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Abstract

Peer-to-peer (P2P) architectures support collaboration to accomplish tasks such as downloading data,

VOIP telephone, and cooperative backups. However, end-user systems can be extremely heterogeneous,

with heavy-tailed distributions of attributes such as storage space and bandwidth. In systems that ignore

heterogeneity, performance suffers, hence most of the popular peer-to-peer applications are forced to

classify nodes according to capacity, distinguishing super-peers (which play more active roles) from

regular ones (which have limited roles). Similar issues arise in large data centers, where nodes may have

widely variable configurations and performance. Our paper solves a generalized classification problem

called slicing, which involves partitioning the nodes into k subsets using a one-dimensional attribute.

Here, we start by arguing that slicing is the most appropriate generalization of existing classification

mechanisms. We review prior work on the problem, and introduce our new Sliver protocol. Theoretical

and experimental evaluations show that Sliver converges more rapidly than alternatives, and its low cost

makes it appealing in a wide range of practical settings.
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I. INTRODUCTION

Peer-to-peer (P2P) protocols have emerged as the technology of choice for purposes such as

building VoIP overlays and sharing files or storage. The algorithms discussed here are intended

to assist such applications in dealing with heterogeneous resource distributions [22], [25]. For

example, VoIP applications such as Skype [24] must avoid routing calls through nodes that are

sluggish or have low bandwidth, and file sharing services such as Gnutella [13] and Kazaa [19]

employ a two-level structure, in which peers with longer lifetime and greater bandwidth capa-

bilities function as superpeers.

Our goal is to solve a generalized classification problem called slicing, in which n nodes are

grouped into k equally balanced slices in a one-dimensional attribute space, such that when the

classification algorithm terminates, each node knows the slice index to which it belongs. The

resulting classification can be used in different ways by different applications. For example, with

k = 4, we organize the nodes into quartiles, but an application wishing to treat the top half of

nodes as super peers would simply group the top two slices. Although beyond the scope of

this paper, our protocol can trivially be extended to slice multiple attributes concurrently (each

message would just carry distinct fields for each of the attributes of interest).

Some examples of possible applications include:

• Live streaming applications that need to classify nodes according to their download and

upload bandwidths.

• File-sharing services in which nodes having the largest collections of files play distinguished

roles.

• Distributed backup services that place large objects on nodes with the most free storage.

• Load-balancers in datacenters that send more work to machines that are less heavily loaded.

We are not the first to study slicing. In [17], the authors describe a communication-efficient

parallel sorting algorithm and present node classification as a possible application, but the implicit

approach to slicing is sensitive to non-uniform attribute value distributions and churn correlated

to attribute values. An accurate slicing algorithm called the Ranking protocol was presented

in subsequent work [9], but with slow convergence. In larger deployments, membership churn

disrupts the underlying system and prevents the algorithm from stabilizing.

These observations motivate us to seek a slicing algorithm that satisfies the following prop-

erties:
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(i) Efficient and accurate computation of slice indices, as formalized below.

(ii) Rapid convergence to optimal slice indices, with provable guarantees.

(iii) Robustness to membership churn and evolution of underlying attribute values.

The protocol should also be simple, both to facilitate implementation and for ease of analysis.

A. Contributions

The main contribution of this article is now new randomized algorithm, Sliver (Slicing Very

Rapidly), which we compare with two prior solutions to the problem. We also touch briefly on

other ways of solving the problem, using parallel sorting algorithms (these turn out to be fast

but very sensitive to churn). Sliver is simple, achieves all of our goals, and is very fast. We

undertake a rigorous convergence analysis, and an experimental evaluation using real storage

and churn traces. Sliver retains its good behavior even in very challenging conditions.

B. Outline

The model of our system, the slicing problem, and preliminary definitions are presented in

Section II. Section III compares the slicing problem to the sorting problem, and outlines the

limitations of the sorting algorithms. Section IV presents solutions that converge to a sliced

network, including Sliver. We analyze this protocol theoretically in Section V and compare its

performance to that of other slicing protocols under various settings in Section VI. Finally,

Section VII concludes the article.

