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Verified Real Number Calculations:
A Library for Interval Arithmetic
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Abstract— Real number calculations on elementary functions about a page long and requires the use of several trigonizmetr
are remarkably difficult to handle in mechanical proofs. In this  properties.

paper, we show how these calculations can be performed withi . . :
a theorem prover or proof assistant in a convenient and hight In many cases the formal checking of numerical calculations

automated as well as interactive way. First, we formally estblish 1S SO cumbersome that the effort seems futile; it is then
upper and lower bounds for elementary functions. Then, bas# tempting to perform the calculations out of the system, and
on these bounds, we develop a rational interval arithmetic Wwere introduce the results as axiomsHowever, chances are that
real number calculations take place in an algebraic settingIn  the external calculations will be performed using floatpuat

order to reduce the dependency effect of interval arithmet, . . - : ;
we integrate two techniques: interval splitting and taylor series arithmetic. Without formal checking of the results, we will

expansions. This pragmatic approach has been developed, &n N€Ver be sure of the correctness of the calculations.
formally verified, in a theorem prover. The formal development In this paper we present a set of interactive tools to automat

also includes a set of customizable strategies to automateopfs jcally prove numerical properties, such as Form@la (1)hinit
|nvoly|ng epr|IC|t calculations over real numpers. Our ulltlma.tte a proof assistant. The point of departure is a collectionwer
goal is to provide guaranteed proofs of numerical propertis with . . .
minimal human theorem-prover interaction. and upper bounds for ratl_onal and non-rational operations.
Based on provable properties of these bounds, we develop a
rational interval arithmetic which is amenable to autoorati
The series approximations and interval arithmetic present
here are well-known. However, to our knowledge, this is the
|. INTRODUCTION most complete formalization in a theorem prover of interval
Deadly and disastrous failures [1]-[3] confirm the shareatithmetic that includes non-algebraic functions.
belief that traditional testing, simulation, and peeriegvare Our ultimate goal is to provide guaranteed formal proofs
not sufficient to guarantee the correctness of critical-softf numerical properties with minimum human effort. As
ware. Formal Methods in computer science refers to a sedutomated processes are bound to fail on degenerate cases an
of mathematical techniques and tools to verify safety propsaste time and memory on simple ones, we have designed a
erties of a system design and its implementation functionsgt of highly customizable proof strategies. The defaulies
requirements. In the verification of engineering applmasi of the parameters are sufficient in most simple cases. Haweve
such as aerospace systems, it is often necessary to perfarapmain expert can set these parameters to obtain a desired
explicit calculations with non-algebraic functions. Di#sp result,e.g., the accuracy of a particular calculation.
all of the developments concerning real analysis in theoremThis paper merges and extends the results presented in
provers [4]-[8], the formal verification of the correctnesfs [10], [11]. The rest of this document is organized as follows

Index Terms— Real number calculations, interval arithmetic,
proof checking, theorem proving

these calculations is not routine. Sectior 1l defines bounds for elementary functions. Seflon
Take, for example, the formula presents a rational interval arithmetic based on thesedsoun
3 g 35 31 S_ectionEN. describes a methon_j to prove numerical proposi-
180 < v tan(m) < 180 (1) tions. The implementation of this method in a theorem prover

: o . is described in Section]V. Last section summarizes our work
where g is the gravitational force and = 250 knots is .
and compares it to related work.

the ground speed of an aircraft. This formula appears mTh th tical devel ¢ ted in thi h
the verification of NASAs Airborne Information for Lateral € maihematical development presented in this paper has
een written and fully verified in the Prototype Verification

Spacing (AILS) algorithm [9]. It states that the turn rate oi : .
ar? aircgr]ag‘t fIyir)19 gt grounEj ]speed with a bank angle of ystem (PVS) [1ﬂl PVS provides a strongly typed specifica-
tion language and a theorem prover for higher-order logic.

35° is about3® per second. A direct proof of this formula is_ ~. . .
P P It is developed by SRI International. Our development is
M. Daumas far c. daunas@i rmm fr) is with the LIRMM, CNRS, freely available on the Internet. The results on upper and
UM2 and ELIAUS, UPVD and he is supported in part by the PICS288 |ower bounds have been integrated to the NASA Langley PVS

the CNRS. ; ) . ; . ]
D. Lester (il est er @s. man. ac. uk) is with the University of Manch- Librarie§l and the rational interval arithmetic and the PVS
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C. Mufioz frunoz@i anet . org) is with the National Institute of
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the authoE;

B. Trigonometric functions

For readability, we will use standard mathematical notegio We use the partia| approximation by series.

along this paper and PVS notations will be limited to illasér

the use of the library. In the following, we use the first lette sin(z,n) = zm:(—l)l‘l a!
of the alphabet:, b, ... to denote rational numbers, and the = ~ (20 —1)!
last letters of the alphabet.x,y, z to denote arbitrary real m1 91
variables. We usboldfacefor interval variables. Furthermore, sin(z,n) = Z (_1)1'*15”.77
if x is an interval variablex denotes its lower bound arx =1 (2i = 1)!
denotes its upper bound. m+1 ey
cos(z,n) = 1+ Z (-1)° @)
i=1
m 21
[I. BOUNDS FORELEMENTARY FUNCTIONS os(n) = 1+ Z(_l)z (;Z-)p
i=1

A PVS basic theory of bounds for square root and trigono-
metric functions was originally proposed for the verifioati
of NASAs AILS algorithm [9]. We have completed it and
extended with bounds for natural logarithm, exponentiatl a
arctangent. The basic idea is to provide for each real fancti

f: R~ R, functionsf : (R,N) — R and f : (R,N) — R

closed undef, such that for allz, n

flz,n) < fx) < flz,n),
f(x,n) < flz,n+1),
Fantl) < Flon),
lim f@n) = f@) = lm Fn)

Formula [2) states thaf and f are, respectively, lower and

)
®3)
(4)
®)

wherem = 2n if z <0; otherwise,m =2n+1.
Proposition 2: Va,n : sin(x,n) < sin(z) < sin(z,n).
Proposition 3: Vz,n : cos(z,n) < cos(x) < Tos(x,n).

