, Ra-
manathan et al. proposed both online [17] and offline [27]
scheduling algorithms that are based on the (m,k) model, which is
analyzed in [18]. In this model, up tok−m consecutive jobs are
allowed to be dropped in any sliding window ofk. Moreover, [32]
presented the Dynamic Window-Constrained Scheduling (DWCS)
algorithm, which is similar except that the windowk is fixed. Due
to their success, these scheduling algorithms have furtherbeen
enhanced. For example, [26] proposed a pattern rotation scheme
to improve schedulability by avoiding some critical instants.
Mok at. al. modified DWCS, which is primarily deadline-based,
by incorporating the concept of pfairness [3] to improve the
success rate for tasks with unit-size execution time [25]. Other
frameworks such as the imprecise computation model [14] and
reward-based model [1] can be used to capture situations where
the quality of service is proportional to the amount of workload
completed.

T. Chantem and X.S. Hu are with the department of Computer Science
& Engineering and M.D. Lemmon is with the department of Electrical
Engineering at the University of Notre Dame, Notre Dame, IN 46556. Emails:
{tchantem, shu, lemmon}@nd.edu.

This work is supported in part by NSF under grant number CNS-0410771.

Despite the success of the abovementioned models in alleviat-
ing overload situations, it is sometimes more suitable to execute
jobs less often instead of dropping them or allocating fewer
cycles. For example, limitations on the throughput capacity of
ad hoc communication networks [2] make it highly desirable to
reduce overall network traffic by having control tasks adaptively
adjust their periods in response to the actual activity level of the
control application.

The work in [21] was among the first to address this type of
requirements. Seto, et al. considered the problem of findinga
feasible set of task periods as a non-linear programming problem
which seeks to optimize a specific form of control performance
measure [28]. In [29], finding all feasible periods of a givenset
of tasks was studied for the Rate Monotone (RM) scheduling
algorithm. Cervin et al. used optimization theory to solve the pe-
riod selection problem online by adaptively adjusting taskperiods
while optimizing a specific form of control performance [12].
Recently, [6] offered an optimal search algorithm that solves the
period selection problem for fixed-priority scheduling schemes.
The algorithm may be applicable only during the design phasedue
to its potentially high complexity. Another interesting framework
was introduced in [20] where task periods are adjusted in response
to varying computation times.

Buttazzo and his colleagues proposed an elegant and flexible
framework known as the elastic task model [9] where deadline
misses are avoided by increasing tasks periods. The work in [11]
extends the basic elastic task model to handle cases where the
computation time is unknown, [10] incorporated a mechanismto
handle resource constraints within the elastic framework,and [8]
provided a means to smoothly adjust task execution rate. In
addition, [15] uses a control performance metric as a cost function
to find an optimal sampling interval for each task.

We will focus our attention on the elastic task model where the
selection of task periods is central. The existing elastic scheduling
algorithm determines task periods based on an elegant analogy
between spring systems and task scheduling in which a task’s
resistance to changing its period is viewed as a spring’s resistance
to being compressed. In accordance with theprinciple of least
action found in classical mechanics, this suggests that the elastic
task model is really attempting to minimize some overall measure
of task set’senergy, whose precise nature was not made clear in
the original work.

Based on our previous findings in [13], this paper generalizes
the existing elastic scheduling approach in several directions.
First, we re-examine the problem of period determination inthe
elastic task model and show that the task compression algorithm
in [10] in fact solves a quadratic programming (QP) problem.
The QP problem seeks to minimize the sum of the squared
deviation of every task’s utilization from its initial utilization.
Identifying the nature of the optimization problem underlying the
task compression algorithm is important in several aspects. For
instance, it may suggest other relevant optimization objectives
and shed light on determining task periods in the presence of

2

uncertainty for other task models.
Second, the proposed framework is extended to cases where

task deadlines are less than task periods. Such task specifications
often arise in control systems to reduce jitter, for example.
Moreover, in some situations, it is desirable that tasks finish
executing sooner, even if their periods are not up. We formulate
the problem of period determination as a constrained optimization
problem and propose a heuristic approach based on the task
compression algorithm in [10] to solve the problem. The heuristic
is guaranteed to find a feasible solution, if one exists. It is
quite efficient and is hence suitable for online period adjustment.
Experimental results show that the heuristic actually findsthe
global optimal solution in many cases.

Finally, the proposed framework is generalized to solve the
deadline selection problem whose objective is to find a set oftask
deadlines such that the task set is feasible. Solving this problem
is useful for systems where the tasks have pre-specified periods
but some delays in task completions are tolerable.

The remainder of the paper is organized as follows. We begin
by reviewing key background materials in Section II. Section III
presents the solutions to the period determination problemfor
tasks with deadlines equal to periods. The optimization approach
is then extended in Section IV to treat the case where task
deadlines are less than task periods. In Section V, we demon-
strate how the proposed framework can be used to solve the
problem of deadline selection. Experimental results are presented
and discussed in Section VI. Finally, the paper concludes with
Section VII.

II. PRELIMINARIES

This section describes the system under consideration as well
as important assumptions pertaining to our task model. We also
briefly review the task compression algorithm used for period
selection [10].

A. Periodic task model

We consider the system where each taskτi is
periodic and is characterized by the following 6-tuple:
(Ci, Di, Ti, Ti0, Timax

, ei), for i = 1, . . . , N , where N is
the number of tasks in the system,Ci is the worst case execution
time of τi, Di is its deadline, andTi is τi’s actual period.
Furthermore,Ti0 denotes the most desirable period ofτi, as
specified by the application, whereasTimax

represents the
maximum period beyond which the system performance is no
longer acceptable. The elastic coefficient,ei, represents the
resistance of taskτi to increasing its period in face of changes.
The smaller the elastic coefficient of a task, the harder it isto
increase that task’s period. Given a task setΓ, tasks are arranged
in a non-decreasing order of deadlines and all start at time 0.

Task deadlines are first assumed to be equal to task periods.
This requirement will be relaxed in Section IV; in that section,
we treat the case where task deadlines are less than task periods.
All task attributes are real values and are assumed to be known
a priori. The current utilization ofτi is Ui = Ci

Ti
. Similarly, the

minimum and the desired utilizations ofτi is Uimin
= Ci

Timax
and

Ui0 = Ci

Ti0
, respectively.

B. Elastic task model

In [10], Buttazzo, et. al. modeled a task system as a spring
system, where increasing or decreasing a task period is analogous
to compressing or decompressing a spring. The elastic coefficient,
ei, introduced above hence has its intuitive meaning of the
hardness of the spring. The purpose of increasing task periods
is to drive the total utilization of the system down to some
desired utilization level,Ud, analogous to a spring system trying
to minimize its energy under an external force.

The attractiveness of the elastic task model is its accompanying
task compression algorithm, which is quite efficient

(
O(N2)

)
and

can readily be used online. (In fact, the elastic task model and
the task compression algorithm have already been implemented
in the S.Ha.R.K. kernel [16].) The task compression algorithm
works as follows. If it is possible to drive the system utilization
down to Ud without violating any period bounds, the algorithm
will return a set of feasible periods(T1, T2, . . . , TN) that can be
used by the system. Tasks whose periods are fixed (ifei = 0 or
Ti0 = Timax

) are considered inelastic and are treated as special
cases. The amount of utilization that each remaining, non-inelastic
task should receive is computed based on its elastic coefficient,
initial period, and the amount of utilization that must be reduced
to achieveUd. The resultant period of a taskτi is guaranteed to
fall somewhere betweenTi0 and Timax

. For completeness, the
task compression algorithm is reproduced in Algorithm 1.

Algorithm 1 TaskCompress(Γ, Ud)

1: U0 =
∑n

i=1
Ci/Ti0

2: Umin =
∑n

i=1
Ci/Timax

3: if (Ud < Umin) then
4: return INFEASIBLE
5: end if
6: repeat
7: Uf = Ev = 0

8: for (each τi) do
9: if ((ei == 0)or (Ti == Timax

)) then
10: Uf = Uf + Ui

11: else
12: Ev = Ev + ei

13: Uv0 = U0 − Uf

14: end if
15: end for
16: ok = 1

17: for (each τi ∈ Γv) do
18: if ((ei > 0)and (Ti < Timax

)) then
19: Ui = Ui0 −

(
Uv0 − Ud + Uf

)
ei/Ev

20: Ti = Ci/Ui

21: if (Ti > Timax
) then

22: Ti = Timax

23: ok = 0

24: end if
25: end if
26: end for
27: until (ok == 0)

28: return FEASIBLE

Throughout this paper, we will assume that the Earliest Dead-
line First (EDF) scheduling algorithm [22] is used. Furthermore,
we will focus our attention on cases where tasks need to decrease
their utilization in response to either internal (e.g., change in

3

sampling rate of one or more tasks in the system) or external
(e.g., network traffic) factors.

