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Verified Real Number Calculations:
A Library for Interval Arithmetic

Marc Daumas, David Lester, and César Muñoz

Abstract— Real number calculations on elementary functions
are remarkably difficult to handle in mechanical proofs. In this
paper, we show how these calculations can be performed within
a theorem prover or proof assistant in a convenient and highly
automated as well as interactive way. First, we formally establish
upper and lower bounds for elementary functions. Then, based
on these bounds, we develop a rational interval arithmetic where
real number calculations take place in an algebraic setting. In
order to reduce the dependency effect of interval arithmetic,
we integrate two techniques: interval splitting and taylor series
expansions. This pragmatic approach has been developed, and
formally verified, in a theorem prover. The formal development
also includes a set of customizable strategies to automate proofs
involving explicit calculations over real numbers. Our ultimate
goal is to provide guaranteed proofs of numerical properties with
minimal human theorem-prover interaction.

Index Terms— Real number calculations, interval arithmetic,
proof checking, theorem proving

I. I NTRODUCTION

Deadly and disastrous failures [1]–[3] confirm the shared
belief that traditional testing, simulation, and peer-review are
not sufficient to guarantee the correctness of critical soft-
ware. Formal Methods in computer science refers to a set
of mathematical techniques and tools to verify safety prop-
erties of a system design and its implementation functional
requirements. In the verification of engineering applications,
such as aerospace systems, it is often necessary to perform
explicit calculations with non-algebraic functions. Despite
all of the developments concerning real analysis in theorem
provers [4]–[8], the formal verification of the correctnessof
these calculations is not routine.

Take, for example, the formula

3π

180
≤ g

v
tan(

35π

180
) ≤ 3.1π

180
, (1)

where g is the gravitational force andv = 250 knots is
the ground speed of an aircraft. This formula appears in
the verification of NASA’s Airborne Information for Lateral
Spacing (AILS) algorithm [9]. It states that the turn rate of
an aircraft flying at ground speedv with a bank angle of
35o is about3o per second. A direct proof of this formula is
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about a page long and requires the use of several trigonometric
properties.

In many cases the formal checking of numerical calculations
is so cumbersome that the effort seems futile; it is then
tempting to perform the calculations out of the system, and
introduce the results as axioms.1 However, chances are that
the external calculations will be performed using floating-point
arithmetic. Without formal checking of the results, we will
never be sure of the correctness of the calculations.

In this paper we present a set of interactive tools to automat-
ically prove numerical properties, such as Formula (1), within
a proof assistant. The point of departure is a collection of lower
and upper bounds for rational and non-rational operations.
Based on provable properties of these bounds, we develop a
rational interval arithmetic which is amenable to automation.
The series approximations and interval arithmetic presented
here are well-known. However, to our knowledge, this is the
most complete formalization in a theorem prover of interval
arithmetic that includes non-algebraic functions.

Our ultimate goal is to provide guaranteed formal proofs
of numerical properties with minimum human effort. As
automated processes are bound to fail on degenerate cases and
waste time and memory on simple ones, we have designed a
set of highly customizable proof strategies. The default values
of the parameters are sufficient in most simple cases. However,
a domain expert can set these parameters to obtain a desired
result,e.g., the accuracy of a particular calculation.

This paper merges and extends the results presented in
[10], [11]. The rest of this document is organized as follows.
Section II defines bounds for elementary functions. SectionIII
presents a rational interval arithmetic based on these bounds.
Section IV describes a method to prove numerical proposi-
tions. The implementation of this method in a theorem prover
is described in Section V. Last section summarizes our work
and compares it to related work.

The mathematical development presented in this paper has
been written and fully verified in the Prototype Verification
System (PVS) [12]2. PVS provides a strongly typed specifica-
tion language and a theorem prover for higher-order logic.
It is developed by SRI International. Our development is
freely available on the Internet. The results on upper and
lower bounds have been integrated to the NASA Langley PVS
Libraries3 and the rational interval arithmetic and the PVS
strategies for numerical propositions are available from one of

1As a matter of fact, the original verification of NASA’s AILS algorithm
contained several such axioms.

2PVS is available fromhttp://pvs.csl.sri.com.
3http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
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the authors4.
For readability, we will use standard mathematical notations

along this paper and PVS notations will be limited to illustrate
the use of the library. In the following, we use the first letters
of the alphabeta, b, . . . to denote rational numbers, and the
last letters of the alphabet. . . x, y, z to denote arbitrary real
variables. We useboldfacefor interval variables. Furthermore,
if x is an interval variable,x denotes its lower bound andx
denotes its upper bound.

II. B OUNDS FORELEMENTARY FUNCTIONS

A PVS basic theory of bounds for square root and trigono-
metric functions was originally proposed for the verification
of NASA’s AILS algorithm [9]. We have completed it and
extended with bounds for natural logarithm, exponential, and
arctangent. The basic idea is to provide for each real function
f : R 7→ R, functionsf : (R, N) 7→ R and f : (R, N) 7→ R

closed underQ, such that for allx, n

f(x, n) ≤ f(x) ≤ f(x, n), (2)

f(x, n) ≤ f(x, n + 1), (3)

f(x, n + 1) ≤ f(x, n), (4)

lim
n→∞

f(x, n) = f(x) = lim
n→∞

f(x, n). (5)

Formula (2) states thatf and f are, respectively, lower and
upper bounds off , and formulas (3), (4), and (5) state that
these bounds can ultimately be improved, as much as needed,
by increasing the approximation parametern.

For transcendental functions, we use taylor approximation
series. We performed a coarse range reduction [13] since the
convergence of taylor series is usually best for small values.
More elaborate range reduction techniques [14] would signif-
icantly enhance the speed and the accuracy of the functions
defined in Sections II and III. All the stated propositions inthis
section have been formally verified in the verification system
PVS.

A. Square root

For square root, we use a simple approximation by Newton’s
method. Forx ≥ 0,

sqrt(x, 0) = x + 1,

sqrt(x, n + 1) =
1

2
(y +

x

y
), wherey = sqrt(x, n),

sqrt(x, n) =
x

sqrt(x, n)
.

Proposition 1: ∀x ≥ 0, n : 0 ≤ sqrt(x, n) ≤ √
x <

sqrt(x, n).

The first inequality is strict whenx > 0.

4http://research.nianet.org/~munoz/Interval.