C. Arctangent and 7

We first use the alternating partial approximation by series
for0 <z <1.

2n+1 (_1)1
t = A jfo<a<l1
atan(z,n) ;:1 A L r <1,
£ = > 2P ifo<z<l
atan(z,n) 2 s x <

upper bounds off, and formulas[(3).[{4), and(5) state tha{ye note that for: = 1 (which we might naively wish to use to

these bounds can ultimately be improved, as much as neeqgg

by increasing the approximation parameter

inerr/4 and hencer) the seriesi—4+1—1+1—... does
converge, but very slowly. Instead, we use the equdjity-

For transcendental functions, we use taylor approximatian,tan(1/5)— atan(1/239), that has much better convergence

series. We performed a coarse range reduction [13] since Hgperties. Using this identity we can define boundsron
convergence of taylor series is usually best for small \&alue

More elaborate range reduction techniques [14] would &igni m(n) = 16 atan(1l,n) — 4 atan(1,n),
icantly enhance the speed and the accuracy of the functions m(n) = 16 atan(l,n) —4 atan(1,n).

defined in Sectiorislll arid]ll. All the stated propositionshis
section have been formally verified in the verification syste

PVS.

A. Square root

For square root, we use a simple approximation by Newton’s  atan

method. Forz > 0,

sqrt(z,0) = =z +1,
- 1 -
sqrt(z,n+1) = 5(7; + E), wherey = sqrt(z, n),
Y
x
S t — —e
sart(z,n) sqrt(x,n)

Proposition 1. V2 > 0,n: 0 < sqrt(z,n) < x
sqrt(x, n).
The first inequality is strict when > 0.

4http: //research. ni anet. org/ ~nmunoz/ | nterval.

<

Proposition 4: Vn: n(n) < m < 7(n).
Now, using properties of arctangent, we extend the range of
the function to the whole set of real numbers:

= atan(0,n) = 0,

m(n)

2

(0,7)
(z,n)
atan(z,n) = —atan(—z,n),
(z,n)
(x,n) = -—atan(—z,n), if x<0.

1 .
T,n) = _T—atan(g,n), if 1<,
), if x <0,
T 1 .
atan(xz,n) = @—atan(—,n), if 1<,
x
)

Proposition 5: Vz,n : atan(z,n) < atan(z) <
atan(x,n).
These are strict inequalities except whes- 0.

The PVS definition of bounds oftan andw are presented
in Listing [1. PVS developments are organized in theories,
which are collections of mathematical and logical objects
such as function definitions, variable declarations, asiom
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and lemmas. Theat an_appr ox theory first imports the
definition of the arctangent function. Then, it declaresalges

n, x, px of typesnat (natural numbers); eal (real num-
bers), angosr eal (positive real numbers), respectively. For
the scope of the theory, these variables are implicitly emiv

sally quantified. Though writing definitions, lemmas, thes  py/S Listing 1 Definition of bounds omtan and =

and specially proofs in PVS requires some training, readin%;
. . . . . al'an_appr ox: THECRY
theories is possible to anybody with a minimal background Hg5

logic.
I MPORTI NG at an
i n: VAR nat
D. Exponential X VAR roal
The series we use for the exponential function is px: VAR posreal
o i atan_pos_lel_ub(n,x): real =

exp(z) = Z f_' atan_series_n(x, 2«n)

=0

atan_pos_lel Ib(n,x): real
We could directly find bounds for negativefrom this series atan_series_n(x, 2=n+1)
as, in this case, the series is alternating. However, we will
subsequently find that it is convenient to show that our beund
for the exponential function are strictly positive, andsttd not

true for allz < 0. Yet, this propertyholds for —1 < 2 < 0.

atan_pos_I| el _bounds: LEMVA
0 < x AND x <= 1 | MPLIES
atan_pos_lel I b(n,x) < atan(x) AND
atan(x) < atan_pos_Il el _ub(n, x)

We define pi _l bn(n): posreal =
4« (4xatan_pos_lel I b(n,1/5) -
2(n+1)+1 7 atan_pos_l el_ub(n, 1/ 239))
exp(z,n) = Z —, If =1 <z<0, _
— — 1! pi _ubn(n): posreal =
4+ (4xatan_pos_l el_ub(n,1/5) -
2(nt1) 7 atan_pos_| el | b(n, 1/239))
exp(xz,n) = Z —, If —=1<z<0.
— i! pi _bounds: THEOREM

pi _Ibn(n) < pi AND pi < pi_ubn(n)

Using properties of the exponential function, we obtain

bounds for the whole set of real numbers: real =

atan_pos_I b(n, px):
IF px <= 1 THEN

atan_pos_lel_| b(n, px)

exp(0,n) = @&p(0,n) = 1, ELSE
T —lz] pi _l bn(n)/2 - atan_pos_| el_ub(n, 1/ px)
exp(r,n) = ex_p(_pcJ ,n) , fz<—1 ENDI F
1 . atan_pos_ub(n, px): real =
exp(z,n) = , ifx>0, IF px <= 1 THEN
- exp(—,n) atan_pos_I| el_ub(n, px)
o z —lz] ELSE
exp(z,n) = eXp(—LxJ ,n) , ifrz<—1 pi _ubn(n)/2 - atan_pos_l el | b(n, 1/ px)
ENDI F
o 1 .
exp(z,n) = ma if z>0. atan_Ib(x,n): real =

Notice that unless we can ensure that all of the bounding

functions are strictly positive we will run into type-cheay
problems using the bound definitions far > 0, eg,

1/exp(—x,n) is only defined provide@xp(—z,n) # 0.

Proposition 6: Vz,n :
exp(z, n).

0 < exp(z,n) < exp(xr) <

These are strict inequalities except whes- 0.

