
IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 1

A Safe Stochastic Analysis with Relaxed
Limitations on the Periodic Task Model

Kanghee Kim and Chang-Gun Lee, Member, IEEE

Abstract—This paper proposes a safe stochastic analysis for fixed-priority scheduling, which is applicable to a broader spectrum of
periodic tasks than the ones analyzable by any of existing techniques. The proposed analysis can find a safe upper bound of deadline
miss probability for periodic tasks with (1) arbitrary execution time distributions, (2) varying interrelease times with the period as the
minimum, and (3) the maximum utilization factor Umax that can be greater than 1. One challenge for this is that the release times of
tasks are not known a priori because we are not limiting the interrelease times of each task to a constant, i.e., the period. In such a
situation, the relative phases of task instances at run time can be arbitrary. Thus, we need to consider all possible phase combinations
among jobs to find the worst case deadline miss probability, which is not tractable. To handle this difficulty, we first derive the worst
case phase combination for harmonic task sets. Then, we present a safe way to transform a non-harmonic task set to a harmonic task
set such that the deadline miss probabilities obtained with the worst case phase combination for the transformed harmonic task set are
guaranteed to be worse than those for the original non-harmonic task set with all possible phase combinations. Therefore, the worst
case deadline miss probabilities of the transformed harmonic tasks can be used as safe upper bounds of deadline miss probabilities of
the original non-harmonic tasks. Through experiments, we show that the safe upper bound computed by the proposed analysis is tight
enough for practical uses.

Index Terms—Real-time and embedded systems, scheduling, stochastic analysis, worst-case analysis, periodic task model.

✦

1 INTRODUCTION

TRaditionally, the existing studies on schedulability anal-
ysis of real-time systems have tried to deterministically

guarantee that the deadlines of all tasks are met assuming their
worst case execution times [11], [14], [17]. However, such
deterministic guarantee is too harsh for many practical appli-
cations where the application can tolerate occasional deadline
misses as long as the ratio of deadline misses is less than a
given threshold [4], [19], [23]. For example, a VOD (video
on demand) server should serve multiple concurrent video
sessions by periodically reading movie frames, transcoding,
and delivering them to the customers. Due to the dynamics of
the movie contents, the size of each movie frame may differ
resulting in varying execution times for different frames. For
this application, it is too pessimistic to assume the worst case
execution time for every frame for the deterministic deadline
guarantee, which will significantly limit the number of sessions
that the VOD server can concurrently serve. Practically, the
VOD server can serve a much larger number of sessions
without any observable quality degradation, as long as the
deadline miss probability is less than a given threshold. Even
certain control applications, such as multi-target tracking radar
systems, require such a probabilistic guarantee [4], [19] in
order to maintain the probability of control loss or track loss
under a threshold.

� K. Kim is with Mobile Communication Division, Samsung Electronics Co.,
Ltd., Suwon, 443-742 Korea.
E-mail: kang.hee.kim@samsung.com

� C.-G. Lee is with School of Computer Science and Engineering, Seoul
National University, Seoul, 151-742 Korea.
E-mail: cglee@snu.ac.kr

Manuscript received January 15, 2008; revised June 9, 2008; accepted August
14, 2008.

For such applications, the traditional deterministic guarantee
results in an over-pessimistic decision. More importantly, if the
execution times vary widely, it may severely underutilize the
system resources since the assumed worst case execution times
can be far from the averages. To rectify this problem, recent
studies have proposed various stochastic analysis methods [1],
[6], [8], [12], [13], [15], [18], [22] to calculate the deadline
miss probability of each task to be compared with the required
threshold. However, they work only for task sets with limited
conditions. In the following, we categorize them according to
their limitations:

� Limited execution times and interrelease times: Real-
Time Queueing Theory [12], [13] works only for tasks
with Possion arrivals and exponential execution times.
Although such a task model may be acceptable in a suffi-
ciently populated system, the main problem of the method
is that it is not safe, that is, it cannot provide either the
exact deadline miss probability or an upper bound of it
due to approximation with no safeness enforcement.

� Limited interrelease times: The analysis methods pro-
posed in [8], [15], [18] can calculate accurate deadline
miss probabilities for tasks with arbitrary execution time
distributions. However, they work only when the interre-
lease times of each task are constant. It is obvious that
this assumption of constant interrelease times does not
hold in a real system, due to the scheduling effect of
the operating system, which introduces jitters into task
release times.

� Limited maximum utilization factor: The analysis
methods proposed in [6], [22] can calculate a safe upper
bound of deadline miss probability even when the execu-
tion time distributions are arbitrary and the interrelease

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 2

times vary with the period as the minimum. They can an-
alyze fixed-priority systems such as Rate Monotonic [17]
and Deadline Monotonic [16] using stochastic extensions
of the Time Demand Analysis (TDA) [14]. However,
they can analyze the system only when the maximum
utilization factor is less than or equal to 1. This is
a serious limitation because widely varying execution
times of stochastic tasks commonly make the maximum
utilization factor greater than 1 while keeping the average
utilization factor below 1, which gives a high possibility
of meeting the required deadline miss probability.

� Limited scheduling model: The analysis proposed
in [1] makes the stochastic analysis tractable by using
a reservation-based scheduling model. However, it does
not work for the generic fixed-priority scheduling model,
which is most common in commercial real-time operating
systems [20].

In this paper, we propose a new stochastic analysis method
that overcomes all the above limitations. That is, the proposed
method can calculate a safe upper bound of the deadline miss
probability even when (1) the execution time distribution of
each task is arbitrarily given, (2) the interrelease times vary
with the given period as the minimum, (3) the maximum
utilization factor can be greater than 1, and (4) the generic
fixed-priority scheduling model is used. For this, we base the
new analysis on our previous exact stochastic analysis [8]
that can calculate the exact response time distribution for
each task. Although the previous analysis overcomes three
of the aforementioned limitations, it still suffers from one
serious limitation, i.e., constant interrelease times. In a realistic
situation where the interrelease times can vary with the given
period as the minimum, the relative phases among jobs can
be arbitrary. It is worth noting that, even if we add the simple
minded in-phase condition — jobs of all the tasks are released
at the same time — to our previous analysis, it does not give
the worst case in the stochastic sense as we will show later.
Moreover, it will be explained that Lehoczky’s approach [11],
which picks the worst case out of all the jobs in a busy interval
assuming the in-phase condition at the start of the interval
and constant interrelease times afterward, neither can give the
real worst case in the stochastic sense. Intuitively, in order
to find the worst case deadline miss probability, we need to
consider all possible phase combinations among jobs, which
is not tractable. In order to safely cover all possible phase
combinations without explicitly enumerating all of them, we
take a two-step approach. First, we prove that when the task
periods, i.e., minimum interrelease times, are harmonic—each
task period is an integer multiple of every shorter period,
the response time distribution of each task obtained assuming
the in-phase condition is the worst among the ones obtained
assuming all possible phase combinations. This observation is
important in that the safeness of the in-phase condition, which
is already known for U max � 1 [6], [22], can be extended
to the case of U max > 1. Note, however, that this extension
is valid only for harmonic task sets. Second, we extend our
analysis to a system of non-harmonic tasks by transforming
the non-harmonic tasks to harmonic tasks. We prove that there

always exists a safe transformation such that the response time
distributions of the transformed harmonic tasks are worse than
those of the original non-harmonic tasks. As a consequence,
the response time distribution of each transformed harmonic
task assuming in-phase is worse than that of the original non-
harmonic task considering all possible phase combinations.
Therefore, by comparing the response time distributions of the
transformed in-phase harmonic tasks with the given relative
deadlines, we can find safe upper bounds of the deadline miss
probabilities of the original non-harmonic tasks.

This paper is organized as follows. In Section 2, we explain
our system model and summarize our previous exact stochastic
analysis for periodic tasks with constant interrelease times.
In Section 3, we describe our proposed analysis that can
be applied even for varying interrelease times. Section 4
gives experimental results to evaluate the analysis accuracy
and Section 5 describes a theoretical study on the analysis
accuracy. Finally, in Section 6, we conclude the paper and
give directions for future research.

2 PRELIMINARIES

2.1 System model

In our stochastic system, each task τ i (i= 1; � � � ;n) is described
by a tuple (Ti;Ci;Di), where Ti is the period of the task, equal
to the minimum interrelease time, Ci its execution time, and
Di its relative deadline. The execution time Ci is a discrete
random variable whose probability mass function we know
a priori, denoted by fCi(t) = PfCi = tg. The execution time
distribution can be given by a measurement-based analysis
such as automatic tracing analysis [21] or an analytical pro-
gram analysis such as probabilistic worst case execution time
analysis [2]. The period or the minimum interrelease time
Ti and the relative deadline Di are constant values given by
application characteristics. The relative deadline Di can be
smaller than, equal to, or greater than the period Ti.