III. PERIOD SELECTION FOR THEBASIC TASK MODEL

In this section, we focus on the basic periodic task model where
Di = Ti for task τi, i = 1, . . . , N . During an overload, task
periods may be adjusted in such a way that the task set becomes
schedulable. Given a particular set of real-time tasks, there may
exist numerous sets of feasible periods. It is not difficult to see
that different sets of periods would lead to different performance
of the resultant system. In general, the period selection problem
can be expressed as an optimization problem. That is,

optimize: performance metric
s.t.: tasks are schedulable

period bounds are satisfied

Below we introduce a specific performance metric and discuss
its implications. We assume that task deadlines equal task periods.

Processor utilization by each task is an important measure for
any real-time system. It not only reveals the amount of system
resource dedicated to the task but also impacts schedulability. In
the elastic task model, one consequence of changing task periods
is changing the utilization of tasks. From the stand point of
performance preservation, it is desirable to minimize the changes
in task utilization. This objective can be captured by the following
constrained optimization problem.

min: E(U1, · · · , UN) =

N∑

i=1

wi (Ui0 − Ui)
2 (1)

s.t.:
N∑

i=1

Ui ≤ Ud (2)

Ui ≥ Uimin
for i = 1, 2, · · · , N (3)

Ui ≤ Ui0 for i = 1, 2, · · · , N (4)

In the formulation,N is the number of tasks in the system,
Ui0 is the desired utilization of taskτi and Ui0 ≥ Uimin

, Ui is
the utilization ofτi to be determined, andUd is the desired total
utilization. (Ud is usually set to 1 for EDF scheduling.) Constant
wi (≥ 0) is a weighting factor and reflects the criticality of a task.
More critical tasks would have largerwi’s. The first constraint
simply states the schedulability condition under EDF. The rest
of the constraints bounds the utilization, equivalently bounds the
task period byTi0 andTimax

whereTi0 = Ci/Ui0 andTimax
=

Ci/Uimin
.

It is worth noting that forwi = 0, (1) does not change
regardless of whatUi value is used. To help satisfying (2), it
is natural to simply useUi = Uimin

. Hence, for the rest of the
paper, we will focus on the case wherewi > 0 for all 1 ≤ i ≤ N .

The problem in (1)–(4) belongs to the category of quadratic
programs and can be solved in polynomial time. However, solv-
ing such a problem using a quadratic program solver (such as
Loqo [30]) during runtime can be too costly. What makes the
above formulation attractive is that its solution is exactly the
same as that found by the task compression algorithm in [10].
We introduce a lemma and a theorem to support this argument.

Lemma 1: Given the constrained optimization problem as
specified in (1)–(4) and

∑N

i=1
Ui0 > Ud, any solution,U∗

i , to
the problem must satisfy

∑N

i=1
U∗

i = Ud and U∗
i 6= Ui0, for

i = 1, . . . , N .

Proof: We prove the lemma by utilizing the Karush-Kuhn-
Tucker (KKT) necessary conditions for the solution to the given
problem, which can be written in terms of the Lagrangian function
for the problem as

Ja (U, µ) =

N∑

i=1

wi (Ui0 − Ui)
2 + µ0

(
N∑

i=1

Ui − Ud

)
+

N∑

i=1

µi (Uimin
− Ui) +

N∑

i=1

λi (Ui − Ui0) (5)

whereµ0, µi, andλi are Lagrange multipliers,µ0 ≥ 0, µi ≥ 0,
and λi ≥ 0, for i = 1, . . . , N . The necessary conditions for the
existence of a relative minimum atU∗

i are, for alli = 1, . . . , N ,

0 =
∂Ja

∂U∗
i

= −2wi

(
Ui0 − U∗

i

)
+ µ0 − µi + λi (6)

0 = µ0

(
N∑

i=1

U∗
i − Ud

)
(7)

0 = µi

(
Uimin

− U∗
i

)
(8)

0 = λi

(
U∗

i − Ui0

)
(9)

Assume that (2) is inactive, i.e.,µ0 = 0 and
∑N

i=1
U∗

i < Ud.
Then at least one constraint in (3) or (4) must be active. Suppose
the k-th constraint in (3) is active. That is,U∗

k = Ukmin
and

µk ≥ 0. Then, thek-th constraint in (4) must be inactive, i.e.,
λk = 0. From (6), we obtain

µk = −2wk(Uk0 − Ukmin
) < 0 (10)

which contradicts the assumption thatµk ≥ 0. Therefore, if any
U∗

k = Ukmin
, constraint (2) must be active.

Now assume that some constraint in (4) is active while others
are inactive. SupposeU∗

h = Uh0 (active) andUkmin
< Uk < Uk0

(inactive). Thenµh = 0, λh ≥ 0, andµk = λk = 0. From (6), we
have

µ0 = 2wh(Uh0 − U∗
h) + µh − λh = −λh (11)

µ0 = 2wk(Uk0 − U∗
k) (12)

Note that (11) and (12) cannot be simultaneously satisfied.
Therefore, we can either have all the constraints in (4) be active
or all are inactive. If all the constraints in (4) are active,we have

N∑

i=1

U∗
i =

N∑

i=1

Ui0 > Ud (13)

which contradicts the assumption that the resultant task set is
schedulable. If all the constraints in (4) are inactive, (12) requires
that µ0 > 0, which contradicts the assumption that constraint
(2) is inactive. Therefore, for any solution to the optimization
problem, constraint (2) must be active, i.e.,

∑N

i=1
U∗

i = Ud and
U∗

i 6= Ui0.
Theorem 1: Given the constrained optimization problem as

specified in (1)–(4),
∑N

i=1
Ui0 > Ud, and

∑N

i=1
Uimin

≤ Ud,
let Û =

∑
U∗

i
6=Uimin

Ui0 +
∑

U∗

i
=Uimin

Uimin
. A solution to the

problem,U∗
i , is optimal if and only if

U∗
i = Ui0 −

1
wi

(
Û − Ud

)

∑
U∗

j
6=Ujmin

(1/wj)
(14)

for Û > Ud andU∗
i > Uimin

, andU∗
i = Uimin

otherwise.

4

Proof: Consider the KKT conditions given in (6)–(9). From
Lemma 1, we know that any solution to the given optimization
problem must satisfy (2), i.e.,Ud =

∑N

i=1
U∗

i , and U∗
i 6= Ui0.

Hence, we only need to consider the case whereλi = 0, for all
i = 1, . . . , N . Suppose that thek-th constraint in (3) is active. We
haveU∗

k = Ukmin
, and

µk = µ0 − 2wk

(
Uk0 − Ukmin

)
, (15)

Otherwise, we haveµk = 0. By summing up (6) for alli and
using the conclusions above,

µ0 =
2
(
Û − Ud

)

∑
U∗

i
6=Uimin

(1/wi)
. (16)

As long asÛ > Ud, µ0 > 0, µi ≥ 0, and constraints in (4) are
satisfied. Therefore, a solution,U∗

i , to the optimization problem
either satisfiesU∗

i = Uimin
or can be obtained by combining (16)

with (6) for U∗
i > Uimin

. (Note thatµi = 0 whenU∗
i > Uimin

.)
That is,

U∗
i = Ui0 −

1
wi

(
Û − Ud

)

∑
U∗

j
6=Ujmin

(1/wj)
(17)

Additionally, since the objective function and the inequality
constraints in (1)–(4) are convex, the necessary conditions for
optimality provided by the KKT conditions also become the
sufficient conditions for optimality [24]. Hence, the solution found
in Theorem 1 is a global minimum.

Corollary 1: Consider a set ofN tasks whereUi is the utiliza-
tion of the ith task. LetUi0 denote the initial desired utilization
of task τi and let ei = 1

wi
> 0 be a set of elastic coefficients

for i = 1, . . . , N . Let Ud be the desired utilization level and∑N

i=1
Ui0 > Ud. The task utilizationsUi, for i = 1, . . . , N

obtained from the task compression algorithm in [10] minimize

E(U1, . . . , UN) =

N∑

i=1

1

ei
(Ui0 − Ui)

2

subject to the inequality constraints
∑N

i=1
Ui ≤ Ud, Ui ≥ Uimin

,
andUi ≤ Ui0, for i = 1, . . . , N .

The above corollary has several significant consequences. First,
it reveals the optimization criterion inherent in the task compres-
sion algorithm. Second, it provides guidance on the selection
of other performance measures . Third, the task compression
algorithm may be modified and/or extended to solve similar
convex programming problems. An example of this extension will
be described in the next section.