B. Trigonometric functions

We use the partial approximation by series.

sin(x, n) =

m
∑

i=1

(−1)i−1 x2i−1

(2i − 1)!

sin(x, n) =

m+1
∑

i=1

(−1)i−1 x2i−1

(2i − 1)!
,

cos(x, n) = 1 +

m+1
∑

i=1

(−1)i x2i

(2i)!
,

cos(x, n) = 1 +

m
∑

i=1

(−1)i x2i

(2i)!
,

wherem = 2n if x < 0; otherwise,m = 2n + 1.
Proposition 2: ∀x, n : sin(x, n) ≤ sin(x) ≤ sin(x, n).
Proposition 3: ∀x, n : cos(x, n) ≤ cos(x) ≤ cos(x, n).

C. Arctangent and π

We first use the alternating partial approximation by series
for 0 ≤ x ≤ 1.

atan(x, n) =

2n+1
∑

i=1

x2i+1 (−1)i

2i + 1
, if 0 < x ≤ 1,

atan(x, n) =
2n
∑

i=1

x2i+1 (−1)i

2i + 1
, if 0 < x ≤ 1.

We note that forx = 1 (which we might naïvely wish to use to
defineπ/4 and henceπ) the series:1− 1

3 + 1
5− 1

7 + 1
9−· · · does

converge, but very slowly. Instead, we use the equalityπ
4 =

4 atan(1/5)−atan(1/239), that has much better convergence
properties. Using this identity we can define bounds onπ:

π(n) = 16 atan(1, n) − 4 atan(1, n),

π(n) = 16 atan(1, n) − 4 atan(1, n).

Proposition 4: ∀n : π(n) ≤ π ≤ π(n).
Now, using properties of arctangent, we extend the range of
the function to the whole set of real numbers:

atan(0, n) = atan(0, n) = 0,

atan(x, n) =
π(n)

2
− atan(

1

x
, n), if 1 < x,

atan(x, n) = −atan(−x, n), if x < 0,

atan(x, n) =
π(n)

2
− atan(

1

x
, n), if 1 < x,

atan(x, n) = −atan(−x, n), if x < 0.

Proposition 5: ∀x, n : atan(x, n) ≤ atan(x) ≤
atan(x, n).
These are strict inequalities except whenx = 0.

The PVS definition of bounds onatan andπ are presented
in Listing 1. PVS developments are organized in theories,
which are collections of mathematical and logical objects
such as function definitions, variable declarations, axioms,

http://research.nianet.org/~munoz/Interval


and lemmas. Theatan_approx theory first imports the
definition of the arctangent function. Then, it declares variables
n,x,px of typesnat (natural numbers),real (real num-
bers), andposreal (positive real numbers), respectively. For
the scope of the theory, these variables are implicitly univer-
sally quantified. Though writing definitions, lemmas, theorems
and specially proofs in PVS requires some training, reading
theories is possible to anybody with a minimal background in
logic.

D. Exponential

The series we use for the exponential function is

exp(x) =

∞
∑

i=0

xi

i!
.

We could directly find bounds for negativex from this series
as, in this case, the series is alternating. However, we will
subsequently find that it is convenient to show that our bounds
for the exponential function are strictly positive, and this is not
true for all x ≤ 0. Yet, this propertyholds for −1 ≤ x ≤ 0.

We define

exp(x, n) =

2(n+1)+1
∑

i=0

xi

i!
, if − 1 ≤ x < 0,

exp(x, n) =

2(n+1)
∑

i=0

xi

i!
, if − 1 ≤ x < 0.

Using properties of the exponential function, we obtain
bounds for the whole set of real numbers:

exp(0, n) = exp(0, n) = 1,

exp(x, n) = exp(
x

−⌊x⌋ , n)
−⌊x⌋

, if x < −1

exp(x, n) =
1

exp(−x, n)
, if x > 0,

exp(x, n) = exp(
x

−⌊x⌋ , n)
−⌊x⌋

, if x < −1

exp(x, n) =
1

exp(−x, n)
, if x > 0.

Notice that unless we can ensure that all of the bounding
functions are strictly positive we will run into type-checking
problems using the bound definitions forx > 0, e.g.,
1/exp(−x, n) is only defined providedexp(−x, n) 6= 0.

Proposition 6: ∀x, n : 0 < exp(x, n) ≤ exp(x) ≤
exp(x, n).
These are strict inequalities except whenx = 0.

E. Natural Logarithm

For 0 < x ≤ 1, we use the alternating series for natural
logarithm:

ln(x + 1) =

∞
∑

i=1

(−1)i+1 xi

i
.

PVS Listing 1 Definition of bounds onatan andπ

atan_approx: THEORY
BEGIN

IMPORTING atan

n: VAR nat
x: VAR real
px: VAR posreal

atan_pos_le1_ub(n,x): real =
atan_series_n(x,2*n)

atan_pos_le1_lb(n,x): real =
atan_series_n(x,2*n+1)

atan_pos_le1_bounds: LEMMA
0 < x AND x <= 1 IMPLIES

atan_pos_le1_lb(n,x) < atan(x) AND
atan(x) < atan_pos_le1_ub(n,x)

pi_lbn(n): posreal =
4*(4*atan_pos_le1_lb(n,1/5) -

atan_pos_le1_ub(n,1/239))

pi_ubn(n): posreal =
4*(4*atan_pos_le1_ub(n,1/5) -

atan_pos_le1_lb(n,1/239))

pi_bounds: THEOREM
pi_lbn(n) < pi AND pi < pi_ubn(n)

atan_pos_lb(n,px): real =
IF px <= 1 THEN

atan_pos_le1_lb(n,px)
ELSE

pi_lbn(n)/2 - atan_pos_le1_ub(n,1/px)
ENDIF

atan_pos_ub(n,px): real =
IF px <= 1 THEN

atan_pos_le1_ub(n,px)
ELSE

pi_ubn(n)/2 - atan_pos_le1_lb(n,1/px)
ENDIF

atan_lb(x,n): real =
IF x > 0 THEN atan_pos_lb(n,x)
ELSIF x = 0 THEN 0
ELSE -atan_pos_ub(n,-x) ENDIF

atan_ub(x,n): real =
IF x > 0 THEN atan_pos_ub(n,x)
ELSIF x = 0 THEN 0
ELSE -atan_pos_lb(n,-x) ENDIF

atan_bounds: THEOREM
atan_lb(x,n) <= atan(x) AND
atan(x) <= atan_ub(x,n)

END atan_approx



Therefore, we define

ln(x, n) =

2n
∑

i=1

(−1)i+1 (x − 1)i

i
, if 1 < x ≤ 2,

ln(x, n) =
2n+1
∑

i=1

(−1)i+1 (x − 1)i

i
, if 1 < x ≤ 2.