In the task model, each task is assumed to give rise to
an infinite sequence of instances, called jobs. The jth job of
task τi is denoted by Ji; j. The Ji; j’s release time denoted by
λi; j is separated at least by the minimum interrelease time Ti

from the previous release time λ i; j�1, that is, λi; j � λi; j�1+Ti.
Once released, Ji; j requires Ci; j execution time, following the
given distribution fCi(t) for τi. The execution time of a job is
assumed to be independent of other jobs of the same task and
those of other tasks. For Ji; j, its absolute deadline denoted by
di; j is given by its release time λ i; j plus the relative deadline
Di, i.e., di; j = λi; j +Di. Thus, each job Ji; j is described by a
tuple (λ i; j;Ci; j;di; j).

The response time of Ji; j is denoted by a random variable
Ri; j and its probability mass function by fRi; j (t). From fRi; j (t),
the deadline miss probability DMPi; j of Ji; j is computed as
follows:

DMPi; j = PfRi; j > Dig=
∞

∑
t=Di+1

fRi; j (t): (1)

Our goal is to find a safe upper bound DMPbound
i of the

deadline miss probability for each task τ i which is guaranteed

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 3

0

1

0

f (t) F(t)

X
Y

(b) cumulative mass function(a) probability mass function

X
Y

t t

Fig. 1. Bounding distributions

to be larger than or equal to the maximum of DMPi; j’s of task
τi for all j. To obtain a safe upper bound of the deadline
miss probability of each task, we need to find a response
time distribution that is guaranteed to be “worse than” all
possible response time distributions of the task. For this, we
formally define the worse-than relation between two response
time distributions as follows, which is a stochastic extension of
the worse-than relation between two scalar values of response
times [5]. Figure 1 depicts two response time distributions,
one of which is worse than the other.

Definition 1. For two random variables X and Y describing
response times, if the following inequality holds for any s, we
say that Y is worse than X (fy upper-bounds fx) and that X
is better than Y (fx lower-bounds fy).

s

∑
t=0

fx(t)�
s

∑
t=0

fy(t) for any s:

The scheduling algorithms we consider are fixed-priority
algorithms where tasks’ priorities are given in any order, in-
cluding Rate Monotonic and Deadline Monotonic. We denote
the priority of a task τ i by a priority value pi that is the same
as the task index i. A smaller priority value (or a smaller task
index) means a higher priority—τ 1 has the highest priority, τ2

the second highest, and so on. The priority of every job J i; j

belonging to the task τ i is denoted by pi; j and it is the same
as pi in the fixed-priority system. Thus, if multiple jobs of the
same task are pending, they are served in a FCFS (First Come
First Served) manner.

For being self-contained, we list the following definitions
that are well known in the real-time literature.

Definition 2. A job Ji; j of a task τi is said to be “in-phase” if
its release time is synchronized with that of a job from every
higher priority task.

Definition 3. A task set fτ1;τ2; � � � ;τng is said to be “har-
monic” if Ti is an integer multiple of Tk for any pair of (i;k)
where Ti � Tk.

Definition 4. A “hyperperiod” of a task set fτ 1;τ2; � � � ;τng is
defined as the least common multiple of the periods of all the
tasks in the set. Similarly, a “level-i hyperperiod” is defined
as the least common multiple of the periods of τ1, τ2, � � � , and
τi.

Definition 5. The “system utilization” of a task set
fτ1;τ2; � � � ;τng is defined as the sum of utilizations of all the
tasks in the set. The “level-i utilization” is defined as the sum

of utilizations of tasks τ1, τ2, ..., and τ i. Since the execution
times of the tasks are variable, the average level-i utilization
Ūi and the maximum level-i utilization U max

i are defined as
follows:

Ūi =

i

∑
k=1

C̄k

Tk
and U max

i =

i

∑
k=1

Cmax
k

Tk

where C̄k and Cmax
k are the average and maximum values of

the random variable Ck.

Table 1 summarizes the above notations that will be used
throughout the paper.

notation description
τi ith priority task
Ti period (i.e. minimum interrelease time) of τi—constant
Di relative deadline of τi—constant
Ci execution time of τi—random variable with minimum Cmin

i ,
maximum Cmax

i , and average C̄i

Ūi average level-i utilization (Ūi = ∑i
k=1

C̄k
Tk

)

Umax
i maximum level-i utilization (Umax

i = ∑i
k=1

Cmax
k
Tk

)

DMPbound
i a safe upper bound of deadline miss probability for τi

dmpbound
i a safe lower bound of deadline meet probability for τi

Ji; j jth job of τi
λi; j release time of job Ji; j (λi; j � λi; j�1 +Ti)
di; j absolute deadline of job Ji; j (di; j = λi; j +Di)
Ci; j execution time of job Ji; j—random variable with the same

probability distribution as Ci
Ri; j response time of job Ji; j—random variable whose probability

distribution needs to be computed
DMPi; j deadline miss probability of Ji; j
dmpi; j deadline meet probability of Ji; j

TABLE 1
Notations

2.2 Exact analysis for constant interrelease times

Since our new stochastic analysis is based on our previous
exact stochastic analysis [8], we give its brief overview in
this subsection. The exact stochastic analysis has shown that
it is possible to compute the exact deadline miss probability
for every task if all task phases are known a priori and the
interrelease times of each task are constantly equal to its
period. Under this assumption, the deadline miss probability
of each task τ i can be calculated by averaging the deadline
miss probabilities of all the jobs Ji; j from τi in a steady-
state hyperperiod. A steady-state hyperperiod means that in the
hyperperiod, the system is in steady state, thus the response
time distribution of each job Ji; j is stationary. The stationary
response time distribution of Ji; j is defined as follows:

Definition 6. Let J(h)i; j (j = 1;2; � � � ;mi) be the jth job of task
τi in the hth level-i hyperperiod and f

R
(h)
i; j
(t) its response time

distribution (mi: the number of jobs of τ i released in a level-i
hyperperiod). Then the stationary response time distribution of
Ji; j is defined as the limiting distribution fRi; j (t) = lim

h!∞
f
R
(h)
i; j
(t).

Thus, to compute the response time distribution of each
task τi, the exact analysis tries to determine the response time
distributions of all the jobs Ji; j in a hyperperiod h assuming
that h! ∞.

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 4

jobs with p� pi; j jobs with p< pi; j

Wpi; j I[1]pi; j I[2]pi; j I[3]pi; j

Ri; j

: : :

Ji; j

λi; j +Diλi; j

Fig. 2. Factors affecting the response time of a job Ji; j

The computation of the stationary response time distribu-
tions consists of two steps. The first step is to determine the
stationary distribution of the backlog that Ji; j may encounter at
the release time λ i; j. The backlog, called pi; j-backlog, consists
of jobs with a priority higher than or equal to that of J i; j.
The second step is to construct the stationary response time
distribution of Ji; j from the stationary pi; j-backlog distribution
by considering the execution time distributions of Ji; j and
higher priority jobs that may interfere with Ji; j, which are
released later than Ji; j. The interference of the higher priority
jobs is called pi; j-interference. In summary, the response time
distribution of a job can be determined based on the following
equation:

Ri; j =Wpi; j +Ci; j + Ipi; j (2)

where Wpi; j is the pi; j-backlog observed at time λ i; j, Ci; j the
execution time of Ji; j, and Ipi; j the pi; j-interferences occurring
after time λ i; j. Figure 2 explains the above equation more
clearly.

In the exact analysis, the first step to compute the stationary
pi; j-backlog distribution is particularly important. In the case
where the maximum level-i utilization U max

i > 1, the backlog
that each job in a hyperperiod encounters at the release time
may be affected by jobs from the previous hyperperiods.
Thus, the exact analysis models the evolution process of the
backlog over hyperperiods as a stochastic process. It has been
shown that the stochastic process is a Markov process, and
that the stationary pi; j-backlog distribution can be computed
with a set of equilibrium equations derived from a steady-state
hyperperiod, as long as the average level-i utilization Ūi is less
than 1.