IV. PERIOD SELECTION WITH ADDITIONAL DEADLINE

CONSTRAINTS

In this section, we consider the case where task deadlines are
less than task periods. This more general model is useful in
situations where it is desirable for a task to finish executing early
(before its period ends). By using the optimization framework
introduced in Section III, we again formulate the period selection
problem as a constrained optimization problem and propose a
novel heuristic based on the task compression algorithm. The
algorithm is guaranteed to find a solution to the problem, if one
exists, and is efficient enough for online use.

A. Simplify feasibility condition

Baruah et al. considered the case where task deadlines are less
than or equal to task periods and derived a sufficient and necessary
condition for EDF schedulability [4], which is later improved
in [7]. The condition is restated in the following theorem.

Theorem 2: [4] Given a periodic task set withDi ≤ Ti, the
task set is schedulable if and only if the following constraint is
satisfied∀L ∈ {kTi + Di ≤ min(Bp, H)} andk ∈ N (the set of
natural numbers including 0), whereBp andH denote the busy
period and hyperperiod, respectively,

L ≥

N∑

i=1

(⌊
L − Di

Ti

⌋
+ 1
)

Ci (18)

Based on Theorem 2, the period determination problem can be
formulated as follows:

min: E(U1, · · · , UN) =

N∑

i=1

wi (Ui0 − Ui)
2 (19)

s.t.: L ≥

N∑

i=1

(⌊
L − Di

Ti

⌋
+ 1
)

Ci

L ∈ {kTi + Di ≤ min(Bp, H)} , k ∈ N (20)

Ui ≥ Uimin
for i = 1, 2, · · · , N (21)

Ui ≤ Ui0 for i = 1, 2, · · · , N (22)

Solving the above constrained optimization problem can be
extremely time consuming. Hence, we investigate solving the
problem approximately with an efficient algorithm below. An
approximate solution is both acceptable and preferred, as arapid
response allows the system to degrade gracefully instead of
entering into potentially catastrophic states due to some dynamic
perturbations.

Since verifying the constraint in (18) for allL values is the
main source of high complexity, we consider simplifying the
schedulability test by using the following stronger schedulability
condition,

L ≥

N∑

i=1

(
L − Di

Ti
+ 1
)

Ci (23)

It is not difficult to see that if the inequality in (23) is satisfied then
the original inequality in (18) must also be satisfied. What makes
(23) an excellent candidate for online use is that the schedulability
of a task set can be determined based on a singleL value,L∗.
Below, we introduce several lemmas and a theorem to support
this claim.

For simplicity, we denote the set of all possible values ofL by
a distinct ordered setL = {L0, L1, . . .} whereLj = kTi+Di, k ∈
N andLj ≤ min(Bp, H).

Lemma 2: Given a setΓ of N tasks withDi ≤ Ti, let Lj and
Lj+1 ∈ L and letLj < Lj+1. If the constraint in (23) is satisfied
for Lj , then it is satisfied forLj+1.

Proof: By regrouping the terms in (23), we can rewrite the
inequality as follows.

L ≥

∑N

i=1
Ci −

∑N

i=1
UiDi

1 −
∑N

i=1
Ui

(24)

Given thatLj satisfies the constraint in (24) andLj+1 > Lj , it
immediately follows thatLj+1 satisfies the constraint in (24).

Based on the above lemma, we can conclude that if the
constraint in (23) is satisfied forLj , then it is also satisfied for

5

all Lk ∈ L, whereLk > Lj . It may then seem natural to simply
setL∗ to be the minimum of allL values inL. However, such a
choice can be extremely pessimistic, often resulting in finding no
feasible solutions to the problem. To avoid being too pessimistic,
we introduce the next lemma, which identifies useful necessary
conditions for any feasible task set. The lemma helps to eliminate
pessimistic choices ofL∗.

Lemma 3: Let Di be the deadline of taskτi in a given task set
Γ, i = 1, . . . , N . Assume thatτi ∈ Γ starts at time 0. Further, let
the tasks inΓ be ordered in a non-decreasing order of deadlines
and suppose thatDmin is unique. Regardless of the choices of
periods, any task set that is schedulable must satisfy the following
property:

j∑

i=1

Ci ≤ Dj , ∀j = 1, . . . , N (25)

Proof: We prove Lemma 3 by contradiction. Suppose the
task set is schedulable and

∑j

i=1
Ci > Dj for somej. By time

Dj , at least one instance ofτ1, . . . , τj must each finish executing.
Thus, The total processor demand atDj is at least

∑j

i=1
Ci time

units. However, since there are onlyDj time units available and∑j

i=1
Ci > Dj , at least one instance ofτ1, . . . , τj has to miss

its deadline. This contradicts the assumption that the taskset is
schedulable. Hence, (25) must be true for allj = 1, . . . , N .

We are now ready to introduce two lemmas which form the
basis for our selection ofL∗.

Lemma 4: Consider a setΓ of N tasks that satisfy the condition
in Lemma 3. Let the tasks inΓ be sorted in a non-decreasing
order of deadlines. IfD1 + T1 ≤ D2, andL∗ = D2 satisfies the
inequality constraint in (23), then the task set is guaranteed to be
schedulable.

Proof: Let Lh = L∗ = D2. By Lemma 2, anyLj ∈ L
with j > h satisfies constraint in (23) and hence satisfies (18).
Now considerj < h. SinceDi ≥ D2 for i > 2, Lj can only
be equal toD1 + kT1 (since the task set must satisfy Lemma 3)
for somek ∈ N . In order for Lj to satisfy (18), noting that
|D1 +kT1−Di| < Ti for i ≥ 2, we needD1 +kT1 ≥ (k+1) ·C1,
which holds true according to Lemma 3. Therefore, for all values
of L ∈ L, (18) is satisfied.

Lemma 5: Consider a setΓ of N tasks that satisfy the condition
in Lemma 3. Let the tasks inΓ be sorted in a non-decreasing order
of deadlines. IfD1+T1 > D2, andL∗ = minN

i=1(Ti+Di) satisfies
the inequality constraint in (23), then the task set is guaranteed
to be schedulable.

Proof: Let Lh = L∗ = minN
i=1 (Ti + Di). By Lemma 2,

any Lj ∈ L with j > h satisfies constraint in (23) and hence
satisfies (18). Now considerj < h. Lj can only be equal toDk,
k = 1, . . . , N , such thatDk < Lh. In order forLj to satisfy (18),
we need

∑j

i=1
Ci ≤ Dj , which holds true according to Lemma 3.

Therefore, for all values ofL ∈ L, (18) is satisfied.
From Lemmas 3–5, we can conclude that given an arbitrary task

setΓ of N tasks, a maximum number ofN + 1 checks need to
be performed to test the schedulability of that task set. Namely,
at mostN checks must be performed to determine whetherΓ

satisfies Lemma 3 and one check must be performed to determine
whether either Lemmas 4 or 5 is satisfied. We collect these
conclusions in the following theorem.

Theorem 3: Consider a setΓ of N tasks that satisfy the
condition in Lemma 3. Let the tasks inΓ be sorted in a non-
decreasing order of deadlines. A given task set is schedulable

if

L∗ ≥

N∑

i=1

(
L∗ − Di

Ti
+ 1

)
Ci (26)

where

L∗ =

{
D2 : D1 + T1 ≤ D2

minN
i=1 (Ti + Di) : otherwise

Proof: From Lemmas 4 and 5, we know that the onlyL

that needs to be checked against the constraint in (23) isD2 if
D1 + kT1 ≤ D2, k = 0, 1, . . ., andminN

i=1(Ti + Di) otherwise.
Moreover, we have proved in Lemma 2 that if (23) is satisfied
for someLj then it is also satisfied forLj+1 whereLj < Lj+1.
This, in turns, implies that if (23) is satisfied forLj then it is
also satisfied for allLk ∈ L, whereLk > Lj . Taken together,
if the constraint in (23) is satisfied forL∗ then the task set is
schedulable.

The above theorem paves the way to finding a simpler con-
strained optimization problem for the purpose of period de-
termination. We present the actual problem formulation in the
following subsection.