E. Natural Logarithm

For 0 < =z < 1, we use the alternating series for natural

logarithm:

o0

>

i=1

In(z+1) =

i
-1 i+1x_.
) )

IF x > 0 THEN atan_pos_I b(n, x)
ELSIF x = 0 THEN O
ELSE - atan_pos_ub(n,-x) ENDIF

atan_ub(x,n): real =
IF x > 0 THEN atan_pos_ub(n, x)
ELSIF x = 0 THEN O
ELSE -atan_pos_| b(n,-x) ENDIF
at an_bounds: THEOREM

atan_l b(x, n) <= atan(x) AND
atan(x) <= atan_ub(x, n)

END at an_appr ox




Therefore, we define and hide some technical parts. The theory defines the type

on I nt erval as a record with fieldsib and| b of typer at

In(z,n) = Z(—l)”lu, if1<az<2, (rational numbers), variables, y of typer eal , variablen
i1 ¢ of type nat , and variablest, Y of typel nt erval .
2n+1 :

_ o (r—1) .

W(z,n) = Y (—1)”1%, if 1 <a<2. PVS Listing 2 Definition of interval arithmetic
1=1

. . . . . Interval : THEORY
Using properties of the natural logarithm function, we @bta geg N

In(l,n) = In(l,n) = 0 Interval : TYPE = [#
1 . Ib: rat,
In(z,n) = —1_n(;,n), if 0 <z <1, ub - rat
— — 1 . #]
In(z,n) = -In(—,n), fFO0<xz<l.
T

X, ¥ : VAR real
n : VAR nat

Finally, we extend the range to the whole set of positivesreal X Y @ VAR Interval
If x > 2, we find a natural numbern and real numbey such

thatz = 2™y and1 < y < 2, by using the following recursive HX W) Anterval = | lugg %) fugﬁp) | ]
algorithm similar in spirit to Euclidean division: (X Y): Interval = [|Ib(X)-ub(Y),
. . . _ ub(X)-1b(Y)|]
| nir1?t)((x.<pﬁstr ﬁg:j,z(b'p)(())snat). [nat, posreal] = S(X) : Interval = [|-ub(X),
ol se v | -1b(X)) ]
_ : *(X,Y): Interval = ...
Lﬁ;l(ggy) = Innat (x/k, k) in /(X Y): Interval = X = [|1/ub(Y)
endif | VIb( ]
Abs(X): Interval = ...
We next prove the following property: §Q( X) @ Interval =
Proposition 7: Vo > 1,k > 1: k™ <z < k™M y < (X.n): Interval =
k,z = k™y, where(m,y) =1 nnat (z, k). WX Y) : Interval = [[min(Ib(X),1b(Y)),
If (m,y) =1nnat (2,z), we observe that max(ub(X), ub(Y))|]
In(z) = In(2™y) = mIn(2) + In(y).
END I nterval
Hence,
In(z, = In(2, In(y,n), if x> 2, ) . )
:n(x n) mn :n( n) +:n(y n) , * If X is a PVS intervall b( X) is the lower bound and
In(z,n) = mln(2n)+In(y,n), if z>2. ub(X) is the upper bound oK. In PVS, we define the
Proposition 8: Va > 0,n: In(z,n) < In(z) < In(z,n). Syntactic sugarf|x,y|] to represent the intervalz, y|.
These are strict inequa"ties except when- 1. Interval unionx U y, written in PVSX U Y, is defined as
the smallest rational interval that contains batlandy.
1. RATIONAL INTERVAL ARITHMETIC The four basic interval operations are defined as fol-

WS [17]:

Interval arithmetic has been used for decades as a standgr
tool for numerical analysis on engineering applications]1

. . . ; x+y = [x+y.X+7],
[16]. In interval arithmetic, operations are evaluated ange _ ~ x— - ]
of numbers rather than on real numbers(obosed) interval =~ ¥ 5. Yo% _XL L .
[a,b] is the set of real numbers betweerandb, i.e, XXy = [min{xy,x¥,Xy, Xy}, max{xy, Xy, Xy, Xy }|,
11 o
[a,b] = {z]a<az<b} x/y = xx[§,§], if yy > 0.

The boundsz and b are called thdower bound and upper
bound of [a,b], respectively. Note that ife > b, the interval
is the empty set. The notatidn] abbreviates the point-wise
interval [a, a]. x
Interval computations can be performed on the endpoints

We also define the unary negation, absolute value, and power
operators for intervals:

[
or on the center and the radius. For this work, we decided toXl = [min{|x], |§|}’max{|_5|’ X[}, if xx =0
work on rational endpoints. Trigonometric and transcetalen [x| = [0, max{[x|, [x|}], if xX <O0.
presented in Sectidnl Il. x" X" if x>0 orodd?n),

[
X", x"] if X <0 and eventh),

Listing [@ shows a few definitions from the PVS the- * X
[0, max{x",X"}] otherwise

0
functions for interval arithmetic are defined using the lasin [1] if n=0,
ory I nterval . Dots are used to simplify the presentation



Interval operations are defined such that they include tBe Square root, arctangent, exponential, and natural loga-
result of their corresponding real operations. This proper rithm

called theinclusion property. . Interval functions for square root, arctangent,exponen-
Proposition 9 (Inclusion Property for Basic Operators): If g and natural logarithm are defined for an approximation

x €xandy €y thenz®y € x®y, where® € {+,—, %, /}.  parameten > 0:

Moreover,—z € —x, |z| € |x|, andz™ € x", forn > 0. It B

is assumed thay does not contaird in the case of interval (VX [sart(x, n),sqrt(X,n)], if x>0,
division. [atan(x)], = [atan(x,n),atan(X,n)],
Listing[3 specifies this property in PVS. The propositiog x e = [a(n),7(n)]
is written x  ## X. " o '
[exp(x)]n = [exp(x, n),exp(X, n)],
PVS Listing 3 Basic inclusion properties n(x)], = [nx,n),nxmn), ifx>0.
Add_i ncl usion : LEMVA As consequence of Propositidd$1.,[3, 6, &hd 8 in SeEfion I,
X #E X AND y ##E Y = Xty XY and the fact that these functions are increasing, the above
Sub inclusion @ LEMVA functions satisfy the following inclusion property.
X ## X ANDy ## Y = x-y ## X-Y Proposition 12: For all n, if € x then f(z) € [f(X)]n,

where f € {,/,atan,exp,In}. Moreover,w € [r],. It is
assumed thak is non-negative in the case of square root,
andx is positive in the case of natural logarithm.