II. PROBLEM AND MODEL DEFINITION

This section formalizes the model and gives a more precise definition of the slicing problem.

A. System Model

The system consists of n nodes with unique identifiers (e.g., IP addresses); each node knows

of a small number of neighbors, and the resulting graph is closed under transitivity. We assume

that n is large: solutions that collect Ω(n) information at any single node are impractical. Time

passes in discrete steps starting from time 0.

Each node can leave (or fail by halting) and new nodes can join the system at any time (so-

called churn), thus the number of nodes is a function of time. A system with no membership
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churn is static. In this article, we do not differentiate between a failure and a voluntary node

departure and we say that the nodes currently in the system are active. Let At denote the set of

active nodes at time t, and let nt = |At| be the number of active nodes at that time (nt ≤ n).

At any time t, each node i has an attribute value ai(t) ∈ R that represents its capacity in the

metric of interest, for example uplink bandwidth. These attribute values can have an arbitrary

skewed distribution.

When attribute values remain fixed over time, that is ai(t) = ai(t
′) for all t and t′, we refer

to i’s constant attribute value simply as ai. Additionally, throughout the paper, we sometimes

omit t where it is clear from context.

Every node i keeps an array of records about its neighbors. A record includes the neighbor’s

identifier i′, the last time a message was received from i′, the attribute value ai′ of i′, and

optionally the value that i′ estimates to be its position. This array, denoted Ni, is called the view

of node i. To bound the required memory, every node has a view of at most c neighbors where

c is a global constant.

B. Definitions

At any time t, we can define a total ordering over the nodes based on their attribute value,

with the node identifier used to break ties. Formally, we say node i precedes i′ at t if and only

if ai(t) < ai′(t), or ai(t) = ai′(t) and i < i′. We refer to this totally ordered sequence as the

attribute sequence. The attribute-based rank of a node i at time t, denoted by αi(t) ∈ {1, . . . , nt},

is defined as the index of ai in the attribute sequence. We denote by pi(t) = αi(t)
nt

the position

of node i in the system at time t and by p̂i(t) its position estimate at time t. In other words,

the position pi(t) of node i at time t is the index of ai(t) within the sorted attribute values,

normalized to fall within the range (0, 1].

In the remainder of the article, we assume that nodes are sorted according to a single attribute.

As mentioned earlier, our protocol has a trivial generalization in which slice multiple attributes

concurrently: it suffices to extend messages so that they can carry an array of information, one

entry for each attribute (thus, no additional messages are needed). One can also imagine more

sophisticated generations involving multiple dimensions. However, the need for brevity precludes

an exploration of this topic.

Suppose we partition the attribute sequence at time t into k equally balanced sets. We call
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each set a slice, and preserve the order within the partition such that the jth slice has a slice

index j. More formally, the slice with slice index j is the set

Sj(t) =

{
i ∈ At :

j − 1

k
< pi(t) ≤

j

k

}
for 1 ≤ j ≤ k. Each node belongs to exactly one slice. For example, when k = 4 the values

of the nodes in the slices correspond to the quartiles of the attribute value distribution. A slice

boundary refers to a value j
k

for some j, delimiting the positions of nodes belonging to the jth

slice and nodes belonging to the (j + 1)st slice.

Initially, nodes have no global information about the structure or size of the system, or about

the attribute values of any other node. We assume that k and c are global knowledge because

both can be easily provided to newly joining nodes.

As noted earlier, the model can be easily generalized. In addition to higher-dimensional slicing,

interesting options include support for unevenly balanced slice sizes, and protocols that fix the

slice size, allowing k to vary. We leave the exploration of these questions for future study.

C. Distributed Slicing

In the slicing problem all nodes try to discover the number of the slice to which their attribute

value belongs. The correct slice index oi(t) of slice i at t is the index of the unique slice Sj(t)

which contains ai(t).

Suppose each node i estimates its slice index to be ei(t) at time t. To measure the overall

quality of the estimates, we use the usual slice disorder measure (SDM) [9] at time t, which is

defined as

SDM(t) =
∑
i∈At

|ai(t)− ei(t)| .