B. Minimize utilization perturbation with deadline constraints

By using Theorem 3, we can express the period selection
problem where task deadlines are less than task periods as
a constrained optimization problem similar to that in (1)–(4).
Letting ri = L − Di, (23) can be rewritten as

N∑

i=1

riUi ≤ L −

N∑

i=1

Ci. (27)

Then the period determination problem where task deadlinesare
less than task periods can be formulated as

min: E(U1, · · · , UN) =

N∑

i=1

wi (Ui0 − Ui)
2 (28)

s.t.:
N∑

i=1

riUi ≤ L −

N∑

i=1

Ci (29)

L =

{
D2 : D1 + C1

U1
≤ D2

min(Ci

Ui
+ Di) : otherwise

(30)

Ui ≥ Uimin
for i = 1, 2, · · · , N (31)

Ui ≤ Ui0 for i = 1, 2, · · · , N (32)

Note that the above constrained optimization problem wouldhave
exactly the same format as the QP problem in (1)–(4) ifL andri

can be treated as constants. Unfortunately, this is not the case, as
the actual value ofL is dependent on variableUi. Consequently,
the above optimization problem must be treated as a nonlinear
program which can be too costly to solve in terms of both
processor time and memory usage.

The challenge, then, is to solve the problem efficiently so as
to allow the system to respond to dynamic changes in a timely
manner. We propose using an iterative heuristic based on thetask
compression algorithm to tackle the challenge. The main idea
of our heuristic is as follows. Suppose at iterationh, a set of
periodsTi(h) is found by solving the optimization problem in
(28)–(32). In iterationh+1, we compute the value ofL based on
Theorem 3 usingTi(h). A check is then performed to see whether
the constraint in (23) is satisfied. If this is the case and ifTi(h)

6

also minimizes the objective function till now, then the algorithm
keepsTi(h) as the current best solution to the problem. Otherwise,
if the constraint in (23) is not satisfied, we modify the periods
found in iterationh in some manner and use them as the periods
found in iterationh + 1. This process is repeated in an attempt
to find the best set of periods that the heuristic can offer. Below,
we introduce a lemma and a couple of theorems to show how
the optimization problem in (28)–(32) can be optimally solved
for a fixed value ofL. We then give the details of our heuristic
algorithm and discuss the solution quality.

Lemma 6: Given the constrained optimization problem as
specified in (28)–(32) and

∑N

i=1
riUi0 > L −

∑N

i=1
Ci, any

solution, U∗
i , to the problem must satisfy

∑N

i=1
riUi = L −∑N

i=1
Ci.

We skip the proof for Lemma 6 since it can be proved
using the same technique as in Lemma 1. As Lemma 6 states
that the constraint in (29) must be active, we consider solving
the optimization problem in (28)–(32) whenD1 + C1

U1
≤ D2.

According to Lemma 4, we only need to checkL∗ = D2 for
schedulability, which indeed leads to a constantL value in (29).
It follows that we can solve the optimization problem efficiently
by using the following theorem.

Theorem 4: Given the constrained optimization problem as
specified in (28)–(32), forL = D2,

∑N

i=1
riUi0 > L−

∑N

i=1
Ci,

andU1min
≤ U∗

1 < U10, a solution,U∗
i , is optimal if and only if

U∗
i =

{
D2−

∑
N

j=1
Cj−
∑

N

j=3
rjUj0

D2−D1
: i = 1

Ui0 : otherwise

for D2 >
∑N

j=1
Cj +

∑N

j=3
rjUj0.

Proof: Let Ld = L−
∑N

i=1
Ci. The KKT conditions for the

solution to the optimization problem in (28)–(32) can be written
as follows:

0 = −2wi

(
Ui0 − U∗

i

)
+ riµ0 − µi + λi (33)

0 = µ0




N∑

j=1

rjU
∗
j − Ld



 (34)

0 = µi

(
Uimin

− U∗
i

)
(35)

0 = λi

(
U∗

i − Ui0

)
(36)

for i = 1, · · · , N , whereµ0, µi’s andλi’s are Lagrange multipli-
ers,µ0 ≥ 0, µi ≥ 0, andλi ≥ 0 for i = 1, · · · , N .

Consider first those tasks withDk = D2. Thenrk = L−Dk =

0. Now (33) reduces to

µk − λk = −2wk

(
Uk0 − U∗

k

)
(37)

Assume thatUkmin
< U∗

k < Uk0. In order to satisfy (35) and
(36), we must haveµk = λk = 0, which contradicts (37). Now
assume thatU∗

k = Ukmin
. Then to satisfy (36), we needλk = 0.

However, this leads toµk < 0 from (37), which violates the KKT
conditions. Therefore, for those tasks withDk = D2, U∗

k = Uk0.
(It can be readily proved that such a solution indeed satisfies the
KKT conditions.)

Similarly, consider next those tasks withDh > D2. Then,rh =

L − Dh < 0. Now (33) becomes

−2wh

(
Uh0 − U∗

h

)
= µh − λh − rhµ0 (38)

In order to satisfy (35) and (36), we must haveµh = λh = 0,
which will cause (38) to become

−2wh(Uh0 − U∗
h) = Dh − D2. (39)

This is clearly a contradiction, sinceDh > D2 andUh0−U∗
h ≥ 0.

Now, assume thatU∗
h = Uhmin

. Then, to satisfy (36), we need
λh = 0. However, this leads toµh < 0 in (38), which violates
the KKT conditions. Therefore, for any task withDh > D2,
U∗

h = Uh0.
For i = 1, we first note thatλ1 must be equal to0, since

U∗
i = Ui0, for i = 2, . . . , N , and

∑N

i=1
riUi0 > L −

∑N

i=1
Ci.

By replacingU∗
i = Ui0 for i ≥ 2 in (32), we obtain the value of

U∗
1 exactly as defined in Theorem 4. Moreover, ifU∗

1 ≥ Uimin

then µ1 ≥ 0. Otherwise, ifU∗
1 < Uimin

, then the task set is
infeasible andµ1 = 0. In any case,µ1 ≥ 0.

We have shown that the values ofU∗
i as defined in Theorem 4

satisfy the KKT conditions and form a feasible solution to the
problem under consideration. Since the constrained optimization
problem is convex, it follows that this feasible solution isalso an
optimal one [24].

Theorem 4 immediately leads to an efficient algorithm to solve
the optimization problem in (28)–(32) whenD1 + T1 ≤ D2. Let
us next consider the case whereD1 + T1 > D2. According to
Lemma 5, one needs to check whetherL∗ = minN

i=1 (Ti + Di)

satisfies (23) to determine feasibility. The following theorem
forms the basis for solving the optimization problem in (28)–(32)
whenD1 + T1 ≤ D2.

Theorem 5: Given the constrained optimization problem as
specified in (28)–(32), for a fixed value ofL (where L =

minN
i=1{

Ci

Ui
+ Di}) and

∑N

i=1
riUi0 > L −

∑N

i=1
Ci, let

R =
∑

U∗

j
6=Ujmin

r2
j

wj
−

∑

U∗

j
=Uj0

r2
j

wj

V =
∑

U∗

j
6=Ujmin

rjUj0 − (L −

N∑

i=1

Cj) +
∑

U∗

j
=Ujmin

rjUj .

If a solution,U∗
i , is optimal then

U∗
i = Ui0 −

ri

wiR
· V (40)

for ri > 0 and 0 ≤ V
R ≤ wi

ri
(Ui0 − Uimin

), andU∗
i = Ui0 for

ri ≤ 0.
Proof: According to Lemma 6, the constraint in (29) must

be active. In other words, any solution to the given optimization
problem must satisfyLd = L −

∑N

i=1
Ci =

∑N

i=1
riUi. We

considerrk ≤ 0 andrk > 0 separately.
Case 1(rk ≤ 0): Consider the KKT conditions given in (33)–

(36). Assume that both constraints in (31) and (32) are inactive
(i.e., Uk0 < U∗

k < Ukmin
, µk = λk = 0). Then, (33) becomes

2wk(Uk0 − U∗
k) = rkµ0. (41)

However, sinceU∗
k < Uk0, rk ≤ 0, and µ0 ≥ 0, the above

equation cannot hold. Therefore, for any solutionU∗
k , either the

constraint in (31) or (32) must be active.
Let us first assume thatµk > 0 but λk = 0. Then (33) gives

2wk(Uk0 − U∗
k) + µk = rkµ0, (42)

which contradicts the assumption thatµk > 0. Consequently,
U∗

k = Uk0 for rk ≤ 0.