Using properties of the natural logarithm function, we obtain

ln(1, n) = ln(1, n) = 0

ln(x, n) = −ln(
1

x
, n), if 0 < x < 1,

ln(x, n) = −ln(
1

x
, n), if 0 < x < 1.

Finally, we extend the range to the whole set of positive reals.
If x > 2, we find a natural numberm and real numbery such
thatx = 2my and1 < y ≤ 2, by using the following recursive
algorithm similar in spirit to Euclidean division:

lnnat(x:posreal,k:posnat): [nat,posreal] =
if x < k then (0,x)
else
let (m,y) = lnnat(x/k,k) in
(m+1,y)

endif

We next prove the following property:
Proposition 7: ∀x ≥ 1, k > 1 : km ≤ x < km+1, y <

k, x = kmy, where(m, y) = lnnat(x, k).
If (m, y) = lnnat(2, x), we observe that

ln(x) = ln(2my) = m ln(2) + ln(y).

Hence,

ln(x, n) = m ln(2, n) + ln(y, n), if x > 2,

ln(x, n) = m ln(2, n) + ln(y, n), if x > 2.

Proposition 8: ∀x > 0, n : ln(x, n) ≤ ln(x) ≤ ln(x, n).
These are strict inequalities except whenx = 1.

III. R ATIONAL INTERVAL ARITHMETIC

Interval arithmetic has been used for decades as a standard
tool for numerical analysis on engineering applications [15],
[16]. In interval arithmetic, operations are evaluated on range
of numbers rather than on real numbers. A(closed) interval
[a, b] is the set of real numbers betweena andb, i.e.,

[a, b] = {x | a ≤ x ≤ b}.
The boundsa and b are called thelower bound and upper
bound of [a, b], respectively. Note that ifa > b, the interval
is the empty set. The notation[a] abbreviates the point-wise
interval [a, a].

Interval computations can be performed on the endpoints
or on the center and the radius. For this work, we decided to
work on rational endpoints. Trigonometric and transcendental
functions for interval arithmetic are defined using the bounds
presented in Section II.

Listing 2 shows a few definitions from the PVS the-
ory Interval. Dots are used to simplify the presentation

and hide some technical parts. The theory defines the type
Interval as a record with fieldsub andlb of type rat
(rational numbers), variablesx,y of type real, variablen
of typenat, and variablesX,Y of typeInterval.

PVS Listing 2 Definition of interval arithmetic

Interval : THEORY
BEGIN

Interval : TYPE = [#
lb : rat,
ub : rat

#]

x,y : VAR real
n : VAR nat
X,Y : VAR Interval

+(X,Y): Interval = [|lb(X)+lb(Y),
ub(X)+ub(Y)|]

-(X,Y): Interval = [|lb(X)-ub(Y),
ub(X)-lb(Y)|]

-(X) : Interval = [|-ub(X),
-lb(X))|]

*(X,Y): Interval = ...
/(X,Y): Interval = X * [|1/ub(Y),

1/lb(Y)|]
Abs(X): Interval = ...
Sq(X) : Interval = ...
^(X,n): Interval = ...

U(X,Y) : Interval = [|min(lb(X),lb(Y)),
max(ub(X),ub(Y))|]

...

END Interval

If X is a PVS interval,lb(X) is the lower bound and
ub(X) is the upper bound ofX. In PVS, we define the
syntactic sugar[|x,y|] to represent the interval[x, y].
Interval unionx ∪ y, written in PVSX U Y, is defined as
the smallest rational interval that contains bothx andy.

The four basic interval operations are defined as fol-
lows [17]:

x + y = [x + y,x + y],

x − y = [x − y,x − y],

x × y = [min{xy,xy,xy,xy}, max{xy,xy,xy,xy}],

x/y = x × [
1

y
,
1

y
], if yy > 0.

We also define the unary negation, absolute value, and power
operators for intervals:

−x = [−x,−x],

|x| = [min{|x|, |x|}, max{|x|, |x|}], if xx ≥ 0.

|x| = [0, max{|x|, |x|}], if xx < 0.

xn =















[1] if n = 0,
[xn,xn] if x ≥ 0 or odd?(n),
[xn,xn] if x ≤ 0 and even?(n),
[0, max{xn,xn}] otherwise.



Interval operations are defined such that they include the
result of their corresponding real operations. This property is
called theinclusion property.

Proposition 9 (Inclusion Property for Basic Operators): If
x ∈ x andy ∈ y thenx⊗y ∈ x⊗y, where⊗ ∈ {+,−,×, /}.
Moreover,−x ∈ −x, |x| ∈ |x|, andxn ∈ xn, for n ≥ 0. It
is assumed thaty does not contain0 in the case of interval
division.
Listing 3 specifies this property in PVS. The propositionx ∈ x

is written x ## X.

PVS Listing 3 Basic inclusion properties

Add_inclusion : LEMMA
x ## X AND y ## Y =⇒ x+y ## X+Y

Sub_inclusion : LEMMA
x ## X AND y ## Y =⇒ x-y ## X-Y

Neg_inclusion : LEMMA
x ## X =⇒ -x ## -X

Mult_inclusion : LEMMA
x ## X AND y ## Y =⇒ x*y ## X*Y

Div_inclusion : LEMMA
NOT 0 ## Y AND
x ## X AND y ## Y =⇒ x/y ## X/Y

Abs_inclusion : LEMMA
x ## X =⇒ abs(x) ## abs(X)

Sq_inclusion : LEMMA
x ## X =⇒ sq(x) ## sq(X)

Pow_inclusion : LEMMA
x ## X =⇒ x^n ## X^n

The inclusion property is fundamental to interval arithmetic.
It guarantees that evaluations of an expression using interval
arithmetic bound its exact real value. Any operation in interval
arithmetic must satisfy the inclusion property with respect to
its corresponding real operation.