Neg_i nclusion : LEMVA
X ## X = -x ## -X

Mul't i nclusion : LEMVA

X ## X ANDy ## Y = xry ## XY C. Trigonometric functions

Di v_inclusion : LEMVA Parametric functions for interval trigonometric functsosre

NOT 0 ## Y AND defined by cases analysis on quadrants where the functions

X ## X ANDy ## Y = xly ## XY are increasing or decreasing. The mathematical definitioms
Abs_i nclusion : LEMVA presented in Figuriel 1.

X ## X = abs(x) ## abs(X) Note thatsin and cos are defined for the whole real line.

However, for anglesy such thatja| > & both functions will

Sq_inclusion : LEMVA return the interval—1, 1], a valid bound but not a very good

X ## X = sa(x) ## sa(X) one. Furthermore, the expressian+ 5 in Formula [8) is
Pow i ncl usion : LEMVA necessary to guarantee that lower and upper bounds of cosine

X ## X = x"n ## X°n are strictly positive in the interve@l—@,%’“s’)],and thus,

the interval tangent function is always defined in that ieér
The interval trigonometric functions satisfy the inclusio
The inclusion property is fundamental to interval arithimet property.

It guarantees that evaluations of an expression usingvaiter proposition 13: If 2 € x then f(z) € [f(x)],, where f €

arithmetic bound its exact real value. Any operation inmwee  (gin cos}. Moreover, ifx C [_E("2+5)’£(n2+5)], tan(z) €

arithmetic must satisfy the inclusion property with respec ¢,y (x)),,.

its corresponding real operation.

The next section proposes a method to prove numerical
A. Interval comparisons propositions based on the interval arithmetic described.he

There are several possible ways to compare intervals [18].
In this work, we use interval-rational comparisons andrirge V. MECHANICAL PROOFS OFNUMERICAL PROPOSITIONS

inclusions. Arithmetic expressions are defined by the following gram-

o . mar, whereV is an denumerable set of real variables:
a If X < a, similarly for

x <
x > a if x> a, similarly for
C

<,
>, e = al|lzxz|ete|e—e]| —e | exe|

efe | lel | e | Ve |m | sin(e) |

x €y ffy<xandx<y. cos(e) | tan(e) | exp(e) | In(e)| atan(e)
Proposition 10: Assume that: € x, a € Q
1) if x >1a thenz xia, for i € {<,<,>,>}, and ; E ]I\j

2) if x Cythenx €y.
We usex to denote>, >, <, or <, when is, respectively, Numerical propositionsP have either the forme; i es,
<, <, >, or >, wherex € {<,<,>,>}, or the forme € a, wherea is a
Proposition 11: If x >1a andx % a, thenx is empty. constant interval (an interval with constant rational esidfs).
Notice that—(x <1 a) does not implyx 4 a. For instance, As usual, parentheses are used to group real and interval
[—1,1] is neither greater nor less than expressions as needed.



[sin(ax, ) 5(X, n)] it x C = 2,
. [sin(X, n), sin(x, )] else if x C [T% 7(n)),

sin(x)ln = { [min{sin(x,n),sin(x,n)},1]  elseif xC[0,x(n)], (6)
—[sin(—x)]» else if x C[—x(n),0],
[-1,1] otherwise
cos(—x)|n elseif xC|—xm(n),0],

[eos(x)ln = [min{cos(x,n), cos(X,n)}, 1] elseif xC [—#, #], 0
[-1,1] otherwise

[tan(x)], = [%(5, n+5), %(i, n+5)], ifxC[- E(n;- 5)7 E(n;— 5)] (8)

Fig. 1. Interval trigonometric functions

A context ' is a set of hypotheses of the form € x. In that case go to stdg 5.
A ground context is a context where all the intervals are 4) Evaluatele]l 54 0. If this evaluates to true then fail. By
constant. In the following, we use logical judgments in the PropositiofIIL, the judgmefit - [e]} > 0 cannot hold.
sequent calculus style,g.,, I' = P, where all free variables If [e]% 4 0 evaluates to false, increase the approximation
occurring inP are inT". The intended semantics of a judgment parameter and return to step 3.
I' = P is that the numerical propositioR is true under the 5) By TheorentlL,
hypotheseg".

Given a contexf’, an approximation parameter, and an
expressiore, such that the free variables efare inT’, we
define the interval expressidal’, by recursion ore.

I' - eclel.

n

6) Propositior 10 yields

[a]g [a]7 o I' F exO.
] = x, where(z € x) €T, 7) By definition,
[81 ® 62]2 = [61]2 ® [82]57 where® € {+v - %, /}7 I' b e —exx0.
Al _ I'yi
[Ej}l ; (_[(Ei’]’r) ’ 8) Therefore,
lel, = Ilell, [ Foerpdes.
[7ln = [l The method above can be easily adapted to judgments of
[f (x5 [f ([2)5)]) s the formI' F e < a. In this case, the interval expression

[e]l C a is evaluated. If the expression evaluates to true, then

the original judgment holds by Theoréth 1 and Proposifidn 10.
Theorem 1 (Inclusion): Let I' be a contexty an approxi- QOtherwise, the method should fail.

mation parameter, and a well-defined arithmetic expression The general method isound, i.e, all the steps can be

in T, i.e, side conditions for division, square root, |Ogarithmeffective|y computed and each one is formally justified. In
and tangent are satisfied, particular, the propositiong]" > 0, [e]l 54 0, and[¢]l C a
T+ eelel. (9) can be mechanically computed as they only involve rational
Proof: By structural induction one and proposi- arithmetic and constant numerical values. The method is not
tions[2, 12, anf13. m complete as it does not necessarily terminate. Even dinly
involves the four basic operations and no variables, it may b
A. A general method for numerical propositions that both[e];, > 0 and|el;, 4 0 evaluate to false.
Wi . . The absence of a completeness result is a fundamental
e propose a general method to prove numerical propoFl o | table arithmetic. At a nicadt
tions. First, consider a judgment of the form Imitation on any general computable anthmetic. At a p
level, the problem arises because all we have available are
a sequence of approximations to the real numheend y;
providedx andy differ, with luck we will eventually have
a pair of approximations whose intervals do not overlap, and
hence we can return a result fon< y. However, ifxz andy
are the same real number (note we might not necessarily get
the same sequence of approximations for hotand y), we
can never be sure whether further evaluation might result in
us being able to distinguish the numbers.

where f € {sin, cos, tan, exp, In, atan}.