7

Case 2(rk > 0): Suppose that thek-th constraint in (31) is
active. That is,U∗

k = Ukmin
, µk > 0, and λk = 0. Then, from

(33),
µk = rkµ0 − 2wk(Uk0 − Ukmin

). (43)

If the constraint in (31) is inactive, thenµk = 0. Similarly, if the
h-th constraint in (32) is active, thenU∗

h = Uh0, λh > 0, µh = 0

and
λh = −rhµ0 (44)

andλh = 0 if the constraint in (32) is inactive. Multiplying (33)
by ri, summing it up for alli, and using the conclusions above,
we have

µ0 =
2V

R
(45)

By combining (45) with (33), we get

U∗
i = Ui0 −

riV

wiR
(46)

To enforce the condition ofUimin
≤ U∗

i ≤ Ui0, V
R must satisfy

wi

ri
(Ui0 − Uimin

). Summarizing Case 1 and Case 2, we have that
a solution to the optimization problem either satisfiesU∗

i = Ui0

for ri ≤ 0 or U∗
i = Ui0 − riV

wiR
, for ri > 0 and 0 ≤ V

R ≤
wi

ri
(Ui0 − Uimin

).
Theorems 4 and 5 show how an optimal set of task periods

can be determined given a fixed value ofL. We now explain our
heuristic in more details.

C. Our heuristic

A summary of the heuristic is given in Algorithms 2 and 3.
Algorithm 2 shows the main procedure and Algorithm 3 is called
by Algorithm 2 to perform a specific set of functions as will be
explained below.

We will first describe the main procedure (Algorithm 2). In
each iterationh, we fix the value ofL as eitherL(h) = D2 if
T1(h−1)+D1 ≤ D2 or L(h) = minN

i=1(Ti(h−1)+Di) otherwise
(Lines 14–18). For any taskτi whose ri = L(h) − Di ≤ 0,
its period is immediately set toTi0 (Lines 32–37). For any
task τi whoseri > 0, its utilization, Ui(h), can be determined
using Theorem 4 (Line 26) or Theorem 5 (Line 39), respectively.
If L(h) = D2 and h = 0, our heuristic will only require
one iteration to find an optimal solution and exit immediately,
since the solution set will remain unchanged in subsequent
iterations. In the case ofL(h) = minN

i=1(Ti(h − 1) + Di), Ui is
obtained by using a slightly modified task compression algorithm
Mod Task Compress() (Line 39). The following modifications
were made to the original task compression algorithm: (i) the
inputs to the task compression algorithm are task setΓ and
L(h), instead ofΓ and Ud, and (ii) the equationUi = Ui0 −(
Uv0 − Ud + Uf

)
Ei/Ev in the original algorithm is replaced by

(40). For the case whereL(h) = D2, Theorem 4 is applied
straightforwardly.

As described in the last section, during iterationh + 1, our
heuristic will perform a check to determine whether the set of
periods found in iterationh is feasible and if the solution is the
best one so far. Algorithm 3 is used to accomplish this task. If
the constraint in (23) is not satisfied, the heuristic will perform a
period “rollback” (Lines 26–33 in Algorithm 3). Essentially, the
idea behind a period rollback is to reconsider the current best
solution and reduce the corresponding periods by some factor in

Algorithm 2 TaskCompressDeadline(Γ, maxIter)
1: sumC = 0

2: for each(τi ∈ Γ) do
3: sumC = sumC + Ci

4: if (sumC > Di) then
5: return NULL // By Lemma 3, no feasible solution

exists
6: end if
7: end for
8: bestObjF = ∞
9: for each(τi ∈ Γ) do // Initialize some variables

10: prevT i = Ti0

11: currT i = Timax

12: end for
13: for h = 0, h < maxIter , h = h + 1 do
14: if (D1 + currT1 ≤ D2) then // ComputeL using the set

of periods from the previous iteration
15: L = D2

16: else
17: L = minN

i=1(currT i + Di)

18: end if
19: status = CheckRecordRollback(Γ, L, currT , prevT ,

bestT , bestObjF , h)
// The following variables are passed by reference:currT ,
bestT andbestObjF

20: if status = −1 then
21: return NULL // No feasible solution can be found
22: else if status = 1 then
23: break // Solution cannot be improved further
24: end if
25: if (D1 + currT1 ≤ D2) then
26: ComputecurrT following Theorem 4
27: if (h = 0) then
28: break
29: end if
30: else
31: for each (τi ∈ Γ) do
32: ri = L − Di

33: if (ri ≤ 0) then // For such a task, set its period to its
desired period

34: Ti = Ti0

35: ei = 0

36: prevT i = Ti0

37: end if
38: end for
39: currT = Mod Task compress(Γ, L) // Using Theo-

rem 5
40: end if
41: end for
42: return bestT

8

Algorithm 3 CheckRecordRollback(Γ, L, currT , prevT , bestT ,
bestObjF , h)

1: objF = 0

2: for each(τi ∈ Γ) do // Compute objective value
3: objF = objF + 1

ei
(Ui0 − Ci/currT i)

2

4: end for
5: cns = 0

6: for each(τi ∈ Γ) do // Compute the right-hand side of the
constraint in (23) to check for feasibility

7: cns = cns +
(

L−Di

currT i
+ 1
)

Ci

8: end for
9: if (cns > L) and h = 0 then // No feasible solution found

10: return -1
11: else if (cns ≤ L) and (objF < bestObjF) then // Best solu-

tion seen so far, so keep it
12: bestObjF = objF

13: for each(τi ∈ Γ) do
14: bestT i = currT i

15: end for
16: if (cns = L + ǫ) then // The schedulability constraint is

active and the task set is feasible so quit
17: return 1
18: end if
19: for each(τi ∈ Γ) do // Check whether task periods have

converged to some fixed values
20: deltaTi = |currT i − prevT i|
21: prevT i = currT i

22: end for
23: if deltaTi ≤ ∆ then
24: return 1 // Solution converges
25: end if
26: else if (cns > L) then // The current set of periods is

infeasible, perform a period rollback
27: prec = prec − 1 // prec is a global variable
28: if (prec < 0) then
29: return 1
30: end if
31: for each(τi ∈ Γ) do
32: currT i = bestT i −

prec
100

· bestT i

33: end for
34: end if
35: return 0 // Continue improving on solution

order to find an even better solution. In our heuristic, the rollback
process is controlled by a user-defined parameter,prec, which
denotes the starting percentage value for period reductions. The
iterative process will terminate when certain stopping criterion is
met (to be discussed later). The solution thus found may not be
optimal but it is guaranteed to be schedulable by the EDF policy.

On the other hand, if the set of periods found in iterationh

is feasible and if it is the best one we have seen so far, the
heuristic will keep track of this solution (Line 14 in Algorithm 3).
To improve on the feasible solution, if one has already been
discovered, the heuristic will continue until the periods found in
iterationsh andh+1 are the same. To determine such a solution,
a user-defined parameter,∆, is included as a stopping criterion;
if the difference betweenUi found in the current iteration and
Ui found in the previous iteration is smaller than∆ for all i,
the algorithm terminates and returns the best set of periodsit

has encountered (Lines 23–25 in Algorithm 3). The same action
is taken by the heuristic when the constraint in (23) is active
(Lines 16–18 in Algorithm 3), whereǫ is some small constant. To
handle the case where task periods do not converge to some fixed
values (or when it may take too long for the solution to converge),
the algorithm uses another user-defined parameter,maxIter, to
limit the maximum number of iterations.

An additional challenge is how to assign the initial value ofL.
We propose to set the initial value ofL to minN

i=1(Timax
+Di). In

this way, if the task set is found to be infeasible, then the algorithm
immediately exits since the task set cannot be made schedulable
without violating the given period bounds. The following lemma
serves to support our choice ofL as well as the iterative approach.

Lemma 7: Let Ti for 1 ≤ i ≤ N be a set of periods that
satisfy the constraint in (23) and letL = D2 if T1 + D1 ≤ D2

and L = minN
i=1 (Ti + Di) otherwise. Then any set ofT ′

i ≥ Ti

also satisfy the constraint in (23).
Proof: Given thatT ′

i ≥ Ti, ∀i, it follows that L′ ≥ L. Let
L′ = L+∆L where∆L ≥ 0. SinceL andTi, for all i = 1, . . . , N

satisfy the constraint in (23), the following must hold true.

L + ∆L ≥

N∑

i=1

(
L − Di

Ti
+ 1
)

Ci + ∆L (47)

Using the fact that
∑N

i=1

Ci

Ti
≤ 1, we obtain

L + ∆L ≥

N∑

i=1

(
L − Di

Ti
+

1

Ti
∆L + 1

)
Ci (48)

It follows that

L′ ≥

N∑

i=1

(
L′ − Di

Ti
+ 1

)
Ci (49)

The above lemma has two significant consequences. First,
if our algorithm cannot find a feasible solution when setting
L(0) = minN

i=1(Timax
+ Di), it is not fruitful to continue with

the algorithm as any smallerTi’s would not satisfy the constraints
in (18). Second, even if a set of feasible periods is found, the
algorithm can still attempt to improve on the previously obtained
periods in the subsequent iterations. For such iterationsh, we set
L(h) = minN

i=1(Tih−1
+ Di).