This metric is minimized at 0 when all estimates match the correct slice index.

In a distributed slicing protocol [9], nodes communicate via message-passing and estimate

their own slice index during each time step. One of the metrics of interest is the message load

incurred by a slicing protocol. A slicing protocol converges if it eventually provides a correct

slicing of a static network, meaning that SDM(t) = 0 for all t ≥ t′ for some t′.

As noted earlier, we are interested in protocols that are (i) simple, (ii) accurate, (iii) rapidly

convergent, and (iv) efficient. With respect to efficiency, we will look at message load both in

terms of the load experienced by participating nodes and the aggregated load on the network.
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Let us illustrate the goal with a small example. Suppose the active nodes have attribute values

1, 2, 3, 7, 8, 9 and that k = 3. One way to slice the set is to sort the values (as shown), divide

the list into three sets, and inform the nodes of the outcome. Alternatively, we might use an

estimation scheme. For example, if node 7 obtains a random sample of the values, that sample

might consist of 1, 7, and 9, enabling it to estimate the correct slice index. In the next section,

we consider these and other options.

III. SORTING: ONE STEP TOWARD SLICING

Intuitively, sorting and slicing are closely related problems. For this reason, it is not surprising

that sorting algorithms have been used in prior slicing protocols [9], [17]. We discuss these

approaches in this section.

A. Traditional Sorting Algorithms

Most parallel sorting algorithms [1], [3], [4], [7], [14], [21], [23] “wire together” nodes into

a sort-exchange network, within which they can compare their value and decide whether to

exchange their position. Such sorting networks are useful since they can provide nodes with

indices in the sorted list, thus they make slicing possible. We explored a scheme for adapting

parallel sorting algorithms to solve the slicing problem. This starts with a simple protocol to

construct a spanning tree within which we were able to count the nodes in the system (n), number

them consecutively, and route messages from node to node efficiently. The resulting overlay can

then support any parallel sorting solution. However, this brings up the first drawback: in a

P2P network, maintaining the overlay structure can be costly because of churn. Although our

approach only needs O(log n) time to build the overlay, it needs to be rebuilt after any node

joins or leaves.

On the other hand, in relatively static network parallel sorting solutions could be appealing.

Ajtai, Komlós, and Szemerédi proposed the first algorithm to sort a system of n nodes in O(log n)

steps. The big-O notation hides a large constant, which subsequent work has sought to de-

crease [6]; nonetheless, it remains over 1,000. Batcher’s algorithm [4] has complexity O(log2 n).

Although an O(log n log log n)-step algorithm is known [21], it competes with Batcher’s solution

only when n > 220. Other algorithms significantly reduce the convergence-time, sorting in

O(log n) steps at the cost of achieving probabilistic precision. For example, an intuitive algorithm

June 4, 2008 DRAFT



7

known as the Butterfly Tournament [21] compares nodes in a pattern similar to the ranking of

players during a tennis tournament. At the end of the algorithm each player has played O(log n)

matches and can approximate his rank accurately.

We can thus expect a probabilistic parallel sorting algorithm to solve slicing exactly within

time O(log n) in a static system. A deterministic sorting algorithm would need time O(log2 n)

to slice a static system. However, neither option seems to be viable in a P2P environment.

B. Sorting Attribute Values

We now discuss a technique used in a number of gossip-based slicing protocols [9], [17] which

involves sorting nodes locally with respect to their attribute values. The key idea, as originally

presented in [17], is the following. Each node initially chooses a random value (between 0 and 1)

as an initial position estimate. Then, periodically, each node i searches its view Ni for misplaced

neighbors, meaning that if i estimates its position to be ahead of its neighbor j, then i’s attribute

value should be less than j, and vice versa. If this is not the case, i swaps its position estimate

with j. This process is repeated until all nodes are sorted.