A. Interval comparisons

There are several possible ways to compare intervals [18].
In this work, we use interval-rational comparisons and interval
inclusions.

x < a if x < a, similarly for ≤,

x > a if x > a, similarly for ≥,

x ⊆ y if y ≤ x andx ≤ y.

Proposition 10: Assume thatx ∈ x,

1) if x ⊲⊳ a thenx ⊲⊳ a, for ⊲⊳ ∈ {<,≤, >,≥}, and
2) if x ⊆ y thenx ∈ y.
We use6⊲⊳ to denote≥, >, ≤, or <, when⊲⊳ is, respectively,

<, ≤, >, or ≥.
Proposition 11: If x ⊲⊳ a andx 6⊲⊳ a, thenx is empty.

Notice that¬(x ⊲⊳ a) does not implyx 6⊲⊳ a. For instance,
[−1, 1] is neither greater nor less than0.

B. Square root, arctangent, exponential, and natural loga-
rithm

Interval functions for square root, arctangent,π, exponen-
tial, and natural logarithm are defined for an approximation
parametern ≥ 0:

[
√

x]n = [sqrt(x, n), sqrt(x, n)], if x ≥ 0,

[atan(x)]n = [atan(x, n), atan(x, n)],

[π]n = [π(n), π(n)],

[exp(x)]n = [exp(x, n), exp(x, n)],

[ln(x)]n = [ln(x, n), ln(x, n)], if x > 0.

As consequence of Propositions 1, 5, 6, and 8 in Section II,
and the fact that these functions are increasing, the above
functions satisfy the following inclusion property.

Proposition 12: For all n, if x ∈ x then f(x) ∈ [f(x)]n,
where f ∈ {√ , atan, exp, ln}. Moreover,π ∈ [π]n. It is
assumed thatx is non-negative in the case of square root,
andx is positive in the case of natural logarithm.

C. Trigonometric functions

Parametric functions for interval trigonometric functions are
defined by cases analysis on quadrants where the functions
are increasing or decreasing. The mathematical definitionsare
presented in Figure 1.

Note thatsin and cos are defined for the whole real line.
However, for anglesα such that|α| > π both functions will
return the interval[−1, 1], a valid bound but not a very good
one. Furthermore, the expressionn + 5 in Formula (8) is
necessary to guarantee that lower and upper bounds of cosine
are strictly positive in the interval[−π(n+5)

2 , π(n+5)
2 ], and thus,

the interval tangent function is always defined in that interval.
The interval trigonometric functions satisfy the inclusion

property.
Proposition 13: If x ∈ x thenf(x) ∈ [f(x)]n, wheref ∈

{sin, cos}. Moreover, if x ⊆ [−π(n+5)
2 , π(n+5)

2 ], tan(x) ∈
[tan(x)]n.

The next section proposes a method to prove numerical
propositions based on the interval arithmetic described here.

IV. M ECHANICAL PROOFS OFNUMERICAL PROPOSITIONS

Arithmetic expressions are defined by the following gram-
mar, whereV is an denumerable set of real variables:

e ::= a | x | e + e | e − e | −e | e × e |
e/e | |e| | ei | √

e | π | sin(e) |
cos(e) | tan(e) | exp(e) | ln(e) | atan(e)

a ∈ Q

i ∈ N

x ∈ V
Numerical propositionsP have either the forme1 ⊲⊳ e2,
where⊲⊳ ∈ {<,≤, >,≥}, or the forme ∈ a, wherea is a
constant interval (an interval with constant rational endpoints).
As usual, parentheses are used to group real and interval
expressions as needed.



[sin(x)]n =























[sin(x, n), sin(x, n)] if x ⊆ [−π(n)
2 , π(n)

2 ],

[sin(x, n), sin(x, n)] else if x ⊆ [π(n)
2 , π(n)],

[min{sin(x, n), sin(x, n)}, 1] else if x ⊆ [0, π(n)],
−[sin(−x)]n else if x ⊆ [−π(n), 0],
[−1, 1] otherwise,

(6)

[cos(x)]n =















[cos(x, n), cos(x, n)] if x ⊆ [0, π(n)],
[cos(−x)]n else if x ⊆ [−π(n), 0],

[min{cos(x, n), cos(x, n)}, 1] else if x ⊆ [−π(n)
2 , π(n)

2 ],
[−1, 1] otherwise,

(7)

[tan(x)]n = [
sin

cos
(x, n + 5),

sin

cos
(x, n + 5)], if x ⊆ [−π(n + 5)

2
,
π(n + 5)

2
]. (8)

Fig. 1. Interval trigonometric functions

A context Γ is a set of hypotheses of the formx ∈ x.
A ground context is a context where all the intervals are
constant. In the following, we use logical judgments in the
sequent calculus style,e.g., Γ ⊢ P , where all free variables
occurring inP are inΓ. The intended semantics of a judgment
Γ ⊢ P is that the numerical propositionP is true under the
hypothesesΓ.

Given a contextΓ, an approximation parametern, and an
expressione, such that the free variables ofe are in Γ, we
define the interval expression[e]Γn by recursion one.

[a]Γn = [a],

[x]Γn = x, where(x ∈ x) ∈ Γ,

[e1 ⊗ e2]
Γ
n = [e1]

Γ
n ⊗ [e2]

Γ
n, where⊗ ∈ {+,−,×, /},

[ei]Γn = ([e]Γn)i,

[−e]Γn = −[e]Γn,

[|e|]Γn = |[e]Γn|,
[π]Γn = [π]n,

[f(x)]Γn = [f([x]Γn)]n,

wheref ∈ {sin, cos, tan, exp, ln, atan}.
Theorem 1 (Inclusion): Let Γ be a context,n an approxi-

mation parameter, ande a well-defined arithmetic expression
in Γ, i.e., side conditions for division, square root, logarithm,
and tangent are satisfied,

Γ ⊢ e ∈ [e]Γn. (9)
Proof: By structural induction one and proposi-

tions 4, 9, 12, and 13.

A. A general method for numerical propositions

We propose a general method to prove numerical proposi-
tions. First, consider a judgment of the form

Γ ⊢ e1 ⊲⊳ e2,

whereΓ is a ground context.
1) Select an approximation parametern.
2) Definee = e1 − e2.
3) Evaluate[e]Γn ⊲⊳ 0. If it evaluates to true, the following

judgment holds

Γ ⊢ [e]Γn ⊲⊳ 0.