To further improve on the quality of the solutions, we will
run our proposed algorithm twice. In the first run, we set the
initial value of L to be minN

i=1(Timax
+ Di) for the reason

mentioned above. In the second run, the initial value ofL is
set to minN

i=1(Timin
+ Di). The same heuristic can be used

to accomplish this task with some small changes. (Additional
checkpoints merely need to be included.) In this way, if a better
solution can be found at or near this second value ofL, the
heuristic will be more likely to find it. Finally, the solution from
both runs are compared and the better one will be returned.

The following theorem states the correctness and complexity
of our proposed algorithm.

Theorem 6: Consider the period selection problem of a task
set with N periodic tasks whose deadline is less than period as
formulated in (28)–(32). If there exists a set of task periods such
that the task set is schedulable, then Algorithm 2 will always
return a feasible solution. That is, the set of periods returned by
Algorithm 2 is guaranteed to be schedulable by the EDF policy. In
addition, the time complexity of Algorithm 2 isO(N2·maxIter).

9

Proof: We prove Theorem 6 by first considering the case
where a feasible solution does not exist. In such a case, when
Algorithm 2 calls Algorithm 3 on Line 19, Algorithm 3 will return
−1, and consequently cause Algorithm 2 to return NULL in the
first iteration. According to Lemma 7, if the task set is infeasible
when Ti = Timax

, then it cannot be made feasible. Since our
heuristic initialize the current set of periods to beTimax

, for all
i = 1, . . . , N (Line 11 in Algorithm 2), whenever our heuristic
returns an empty solution set, it is guaranteed that no feasible set
of periods exists.

Now let consider what happens when a solution exists. In such
a case, the first set of feasible periods, must beTimax

, sincecurrT i

is initialized toTimax
(Line 11). Additionally, In Algorithm 2, for

the set of periods obtained in iterationh, our heuristic performs a
check to see whether the task set is schedulable during iteration
h + 1 (Line 19). When the algorithm terminates, the set of task
periods that minimizes the objective function,bestT i, for all i =

1, . . . , N , is returned. From our heuristic, we can see that the only
place wherebestT i’s is updated is on Line 14 of Algorithm 3;
the update takes place when the task set withTi(h), for all i =

1, . . . , N , is feasible and if it is the best set of periods that our
heuristic has seen so far (i.e., the set of periods that minimizes
the objective value until now). In addition, the valuebestObjF is
initialized to∞, which means that the first set of feasible periods
will be recorded asbestT i’s until a better set of feasible periods
is found. Hence, our heuristic will always return a solution, if one
exists. In addition, if a solution is returned, then that solution is
feasible.

We now examine the time complexity of our heuristic. In [10],
Buttazzo et al. proved that the task compression algorithm takes
O(N2) time. Since the changes made to said algorithm does
not affect its complexity,Mod Task compress()will also take
O(N2) time. In addition, since the modified task compression
algorithm constitutes the most expensive step in the main for-loop
controlled by the user-defined parametermaxIter, the worst-case
running time of the proposed heuristic isO(N2 · maxIter).

Finally, with sufficiently smallmaxIter, the time complexity
makes the proposed algorithm suitable for online period adjust-
ments. In Section VI, we will provide some guidance on how to
adjust user-defined parameters (maxIter, ∆, and prec) based on
experimental results.

V. DEADLINE SELECTION FORREAL-TIME TASKS

In real-time systems, task deadlines are usually considered
fixed parameters. However, there exist situations where it may
be more suitable to treat the deadline as an adjustable parameter
while keeping the task period constant. For instance, for some
control tasks, pre-determined sampling periods (e.g, taskperiods)
must be maintained to satisfy the performance requirement.In
such a case, it would make more sense to keep the executing
interval unchanged while increasing task deadlines just enough
so that the task set becomes schedulable. Many control systems
are quite robust and slightly increasing the deadline of a control
task will usually not have a significant impact on the performance
of the system. Since we assume that EDF is used to schedule
tasks, adjusting task deadlines really means adjusting scheduling
priorities. Contrary to period adjustment, changing task deadlines
allows for the workload to be preserved. In other words, the
amount of required work remains the same. This last observation

is particularly useful when designing a system where certain
amount of work must be done in a specific interval.

Given a range of allowable deadlines, we can redefine our task
model as follow. A taskτi is characterized by the following 6-
tuple: (Ci, Di, Di0, Dimax

, Ti, ei), whereDi0 and Dimax
is the

desired and maximum allowable deadlines, and the rest are the
same as defined in Section II-A. The deadline selection problem
can be formulated as follows.

min: J(D1, . . . , DN) =

N∑

i=1

wi (Di0 − Di)
2 (50)

s.t.:
N∑

i=1

UiDi ≥ L

N∑

i=1

(Ui − 1) +

N∑

i=1

Ci (51)

L =

{
D2 : D1 + T1 ≤ D2

min(Ti + Di) : otherwise
(52)

Di ≤ Dimax
, ∀i = 1, . . . , N (53)

Di ≥ Di0, ∀i = 1, . . . , N (54)

where (51) is obtained by movingDi’s in (23) to the left-hand
side of the inequality and regrouping the terms.

The above optimization problem has the same form as the
optimization problem in (28)–(32). SinceL cannot be treated
as constant, the optimization problem in (50)–(54) belongsto
the class of nonlinear programs. Hence, we can take the same
approach as in the last section. Namely,L can be treated as a
constant (in each iteration) and a heuristic can be used to solve the
problem efficiently. The following theorem describes the optimal
value of D∗

i for the optimization problem in (50)–(54) whenL
is a constant.

Theorem 7: Given the constrained optimization problem as
specified in (50)–(54), for a fixed value ofL (where L = D2

if D1 + Ti ≤ D2 and L = minN
i=1{Ti + Di} otherwise) and∑N

i=1
UiDi0 < L

∑N

i=1
(Ui − 1) +

∑N

i=1
Ci, let

S =
∑

D∗

j
6=Djmax

U2
j

wj
, and

D =
∑

D∗

j
6=Djmax

UjDj0 +



L

N∑

j=1

(
Uj − 1

)
+

N∑

j=1

Cj





−
∑

D∗

j
=Djmax

UjDjmax
.

A solution, D∗
i , is optimal if and only if

D∗
i = Di0 −

Ui

wiS
· D (55)

for wi

Ui
(Di0 − Dimax

) ≤ D
S ≤ 0.

Proof: The theorem can be proved by the same argument
used in proving Theorem 5.

The similarity between the solutions to the optimization prob-
lem in (50)–(54) and those to the one in (28)–(32) should be
apparent. Hence, the heuristic proposed in the last sectioncan
easily be modified to solve this problem with the same time
complexity. Namely, (55) is used instead of (40) and the deadline
bounds must be checked instead of the period bounds.

Interestingly, the idea of deadline selection can be extended
to treat systems consisting of sporadic tasks. A sporadic task is

10

a real-time task whose arrival time is not knowa priori, but
there exists some minimum inter-arrival time between any two
instances of such task [23]. Although sporadic tasks usually have
hard deadlines, for systems where some delays are acceptable, our
proposed framework can be used. Specifically, the optimization
problem in (50)–(54) can be straightforwardly applied to adjust
the deadline of sporadic tasks with a minor change. That is,Ti

now denotes the (known) minimum inter-arrival time of a sporadic
task, instead of the period of a periodic task as originally defined.

An important implication of using the optimization problem
in (50)–(54) for a system with sporadic tasks is that, as longas
Ii ≥ Ti, for all i = 1, . . . , N , whereIi is the actual inter-arrival
time of a sporadic taskτi, the system will remain schedulable
using the set of deadlines obtained from solving the optimization
problem in (50)–(54). Lemma 7 can be straightforwardly applied
to validate this claim.

VI. EXPERIMENTAL RESULTS

In this section, we begin by verifying our claims made in
Section III with regards to the optimality of the task compression
algorithm in [10]. We then compare our simplified sufficient
condition presented in Section IV to the exact formula in (18).
The quality of our heuristic is also discussed.

A. Period selection with deadlines equal to periods

To demonstrate that the task compression algorithm solves the
optimization problem in (1)–(4), we reuse the task set provided
in the experimental results section of [10] (reproduced below in
Table I). The task compression algorithm was written inC++,
while MatLab was used to obtain the results for the constrained
optimization problem in (1)–(4).