The original Ordering algorithm [17] aims at reducing a global disorder measure, which

expresses the distance of the current system state to a sorted state. The Ordering algorithm

of [9] aimed at improving the original approach by reducing the slice disorder measure (defined

in Section II-C). In the improved Ordering protocol, each node measures the disorder locally. This

leads to a heuristic used by nodes to determine the best neighbor with which to swap position

estimates, so as to maximize the reduction of disorder. Empirically, this variant improves on the

original Ordering protocol [17].

More specifically, the Ordering protocol operates as follows. For a node i to evaluate the

gain of exchanging with a node i′ of its current view Ni, we define the local disorder measure

(LDMi), which is equivalent to that defined in [9]. Let the local attribute sequence and the local

position estimate sequence of node i be the ordered sequence of attribute values and position

estimates, respectively, of all nodes in Ni. These sequences are computed locally by i using the

information Ni ∪ {i}. For any i′ ∈ Ni ∪ {i}, let αi′(t) and ρi′(t) be the indices of ai′ and ei′ in

the attribute sequence and the local position estimate sequence, respectively, of i at time t. At
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any time t, the local disorder measure of node i is defined as

LDMi(t) =
∑

i′∈Ni(t)∪{i}

(αi′(t)− ρi′(t))2.

At time t, the heuristic considers each neighbor i′ with which it could exchange its random

value, and picks the one that maximizes the local gain LDMi(t)− LDMi(t+ 1).

C. Limitations of Sorting

The sorting algorithms do not solve the slicing problem unless a sorted network gives the

nodes their attribute value index. For slicing, each node needs to know its position relative to

other nodes in the system. In many sorting algorithms, each node learns its predecessor and its

successor, but not its absolute position in the sort order. As a consequence, sorting solutions do

not necessarily solve the slicing problem.

Recall that the key idea in both Ordering protocols is to use a random number as a position

estimate that is exchanged between nodes. Initially, every node chooses a random number as

its position estimate, then each node compares periodically its estimate with that of a randomly

selected peer. Since the initial random numbers will be used as the final position estimates of

the nodes, if those numbers are not uniformly distributed, the final slice estimate is inaccurate.

This can be a serious problem because in general, random position estimates may be far from

uniform. The problem becomes even more severe if membership churn is correlated with the

attribute values.

As an example in a three-node network, suppose that the initial random numbers of three

nodes are 0.1, 0.15, and 0.2 but that a uniform distribution would have yielded values 0, 0.5,

and 1. When the parallel sort terminates, all three will believe they belong to the first half of the

system. In other words, slice estimates in the Ordering protocols may be incorrect even when the

sorting phase terminates with the random values in a correct sort order. In the following section

we describe solutions where this problem does not arise: protocols that guarantee an eventual

optimal assignment in a static environment.

IV. ACCURATE SLICING

This section presents accurate solutions to the distributed slicing problem. We start by de-

scribing the Ranking protocol with eventual convergence guarantee, and then outline some of
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its shortcomings. We then introduce Sliver: a new, simple algorithm that converges rapidly.

A. Ranking: Slicing Eventually

The so-called Ranking protocol was introduced in [9]. In contrast to the Ordering protocols

of the previous section, a Ranking protocol does not assign unalterable random values as initial

position estimates. Instead, nodes improve their position estimate each time new information is

received. This reduces the slice disorder by a positive amount and eventually slices the system.

The Ranking protocol works roughly as follows. Periodically each node i updates its view

Ni following an underlying protocol that provides a uniform random sample (e.g., [12], [18]).

Node i computes its position estimate (and hence the estimate of its slice index) by comparing

the attribute value of its neighbors to its own attribute value. The estimate is computed as the

ratio of the number of lower attribute values that i has seen over the total number of attribute

values i has seen.

Periodically i sends a message to some neighbors. There are two ways for node i to choose

the destinations of its message. Either node i sends its message to a subset of neighbors from

its current view Ni or i sends one message to each of the neighbors present in its view.