I' e1 D eg,

wherel" is a ground context.
1) Select an approximation parameter
2) Definee = e; — es.
3) Evaluatele]l > 0. If it evaluates to true, the following
judgment holds



B. Dependency effect ko is the number of tiles of the second variables alone, and so

The dependency effect is a well-known behavior of interval forth, the total number of tiles to be consideredfowariables
arithmetic due to the fact that interval identity is lostimerval 'S ng__jgm k;. _ o _
evaluations. This may have surprising results, for insgtanc 1he integration of the Splitting rule into the general metho
x — x is [0] only if x is point-wise. Moreover, as we havelS strallghtfor\./vard. First, a splitting is computgd for agiset
seen in Sectiofi A, bothx > a and x < a may be of variables inI". Then, the ge_neral method is applied to all
false. Additionally, interval arithmetic is subdistrifug, i.e, cases. If the general method is successful in all of them, by
x x (y +2) C xx y +x x z. In the general case the inclusiorPrOpOS't'O_rm' the or|g|na_l J_udgment holds. _OtherW|sce th
is strict and some dependency effects appear as soon dge4hod fails and a new splitting may be considered.
variable is used more than once in an expression.

For the method presented in Sectibn _1V-A, it means that thd Taylor Series Expansions
arrangement of the expressiemnatters. For instance, assume Replacing2 x = —z by 2 can be done automatically. In fact,
that we want to prover € [0,1] F 2 x2 > = This as we will see in SectioilV, these kinds of simplifications are
is pretty obvious in arithmetic as is a non-negative real. performed by our PVS implementation of the general method.
Using our method, we first consider the arithmetic expressiglowever, these simplifications may not be sufficient even for
e = 2 x z —x and then construct the interval expressiogimple expressions such as< (1 — z), wherex € [0.1]. The
e]l}, = 2 x x — x, wherex = [0,1]. For any approximation subdistributivity property of interval arithmetic statérat the
parameten, [¢]}, evaluates td—1,2] which is neither greater interval evaluation of: x (1 — z) is better than that of the
nor less thar. Therefore, the method will not terminate. Orequivalent expressiom — z2. Unfortunately, that evaluation
the other hand, if instead of the arithmetic expres€ien:—x, is not good enough to prove thatx (1 — z) € [0,1/4]. In
we consider the equivalent arithmetic expressigrwe have this case, as a domain expert knows, the optimal answer is
[z];, = [0,1] and [0, 1] > 0 evaluates to true. obtained with the equivalent expressibfit — (1/2 —z)2. The

A second observation is that because of the dependereyution is a lot less intuitive when non-algebraic funotare
effect the width of intervals also matters. Consider agh# tinvolved.
expressione = 2 x x — x. We have seen that the interval Taylor's theorem states thatradifferentiable function can
evaluation of[e]},, for z € [0,1], results in[—1,2], which be approximated near a given point by a polynomial of degree
is not sufficient to prove thafe], > 0. On the other hand, », whose coefficients depend on the derivatives of the function
the expressiorfe];, evaluates td—1/2,1] whenz € [0,1/2] at that point. In interval arithmetic, taylor's theorem che
and it evaluates tg0,3/2] whenz € [1/2,1]. Therefore, we expressed by the following deduction rule.
can prove that, forr € [0,1], [e], € [-1/2,1] U [0,3/2], Proposition 15: Let x, %o, ..., x, be strictly proper inter-
i.e, [e];, € [-1/2,3/2], which is a better approximation thanvals, f a n-differentiable function on a variable € x, and
[-1,2]. If we continue dividing the interval0, 1] and com- ¢ e x a constant,
puting the urglon of the resultlng_ intervals, we can everyual Vo<i<n:t fO()ex,
prove thate],, + ¢ > 0 for an arbitrary smalk > 0. (n)

These observations lead to two enhancements of the general rex b J; () € Xn —
method. First, we could divide each interval In before vE€x F f(z) € isp(xi x (x —c)') /il
applying the general technique. Second, we may want to!he expression of Taylor’s rule shows that interv@ppears

replace the original expression by an equivalent one thatQ8ly once in each term of ordérfor i betweenl andn — 1
less prone to the dependency effect. preventing any dependency effect duextdn a term alone.

The term of ordern suffers some dependency effectxaalso
C. Interval splitting appears in the definition af,,. In most casesy = 2 is used
_ . . _ to cancel first order dependency effects as presented ¢idtin
In interval arithmetic, the dependency effect of the uniog; iy cases where the first derivatives nearly vanish or eher
of the parts is less than the dependency effect of the wh fie evaluation of the last derivative introduces significan

Indeed, the simplest way to reduce the dependency eﬁechbspendency effects, we compute more terms to reach some
to divide the interval variables into several tiles (subimals) better bounds

and to evaluate the original expression on these tiles atgiar
This technique is callethterval splitting or sub-paving and is
expressed by the following deduction rule.

[Taylor]

Using Taylor’s rule require more work than the Splitting
rule. In particular, we need to provide intervals, ..., x,

- _ and constant that satisfy the hypotheses of the rule. Eare

Proposition 14: LetI' be a contexte an expression whose oy, ,,qe the middle point of unless the user proposes another
free variables are and those i, e an interval expression, point. It follow immediately that: € x. For0 < i < n, we
andx,x,...,x, intervals such thak = |J, ., xi, choosex; = [f@(c)],, and, by Theoreril1, we havk? (c)

Vi<i<n: zex,I F ece x;. Finally, we choose,, = [f(™ (z)]L, wherel is the context
reEx,I F ece = € x. By Theorenf]L, we havé + f("(z) € x,,.