Once the stationary pi; j-backlog distribution is determined
for Ji; j, it is easy to construct the stationary response time
distribution by using the techniques introduced in the Stochas-
tic Time Demand Analysis [6]. Figure 3 shows an example
of the construction assuming that the stationary p j-backlog
distribution fW (t) is given for J j and that J j+1 and J j+2

may interfere with J j with the same execution time distri-
bution fCj (t) = fCj+1(t) = fCj+2(t) as in the top-right box. In
this example, first, the stationary response time distribution
assuming no interference is computed by convolving the
stationary p j-backlog distribution fW (t) and the execution time
distribution fCj (t). This convolution process can be understood
as follows: When p j-backlog is 1 and Ji’s execution time
is 1, then the response time assuming no interference is 2.
Thus, the probability of the response time being 2 is 1/4

0 1 2

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

3
8

3
8

1
8

3
8

1
8

3
8

1
2

1
2P

t

1
2

3
16

4
16 1

16

3
16

4
16 1

32
1

32

1
8

1
8

response time dist. of J j

p j-backlog dist. fW (t)

assuming

of Jj assuming

t

P 1
4

1
4

t

P

t

P

t

P

t

Jj Jj+1 Jj+2

λ j λ j+1 λ j+2

 fC j (t)

 fC j+1 (t)

 fC j+2 (t)

the tail dist.

no interference

interference by Jj+2

fC j (t) = fC j+1 (t) = fC j+2 (t)
execution time dist.

assuming

the tail dist.
to be affected by Jj+1

to be affected by Jj+2

response time dist. of J j

final response time dist.

interference by Jj+1

Fig. 3. An example of response time distribution construc-
tion

multiplied by 1/2, i.e., 1/8. Similarly, the response time is
3 when p j-backlog is 1 and Ji’s execution time is 2 or
when p j-backlog is 2 and Ji’s execution time is 1. Thus, its
probability is 1=4�1=2+1=2�1=2= 3=8. The probabilities
of the response time being 4 and 5 can be computed similarly.
With the probability that the resulting response time is less
than or equal to 3, i.e., the release time of J j+1, Jj can
be finished without being affected by J j+1. However, with
the probability that the response time is greater than 3, the
response time is further affected by J j+1. Thus, the stationary
response time distribution reflecting the interference from J j+1

is computed by convolving (1) the tail distribution defined
in the range [3+ 1;∞) of the response time distribution of
Jj calculated so far and (2) the execution time distribution
fCj+1(t). Finally, the complete stationary response time distri-
bution, reflecting the interference from J j+2, is computed in
the same manner, i.e., by convolving (1) the tail distribution
defined in the range [6+1;∞) of the response time distribution
of Jj calculated so far and (2) the execution time distribution
fCj+2(t). In this example, if the relative deadline D j of Jj

is 7, the deadline miss probability of the job J j will be
PfR j > D jg = 1=32+ 1=32 = 1=16. For more details on the
exact analysis, refer to [8].

3 SAFE ANALYSIS FOR ARBITRARY INTERRE-
LEASE TIMES

When the interrelease times of tasks vary, a job Ji; j of task τi

can have arbitrary phase relations with jobs of higher priority

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 5

τ1

J2; j

J1;l
φ

T1

T2

τ2

p2; j-backlog p2; j-interference

(a) constant interrelease times

τ1

J2; j

J1;l
φ

T1

T2

τ2

p2; j-interferencep2; j-backlog

(b) varying interrelease times

Fig. 4. Effect of constant and varying releases on the
response time distribution

tasks. In this case, the exact stochastic analysis cannot find a
safe upper bound of the response time distribution of τ i since it
considers only a limited set of phase combinations that arise in
a level-i hyperperiod assuming fixed initial phases and constant
interrelease times of the tasks.

Fortunately, the problem of enumerating all possible job-
level phase combinations for varying interrelease times can
be simplified to the problem of enumerating all possible task-
level initial phase combinations (i.e., φ1 = λ1;1, φ2 = λ2;1, � � � ,
φi = λi;1) while fixing the interrelease times of each task as the
minimum, i.e., the period. This is possible due to the following
intuitive observation. From the perspective of a single job
Ji; j, when its phase relation with other jobs of higher priority
tasks is given, the response time distribution of Ji; j assuming
the constant interrelease times of periods is worse than all
other possible ones obtained for varying interrelease times.
This can easily be understood by an example of Figures 4(a)
and (b), which show the cases of constant interrelease times
and varying interrelease times, respectively, when the job-level
phase relation between J1;l and J2; j is fixed as φ. For the
job J2; j, its response time distribution is determined by p2; j-
backlog and p2; j-interference as explained in Equation (2).
The p2; j-backlog is maximized when all jobs of τ 1 and τ2

released before J2; j are maximally packed toward the release
time of J2; j with the minimum interrelease times T1 and T2.
Similarly, the p2; j-interference is maximized when all jobs
of τ1 released after J2; j are maximally packed toward the
release time of J2; j with the minimum interrelease time T1.
This means that without loss of generality, any job-level phase
combination observed at a certain time can be represented by
a phase combination (φ1;φ2; � � � ;φi) of the first jobs J(h)

k;1 of
all the tasks τk (k = 1; � � � ; i) in a steady-state hyperperiod
h. Thus, from now on, we focus on finding a safe upper
bound of the response time distribution for the first job J (h)

i;1 of
task τi in a steady-state hyperperiod h by enumerating all the

τi Ti Cmin
i Cmax

i Ū Umax

τ1 70 1 26
0.5079 0.9914τ2 100 1 62

TABLE 2
A task set example

possible initial phase combinations (φ1;φ2; � � � ;φi) assuming
the constant interrelease times of periods. For the same reason,
we describe each task τ i by a tuple (Ti;φi;Ci;Di) assuming
the constant interrelease time that is equal to the period
Ti. Henceforth, each job Ji; j’s release time λ i; j is given by
φi +(j�1)Ti. Without loss of generality, the phase φi of each
task τi, i.e., the release time of the first instance of τ i, is
assumed to be smaller than Ti (0� φi < Ti).

Although we simplify the problem to finding the worst case
initial phase combination (φ1;φ2; � � � ; φi), it is not guaranteed
that there exists such a phase combination that the resulting
response time distribution of task τ i can upper-bound those of
τi obtained with all the other phase combinations. To explain
this, let us consider the task set used by Lehoczky in [11].
We add one assumption to the task set that each task has
a uniform execution time distribution varying from 1 to the
maximum value originally specified in the paper. This task set
is shown by Table 2.

The task set consists of two tasks τ1 and τ2 with uniform
execution time distributions [1::26] and [1::62], respectively.
Within a level-2 hyperperiod, we encounter seven jobs J2;1,
J2;2, ..., and J2;7 of τ2 that represent seven different phase
combinations. In the deterministic domain, assuming the in-
phase condition and the worst case execution times 26 and 62
of τ1 and τ2, respectively, the worst response time of τ 2 can
be found by General Time Demand Analysis [11]. That is,
in the in-phase level-2 busy interval, which comprises all the
seven jobs, their response times are calculated as 114, 102,
116, 104, 118, 106, and 94, respectively. Out of them, the
worst response time 118 is found in J2;5. 1

In the stochastic domain, however, the worst response time
distribution cannot easily be found. Figure 5 compares the
response time distributions of J2;1 and J2;5 computed by our
previous exact analysis. In Figure 5(a), the response times
R2;1 and R2;5 are expressed as cumulative mass functions
where the solid one is for J2;1 and the dashed one is for
J2;5. According to Definition 1, if there exists such a time s
that the cumulative probability ∑s

t=0 fR2;5(t) is greater than the
cumulative probability ∑s

t=0 fR2;1(t), then R2;5 cannot upper-
bound R2;1 in the stochastic sense. The figure clearly shows
such time points in the ranges of [0, 40] and [70,100]. This
means that the deterministic worst case J2;5 is no longer the
stochastic worst case. Also J2;1 is not the stochastic worst case
either, since there exists a time s in the range of [115, 120]
where the cumulative probability of R2;1 is greater than that of
R2;5. This is not clear in Figure 5(a) but it becomes clear if we
see “1� cumulative probability” in Figure 5(b). In fact, for this
task set example, none of the phase combinations represented

1. Remember that J2;1 is not the worst case in general considering the case
where the relative deadline is larger than the period.

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 6

10 20 30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

time

C
M

F

J(2,1)
J(2,5)

(a) CMF (normal scale)

10 20 30 40 50 60 70 80 90 100 110 120
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

time

1
−

 C
M

F

J(2,1)
J(2,5)

(b) 1� CMF (log scale)

Fig. 5. Comparison between J2;1 and J2;5 of the example task set

by J2;1, J2;2, ..., and J2;7 can give a safe upper bound in the
stochastic sense.

Since we could not find the worst case phase combination
(φ1;φ2; � � � ;φi) in general, we take a detour. That is, we
first address harmonic task sets. For any harmonic task set,
we prove that the response time distribution of τ i obtained
assuming the in-phase condition (i.e., φ1 =φ2 = � � �=φi) safely
upper-bounds the response time distributions of τ i obtained for
all the other phase combinations. Second, to address general
non-harmonic task sets, we transform a given non-harmonic
task set fτ1;τ2; � � � ;τig to a harmonic task set fτ 01;τ 02; � � � ;τ 0ig
such that the response time distribution of τ 0i upper-bounds that
of τi with any phase combination. As a result, the response
time distribution of τ i with any phase combination in the
original task set can be upper-bounded by that of τ 0i in the
transformed harmonic task set and, in turn, upper-bounded by
that of τ 0i obtained assuming the in-phase condition.