In that case go to step 5.
4) Evaluate[e]Γn 6⊲⊳ 0. If this evaluates to true then fail. By

Proposition 11, the judgmentΓ ⊢ [e]Γn ⊲⊳ 0 cannot hold.
If [e]Γn 6⊲⊳ 0 evaluates to false, increase the approximation
parameter and return to step 3.

5) By Theorem 1,

Γ ⊢ e ∈ [e]Γn.

6) Proposition 10 yields

Γ ⊢ e ⊲⊳ 0.

7) By definition,

Γ ⊢ e1 − e2 ⊲⊳ 0.

8) Therefore,

Γ ⊢ e1 ⊲⊳ e2.

The method above can be easily adapted to judgments of
the form Γ ⊢ e ⊲⊳ a. In this case, the interval expression
[e]Γn ⊆ a is evaluated. If the expression evaluates to true, then
the original judgment holds by Theorem 1 and Proposition 10.
Otherwise, the method should fail.

The general method issound, i.e., all the steps can be
effectively computed and each one is formally justified. In
particular, the propositions[e]Γn ⊲⊳ 0, [e]Γn 6⊲⊳ 0, and [e]Γn ⊆ a

can be mechanically computed as they only involve rational
arithmetic and constant numerical values. The method is not
complete as it does not necessarily terminate. Even ife only
involves the four basic operations and no variables, it may be
that both[e]Γn ⊲⊳ 0 and [e]Γn 6⊲⊳ 0 evaluate to false.

The absence of a completeness result is a fundamental
limitation on any general computable arithmetic. At a practical
level, the problem arises because all we have available are
a sequence of approximations to the real numbersx and y;
providedx and y differ, with luck we will eventually have
a pair of approximations whose intervals do not overlap, and
hence we can return a result forx ⊲⊳ y. However, ifx andy
are the same real number (note we might not necessarily get
the same sequence of approximations for bothx and y), we
can never be sure whether further evaluation might result in
us being able to distinguish the numbers.



B. Dependency effect

The dependency effect is a well-known behavior of interval
arithmetic due to the fact that interval identity is lost in interval
evaluations. This may have surprising results, for instance
x − x is [0] only if x is point-wise. Moreover, as we have
seen in Section III-A, bothx ≥ a and x < a may be
false. Additionally, interval arithmetic is subdistributive, i.e.,
x× (y+z) ⊆ x×y+x×z. In the general case the inclusion
is strict and some dependency effects appear as soon as a
variable is used more than once in an expression.

For the method presented in Section IV-A, it means that the
arrangement of the expressione matters. For instance, assume
that we want to provex ∈ [0, 1] ⊢ 2 × x ≥ x. This
is pretty obvious in arithmetic asx is a non-negative real.
Using our method, we first consider the arithmetic expression
e = 2 × x − x and then construct the interval expression
[e]Γn = 2 × x − x, wherex = [0, 1]. For any approximation
parametern, [e]Γn evaluates to[−1, 2] which is neither greater
nor less than0. Therefore, the method will not terminate. On
the other hand, if instead of the arithmetic expression2×x−x,
we consider the equivalent arithmetic expressionx, we have
[x]Γn = [0, 1] and [0, 1] ≥ 0 evaluates to true.

A second observation is that because of the dependency
effect the width of intervals also matters. Consider again the
expressione = 2 × x − x. We have seen that the interval
evaluation of[e]Γn, for x ∈ [0, 1], results in [−1, 2], which
is not sufficient to prove that[e]Γn ≥ 0. On the other hand,
the expression[e]Γn evaluates to[−1/2, 1] when x ∈ [0, 1/2]
and it evaluates to[0, 3/2] when x ∈ [1/2, 1]. Therefore, we
can prove that, forx ∈ [0, 1], [e]Γn ⊆ [−1/2, 1] ∪ [0, 3/2],
i.e., [e]Γn ⊆ [−1/2, 3/2], which is a better approximation than
[−1, 2]. If we continue dividing the interval[0, 1] and com-
puting the union of the resulting intervals, we can eventually
prove that[e]Γn + ǫ ≥ 0 for an arbitrary smallǫ > 0.

These observations lead to two enhancements of the general
method. First, we could divide each interval inΓ before
applying the general technique. Second, we may want to
replace the original expression by an equivalent one that is
less prone to the dependency effect.

C. Interval splitting

In interval arithmetic, the dependency effect of the union
of the parts is less than the dependency effect of the whole.
Indeed, the simplest way to reduce the dependency effect is
to divide the interval variables into several tiles (subintervals)
and to evaluate the original expression on these tiles separately.
This technique is calledinterval splitting or sub-paving and is
expressed by the following deduction rule.

Proposition 14: Let Γ be a context,e an expression whose
free variables arex and those inΓ, e an interval expression,
andx,x1, . . . ,xn intervals such thatx =

⋃

1≤i≤n xi,

∀ 1 ≤ i ≤ n : x ∈ xi, Γ ⊢ e ∈ e [Splitting]
x ∈ x, Γ ⊢ e ∈ e

The Splitting rule can be iterated to obtain a splitting for
multiple variables. Note that the number of tiles generatedby
interval splitting is exponential in the number of variables.
Indeed, ifk1 is the number of tiles of the first variable alone,

k2 is the number of tiles of the second variables alone, and so
forth, the total number of tiles to be considered form variables
is

∏

1≤j≤m kj .
The integration of the Splitting rule into the general method

is straightforward. First, a splitting is computed for a given set
of variables inΓ. Then, the general method is applied to all
cases. If the general method is successful in all of them, by
Proposition 14, the original judgment holds. Otherwise, the
method fails and a new splitting may be considered.

D. Taylor Series Expansions

Replacing2×x−x by x can be done automatically. In fact,
as we will see in Section V, these kinds of simplifications are
performed by our PVS implementation of the general method.
However, these simplifications may not be sufficient even for
simple expressions such asx× (1− x), wherex ∈ [0.1]. The
subdistributivity property of interval arithmetic statesthat the
interval evaluation ofx × (1 − x) is better than that of the
equivalent expressionx − x2. Unfortunately, that evaluation
is not good enough to prove thatx × (1 − x) ∈ [0, 1/4]. In
this case, as a domain expert knows, the optimal answer is
obtained with the equivalent expression1/4− (1/2−x)2. The
solution is a lot less intuitive when non-algebraic functions are
involved.