The Splitting rule can be iterated to obtain a splitting for In order to prove the judgment € x + f(z) € a, we
multiple variables. Note that the number of tiles generdted consider the interval expressiaif (x; x (x—c)*)/i! C a for
interval splitting is exponential in the number of variable a givenn. If it evaluates to true, then the original judgment
Indeed, if%; is the number of tiles of the first variable aloneholds by Taylor's rule and Propositidn]10. If the evaluation

[Splitting]



returns false, the method fails and a higher expansion degsatisfiesG(0.5828) > 0. In PVS:
n may be considered. _ , G(x|x < 1): real = 3«x/2 - In(1-x)
For better results, the evaluation®f_,(x; x (x—c)*)/i! C
a can be performed using the splitting technique. Contrary toA_and_S : | emma G(0.5828) > 0
the approach described in [19], we do not have to generate a
new taylor approximation for each tile. By using an interva -
based taylor expansion, the same expression can be reused
for all the tiles. One single global taylor expansion hasé¢o bn this case, the optional parametedefs "G' tells
validated, and the proofs for all the tiles simply consisaim numneri cal that the user-defined functio® has to be
interval evaluation of this expansion. We do not suffer fritve expanded before performing the numerical evaluation. The
taylor coefficients being irrational numbers, they are $ymporiginal proof of this lemma in PVS required the manual
given by interval expressions involving rational funcson expansion of 19 terms of thia series.
Relying on rational interval arithmetic leads to concefiyjua The nuneri cal strategy is aimed to practicality rather
simpler proofs. than completeness. In particular, it always terminate and i
is configurable for better accuracy (at the expense of perfor
Section¥ describes how the general method and its exance).
tensions are implemented in the PVS theorem prover andlermination is trivially achieved as the strategy does not
illustrates the practical use of the library with a few exdesp iterate for different approximations.e., step[B either goes
to step[b or fails. In other words, iiuneri cal does not
succeed, it does nothing. Furthermomaineri cal uses a
_ ] ) ) _ default approximation parameter = 3, which gives an
The interval arithmetic presented in this paper has begRcyracy of about decimals for trigonometric functions.
developed as a PVS library calleédt erval . This library  yoyever, the user can increase this parameter or set atifer
contains the specification of interval ar|thmet|c degcmbere approximation to each function according to his/her aagyra
and the formal proofs of its properties. We believe that geeds and availability of computational power. Curreritigre
domain expert can use this library with a basic knowledge @f o direct relation between the approximation parameter
theorem provers. Minimal PVS expertise is required as mbst g the accuracy, as all the bounding functions have differe
the technical burden of proving numerical properties isaudly convergence rates. On-going work aims to provide, an atesolu

A and_S : PROOF (nunerical :defs "G') QED

V. VERIFIED REAL NUMBER CALCULATIONS IN PVS

implemented as proof strategies. error of at most2~? for any expression with a new approx-
imation parametep. The strategy has not been designed to
A. Strategies reuse past computations. Therefore, it will be prohibitive

expensive to automatically iterateuneri cal to achieve a

The nuneri cal strategy is the basic strategy that im- L . : .
lements the general method and its extensions describeérlnall approximation on a complex arithmetic expression.
P Ih order to reduce the dependency effect, therer i cal

SectiorlIV. For instance, Formuld 1 can be specified in va rategy automatically rearranges arithmetic expressirsm
as follows (comments in PVS start with the symB6land 9y y 9 P 9

extend to the end of the line): a simple factorization algorithm. Due to the subdistribitii
' property, the evaluation of factorized interval expressids

g . posreal 9.8 %4 m s”2] more accurate than that of non-factorized ones. A set of

v : posreal = 250+0.514 % nis] lemmas of the NASA Langley PVS Libraries are also used
tr35 LEMVA as rewr_iting rule_s on arithmetic expressions prio_r to nuoakr
(g*tan(35+pi/180)/v) * 180/ pi evaluations. This set of lemmas is parameterizable and can
## [| 3, 3.1 ] be extended by the user. For instance, trigonometric fonsti
. applied to notable angles are automatically rewritten trth
% - tr3s5: PROCF (nunerical) QED exact value. Thereforepumeri cal is able to prove that

We emphasize that, in PV$.an andpi are the real math- sin(w/2) € 1, even if this proposition is not provable using our
ematical functiontan and constantr, respectively. Lemma interval arithmetic operators alone. Although it is notremtly

t r 35 is automatically discharged by theuneri cal strat- implemented, this approach can also be used to normalize
egy, which can be entered interactively or in batch mode, @8gles to the rangé-m, | that is suitable for the interval

in this case, via the ProofLite library developed by one @ tHrigonometric functions in Sectiotis TIC.

authors [20]. The splitting technique is implemented by allowing the
Another example is the proof of the inequality 4.1.35Se€r to specify the number of tiles to be considered for each
in [13]: interval variable or a default value for all of them. The &gy
. will evenly divide each interval. For example, the simple
Vo: 0<x<05828 = |In(l—12)] < —. expression in Section TVAD can be proven to be in the range

o o ~[0,9/32] using a splitting of 16 subintervals.
The key to prove this inequality is to prove that the function fair . LEMMA
3z X ## []0,1]] IMPLIES x*(1-x) ## []0, 9/32|]

G(z) = 7—111(1—1‘)



atan(x) - r(x) ## [ 2", 27 []

% - fair : PROOF (instint :splitting 16) QED 5

T T T
Splitting —— |
Splitting Taylor 1 ——
Splitting Taylor 2 —s— o

In this example we have used thienstint strategy.
This strategy is built on top ofmunerical and per-
forms some basic logic manipulations such as introduction
of real variables and interval constants. In this case, the
proof command(initint :splitting 16) is equiv-
alent to (then (skeep) (nunerical :vars ("x"
"[10,1]]1" 16))). It instructs PVS to introduce the real
variablex and then to applpuneri cal by splitting 16 times
the interval(0, 1].