3.1 Harmonic task sets

In a harmonic task set, there exists only one instance Ji;1 of
task τi in every level-i hyperperiod and it has the same phase
combination with respect to higher priority jobs in every level-
i hyperperiod. From this property, in this subsection, we try to
prove that the response time distribution of J (h)

i;1 in a steady-
state hyperperiod h assuming the in-phase condition, which
can be calculated by our previous exact stochastic analysis,
upper-bounds those assuming all the other possible phase
combinations.

For this proof, we use the concept of a level-i busy interval,
which was mentioned in Lehoczky’s example described above.
The formal definition is an interval during which the processor
is busy all the time executing jobs of task τ i and higher priority
tasks τ1, ..., τi�1 and has no backlog of the tasks both at the
start and at the end of the interval. As seen in the example, the
worst response time of task τ i is found in one of the jobs Ji; j

executing in the in-phase level-i busy interval. We extend this
theorem of the deterministic domain, which only considers the

case of the worst case execution times, to the case of varying
execution times as follows.

Lemma 1. Suppose an in-phase level-i busy interval where
each job Jk;l of every task τk (1 � k � i) has an “arbitrary”
execution time Ck;l (Cmin

k � Ck;l � Cmax
k). Then the response

time of each job Ji; j from task τi executed in the in-phase
level-i busy interval is never less than that of Ji; j executed in
a “not-in-phase” level-i busy interval.

Proof: To understand the effect of task phases on the
response time of each job Ji; j of task τi executed in a level-
i busy interval, we formulate the response time of Ji; j as a
function of the phase combination (φ1;φ2; � � � ;φi). For the sake
of brevity, we take the smallest φmin of all the phases of the
tasks and according to φmin, adjust all the phase values so
that φk := φk �φmin (1 � k � i). Then we take as the time
origin the release time of the first job from the task whose
phase value becomes 0 due to the adjustment. To formulate
the response time of Ji; j, we have to find the completion time t f

of Ji; j, which should be large enough for serving the processor
demand of (1) all the jobs Ji;1, Ji;2, ..., and Ji; j of task τi and
(2) all the jobs Jk;l of the higher priority tasks τ k (1� k� i�1)
released in the interval [0; t f). So, the completion time t f is
the smallest value of t that satisfies the following equation.

t =
j

∑
l=1

Ci;l +

i�1

∑
k=1

0
B@

l
t�φk

Tk

m

∑
l=1

Ck;l

1
CA (3)

Since the release time of Ji; j is φi +(j�1)Ti, the response
time Ri; j of Ji; j is formulated as follows:

Ri; j(φ1;φ2; � � � ;φi) = t f �φi� (j�1)Ti

=

j

∑
l=1

Ci;l +

i�1

∑
k=1

0
BB@

�
t f �φk

Tk

�

∑
l=1

Ck;l

1
CCA�φi

�(j�1)Ti (4)

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 7

In the above equation, the completion time t f of Ji; j and all
the phase values φ1, φ2, ..., φi are variables while all the other
terms are constants, including all the given execution times
Ck;l . If φi ! 0, the release time of Ji; j is shifted to the starting
instant of the level-i busy interval, so the response time Ri; j

is increased while the completion time t f does not change.
If φk ! 0 (1 � k � i� 1), there are chances that a job of τ k

originally released after the end of the level-i busy interval
would join the interval, thus resulting in an increase in the
completion time t f by the execution time of the joining job,
in turn an increase in the response time Ri; j. From this, we
can see that the maximum value of Ri; j is obtained for any
given execution times Ck;l of the jobs when φi = 0 and φk =
0 for all k = 1;2; � � � ; i�1. Thus, the above lemma holds.

Using this lemma and the harmonic property that there
exists only one job Ji;1 of task τi in every level-i hyperperiod,
we can now prove the following theorem.

Theorem 1. For a harmonic task set, the stationary response
time distribution of job Ji;1 from task τi obtained for the in-
phase combination in a steady-state hyperperiod upper-bounds
that of Ji;1 obtained for any other phase combination.

Proof: First, consider the case where a level-i busy
interval starts at the earliest release time out of the first jobs
of τ1;τ2; � � � ;τi within a level-i hyperperiod h. According to
the definition of a busy interval, there is no backlog at the
starting instant of the interval. In this case, Ji;1 in an in-phase
level-i busy interval has the largest interferences from higher
priority jobs and hence the worst response time according to
Lemma 1.

Next, consider the case where a level-i busy interval spans
over two consecutive level-i hyperperiods, say (h�1)th level-
i hyperperiod and hth level-i hyperperiod. In this case, since
there is a backlog left from the (h�1)th hyperperiod for J (h)

i;1 ,

the response time of J (h)
i;1 is further affected by this backlog.

Nevertheless, the in-phase condition gives a worse response
time of J(h)i;1 than any other phase combinations for arbitrary
execution times. This can be explained by the harmonic
property. That is, if the release time of J (h)

i;1 is synchronized
with those of the first jobs of τ1;τ2; � � � ;τi (i.e., in-phase) in the
hth level-i hyperperiod, J (h�1)

i;1 is as well in the (h�1)th level-
i hyperperiod. Since the in-phase condition in the (h� 1)th
level-i hyperperiod gives the worse response time to J (h�1)

i;1
than any other phase combinations due to Lemma 1, it also
leaves the larger backlog to J (h)

i;1 in the hth hyperperiod than
any other phase combinations. Also, the interference by a
higher priority task to J (h)

i;1 is largest in the in-phase condition
according to Lemma 1. Thus, the in-phase condition in the
(h� 1)th level-i hyperperiod (in the hth level-i hyperperiod
as well due to the harmonic property) gives a worse response
time of J(h)i;1 than any other combinations.

This observation is valid even when extending the starting
instant of the level-i busy interval to the (h�2)th, the (h�3)th,
and finally the first hyperperiod. Thus, when h!∞, the above
theorem holds.

3.2 Non-harmonic task sets
For a non-harmonic task set, since it is not straightforward to
find the worst case phase combination for Ji;1 as explained be-
fore, we transform the non-harmonic task set fτ 1;τ2; � � � ;τig to
a harmonic task set fτ 01;τ 02; � � � ;τ 0ig. In this transformation, we
try to guarantee that the stationary response time distribution
of Ji;1 in the original task set is upper-bounded by that of J 0i;1 in
the transformed harmonic task set. For this, we introduce the
following conditions that should be ensured when transforming
a non-harmonic task set T = fτk = (Tk;φk;Ck;Dk) j 1� k� ig
to a harmonic task set T0

= fτ 0k = (T 0

k ;φ
0

k;Ck;Dk) j 1 � k � i;
T 0

l jT
0

l+1; 1 � l � i� 1g (Note that ajb means that a evenly
divides b).

Condition 1. T 0

k � Tk

Condition 2. φ0k =

(
φk 0� φk < T 0

k

max(T 0

k � χk;0) T 0

k � φk < Tk

where χk = Tk�φk.
If we make the transformation ensuring the above two

conditions, we can prove the following lemma.

Lemma 2. If a non-harmonic task set T is transformed to a
harmonic task set T0 with Conditions 1 and 2, the stationary
response time distribution of job Ji;1 of task τi in the original
task set T with the phase combination (φ1;φ2; � � � ;φi) is upper-
bounded by that of J 0i;1 of task τ 0i in the transformed task set
T0 with the phase combination (φ0

1;φ
0

2; � � � ;φ
0

i).

Proof: First, consider for a task τk the case where 0 �
φk < T 0

k (1� k � i), and let φ0k = φk according to Condition 2
(See Figure 6(a)). In this case, we can investigate the effect
of the transformed harmonic task τ 0k on the response time
distribution of Ji;1, which is released at the starting instant
of a level-i hyperperiod, say t0 (Note that we always can
define the starting instant of a level-i hyperperiod as the
release time of Ji;1 without loss of generality). Then the effect
can be formulated into two separate terms: pi;1-backlog and
pi;1-interference. We can easily see that the transformation
increases the pi;1-backlog of Ji;1 with the increased number
of jobs from the higher priority task τ 0k, released closer to the
release time of Ji;1 than in the original task set, during the
time interval [0; t0]. It also increases the pi;1-interference of
Ji;1, i.e., I [1]pi;1 , I[2]pi;1, I[3]pi;1 , ... with the increased number of jobs
from τ 0k released earlier than those in the original task set.
Thus, the resulting stationary response time distribution of J 0i;1
in the transformed task set T0 upper-bounds that of Ji;1 in the
original task set T. Note that this still holds even if the period
Ti of task τi is reduced due to the transformation.