TABLE I

TASK SET PARAMETERS USED

Task Ci Ti0 Ti0 Timax ei

τ1 24 100 30 500 1
τ2 24 100 30 500 1
τ3 24 100 30 500 1.5
τ4 24 100 30 500 2

In this experiment, all tasks start at time 0 with an initial period
of 100 time units and the task set is schedulable under EDF. The
required minimum utilization of the overall system is24

500
+ 24

500
+

24
500

+ 24
500

= 0.192. Since the current utilization is24
100

+ 24
100

+
24
100

+ 24
100

= 0.96, the task set is schedulable under EDF. Assume
that, at time 10000,τ1 needs to reduce its period to 33 time units,
perhaps due to some changes in system dynamics not experienced
by other tasks. Since the new required minimum utilization of the
system is24

33
+ 24

500
+ 24

500
+ 24

500
= 0.871, which is less than 1,

τ1 will be allowed to change its periods as desired. However,τ2,
τ3, andτ4 can no longer execute with their initial period, as this
would drive the system utilization to24

33
+ 24

100
+ 24

100
+ 24

100
= 1.45.

In other words, To allow forτ1 to change its period, the period
of tasksτ2, τ3, and τ4 must increase for the system to remain
schedulable. It is worth noting that althoughτ2 has the exact same
parameters asτ1, we made the assumptions that the system whose
task isτ2 is not in as critical state as that ofτ1 and hence it is
possible forτ2 to increase its period temporarily. At time 20000,
τ1 goes back to its original period. Figures 1 shows the cumulative
number of executed instances for each task as its period changes

0 0.5 1 1.5 2 2.5 3
x 10

4

0

100

200

300

400

500

600

time

n
u

m
b

er
 o

f
ex

ec
u

te
d

 in
st

an
ce

s

Task 1 (compress. alg.)
Task 1 (theorem 1)
Task 2 (compress. alg.)
Task 2 (theorem 1)
Task 3 (compress. alg.)
Task 3 (theorem 1)
Task 4 (compress. alg.)
Task 4 (theorem 1)

T1 = 33

T2 = 174.1

T3 = 276.4

T4 = 500

T1 = 100

T1 = 100

Fig. 1. Utilization perturbation example

over time. First of all, the data verifies that the results obtained
from the task compression algorithm and those from Theorem 1
match perfectly.

Furthermore, it can be seen from the graph that the number
of executed instances of a task is inversely proportional toits
elastic coefficient. Recall that the weight of a task is the inverse
of its elastic coefficient. Althoughτ2, τ3, and τ4 all have the
same computation time, initial period, and period range,τ2 is
determined to have the smallest (e.g., best) sampling period
because of its weight. On the other hands,τ4 has the largest
sampling period because it is considered to be of least importance.

B. Period selection with deadlines less than or equal to periods

To illustrate the practicality and performance of our heuristic
approach, we present the following comparisons in this section.
First, we compare the simplified sufficient condition in (23)with
the original necessary and sufficient condition in (18). Second, we
demonstrate the capability of the proposed heuristic by comparing
the number of problems it is able to solve with what can be
solved by an optimization solver for the optimization problem
in (28)–(32). Third, to assess the performance of the heuristic,
we compare the quality of the solutions obtained by using the
heuristic with that of the optimal solutions.

To perform the aforementioned comparisons, 1000 task sets
consisting of 5 tasks each were randomly generated for 9 different
utilization levels (Ulevel = 0.1, . . . , 0.9) with a total of 9000 task
sets in overall. The utilization level is defined to beUleveli =∑N

j=1

Cj

Tjmax
, i = 0.1, . . . , 0.9. Each task set is made to be

initially unschedulable withTi0 = Di, ∀i, but at least a feasible
schedule can be found by settingTi = Timax

, ∀i using the
necessary and sufficient condition in (18). This setup aims to
eliminate all trivial solutions. In addition to the utilization level,
the maximum hyperperiod, minimum period, maximum period,
precision, and maximum number of tries must also be specified.
In our experiment, we set the maximum hyperperiod, minimum
period, and maximum period to 500,000, 10,000, and 40,000,
respectively. The precision was specified to be 100, whereas
the maximum number of tries was set to 10,000. The precision
denotes the minimum increment in any task period. For example,
if the precision is set to 100, a task period could be 5200, butnot
5010.

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

Utilization Level

F
ea

si
b

le
 T

as
k

S
et

s
b

y
(2

3)

Fig. 2. Performance of simplified sufficient condition

In a nutshell, the following steps were taken to generate a task
set. First of all, a set of periods were randomly generated based
on the minimum period, maximum period, hyperperiod bound,
and precision. Task periods are generated in such a way that the
hyperperiod is no larger than the maximum hyperperiod. (This
could take a number of tries.) Each task is randomly assignedan
execution time such that the total utilization equals that specified
by the user. No task will have an utilization that is greater than
half of the specified total utilization. Then, each task is assigned
a deadline that ensure that

∑N

i=1

Ci

Di
> 1. As a final step, the

random task generator tests the schedulability of a task setusing
the necessary and sufficient condition in (18). If the task set
is unschedulable, task deadlines are randomly increased such
that the new deadline is greater than the previous deadline but∑N

i=1

Ci

Di
is still greater than 1. This final step is repeated until

either a feasible task set has been found or the maximum number
of tries has been reached.

To perform experiments for comparing the simplified sufficient
condition in (23) with the original condition in (18), we make
the following observation. We know that the task sets generated
pass the test in (18), provided that we useTimax

as the period
for each taskτi, for i = 1, . . . , N . Hence, we only need to test
the condition in (23) in the same fashion.

Figure 2 compares the condition in (23) to that in (18). The
x-axis shows each utilization level and the y-axis indicates the
percentage of task sets that were found to be feasible by the
condition in (23). (Recall that the percentage of schedulable task
sets using the test in (18) is 100% for each utilization level.)
As can be seen from the plot, the simplified sufficient condition
in (23) found that a feasible solution exists for all task sets
with Ulevel ≤ 0.3. As expected, said condition becomes more
pessimistic asUlevel increases. However, it still finds over 50%
of the task set withUlevel of 0.6 to be feasible. Note that we could
have tested each task set against the existing sufficient condition
(a task set is schedulable if

∑N

i=1

Ci

Di
≤ 1 [23]), but said test

will determine all task sets to be infeasible, since the taskset
generator returns a task set while guaranteeing that

∑N

i=1

Ci

Di
> 1.

Indirectly, we can conclude that, our modified sufficient condition
is less pessimistic than the existing sufficient condition.

In the second experiment, we compare the percentage of
solutions found by our heuristic, as opposed to solving the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

Utilization Level

S
o

lu
ti

o
n

s
F

o
u

n
d

 (
%

)

Heuristic
Loqo

Fig. 3. Heuristic vs. Loqo solver

optimization problem by an optimization solver. Our heuristic
was implemented inC++. For the optimization solver, we used
Loqo [30], a nonlinear solver with an interior-point algorithm.
In this experiment,maxIter and ∆ in our heuristic were set to
200 and1 × 10−5, respectively. The precision parameter,prec,
used in period rollback as described in the last section, wasset to
20 (denoting 20% period reductions). We limited the maximum
number of iterations allowed byLoqo to be 200. We did not
allow Loqo to run longer, as, according to [31], it is unlikely
that an optimal solution would be found after the 100th iteration.

Figure 3 compares the number of solutions found byLoqo
and that found by our heuristic. As before, the x-axis shows
the different utilization levels, whereas the y-axis showsthe
percentage of solutions found. It is clear from the plot thatthe
heuristic is able to find a much larger number of solutions that
Loqo. This is not surprising, as an optimization software does not
guarantee that a solution to a non-linear programming problem
will be found, even if one exists. This is one important advantage
of the heuristic; according to Theorem 6, it is guaranteed to
always return a feasible task set if one exists.

The last experiment examines the quality of the solutions found
by our heuristic in comparison with that found byLoqo. For
the 9000 task sets (1000 task sets for each utilization level),
Loqo only solved 1416 task sets. Therefore, we could only
compare the results from the heuristic to these solutions. It must
be emphasized, however, that the solutions from the heuristic is
a superset of those fromLoqo.

Figure 4 shows a bar chart depicting the performance of the
proposed heuristic as compared to the optimal solutions found by
Loqo. The x-axis shows the differences in the objective function
values (from the heuristic andLoqo). The y-axis shows the
percentage of the solutions by our heuristic that result in agiven
difference. The first, and most obvious, observation is thatthe
heuristic is able to find the global optimal solution to over 50%
of the solutions, ignoring numerical errors. Second, almost 30%
of the solutions found by the heuristic is very close to the global
optimal ones.