The first technique is used by the original Ranking protocol [9] and is as follows. Node i

looks at the position estimate of all its neighbors. Then, i selects the node i′ closest to a slice

boundary (according to the position estimates of the neighbors of i). Node i also selects a random

neighbor i′′ among its view. Now, i sends an update message to i′ and i′′, containing its attribute

value. The reason why a node close to the slice boundary is selected as one of the destinations

is that such nodes need more samples to accurately determine which slice they belong to. This

technique introduces a bias towards them, so they receive more messages.

The second technique is simple and speeds up the convergence at the price of additional

messages: each node sends the message to all nodes present in its current view Ni. Later, for

a fair comparison of our protocol performance we adopt this technique to evaluate the Ranking

protocol.

With either technique, upon reception of a message from node i, i′ and i′′ compute their new

position estimate p̂i′ and p̂i′′ depending on the attribute value received. The estimate of the slice a

node belongs to follows the computation of the position estimate. Messages are transmitted using

an asynchronous, one-way protocol, resulting in identical message complexity to the Ordering

June 4, 2008 DRAFT



10

protocols.

B. The Limitations of Ranking

The Ranking protocol will eventually converge if messages are received from nodes distributed

uniformly among all nodes in the system. Observe that the protocols converge even if each node

sends message preferably to some nodes (as in the original Ranking algorithm). Nevertheless,

incoming messages must come from random neighbors distributed uniformly among all nodes.

If the number k of slices is low then the system can be sliced rapidly, however, if k is large then

the time taken to converge can be arbitrarily long. The underlying issue is that the precision of

the estimates is tightly related to the degree of uniformity in the distribution of received attribute

values.

Upon message reception, each node i estimates its position by comparing the attribute values

of its neighbors with its own attribute value. It then estimates its position (and hence its slice

index) as the ratio of the number of smaller attribute values that i has seen over the total number

of values i has seen. As the algorithm runs, the position estimate improves. However, in the

ranking protocol node i does not keep track of the nodes from which it has received values,

thus, two identical values sent from the same node i′ are treated by i as coming from two

distinct nodes. In part for this reason, while the ranking protocol may converge eventually if the

sending nodes are uniformly distributed among all nodes, it may not converge if the sending

nodes embody any form of non-uniformity.

C. Sliver: Fast Slicing

We now introduce Sliver, a simple distributed slicing protocol which samples attribute values

from the network and estimates the slice index from the sample. Sliver temporarily retains the

attribute values and the node identifiers that it encounters. With this information, Sliver converges

even if the neighbors distribution is skewed. Sliver reduces slice disorder rapidly: in Section V we

show that slice estimates are expected to be close (off by at most one) with high probability after

O(log n) time when k = O(log n), and O
(√

k log n
)

time when k = O(n) and k = Ω(log n).

To address churn, Sliver also retains the time at which it last interacted with each node, and

gradually discards any values associated with nodes that have not been encountered again within

a prespecified time window. The timeout ensures that the amount of saved data is bounded,
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because the communication pattern we use has a bandwidth limit that effectively bounds the

rate at which nodes are encountered. Moreover, this technique allows all nodes to cope with

churn, regardless of potential changes to the distribution of attribute values in the presence of

churn.

The code running on each node in this scheme at every time step is as follows.

• Each node i sends its attribute value to the nodes of its view Ni. It then changes its view

to a new random set of c nodes using peer sampling [18] or random walks [12].

• Each node i keeps track of the values it receives, along with the sender i′ and the time they

were received, and discards value records that have expired.

• Each node i sorts the m values it currently stores. Suppose Bi of them are lower than or

equal to ai.

• Each node i estimates its position as Bi/m and the slice index is estimated as the closest

integer to kBi/m.

Conceptually, Sliver is similar to the Ranking protocol. They differ in that nodes in Sliver

track the node identifiers of the values they receive, whereas nodes in the Ranking protocol only

track the values themselves. This change has a significant impact: Sliver retains the simplicity

of the Ranking algorithm, but no longer requires that the sending nodes have a uniform sample

of attribute values in the network as a whole.