Taylor’s theorem states that an-differentiable function can
be approximated near a given point by a polynomial of degree
n whose coefficients depend on the derivatives of the function
at that point. In interval arithmetic, taylor’s theorem canbe
expressed by the following deduction rule.

Proposition 15: Let x,x0, . . . ,xn be strictly proper inter-
vals, f a n-differentiable function on a variablex ∈ x, and
c ∈ x a constant,

∀ 0 ≤ i < n : ⊢ f (i)(c) ∈ xi

x ∈ x ⊢ f (n)(x) ∈ xn [Taylor]
x ∈ x ⊢ f(x) ∈ Σn

i=0(xi × (x − c)i)/i!

The expression of Taylor’s rule shows that intervalx appears
only once in each term of orderi for i between1 andn − 1
preventing any dependency effect due tox in a term alone.
The term of ordern suffers some dependency effect asx also
appears in the definition ofxn. In most cases,n = 2 is used
to cancel first order dependency effects as presented Listing 4.
But in cases where the first derivatives nearly vanish or where
the evaluation of the last derivative introduces significant
dependency effects, we compute more terms to reach some
better bounds.

Using Taylor’s rule require more work than the Splitting
rule. In particular, we need to provide intervalsx0, . . . ,xn

and constantc that satisfy the hypotheses of the rule. Forc we
choose the middle point ofx unless the user proposes another
point. It follow immediately thatc ∈ x. For 0 ≤ i < n, we
choosexi = [f (i)(c)]n and, by Theorem 1, we havef (i)(c) ∈
xi. Finally, we choosexn = [f (n)(x)]Γn, whereΓ is the context
x ∈ x. By Theorem 1, we haveΓ ⊢ f (n)(x) ∈ xn.

In order to prove the judgmentx ∈ x ⊢ f(x) ∈ a, we
consider the interval expressionΣn

i=0(xi×(x−c)i)/i! ⊆ a for
a givenn. If it evaluates to true, then the original judgment
holds by Taylor’s rule and Proposition 10. If the evaluation



returns false, the method fails and a higher expansion degree
n may be considered.

For better results, the evaluation ofΣn
i=0(xi×(x−c)i)/i! ⊆

a can be performed using the splitting technique. Contrary to
the approach described in [19], we do not have to generate a
new taylor approximation for each tile. By using an interval-
based taylor expansion, the same expression can be reused
for all the tiles. One single global taylor expansion has to be
validated, and the proofs for all the tiles simply consist inan
interval evaluation of this expansion. We do not suffer fromthe
taylor coefficients being irrational numbers, they are simply
given by interval expressions involving rational functions.
Relying on rational interval arithmetic leads to conceptually
simpler proofs.

Section V describes how the general method and its ex-
tensions are implemented in the PVS theorem prover and
illustrates the practical use of the library with a few examples.

V. V ERIFIED REAL NUMBER CALCULATIONS IN PVS

The interval arithmetic presented in this paper has been
developed as a PVS library calledInterval. This library
contains the specification of interval arithmetic described here
and the formal proofs of its properties. We believe that a
domain expert can use this library with a basic knowledge of
theorem provers. Minimal PVS expertise is required as most of
the technical burden of proving numerical properties is already
implemented as proof strategies.

A. Strategies

The numerical strategy is the basic strategy that im-
plements the general method and its extensions described in
Section IV. For instance, Formula 1 can be specified in PVS
as follows (comments in PVS start with the symbol% and
extend to the end of the line):

g : posreal = 9.8 %[m/s^2]
v : posreal = 250*0.514 %[m/s]

tr35: LEMMA
(g*tan(35*pi/180)/v) * 180/pi

## [| 3, 3.1 |]

%|- tr35: PROOF (numerical) QED

We emphasize that, in PVS,tan andpi are the real math-
ematical functiontan and constantπ, respectively. Lemma
tr35 is automatically discharged by thenumerical strat-
egy, which can be entered interactively or in batch mode, as
in this case, via the ProofLite library developed by one of the
authors [20].

Another example is the proof of the inequality 4.1.35
in [13]:

∀x : 0 < x ≤ 0.5828 =⇒ | ln(1 − x)| <
3x

2
.

The key to prove this inequality is to prove that the function

G(x) =
3x

2
− ln(1 − x)

satisfiesG(0.5828) > 0. In PVS:

G(x|x < 1): real = 3*x/2 - ln(1-x)

A_and_S : lemma G(0.5828) > 0

%|- A_and_S : PROOF (numerical :defs "G") QED

In this case, the optional parameter:defs "G" tells
numerical that the user-defined functionG has to be
expanded before performing the numerical evaluation. The
original proof of this lemma in PVS required the manual
expansion of 19 terms of theln series.

The numerical strategy is aimed to practicality rather
than completeness. In particular, it always terminate and it
is configurable for better accuracy (at the expense of perfor-
mance).

Termination is trivially achieved as the strategy does not
iterate for different approximations,i.e., step 3 either goes
to step 5 or fails. In other words, ifnumerical does not
succeed, it does nothing. Furthermore,numerical uses a
default approximation parametern = 3, which gives an
accuracy of about2 decimals for trigonometric functions.
However, the user can increase this parameter or set a different
approximation to each function according to his/her accuracy
needs and availability of computational power. Currently,there
is no direct relation between the approximation parameter
and the accuracy, as all the bounding functions have different
convergence rates. On-going work aims to provide, an absolute
error of at most2−p for any expression with a new approx-
imation parameterp. The strategy has not been designed to
reuse past computations. Therefore, it will be prohibitively
expensive to automatically iteratenumerical to achieve a
small approximation on a complex arithmetic expression.

In order to reduce the dependency effect, thenumerical
strategy automatically rearranges arithmetic expressions using
a simple factorization algorithm. Due to the subdistributivity
property, the evaluation of factorized interval expressions is
more accurate than that of non-factorized ones. A set of
lemmas of the NASA Langley PVS Libraries are also used
as rewriting rules on arithmetic expressions prior to numerical
evaluations. This set of lemmas is parameterizable and can
be extended by the user. For instance, trigonometric functions
applied to notable angles are automatically rewritten to their
exact value. Therefore,numerical is able to prove that
sin(π/2) ∈ 1, even if this proposition is not provable using our
interval arithmetic operators alone. Although it is not currently
implemented, this approach can also be used to normalize
angles to the range[−π, π] that is suitable for the interval
trigonometric functions in Sections III-C.