Next, consider for a task τk the case where T 0

k � φk < Tk

(1� k� i), and if χk = Tk�φk � T 0

k , let φ0k = T 0

k �χk according
to Condition 2 (See Figure 6(b)). Similar to the above case, it is
trivial to show that the transformed harmonic task τ 0k increases
both the pi;1-backlog and the pi;1-interference of job Ji;1. Thus,
the resulting stationary response time distribution of J 0i;1 upper-
bounds that of Ji;1. If χk = Tk�φk > T 0

k , let φ0k = 0 according
to Condition 2. Even in this case, it is trivial to show the
same property. Therefore, if every transformed harmonic task
satisfies Conditions 1 and 2, the resulting stationary response

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 8

τi

τk

Ji;1

Jk;n Jk;1

Ji;2

Jk;2

Ji;m

τ 0k

τ 0i J0i;1

J0k;2J0k;1J0k;1 J0k;1J0k;2

J0i;1 J0i;1

Tk

transformation

t0

t0

T 0

k > φk

φk

φ0k = φk

(a) 0 � φk < T 0

k

τi

τk

Ji;1 Ji;2Ji;m

τ 0k

τ 0i J0i;1J0i;1 J0i;1

Tk

transformation

t0

t0

Jk;1Jk;n

J0k;1 J0k;2 J0k;1 J0k;2

T 0

k � φk

φk χk

φ0k χ 0k = χk

Jk;n�1

(b) T 0

k � φk < Tk

Fig. 6. Examples of harmonic task transformation (t0 = the starting instant of a hyperperiod)

time distribution of J 0i;1 upper-bounds that of Ji;1. Thus, the
above lemma holds.

Then, we finally can prove the following theorem, which
allows us to calculate an upper-bounding response time distri-
bution for non-harmonic tasks with varying interrelease times.

Theorem 2. For a given non-harmonic task set T =

fτ1;τ2; � � � ;τig, if we transform it to a harmonic task set
T0

= fτ 01;τ
0

2; � � � ;τ
0

ig such that T 0

k � Tk for all k = 1;2; � � � ; i, the
stationary response time distribution of J 0i;1 obtained assuming
the in-phase condition is a safe upper bound for the stationary
response time distribution of any job Ji; j from τi for any
possible phase combination of the original tasks τ 1, τ2, ...,
and τi with varying interrelease times.

Proof: As mentioned before, any job Ji; j from task τi

(having varying interrelease times) with a phase combination
with higher priority tasks (having varying interrelease times)
can be represented by the first job Ji;1 of task τi in a level-
i hyperperiod of the tasks (having the minimum interrelease
times) with an initial phase combination of (φ1;φ2; � � � ;φi) —
See Figure 4. Whatever initial phase combination is given, the
stationary response time distribution of Ji;1 in the original task
set T can be upper-bounded by that of J 0i;1 in the transformed
harmonic task set T0 by Lemma 2. The latter again is upper-
bounded by the stationary response time distribution of J 0i;1
obtained assuming the in-phase condition by Theorem 1. Thus,
the above theorem holds.

Note that there are many ways to transform a non-harmonic
task set to a harmonic task set satisfying Condition 1 (In the
actual transformation for analysis of a given task set, Condi-
tion 2 is not needed, since its purpose was only to prove the
above theorem). In this paper, we use the DCT algorithm [7]
since the resulting increase of the system utilization is known
to be smaller than that of the Sr [7]. A brief summary of the
DCT algorithm is given in the following. First, it chooses the
period Tf of a task τ f as a base and transforms the periods Tk of
all the other tasks to T 0

k such that T 0

k � Tk for all k = 1; � � � ; i,

and T 0

k evenly divides T 0

k+1 for all k = 1; � � � ; i� 1. In this
transformation, in order to reduce the resulting increase of the
system utilization, for each k > f , T 0

k is selected as the largest
integral multiple of T 0

k�1 that is less than or equal to Tk. For
each k < f , T 0

k is selected as the largest divisor of T 0

k+1 that
is less than or equal to Tk. To further reduce the utilization
increase due to the transformation, in the second step, the
algorithm repeats the above transformation for all f = 1; � � � ; i
and finally selects f that gives the smallest utilization increase.
It is important to minimize the system utilization increase due
to the harmonic task transformation, because we cannot obtain
a meaningful response time distribution if the increase is too
large.

4 EXPERIMENTAL RESULTS

In this section, we give experimental results to evaluate the
accuracy of the proposed analysis. For the evaluation of accu-
racy, we present the deadline “meet” probability. The deadline
miss probability is simply 1� deadline meet probability.

4.1 Accuracy of the proposed analysis

For general evaluation of accuracy of the proposed analysis,
we consider randomly generated non-harmonic task sets of n
tasks. For a task set, the period Ti of each task τ i (1� i � n)
is randomly sampled over an integer array of 20, 30, 40, ...,
and 200. The relative deadline Di of task τi is assumed to be
equal to the period Ti.

For each task set generated, we consider the cases where
the average system utilizations Ū are equal to 0.50, 0.55, 0.60,
0.65, 0.70, and 0.75, respectively by determining the execution
time distributions of all n tasks in the set such that the average
utilizations of the individual tasks are all equal to Ū=n. That
is, the execution time distribution of each task τ i is a uniform
distribution ranging from 1 to 2� Ū

n �Ti�1.
In order to randomly determine the initial phase φi of each

task τi, we introduce a control factor α (0 � α � 1). For a

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

Ū=0.50 Ū=0.55 Ū=0.60 Ū=0.65 Ū=0.70 Ū=0.75 Ū=0.50 Ū=0.55 Ū=0.60 Ū=0.65 Ū=0.70 Ū=0.75 Ū=0.50 Ū=0.55 Ū=0.60 Ū=0.65 Ū=0.70 Ū=0.75

Best Average Worst

D
ea

dl
in

e
M

ee
t

Pr
ob

ab
ili

ty

predicted probability (dmp{bound}) in-phase penalty (dmp{H} - dmp{bound}) DCT penalty (dmp{NH} - dmp{H})

Fig. 7. Effect of Ū on analysis accuracy (n = 3)

given α , the phase φi of every task τ i in the set is randomly
sampled over the range [0::α �Ti]. Using α , we effectively
control phase combinations of the first jobs of tasks in the
given set. The case where α = 0 leads to in-phase scenarios
while the case where α = 1 leads to random phase scenarios.

For such a given task set, we investigate the accuracy of
our computed the deadline meet probability dmp bound

n for the
lowest priority task τn. Ideally, we have to compare the com-
puted dmpbound

n with the accurate deadline meet probability of
τn assuming varying interrelease times of the tasks τ 1, τ2, � � � ,
τn. However, the accurate deadline meet probability depends
on the actual release scenario of jobs over the infinite time
interval [0;∞) and there are an infinite number of different
release scenarios where the interrelease times of each task are
greater than the period. Thus, as a reference, we consider only
one release scenario where the task phases are fixed and the
interrelease times are constant as given, that is, the release
times of all the jobs are precisely known. For that scenario,
the exact stochastic analysis [8] can compute the accurate
deadline meet probability denoted by dmp NH

n (’NH’ means
non-harmonic). Even if dmpNH

n is not an accurate probability
when the interrelease times are arbitrary, we use dmpNH

n as a
reference to evaluate the accuracy loss by the harmonic task
transformation and in-phase assumption of our analysis. In
other words, the gap between dmpNH

n and dmpbound
n gives

us an idea on how much we lose the accuracy because of
unknown release times. As another reference, we also present
the deadline meet probability of the transformed harmonic
task τ 0n denoted by dmpH

n assuming the fixed task phases and
constant interrelease times as determined by Conditions 1 and
2 for the transformed harmonic task set. This again is not a safe
bound for the original non-harmonic task set with arbitrary
interrelease times. Nevertheless, from the gap between dmpH

n
and dmpbound

n , we can have an idea on how much we lose the
accuracy due to the in-phase assumption for the transformed
harmonic task set.

Figure 7 shows such three levels of deadline meet probabil-
ity of task τ3, while varying the average system utilization
Ū and the control factor α . For a particular value of Ū ,

we consider 100 randomly generated task sets. The leftmost
column (Best Case) shows the result for the task set (out of
the 100 task sets) with the smallest increase of Ū after DCT
transformation. Each bar is the average over 100 different
phase combinations randomly generated with a given value
of α for the best case task set. One trivial observation is that
all the three levels of deadline meet probability decrease as the
Ū increases, which is natural. In the best case, the original task
set happens to be harmonic for all values of Ū and hence the
penalty of DCT transformation is zero, i.e., dmpNH

3 = dmpH
3 .

Also, the penalty due to the in-phase assumption is negligibly
small, especially when α is close to zero, which makes the
original phase combination in-phase from the beginning. As a
result, our safe bound dmpbound

3 is very close to dmpH
3 .