We also consider a gossip-based variant of Sliver. Instead of having nodes only forward their

own attribute values to other nodes, this variation also forwards current attribute values for other

nodes (along with their sender identifier and the time since last confirmed update). To bound the

use of memory and network bandwidth, we retain only the most recent R values in memory. For

simplicity and also the sake of analysis, we consider only the original version of Sliver unless

otherwise specified.

V. THEORETICAL ANALYSIS OF SLIVER

Recall that Sliver stores recent attribute values and node identifiers it encounters in memory.

At any point in time, each node can estimate its slice index using the current distribution of

attribute values it has stored. We show analytically that if the system becomes synchronous

then relatively short time has to pass for this estimate to be representative for all nodes. More

precisely, we derive an analytic upper bound on the expected running time of the algorithm until
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each node knows its correct slice index (within one) with high probability.

A. Assumptions

We focus on a static and synchronous system with n nodes and k slices, and we assume that

there is no timeout, so that all values/identifiers encountered are recorded. The analysis can be

extended to incorporate the timeouts we introduced to battle churn and to adapt to distribution

changes, but may not offer as much intuition for the behavior and performance of the algorithm.

For the sake of simplicity, we assume that each node receives the values of one other randomly

selected node in the system (c = 1) at each time step, and that all nodes start the protocol at

time t = 1. Clearly, if a node collects all n attribute values it will know its exact slice index. A

node i is close if it knows its slice index within at most one, and stable at time t if it remains

close from time t henceforth. The problem lies with nodes whose whose position lies on the

boundary of two slices. By considering stable nodes instead of exact estimates, we can derive

meaningful results about the asymptotic time required by the system to reach a very low global

slide disorder.

B. Convergence to a Sliced Network

In the following we show that Sliver slices the network rapidly. We assume that k = O(n),

since the slicing problem for k > n is uninteresting. The following theorem gives the expected

time it takes to achieve stability with high probability.

Theorem 5.1: We expect all nodes to be stable with high probability after

O
(√

max {k, log n} log n
)

time steps.

Proof: Let ε > 0. Fix some node i with value ai. We assume that node i receives a

previously unknown attribute value in each time step. The possibility of receiving redundant

values is addressed later.

Let Bt denote the number of values that are known after t time steps which are below or

equal to ai. The fraction Bn/n is the true fraction of nodes with lower or equal attribute values.

Knowing this fraction is equivalent to knowing the correct slice index of node i. There are on
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average n/k nodes per slice, so node i is close as long as it reports a normalized slice index

within n/k of Bn/n. We will estimate the probability that at time t, Bt/t is within t/k of Bn/n.

One can visualize the process, which we coin the P -process, as follows. There are Bn balls

marked red and n − Bn marked blue. In each time step t, a ball is randomly picked from the

remaining ones and discarded. If it is red, Bt+1 ← Bt+1, otherwise Bt+1 ← Bt. The probability

P[red ball at time t] =
Bn −Bt

n− t

depends on the current distribution of ball colors. Denote this probability by pt. To simplify the

analysis, we will consider the Q-process in which a red ball is picked with probability qt = Bn/n

in each time step and blue otherwise. Notice that if Bt/t ≤ Bn/n then

pt =
Bn −Bt

n− t
≥ Bn − tBn/n

n− t
=
Bn

n
= qt,

and similarly if Bt/t ≥ Bn/n then pt ≤ qt.

Consequently, the P -process tends to move towards Bn/n in each time step, whereas the

Q-process ignores the proximity entirely. Analogously, imagine a car driving on the Bn/n road

in the (0, 1] world. Under the P -process the driver is more likely to turn towards the road

when off-roading, whereas under the Q-process the driver always attempts to drive more or less

parallel to the road. More rigorously, for a fixed constant a we can show by induction over t

that the probability of next estimate Bt/t falling in the interval
[
Bn

n
− a, Bn

n
+ a
]

is greater for

the P -process than the Q-process, for which it suffices to compare pt with qt near the endpoints

of the interval. The details are straightforward and left for the reader. This observation implies

that the bounds we will derive for the deviation from Bn/n at time t for Q-process act as an

upper bound for the P -process.