The taylor series expansion technique is implemented in i
two steps. First, the ayl or strategy automatically proves
PropositionIb for a particular functiofi and degreen. In  Fig. 2. Time required to provean(z) — r(z) € [—1/30,1/30]
the following example, we show thate xF = x (1 —z) €
Zf:o(xi x (x —¢)*)/i!, provided thatx is strictly proper.

time [s]

are automatically discharged by thest i nt strategy with

F(X) : MACRO Interval = X+(1-X) . . ) .
DF(X) : MACRO Interval = 1 - 2«X different splitting and taylor’s expansion degrees. Asetpd
D2F(X): MACRO Interval =[] -2 |] taylor's expansions and splitting get better results thittiag
alone. Moreover, second degree expansions are almostsalway
: etter than first degree expansions. This is not necessarily
ftaylor © LEMVA better than first d Th t |

x ## X AND StrictlyProper?(X) | MPLI ES

x*(1-x) ## Tayl or 2[ X] (F, DF, D2F) the case as illustrated by lemmbair_atan_t1 14 and

fair_atan_t2 14: for i = 14, a first degree expansion
% - ftaylor : PROOF (taylor) QED with no splitting is enough to prove the property, while a

. second degree expansion requires a splitting of 2.
The keywordMACRO tells the theorem prover to automati- On a tilet of x, the width of the error expressid that

cally expand the definition of the function.QThe expressioa"loes not use taylor’s theorem evaluated tois larger than
T?yl_?r Z[hX] (E’ BFF DZZ) Dczolzresponr(]js t.(zl'zo(lxifx (x__ the sum of the width of expression® an and R. As the
c)’) /i, dere L ,1an qi azredtde .|nt§rva unctions e rivative of the arctangent is betwe@g989 and1 on x, we
corresponding tof, it .St’ an |ts_ n envat_lve. could expect that the width dR is at least twice the width
Finally, the strategyi nsti nt is called with the lemma of tile t. Therefore, to obtain an error bound pf2 ", 2]

ftaylor. we cannot use tiles larger tham? and we will need at least
best : LEMVA 21/15 ~ 2014 tiles.
x ## [10,1]] IMPLIES x*(1-x) ## [|0, 1/4[] We use the same kind of simple calculation to show that
. ’ . —6 . i—14.8
%- best : PROCF S|nce|e_(jz:)| 362.37 107" we will need abouR tiles of
%- (instint :taylor "ftaylor") width 27 - 10°/2.37. Th|s figures are accurate_when we use
% - QED second degree expansion but actual computations may eequir

more tiles due to some dependency effects introduced when
we use first degree expansions.

Figure[2 presents a summary of the time required to prove
n(z) — r(xr) € [-1/30,1/30] for 7 in the range]0, 20]
using splitting, splitting and first degree taylor's expans

8Ad splitting and second degree taylor's expansion.

B. A simple case study

The arctangent function is heavily used in aeronautic app%ia
cations as it is fundamental to many Geodesic fornfuiase
common implementation technique uses an approximati
of the arctangent on the interval = [—1/30,1/30] after
argument reduction [21]. For efficiency reasons, one maywan .
to approximate the functioatan(z) to single precision by the C- Implementation and Performance Issues

polynomial Actual definitions in PVS have been slightly modified for
11184811 4 13421773 efficiency reasons. For instance, multiplication is definsitig
r(z) = x-— 335544320 67108%64° a case analysis on the sign of the operands. Additionally,

E(q| interval operations are completed by returning an empty
e . o ) . .
interval if side conditions are not satisfied. This techeiqu
avoids some type correctness checks that are expensive.
The strategies in this library work over the PVS built-in
r €[-1/30,1/30] F atan(z) —r(z) € [-27%, 277, real numbers. The major advantage of this approach is that th
functionality of the strategies can be extended to handbe us
defined real functions without modifying the strategy code.
Indeed, optional parameters to themer i cal strategy allow
5See, for example, Ed Wiliam's Aviaton Formulary at for the spgcification of arbi_trary real functions: If theeir_ual
http://w I 11 ans. best.vwh. net/avform ht m interpretations are not provided, the strategy tries t@dkibiem

The coefficients of the polynomial approximation are stor
exactly using IEEE single precision.
The objective of this case study is to show that

for different values of. The PVS specification of this problem
for some values of is presented in Listingl4. All the lemmas


http://williams.best.vwh.net/avform.htm

PVS Listing 4 Accuracy of the arctangent approximation

fair_atan : THEORY
BEG N

X .ovar real
r(x) : MACRO real
e(x) : MACRO real
Xt . Interval

X - (11184811/33554432) * x"3 - (13421773/67108864) * x"5
atan(x) - r(x)
[| -1/30, 1/30 |]

fair_atan_8 : LEMVA x ## Xt | MPLIES e(x) ## [|-2"-8, 2"-8]|]
% - fair_atan_8 : PROOF (instint :splitting 18) QED

X . ovar | nt erval
R(X) : MACRO Interval = X - 11184811/33554432 = X"3 - 13421773/67108864 * X"5
E(X) : MACRO Interval = Atan(X 4) - R(X)

DE(X) : MACRO Interval
1/ (1 + Sq(X)) - 1 + 3#(X*2%(11184811/33554432)) + 5+( X 4x(13421773/67108864))

atan_taylorl : LEMVA StrictlyProper?(X) AND x ## X | MPLI ES e(x) ## Tayl or1[ X] (E, DE)
% - atan_taylorl : PROOF (taylor) QED
fair_atan_t1 14: LEMVA x ## Xt | MPLIES e(x) ## [|-27-14, 27-14]]
% - fair_atan_tl 14 : PROOF (instint :taylor "atan_taylor1l") QED
fair_atan_t1 20: LEMVA x ## Xt | MPLIES e(x) ## []|-2"-20, 2"-20]|]
% - fair_atan_t1l 20 : PROOF (instint :taylor "atan_taylorl" :splitting 13) QED