The middle column (Average Case) shows the average for
all the 100 task sets. Again, for each task set, we first average
the results of 100 random phase combinations for a given value
of α . This average is averaged again over the 100 task sets.
On average, our safe bound is reasonably tight up to Ū = 65%.
When Ū = 65%, the increase of Ū is 7.83%, and the difference
between our safe lower bound dmpbound

3 and dmpNH
3 observed

for various α ’s is less than 10%. For a non-zero α , the penalty
due to the in-phase assumption, i.e., dmpH

3 �dmpbound
3 is also

non-zero and varies, but it is not that significant compared
to the penalty due to the DCT transformation, i.e., dmp NH

3 �

dmpH
3 . The penalty due to the DCT transformation becomes

more significant as further increasing Ū to 70% and 75%.
Thus, we can conclude that the DCT transformation is the
main source of the pessimism of our analysis.

This becomes clearer in the rightmost column (Worst Case)
that shows the results for the task set (out of the 100 task
sets) with the largest increase of Ū after DCT transformation.
In this worst case, when Ū = 75%, the Ū increase is 19.44%,
which makes our bound far from dmp NH

3 .
Figures 8 and 9 show similar graphs when the numbers of

tasks, i.e., n, are 5 and 7, respectively. Compared with Figure 7,
we can see that for the same utilization value Ū the deadline
meet probability dmpNH

n observed for the lowest priority task
τn tends to increase. This is because while the number of tasks

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

Ū=0.50 Ū=0.55 Ū=0.60 Ū=0.65 Ū=0.70 Ū=0.75 Ū=0.50 Ū=0.55 Ū=0.60 Ū=0.65 Ū=0.70 Ū=0.75 Ū=0.50 Ū=0.55 Ū=0.60 Ū=0.65 Ū=0.70 Ū=0.75

Best Average Worst

D
ea

dl
in

e
M

ee
t

Pr
ob

ab
ili

ty

predicted probability (dmp{bound}) in-phase penalty (dmp{H} - dmp{bound}) DCT penalty (dmp{NH} - dmp{H})

Fig. 8. Effect of Ū on analysis accuracy (n = 5)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

a
=

 0
a

=
 0

.2
a

=
 0

.4
a

=
 0

.6
a

=
 0

.8
a

=
 1

.0
a

=
 0

a
=

 0
.2

a
=

 0
.4

a
=

 0
.6

a
=

 0
.8

a
=

 1
.0

Ū=0.50 Ū=0.55 Ū=0.60 Ū=0.65 Ū=0.70 Ū=0.75 Ū=0.50 Ū=0.55 Ū=0.60 Ū=0.65 Ū=0.70 Ū=0.75 Ū=0.50 Ū=0.55 Ū=0.60 Ū=0.65 Ū=0.70 Ū=0.75

Best Average Worst

D
ea

dl
in

e
M

ee
t

Pr
ob

ab
ili

ty

predicted probability (dmp{bound}) in-phase penalty (dmp{H} - dmp{bound}) DCT penalty (dmp{NH} - dmp{H})

Fig. 9. Effect of Ū on analysis accuracy (n = 7)

Best Average Worst
Ū(%) 50 55 60 65 70 75 50 55 60 65 70 75 50 55 60 65 70 75

n = 3 0.0 0.0 0.0 0.0 0.0 0.0 6.02 6.26 7.24 7.83 8.43 9.05 12.96 14.16 15.56 16.85 18.05 19.44
n = 5 0.0 0.0 0.0 0.0 0.0 0.0 8.34 9.14 9.99 10.81 11.62 12.51 14.29 15.58 17.04 18.46 19.84 21.43
n = 7 1.67 2.01 2.19 2.40 2.50 2.81 8.99 9.86 10.78 11.70 12.61 13.47 14.32 16.01 17.21 18.75 20.00 21.51

TABLE 3
Increases of the average system utilization Ū (unit = %)

increases, the probability that the system becomes overloaded
decreases, since the probability decreases that all the tasks in
the system have the maximum execution times at the same
time.

On the other hand, we can also observe that when the
number of tasks increases, the penalty due to the DCT trans-
formation becomes significant. This observation is reasonable,
since for tasks with randomly generated periods it is unlikely
that they happen to be close to being harmonic when the
number of tasks increases. As an example, the best case for
n = 7 is not a harmonic task set, while the best cases where
n = 3 and n = 5 are harmonic ones in our experiments. In
short, the accuracy of our analysis depends on how close the

original task set was to being harmonic, that is, how much Ū
increases after DCT transformation.

Table 3 shows the Ū increases after DCT transformation for
Figures 7, 8, and 9. From the table, we can observe that the
pessimism of our analysis has a strong correlation with the Ū
increase due to the DCT transformation.

From the above and other extensive experiments, which are
not shown in the paper due to the page limitation, we can see
that in the case of low system utilization (i.e., Ū � 0:50), the
Ū increase due to the DCT transformation does not matter,
since the resulting Ū is still enough low to cause few deadline
misses, thus the safe bound dmpbound

n approaches to 100%.
On the contrary, in the case of high system utilization (i.e.,

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

z
=

 0
z

=
 0

.2
z

=
 0

.4
z

=
 0

.6
z

=
 0

.8
z

=
 1

.0
z

=
 0

z
=

 0
.2

z
=

 0
.4

z
=

 0
.6

z
=

 0
.8

z
=

 1
.0

z
=

 0
z

=
 0

.2
z

=
 0

.4
z

=
 0

.6
z

=
 0

.8
z

=
 1

.0
z

=
 0

z
=

 0
.2

z
=

 0
.4

z
=

 0
.6

z
=

 0
.8

z
=

 1
.0

z
=

 0
z

=
 0

.2
z

=
 0

.4
z

=
 0

.6
z

=
 0

.8
z

=
 1

.0
z

=
 0

z
=

 0
.2

z
=

 0
.4

z
=

 0
.6

z
=

 0
.8

z
=

 1
.0

z
=

 0
z

=
 0

.2
z

=
 0

.4
z

=
 0

.6
z

=
 0

.8
z

=
 1

.0

m=2 m=5 m=10 m=50 m=100 m=500 m=1000

Am
ou

nt
 o

f Ū
 in

cr
ea

se

Ū = 0.55
Ū = 0.60
Ū = 0.65
Ū = 0.70
Ū = 0.75

Fig. 10. Ū increase due to DCT transformation according to z

Ū � 0:75), even a small increase in Ū matters significantly,
since it makes dmpbound

n far from dmpNH
n . Our rule of thumb

is that when Ū after DCT transformation is less than 80%, our
analysis gives a reasonably tight bound of the deadline meet
probability compared to dmpNH

n .
In the next subsection, we will investigate under which

circumstance Ū after DCT transformation is managed under
80% and hence our analysis can be effectively used.

4.2 Effect of the harmonic task transformation

To investigate the effect of the DCT transformation on the
system utilization of the transformed task set, we randomly
generate non-harmonic task sets over period options. In many
practical systems, it is a common practice for each task to
choose a period from a limited set of period options rather
than selecting arbitrary periods [10]. If such period options
happen to be close to being harmonic, the DCT transformation
causes only a marginal increase of Ū . However, if the original
period options are far from being harmonic, the transformation
causes a significant increase of Ū .

To see this effect, we control the closeness to being har-
monic of the period options using z. More specifically, z de-
termines the range of period options as [216::216+z

] (0� z� 1),
and over this range, we randomly pick m period options. When
z is close to 0, the selected period options can easily be
transformed to harmonic periods with a little increase of the
system utilization (In particular, when z= 0, all selected period
options are harmonic). On the contrary, when z approaches to
1, the period option set degenerates to truely random numbers,
thus it becomes far from being harmonic. 2 The reason is

2. This definition of the control factor z is similar to that of ζ introduced
in [3], which was defined as max1�i�n Xi �min1�i�n Xi where Xi = log2 Ti �

blog2 Tic. To quote the definition of ζ , however, our z value is considered an
upper bound of the values of ζ of all the task sets generated over the period
option range [2k

::2k+z], since the minimum and the maximum period value of
each task set generated are not necessarily equal to 2k and 2k+z, respectively.

that for any sampled set of period options over the range of
[216::217

] to be close to being harmonic, the only chance is
that all the sampled period options center around one single
value between 216 and 217, or that some of them are close to
216 while the others are close to 217, either of which is very
unlikely in random sampling when the number of sampled
period options is large. For each particular z value, to see
the effect of the number of period options on the system
utilization, we vary the number of period options, i.e., m, from
2 to 1000.

For generating a non-harmonic task set consisting of n tasks
(usually, n >> m), each task randomly picks one from the m
period options. Note that we do not care n since all tasks using
the same period option can be merged as a single compound
task and eventually form a task set with m compound tasks.
For each task set generated, we consider the cases where the
average system utilizations Ū are equal to 0.55, 0.60, 0.65,
0.70, and 0.75, respectively.