The splitting technique is implemented by allowing the
user to specify the number of tiles to be considered for each
interval variable or a default value for all of them. The strategy
will evenly divide each interval. For example, the simple
expression in Section IV-D can be proven to be in the range
[0, 9/32] using a splitting of 16 subintervals.

fair : LEMMA
x ## [|0,1|] IMPLIES x*(1-x) ## [|0,9/32|]



%|- fair : PROOF (instint :splitting 16) QED

In this example we have used theinstint strategy.
This strategy is built on top ofnumerical and per-
forms some basic logic manipulations such as introduction
of real variables and interval constants. In this case, the
proof command(initint :splitting 16) is equiv-
alent to (then (skeep) (numerical :vars ("x"
"[|0,1|]" 16))). It instructs PVS to introduce the real
variablex and then to applynumerical by splitting 16 times
the interval[0, 1].

The taylor series expansion technique is implemented in
two steps. First, thetaylor strategy automatically proves
Proposition 15 for a particular functionf and degreen. In
the following example, we show thatx ∈ x ⊢ x × (1 − x) ∈
∑2

i=0(xi × (x − c)i)/i!, provided thatx is strictly proper.

F(X) : MACRO Interval = X*(1-X)
DF(X) : MACRO Interval = 1 - 2*X
D2F(X): MACRO Interval = [| -2 |]

ftaylor : LEMMA
x ## X AND StrictlyProper?(X) IMPLIES
x*(1-x) ## Taylor2[X](F,DF,D2F)

%|- ftaylor : PROOF (taylor) QED

The keywordMACRO tells the theorem prover to automati-
cally expand the definition of the function. The expression
Taylor2[X](F,DF,D2F) corresponds to

∑2
i=0(xi × (x−

c)i)/i!, where F, DF, and D2F are the interval functions
corresponding tof , it 1st, and its 2nd derivative.

Finally, the strategyinstint is called with the lemma
ftaylor.

best : LEMMA
x ## [|0,1|] IMPLIES x*(1-x) ## [|0, 1/4|]

%|- best : PROOF
%|- (instint :taylor "ftaylor")
%|- QED

B. A simple case study

The arctangent function is heavily used in aeronautic appli-
cations as it is fundamental to many Geodesic formulas5. One
common implementation technique uses an approximation
of the arctangent on the intervalx = [−1/30, 1/30] after
argument reduction [21]. For efficiency reasons, one may want
to approximate the functionatan(x) to single precision by the
polynomial

r(x) = x − 11184811

33554432
x3 − 13421773

67108864
x5.

The coefficients of the polynomial approximation are stored
exactly using IEEE single precision.

The objective of this case study is to show that

x ∈ [−1/30, 1/30] ⊢ atan(x) − r(x) ∈ [−2−i, 2−i],

for different values ofi. The PVS specification of this problem
for some values ofi is presented in Listing 4. All the lemmas

5See, for example, Ed William’s Aviation Formulary at
http://williams.best.vwh.net/avform.htm.

Fig. 2. Time required to provetan(x) − r(x) ∈ [−1/30, 1/30]

are automatically discharged by theinstint strategy with
different splitting and taylor’s expansion degrees. As expected
taylor’s expansions and splitting get better results than splitting
alone. Moreover, second degree expansions are almost always
better than first degree expansions. This is not necessarily
the case as illustrated by lemmasfair_atan_t1_14 and
fair_atan_t2_14: for i = 14, a first degree expansion
with no splitting is enough to prove the property, while a
second degree expansion requires a splitting of 2.

On a tile t of x, the width of the error expressionE that
does not use taylor’s theorem evaluated ont is larger than
the sum of the width of expressionsAtan and R. As the
derivative of the arctangent is between0.9989 and1 on x, we
could expect that the width ofR is at least twice the width
of tile t. Therefore, to obtain an error bound of[−2−i, 2−i]
we cannot use tiles larger than2−i and we will need at least
2i/15 ≈ 2i−1.4 tiles.

We use the same kind of simple calculation to show that
since|e′(x)| ≤ 2.37 · 10−6 we will need about2i−14.8 tiles of
width 2−i · 106/2.37. This figures are accurate when we use
second degree expansion but actual computations may require
more tiles due to some dependency effects introduced when
we use first degree expansions.

Figure 2 presents a summary of the time required to prove
tan(x) − r(x) ∈ [−1/30, 1/30] for i in the range[0, 20]
using splitting, splitting and first degree taylor’s expansion,
and splitting and second degree taylor’s expansion.

C. Implementation and Performance Issues

Actual definitions in PVS have been slightly modified for
efficiency reasons. For instance, multiplication is definedusing
a case analysis on the sign of the operands. Additionally,
all interval operations are completed by returning an empty
interval if side conditions are not satisfied. This technique
avoids some type correctness checks that are expensive.

The strategies in this library work over the PVS built-in
real numbers. The major advantage of this approach is that the
functionality of the strategies can be extended to handle user
defined real functions without modifying the strategy code.
Indeed, optional parameters to thenumerical strategy allow
for the specification of arbitrary real functions. If the interval
interpretations are not provided, the strategy tries to build them

http://williams.best.vwh.net/avform.htm


PVS Listing 4 Accuracy of the arctangent approximation

fair_atan : THEORY
BEGIN

x : var real
r(x) : MACRO real = x - (11184811/33554432) * x^3 - (13421773/67108864) * x^5
e(x) : MACRO real = atan(x) - r(x)
Xt : Interval = [| -1/30, 1/30 |]

fair_atan_8 : LEMMA x ## Xt IMPLIES e(x) ## [|-2^-8, 2^-8|]
%|- fair_atan_8 : PROOF (instint :splitting 18) QED

X : var Interval
R(X) : MACRO Interval = X - 11184811/33554432 * X^3 - 13421773/67108864 * X^5
E(X) : MACRO Interval = Atan(X,4) - R(X)
DE(X) : MACRO Interval =