D2E(X) : MACRO Interval =
-2+ X Sq(1 + Sq(X)) + 20%( X 3%(13421773/67108864)) + 6+ ((11184811/ 33554432) % X)

atan_taylor2 : LEMVA StrictlyProper?(X) AND x ## X | MPLI ES e(x) ## Tayl or 2[ X] (E, DE, D2E)
% - atan_taylor2 : PROOF (taylor) QED

fair_atan_t2_14: LEMVA x ## Xt | MPLIES e(x) ## [|-27-14, 27-14]]
% - fair_atan_t2_ 14 : PROOF (instint :taylor "atan_taylor2" :spitting 2) QED

fair_atan_t2 20: LEMVA x ## Xt | MPLIES e(x) ## []|-2"-20, 27-20]|]
% - fair_atan_t2_ 20 : PROOF (instint :taylor "atan_taylor2" :splitting 5) QED

END fair_atan

from the syntactic definition of the functions. The tradé-of = VI. CONCLUSION AND LIMITS OF TRACTABILITY
for the use of the PVS typeeal , in favor of a defined data
type for arithmetic expressions, is that the functjel, and ~ We have presented a pragmatic approach to verify ordinary
Theoren(ll are at the meta-levek., they are not written in real number computations in theorem provers. To this end,
PVS. It also means that the soundness of our method canf@nds for non-algebraic functions were established based
be proven in PVS itself. In particular, Theordt 1 has to H&rovable properties of their approximation series. Furtiwee,
proven for each particular instance ofand[¢]E. This is not & library for interval arithmetic was developed. The lilyrar
a major drawback as, in addition funeri cal , we have includes strategies that automatically discharges nwaleri
developed a strategy calléchcl usi on that discharges the inequalities and interval inclusions.
sequent’ F e € [e]l whenever is needed. PVS strategies are The PVS Interval library contains 306 lemmas in total. It
conservative in the sense that they do not add inconsigtends roughly 10 thousand lines of specification and proofs and 1
to the theorem prover. Therefore ritimer i cal succeeds to thousand lines of strategy definitions. These numbers do not
discharge a particular goal the answer is correct. take into account the bounding functions, which have been
Finally, our method relies on explicit calculations to exste  fully integrated to the NASA Langley PVS Libraries. It is
interval expressions. In theorem provers, explicit caltiahs difficult to estimate the human effort for this development
usually means symbolic evaluations, which are extremehg it has evolved over the years from an original axiomatic
inefficient for the interval functions that we want to cakma. Specification to a fully foundational set of theories. As far
To avoid symbolic evaluationsiumer i cal is implemented as we know, this is the most complete formalization within
using computational reflection [22]-[24]. Interval exmiess a theorem prover of an interval arithmetic that includes-non
are translated to Common Lisp (the implementation languaglgebraic functions.
of PVS) and evaluated there. The extraction and evaluationResearch on interval analysis and exact arithmetic is rich
mechanism is provided by the PVS ground evaluator [254nd abundant (see for example [17], [27], [28]). The goal
The result of the evaluation is translated back to the PUS8 interval analysis is to compute an upper bound of the
theorem prover using the PVSio library developed by one adund-off error in a computation performed using floating-
the authors [26]. point numbers. In contrast, in an exact arithmetic framéwvor
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Fig. 3. Alternatef ai r _at an theorems will make use of interval arithmetic [1]

an accuracy is specified at the beginning of the computatiog
and the computation is performed in such way that the final
result respects this accuracy. 3l

Real numbers and exact arithmetic is also a subject of
increasing interest in the theorem proving community. Pio-
neers in this area were Harrison and Gamboa who, indepe[f‘*1
dently, developed extensive formalizations of real nursfer |5
HOL [4] and ACL2 [6]. In Cog, an axiomatic definition of
reals is given in [7], and constructive definitions of reals a 6]
provided in [29] and [30]. As real numbers are built-in in
PVS, there is not much meta-theoretical work on real num-
bers. However, a PVS library of real analysis was originally’]
developed by Dutertre [31] and currently being maintained
and extended as part of the NASA Langley PVS Libraries.
An alternative real analysis library is proposed in [8]. (8]

Closer to our approach are the tools presented in
[32] and [10]. These tools generate bounds on the round-ofj
errors of numerical programs, and formal proofs that these
bounds are correct. The formal proofs are proof scripts that
can be checked off-line using a proof assistant. [10]

Our approach is different from previous works in that we
focus on automation and pragmatism. In simple words, our
practical contribution is a correct pocket calculator fealr
number computations in formal proofs. Thanks to all thg1l
previous developments in theorem proving and real numbers,
lemmas like Lemmad r 35 and LemmaA _and_S are prov-
able in HOL, ACL2, Coq, or PVS. The Interval library makd12]
these proofs routine in PVS.

As in real life, users benefit in managing both a pocket
calculator and a graphic tool. The fact that the example
proposed in Sectidn VAB is reaching the limits of tractdpiis 23]
not a problem. Our library aims at providing some simplegool
that can be used seamlessly in proofs. Fifilire 3 would promdt#
careful user that ai r _at an theorems are a consequence of
the fact that the derivative of the error is always posityech |15
a fact could happen to be difficult to prove leading some one to
prove that the error is bounded on some subintervals and tH&t
the derivative is always positive on some other subintsrval
Anyways, such proofs will involve our library more than oncg17]

We continue developing this library and it is currentl)flg]
being used to check numerical properties of aircraft ndidga
algorithms developed at the National Institute of Aerogpac

(NIA) and NASA. Future enhancements include:

Development of a fully functional floating point arith-
metic library [33] in order to generate guaranteed proofs
of round-off-errors [32].

Integration of this library and an exact arithmetic formal-
ization in PVS developed by one of the authors [34].
Implementation of latest developments on Taylor Mod-
els [35]-[37], which will enable a greater automation of
the Taylor’s series expansion technique.
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