Figure 10 shows how much Ū increases due to the DCT
transformation for various pairs of the number of period
options, i.e., m and harmonicity of period options, i.e., z. When
z is close to zero and the number of period options is small,
the Ū increase is only marginal. For example, when z = 0:2
and m = 5, the Ū increase is at most 4%. Therefore, for a task
set with the original Ū up to 75%, the increased Ū can be
managed under our rule of thumb number 80% and hence our
analysis can be effectively used.

However, as z increases and m increases, the Ū increase
becomes significant. Nevertheless, we can make an interesting
observation that the Ū increase converges to a certain value
without keeping increasing. Even when z = 1 and m = 1000,
which represents the case of truely arbitrary selection of task
periods, the Ū increase converges at about 30%. To confirm
this converging trend, we conducted one more experiment with
a period set of truely random numbers, i.e., [2�10 3::2�105

]

and the result is given in Figure 11. This figure more clearly

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2 1000

m

Am
ou

nt
 o

f
Ū

 in
cr

ea
se

Ū = 0.55
Ū = 0.60
Ū = 0.65
Ū = 0.70
Ū = 0.75

50010050

Fig. 11. Ū increase due to DCT transformation in truely
random numbers

shows that the Ū increase converges to a certain value as
the number of period options increases. The converged value
is again about 30% when the original Ū was 75%, which
confirms the result of Figure 10. From this result, even for the
most generic circumstances where a large number of tasks can
use truely arbitrary period values, we can say that the proposed
analysis can address non-harmonic task sets with Ū < 55% and
Umax > 100%, since the converged value of Ū increase in the
case of Ū = 55% is 22% and thus the resulting Ū after DCT
transformation will not exceed 80%.

5 THEORETICAL STUDY ON THE ACCURACY
LOSS DUE TO HARMONIC TASK TRANSFORMA-
TION

In the previous section, we see that the accuracy of the
proposed analysis heavily depends on the original utilization Ū
and its increase ∆Ū due to the harmonic task transformation.
This section presents a theoretical way to approximately
estimate the loss of the deadline meet probability ∆dmp as
a function of Ū and ∆Ū .

We explain the theoretical estimation focusing on the dead-
line meet probability dmpi of τi. Thus, we focus on the task τ i

itself and its higher priority tasks τ1;τ2; � � � ;τi�1. The original
utilization of this task set is denoted by Ūi. Our safe stochastic
analysis transforms this original task set to a harmonic task
set resulting in an utilization increase by ∆Ūi. Our question is
how to theoretically quantify the effect of ∆Ūi on the loss of
the deadline meet probability ∆dmpi.

The key idea of our theoretical estimation is to use the
queueing theory to roughly estimate the deadline meet prob-
ability of τi for two cases: (1) the deadline meet proba-
bility for the original utilization, i.e., dmptheory

i (Ūi) and (2)
the deadline meet probability for the increased utilization,
i.e., dmptheory

i (Ūi + ∆Ūi). The gap between the two, i.e.,
dmptheory

i (Ūi)� dmptheory
i (Ūi +∆Ūi) is the accuracy loss due

to ∆Ūi increase by the harmonic task transformation.
For this theoretical estimation to be possible, we use two

simplifying assumptions: (1) the execution time distribution
fCk (t) of each individual task τk is a normal distribution with
mean µk and standard deviation σk and (2) the relative deadline

Di of task τi is equal to the period Ti. For the estimation
of dmptheory

i (Ūi) using the queueing theory, we aggregate τ i

itself and its higher priority tasks τ1;τ2; � � � ;τi�1 into a single
representative task denoted by τ (Ūi) such that its utilization
is kept the same as Ūi. Specifically, for this aggregation we
transform the original task set into a harmonic task set by the
same DCT algorithm. However, the mean values µk of the
execution time distributions fCk (t) (k = 1;2; � � � ; i) are reduced
to compensate the period reductions by the DCT and hence
we can keep the resulting utilization of the harmonic task
set the same as the original one, i.e., Ūi. We denote such
reduced execution time distribution by fCreduced

k
(t). Then, the

reduced execution time distributions of all the jobs in a level-
i hyperperiod of the harmonic task set are convolved into
a single execution time distribution forming an aggregated
workload during the level-i hyperperiod, i.e., the transformed
period of τ i. This convolution is represented by Equation (5).

f Ūi
C (t) = (fCreduced

1
(t))m1
 (fCreduced

2
(t))m2
�� �

(fCreduced
i

(t))mi (5)

where mk is the number of jobs of τk in a level-i hyperperiod
and (fCreduced

k
(t))mk is mk � 1 times convolution of fCreduced

k
(t)

with fCreduced
k

(t).
As a result, we can finally form a single representative task

τ (Ūi) with the period T equal to the level-i hyperperiod and
the execution time distribution f Ūi

C (t) equal to the convolved
one. The utilization of this single representative task is equal
to the original utilization Ūi.

The single representative task τ (Ūi) can be modeled as a
D/G/1 queueing system where the interarrival times among
jobs from the task are constant T , the execution time distribu-
tion is f Ūi

C (t), and the jobs are served by a single server. For
the D/G/1 queueing system, the waiting time distribution of a
job of τ (Ūi) can be calculated using Kingman’s theorem [9]
as follows:

f Ūi
W (t) = P[W � t]�P[W � t +1]

= e�s0t � e�s0(t+1)

= (1� e�s0)e�s0t (6)

where s0 = maxfs : s > 0 and e�sT R ∞
�∞ est f Ūi

C (t)dt � 1g.
Then, the response time distribution of a job of τ (Ūi) can

be simply calculated by convolving the above waiting time
distribution and its own execution time distribution as follows:

f Ūi
R (t) = f Ūi

W (t)
 f Ūi
C (t)

= (1� e�s0)e�s0t
 (fCreduced
1

(t))m1
�� �

(fCreduced
i

(t))mi (7)

With this response time distribution, we can finally find
a theoretical estimation of the deadline meet probability as
follows:

dmptheory
i (Ūi) =

Di

∑
t=1

f Ūi
R (t) (8)

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 13

The theoretical estimation of dmptheory
i (Ūi +∆Ūi) can be

similarly done. One difference is that we do not reduce
the execution time distribution after the DCT transformation.
Thus, only the periods are reduced by the DCT transformation
while the execution time distributions are the same as the
original ones and hence the resulting utilization of the single
representative task, denoted by τ (Ūi+∆Ūi), becomes Ūi+∆Ūi.
Applying the same D/G/1 analysis, we can theoretically esti-
mate the deadline meet probability for the case of the increased
utilization as follows:

dmptheory
i (Ūi +∆Ūi) =

Di

∑
t=1

f Ūi+∆Ūi
R (t) (9)

where f Ūi+∆Ūi
R (t) is computed by Equations (5), (6), and (7)

with the original execution time distributions fCk (t) instead of
fCreduced

k
(t).

Finally, we can find a theoretical estimation of the dmpi

loss as follows:

∆dmpi = dmptheory
i (Ūi)�dmptheory

i (Ūi +∆Ūi)

In order to investigate how closely the theoretical estimation
of ∆dmpi reflects the real impact of the Ūi increase, i.e., ∆Ūi,
by the DCT transformation of our safe stochastic analysis,
we test 100 randomly generated task sets each of which has
three tasks. For each task set, we calculate the ∆dmp3 using
the above theoretical estimation. For the same task set, we
also consider one release scenario where the task phases are
fixed as in-phase and interrelease times are constants as given.
For such a specific scenario where all the release times are
precisely known, the exact stochastic analysis can find the
accurate deadline meet probabilities for both cases of the
original non-harmonic task set and its transformed harmonic
task set. We use the gap between the two probabilities cal-
culated for J3;1 and J 03;1 as the accurate reference of ∆dmp3.
Figures 12 (a), (b), (c), and (d) compare the theoretical esti-
mations of ∆dmp3 with their accurate references for 100 task
sets when the original average utilization Ū is 0.4, 0.5, 0.6,
and 0.7, respectively. Interestingly, the theoretical estimation
of ∆dmp3 is always higher than the accurate reference for the
same ∆Ū . Also, the theoretical estimation of ∆dmp3 increases
along with ∆Ū in a comparable order of the increase of
the accurate reference, especially when Ū is high, say 0.7.
Thus, using the theoretical estimation of ∆dmp, we can get
a rough (i.e., conservative) idea on the loss of deadline meet
probability once the utilization increase ∆Ū by the harmonic
task transformation is given.