1 / (1 + Sq(X)) - 1 + 3*(X^2*(11184811/33554432)) + 5*(X^4*(13421773/67108864))

atan_taylor1 : LEMMA StrictlyProper?(X) AND x ## X IMPLIES e(x) ## Taylor1[X](E,DE)
%|- atan_taylor1 : PROOF (taylor) QED

fair_atan_t1_14: LEMMA x ## Xt IMPLIES e(x) ## [|-2^-14, 2^-14|]
%|- fair_atan_t1_14 : PROOF (instint :taylor "atan_taylor1") QED

fair_atan_t1_20: LEMMA x ## Xt IMPLIES e(x) ## [|-2^-20, 2^-20|]
%|- fair_atan_t1_20 : PROOF (instint :taylor "atan_taylor1" :splitting 13) QED

D2E(X) : MACRO Interval =
-2*X/Sq(1 + Sq(X)) + 20*(X^3*(13421773/67108864)) + 6*((11184811/33554432)*X)

atan_taylor2 : LEMMA StrictlyProper?(X) AND x ## X IMPLIES e(x) ## Taylor2[X](E,DE,D2E)
%|- atan_taylor2 : PROOF (taylor) QED

fair_atan_t2_14: LEMMA x ## Xt IMPLIES e(x) ## [|-2^-14, 2^-14|]
%|- fair_atan_t2_14 : PROOF (instint :taylor "atan_taylor2" :spitting 2) QED

fair_atan_t2_20: LEMMA x ## Xt IMPLIES e(x) ## [|-2^-20, 2^-20|]
%|- fair_atan_t2_20 : PROOF (instint :taylor "atan_taylor2" :splitting 5) QED

END fair_atan

from the syntactic definition of the functions. The trade-off
for the use of the PVS typereal, in favor of a defined data
type for arithmetic expressions, is that the function[e]Γn and
Theorem 1 are at the meta-level,i.e., they are not written in
PVS. It also means that the soundness of our method cannot
be proven in PVS itself. In particular, Theorem 1 has to be
proven for each particular instance ofe and [e]Γn. This is not
a major drawback as, in addition tonumerical, we have
developed a strategy calledinclusion that discharges the
sequentΓ ⊢ e ∈ [e]Γn whenever is needed. PVS strategies are
conservative in the sense that they do not add inconsistencies
to the theorem prover. Therefore, ifnumerical succeeds to
discharge a particular goal the answer is correct.

Finally, our method relies on explicit calculations to evaluate
interval expressions. In theorem provers, explicit calculations
usually means symbolic evaluations, which are extremely
inefficient for the interval functions that we want to calculate.
To avoid symbolic evaluations,numerical is implemented
using computational reflection [22]–[24]. Interval expressions
are translated to Common Lisp (the implementation language
of PVS) and evaluated there. The extraction and evaluation
mechanism is provided by the PVS ground evaluator [25].
The result of the evaluation is translated back to the PVS
theorem prover using the PVSio library developed by one of
the authors [26].

VI. CONCLUSION AND L IMITS OF TRACTABILITY

We have presented a pragmatic approach to verify ordinary
real number computations in theorem provers. To this end,
bounds for non-algebraic functions were established basedon
provable properties of their approximation series. Furthermore,
a library for interval arithmetic was developed. The library
includes strategies that automatically discharges numerical
inequalities and interval inclusions.

The PVS Interval library contains 306 lemmas in total. It
is roughly 10 thousand lines of specification and proofs and 1
thousand lines of strategy definitions. These numbers do not
take into account the bounding functions, which have been
fully integrated to the NASA Langley PVS Libraries. It is
difficult to estimate the human effort for this development
as it has evolved over the years from an original axiomatic
specification to a fully foundational set of theories. As far
as we know, this is the most complete formalization within
a theorem prover of an interval arithmetic that includes non-
algebraic functions.

Research on interval analysis and exact arithmetic is rich
and abundant (see for example [17], [27], [28]). The goal
of interval analysis is to compute an upper bound of the
round-off error in a computation performed using floating-
point numbers. In contrast, in an exact arithmetic framework,



Fig. 3. Alternatefair_atan theorems will make use of interval arithmetic

an accuracy is specified at the beginning of the computation
and the computation is performed in such way that the final
result respects this accuracy.

Real numbers and exact arithmetic is also a subject of
increasing interest in the theorem proving community. Pio-
neers in this area were Harrison and Gamboa who, indepen-
dently, developed extensive formalizations of real numbers for
HOL [4] and ACL2 [6]. In Coq, an axiomatic definition of
reals is given in [7], and constructive definitions of reals are
provided in [29] and [30]. As real numbers are built-in in
PVS, there is not much meta-theoretical work on real num-
bers. However, a PVS library of real analysis was originally
developed by Dutertre [31] and currently being maintained
and extended as part of the NASA Langley PVS Libraries.
An alternative real analysis library is proposed in [8].

Closer to our approach are the tools presented in
[32] and [10]. These tools generate bounds on the round-off
errors of numerical programs, and formal proofs that these
bounds are correct. The formal proofs are proof scripts that
can be checked off-line using a proof assistant.

Our approach is different from previous works in that we
focus on automation and pragmatism. In simple words, our
practical contribution is a correct pocket calculator for real
number computations in formal proofs. Thanks to all the
previous developments in theorem proving and real numbers,
lemmas like Lemmatr35 and LemmaA_and_S are prov-
able in HOL, ACL2, Coq, or PVS. The Interval library make
these proofs routine in PVS.

As in real life, users benefit in managing both a pocket
calculator and a graphic tool. The fact that the example
proposed in Section V-B is reaching the limits of tractability is
not a problem. Our library aims at providing some simple tools
that can be used seamlessly in proofs. Figure 3 would prompt a
careful user thatfair_atan theorems are a consequence of
the fact that the derivative of the error is always positive.Such
a fact could happen to be difficult to prove leading some one to
prove that the error is bounded on some subintervals and that
the derivative is always positive on some other subintervals.
Anyways, such proofs will involve our library more than once.

We continue developing this library and it is currently
being used to check numerical properties of aircraft navigation
algorithms developed at the National Institute of Aerospace

(NIA) and NASA. Future enhancements include:

• Development of a fully functional floating point arith-
metic library [33] in order to generate guaranteed proofs
of round-off-errors [32].

• Integration of this library and an exact arithmetic formal-
ization in PVS developed by one of the authors [34].

• Implementation of latest developments on Taylor Mod-
els [35]–[37], which will enable a greater automation of
the Taylor’s series expansion technique.
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