The above experimental results demonstrate that our heuristic
performs well enough to be deployed in real applications; not
only has the heuristic found the global or close to global optimal
solution in many cases, it also guarantees to always return afeasi-

12

[0, 0.001) [0.001,0.005) [0.005, 0.01) [0.01, 0.05) [0.05, 0.1) [0.1, ...)
0

10

20

30

40

50

60

δ = |Eheu −Eloqo|

T
as

k
se

ts
 (

%
)

Total number of task sets: 1416
Maximum objective function value: 0.878
Minimum objective function value: 0.005
Average objective function value: 0.118

Fig. 4. Comparison of the heuristic andLoqo in terms of objective function
values

ble schedule if one exists. In addition, the low time complexity of
our heuristic makes it suitable for online use for dynamic period
adjustments. The experiment also suggests that the maximum
number of iterations,maxIter, need not be greater than 200 for
the heuristic to find a solution. The user-defined parameter∆ can
be set to be equal to the time granularity used by the operating
system, since this time granularity is the smallest time unit that
the operating system can handle. Finally, we suggest setting the
period rollback precision,prec, to some small value in comparison
to the value ofmaxIter. It does not make sense to setprec to be
a large value (e.g. 50) ifmaxIter is relatively small (e.g. 200),
as the heuristic will then be performing the rollback process for
most of the time.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, the following main contributions were made.
First, we introduced a general framework which formulates a
trade-off between task set schedulability and a specific per-
formance metric (such as task utilization) as an optimization
problem. Such a framework allows for real-time systems un-
der temporal overloads to graciously adapt by adjusting their
performance level. Second, we proved the optimality of the
existing task compression algorithm in [10]. Said algorithm allows
for the period selection problem for tasks with deadlines equal
periods to be solved optimally in an online manner. Third, our
framework is further generalized to consider situations where task
deadlines are less than task periods. In this case, we propose an
efficient heuristic to solve the problem online while makinguse of
the slightly modified task compression algorithm. Experimental
results show that our heuristic performs satisfactorily and in
many cases finds the global optimal solution. Fourth, we provide
and motivate the use of a framework for solving the deadline
selection problem, which can be applied to some control systems
with pre-determined sampling time. Last, our flexible framework
can be used to solve other problems where the schedulability-
performance trade-off is central. The framework will permit the
development and comparisons of efficient algorithms.

Since the algorithm presented in Section IV is best-effort,it
would be interesting to study whether there exists a way to select
the value ofL at every iteration such that the solution found will

always be optimal. Finally, as future work, it would be interesting
to explore different classes of objective functions and constraints
that may be even harder to solve.

ACKNOWLEDGMENT

The authors would like to thank Bren Mochocki for providing
his tool to generate task sets used in the experiment.

REFERENCES

[1] AYDIN , H., MELHEM, R., MOSSE, D., AND ALVAREZ , P. Optimal
reward-based scheduling for periodic real-time tasks. InProc. Real-
Time Systems Symposium (1999), pp. 79–89.

[2] BAILLIEUL , J., AND (EDITORS), P. A. Special issue on networked
control systems.Transactions on Automatic Control 49, 9 (Sept. 2004),
1421–1423.

[3] BARUAH , S., COHEN, N., PLAXTON , G.,AND VARVEL , D. Proportion-
ate progress: A notion of fairness in resource allocation.Algorithmica
15, 6 (June 1996), 600–625.

[4] BARUAH , S., ROSIER, L., AND HOWELL, R. Algorithms and complex-
ity concerning the preemptive scheduling of periodic, real-time tasks on
one processor.Real-Time Systems 2, 4 (Nov. 1990), 301–324.

[5] BERNAT, G., BURNS, A., AND LLAMOŚi, A. Weakly hard real-time
systems.Transactions on Computers 50, 4 (Apr. 2001), 308–321.

[6] B INI , E., AND NATALE , M. D. Optimal task rate selection in fixed
priority systems. InProc. Real-Time Systems Symposium (2005),
pp. 399–409.

[7] BUTTAZZO, G. Hard real time computing systems: predictable schedul-
ing algorithms and applications. Springer, 2005.

[8] BUTTAZZO, G., AND ABENI, L. Smooth rate adaptation through
impedance control. InProc. Euromicro Conf. on Real-Time Systems
(2002), pp. 3–10.

[9] BUTTAZZO, G., LIPARI, G., AND ABENI, L. Elastic task model for
adaptive rate control. InProc. Real-Time Systems Symposium (1998),
pp. 286–295.

[10] BUTTAZZO, G., LIPARI, G., CACCAMO, M., AND ABENI, L. Elastic
scheduling for flexible workload management.Transactions on Com-
puters 51, 3 (Mar. 2002), 289–302.

[11] CACCAMO, M., BUTTAZZO, G.,AND SHA , L. Elastic feedback control.
In Proc. Euromicro Conf. on Real-Time Systems (2000), pp. 121–128.

[12] CERVIN, A., EKER, J., BERNHARDSSON, B., AND K.-E.ÅRZéN.
Feedback-feedforward scheduling of control tasks.Real-Time Systems
23, 1 (July 2002), 25–53.

[13] CHANTEM , T., HU, X., AND LEMMON, M. Generalized elastic schedul-
ing. In Proc. Real-Time Systems Symposium (2006), pp. 236–245.

[14] CHUNG, J.-Y., LIU , J. W., AND L IN , K.-J. Scheduling periodic jobs
that allow imprecise results.Transactions on Computers 39, 9 (Sept.
1990), 1156–1175.

[15] EKER, J., HAGANDER, P., AND ÅRZéN, K.-E. A feedback scheduler
for real-time controller tasks.Control Engineering Practice 8, 1369–
1378 (Dec. 2000), 12.

[16] GAI , P., ABENI, L., GIORGI, M., AND BUTTAZZO, G. A new kernel
approach for modular real-time systems development. InProc. Euromi-
cro Conf. on Real-Time Systems (2001), pp. 199–208.

[17] HAMDAOUI , M., AND RAMANATHAN , P. A dynamic priority assign-
ment technique for streams with (m,k)-firm deadlines.Transactions on
Computers 44, 12 (1995), 1443–1451.

[18] HAMDAOUI , M., AND RAMANATHAN , P. Evaluating dynamic failure
probability for streams with (m,k)-firm deadlines.Transactions on
Computers 46, 12 (1997), 1325–1337.

[19] KOREN, G., AND SHASHA, D. Skip-over: Algorithms and complexity
for overloaded systems that allow skips. InProc. Real-Time Systems
Symposium (1995), pp. 110–117.

[20] KOUTSOUKOS, X., TEKUMALLA , R., NATARAJAN , B., AND LU,
C. Hybrid supervisory utilization control of real-time systems. In
Proc. Real-Time & Embedded Technology and Applications Symposium
(2005), pp. 12–21.

[21] KUO, T.-W., AND MOK, A. Load adjustment in adaptive real-time
systems. InProc. Real-Time Systems Sympsium (1991), pp. 160–171.

[22] L IU , C., AND LAYLAND , J. Scheduling algorithms for multiprogram-
ming in a hard real-time environment.Journal of the ACM 20, 1 (Jan.
1973), 46–61.

[23] L IU , J. W. S. Real-Time Systems. Prentice-Hall, NJ, 2000.
[24] LUENBERGER, D. Linear and Nonlinear Programming. Addison-

Wesley Publishing Co., 1989.

13

[25] MOK, A., AND WANG, W. Window-constraint real-time periodic task
scheduling. InProc. Real-Time Systems Symposium (2001), pp. 15–24.

[26] QUAN , G., AND HU, X. Enhanced fixed-priority scheduling with (m,k)-
firm guarantee. InProc. Real-Time Systems Symposium (2000), pp. 79–
98.

[27] RAMANATHAN , P. Overload management in real-time control ap-
plications using (m,k)-firm guarantee.Transactions on Parallel and
Distributed Systems 10, 6 (June 1999), 549–559.

[28] SETO, D., LEHOCZKY, J., AND SHA , L. Task period selection and
schedulability in real-time systems. InProc. Real-Time Systems Sympo-
sium (1998), pp. 188–199.

[29] SETO, D., LEHOCZKY, J., SHA , L., AND SHIN , K. On task schedulabil-
ity in real-time control systems. InProc. Real-Time Systems Symposium
(1996), pp. 13–21.

[30] VANDERBEI, R. Loqo. <http://www.princeton.edu/ rvdb/>.
[31] VANDERBEI, R. LOQO: An interior point code for quadratic program-

ming. Optimization methods and software 12, 5 (1999), 451–484.
[32] WEST, R., AND POELLABAUER, C. Analysis of a window-constrained

scheduler for real-time and best-effort packet streams. InProc. Real-
Time Systems Symposium (2000), pp. 239–248.