6 CONCLUSIONS AND FUTURE WORK

This paper proposes a novel stochastic analysis for fixed-
priority scheduling, which provides safe upper bounds of
deadline miss probabilities for periodic tasks with (1) arbitrary
execution time distributions, (2) varying interrelease times
with the period as the minimum, and (3) the maximum
utilization factor U max that can be greater than 1. The proposed
analysis is based on the observation that for harmonic task sets
the safeness of the in-phase condition can be extended to the

case of Umax > 1. It is proven that in a harmonic task set, the
response time distribution of each task obtained assuming that
all the tasks are in-phase is the worst among the ones obtained
assuming all possible phase combinations. Since this proof is
valid only for harmonic task sets, we extended our analysis
to a system of non-harmonic tasks by transforming the non-
harmonic tasks to harmonic tasks. It is also proven that there
always exists a safe transformation such that the response time
distributions of the transformed harmonic tasks are worse than
those of the original non-harmonic tasks. As a consequence,
the response time distribution of each transformed harmonic
task assuming in-phase is worse than that of the original non-
harmonic task considering all possible phase combinations.
Therefore, by comparing the response time distributions of the
transformed in-phase harmonic tasks with the given relative
deadlines, we can find safe upper bounds of deadline miss
probabilities of the original non-harmonic tasks. Through
experiments, it is shown that the in-phase condition brings
a tight upper bound on the deadline miss probability for
harmonic tasks, and that the harmonic task transformation for
non-harmonic tasks does not introduce a significant overhead
to the tightness when the resulting increase in the average
system utilization is small.

One possible direction for future research is to directly
address non-harmonic tasks without taking the detour of the
harmonic task transformation, which is the major source of
the pessimism of our analysis. Another research direction is
to investigate the schedulable utilization bound based on the
proposed analysis, which makes a stochastic schedulability
check possible without massive computation of response time
distributions.

ACKNOWLEDGMENTS

The authors of this paper are pleased to thank Prof. José Luis
Dı́az and Prof. José Marı́a López for the valuable comments
and observations regarding the example task set given in
Section 3. This work is supported by Seoul R&BD Program
(NT070124). The corresponding author is Chang-Gun Lee.

REFERENCES

[1] L. Abeni and G. Buttazzo. Stochastic Analysis of a Reservation Based
System. In Proc. of the 9th International Workshop on Parallel and
Distributed Real-Time Systems, Apr. 2001.

[2] G. Bernat, A. Colin, and S. Petters. WCET Analysis of Probabilistic
Hard Real-Time Systems. In Proc. of the 23rd IEEE Real-Time Systems
Symposium, Dec. 2002.

[3] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. New Strategies for As-
signing Real-Time Tasks to Multiprocessor Systems. IEEE Transactions
on Computers, 44(12):1429–1442, Dec. 1996.

[4] A. Cervin. Integrated Control and Real-Time Scheduling. PhD thesis,
Lund Institute of Technology, Lund, Sweden, 2003.

[5] J. L. Dı́az, J. M. López, M. Garcı́a, A. M. Campos, K. Kim, and
L. LoBello. Pessimism in the Stochastic Analysis of Real-Time Systems:
Concept and Applications. In Proc. of the 25th Real-Time Systems
Symposium, Dec. 2004.

[6] M. K. Gardner. Probabilistic Analysis and Scheduling of Critical Soft
Real-Time Systems. PhD thesis, School of Computer Science, University
of Illinois, Urbana-Champaign, 1999.

[7] C.-C. Han and H.-Y. Tyan. A Better Polynomial-Time Schedulability Test
for Real-Time Fixed-Priority Scheduling Algorithms. In Proc. of the 18th
Real-Time Systems Symposium, Dec. 1997.

IEEE TRANSACTIONS ON COMPUTERS, ACCEPTED FOR PUBLICATION 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Amount of Ū increase (∆Ū)

∆d
m

p

accurate value predicted value

(a) Ū = 0:4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Amount of Ū increase (∆Ū)

∆d
m

p

accurate value predicted value

(b) Ū = 0:5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Amount of Ū increase (∆Ū)

∆d
m

p

accurate value predicted value

(c) Ū = 0:6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Amount of Ū increase (∆Ū)

∆d
m

p

accurate value predicted value

(d) Ū = 0:7

Fig. 12. ∆Ū vs. ∆dmp

[8] K. Kim, J. L. Dı́az, L. LoBello, J. M. López, C.-G. Lee, and S. L. Min. An
Exact Stochastic Analysis of Priority-Driven Periodic Real-Time Systems
and Its Approximations. IEEE Transactions on Computers, 54(11):1460–
1466, Nov. 2005.

[9] J. F. C. Kingman. Inequalities in the Theory of Queues. Journal of the
Royal Statistical Society, Series B, 32, pages 102–110, 1970.

[10] C.-G. Lee, L. Sha, and A. Peddi. Enhanced Utilization Bounds for QoS
Management. IEEE Transactions on Computers, 53(2):187–200, 2004.

[11] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines. In Proc. of the 11th IEEE Real-Time Systems
Symposium, pages 201–209, Dec. 1990.

[12] J. P. Lehoczky. Real-Time Queueing Theory. In Proc. of the 17th IEEE
Real-Time Systems Symposium, pages 186–195, Dec. 1996.

[13] J. P. Lehoczky. Real-Time Queueing Network Theory. In Proc. of the
18th IEEE Real-Time Systems Symposium, pages 58–67, Dec. 1997.

[14] J. P. Lehoczky, L. Sha, and Y. Ding. The Rate-Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior. In Proc.
of the 10th IEEE Real-Time Systems Symposium, Dec. 1989.

[15] A. Leulseged and N. Nissanke. Probabilistic Analysis of Multi-
processor Scheduling of Tasks with Uncertain Parameter. In Proc. of the
9th International Conference on Real-Time and Embedded Computing
Systems and Applications, Feb. 2003.

[16] J. Leung and J. Whitehead. On the Complexity of Fixed Priority
Scheduling of Periodic Real-Time Tasks. Performance Evaluation,
2(4):237–250, 1982.

[17] L. Liu and J. Layland. Scheduling Algorithms for Multiprogramming
in a Hard Real-Time Environment. Journal of ACM, 20(1):46–61, 1973.

[18] S. Manolache, P. Eles, and Z. Peng. Memory and Time-Efficient
Schedulability Analysis of Task Sets with Stochastic Execution Times.
In Proc. of the 13th Euromicro Conference on Real-Time Systems, pages
19–26, Jun. 2001.

[19] M.-Y. Nam, C.-G. Lee, K. Kim, and M. Caccamo. Time-Parameterized
Sensing Task Model for Real-Time Tracking. In Proc. of the Real-Time
Systems Symposium, pages 245–255, Miami, Florida, Dec. 2005.

[20] K. M. Obenland. POSIX in Real-Time, 2001.
http://www.xtrj.org/collection/posix rtos.htm.

[21] A. Terrasa and G. Bernat. Extracting Temporal Properties from Real-
Time Systems by Automatic Tracing Analysis. In Proc. of the 9th In-

ternational Conference on Real-Time and Embedded Computing Systems
and Applications, Feb. 2003.

[22] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.-
S. Liu. Probabilistic Performance Guarantee for Real-Time Tasks with
Varying Computation Times. In Proc. of the Real-Time Technology and
Applications Symposium, pages 164–173, Chicago, Illinois, May 1995.

[23] W. Yuan and K. Nahrstedt. Energy-Efficient Soft Real-Time CPU
Scheduling for Mobile Multimedia Systems. In Proc. of the ACM
Symposium on Operating Systems Principles, pages 149–163, Bolton
Landing, New York, Oct. 2003.

Kanghee Kim Kanghee Kim received the BS, MS, and PhD degrees in
Computer Engineering from Seoul National University, Korea, in 1996,
1998, and 2004, respectively. He is currently a Senior Engineer in
the Mobile Communication Division, Samsung Electronics Co., Ltd. His
current research interests include real-time and embedded systems,
operating systems, and mobile platforms.

Chang-Gun Lee Chang-Gun Lee received the BS, MS and Ph.D.
degrees in Computer Engineering from Seoul National University, Korea,
in 1991, 1993 and 1998, respectively. He is currently an Assistant
Professor in the School of Computer Science and Engineering, Seoul
National University, Korea. Previously, he was an Assistant Professor
in the Department of Electrical and Computer Engineering, The Ohio
State University, Columbus from 2002 to 2006, a Research Scientist in
the Department of Computer Science, University of Illinois at Urbana-
Champaign from 2000 to 2002, and a Research Engineer in the Ad-
vanced Telecomm. Research Lab., LG Information and Communica-
tions, Ltd. from 1998 to 2000. His current research interests include real-
time systems, complex embedded systems, ubiquitous systems, QoS
management, wireless ad-hoc networks, and flash memory systems.
Dr. Lee is a member of the IEEE and the IEEE Computer Society.