We see that under the Q-process, E[Bt] =
∑t

i=1 qt = tBn/n, since the steps are independent

and identically distributed. We will use the following variant of the Chernoff-bound [2]. Let

X1, . . . XN be independent identically distributed 0-1 random variables with X =
∑N

i=1Xi and
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µ = E[X].

P[X ≤ (1− δ)µ] ≤ exp

(
−µδ2

2

)
0 < δ ≤ 1

P[X ≥ (1 + δ)µ] ≤

 exp
(
−µδ2
2+δ

)
exp

(
−µδ2

3

) δ ≥ 1

0 < δ ≤ 1

For the Q-process we now derive

P
[
Bt

t
≤ E[Bt]

t
− t

k

]
= P

[
Bt ≤

(
1− nt

kBn

)
E[Bt]

]
≤ exp

(
−E[Bt](nt)

2

2(kBn)2

)
= exp

(
− t3n

2k2Bn

)
≤ exp

(
− t3

3k2

)
=: st.

since Bn ≤ n.

Letting δt = nt/kBn we can similarly derive for δt ≤ 1 that

P[Bt ≥ (1 + δt)E[Bt]] ≤ exp(−E[Bt]δ
2
t /3)

≤ exp

(
− t3

3k2

)
=: rt

and for δt ≥ 1 that

P[Bt ≥ (1 + δt)E[Bt]] ≤ exp

(
−E[Bt]δ

2
t

2 + δt

)
≤ exp(−E[Bt]δt/3)

≤ exp

(
− t

2

3k

)
=: r′t.

Note that st = rt, and rt ≥ r′t iff t ≤ k.
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All nodes in the network gather information about neighbors independently. Thus the proba-

bility that all nodes are close at time t, i.e. Bt/t is within t/k from Bn/n, is at least

(1− P[Bt ≤ (1− δt)E[Bt]])
n · (1− P[Bt ≥ (1 + δt)E[Bt]])

n ≥ (1− st)n(1−max{rt, r′t})n

≥ (1− rt)2n(1− r′t)n.

The probability that all nodes remain close from time t to n is at least

n∏
T=t

(1− rT )2n(1− r′T )n

≥
n∏
T=t

(1− rt)2n(1− r′t)n

≥ (1− rt)2n2

(1− r′t)n
2

≥ (1−max{rt, r′t})3n2

Using that rt ≤ 1
m

when t ≥ 3
√

3k2 lnm and r′t ≤ 1
m

when t ≥
√

3k lnm, the previous bound is

at least (1− 1/m)3n2 when t is at least

max{ 3
√

3k2 lnm,
√

3k lnm}.

Let

m = 1− 3n2

ln(1− ε)
(1)

which is clearly O(n2) for a fixed value of ε. Now, for t ≥ τ

(1−max{rt, r′t})3n2

≥
(

1− 1

m

)3n2

=

(
1− 1

m

)(m−1)(− ln(1−ε))

≥ (1/e)− ln(1−ε) = 1− ε

by using the fact that
(
1− 1

x

)x−1 ≥ 1/e for x ≥ 2.
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We now address the assumption that each node receives a distinct attribute value in each

round.

The classic coupon collector problem asks how many coupons one should expect to collect

before having all x different labels if each coupon has one of x distinct labels. The answer is

roughly x log(x). For our purposes, the coupons correspond to attribute values (n distinct labels)

and we wish to know how many rounds it will take to collect t distinct ones. Let Tj denote the

number of rounds needed to have j distinct coupons if we start off with j − 1. Then Tj is a

geometric random variable with E[Tj] = n/(n− j + 1).

The total time expected to collect t distinct coupons is thus

t∑
j=1

n

n− j + 1
≤ n(lnn− ln(n− t)) + η

= n ln

(
n

n− t

)
+ η.

Here η is at most the Euler-Mascheroni constant which is less than 0.6.

We now make use of the fact that k = O(n). Since ln(m) = O(log n) using the m from

equation 1, there exists some constant α < 1 such that

τ = max
{

3
√

3k2 lnm,
√

3k lnm
}
≤ αn

for large n. Notice that 3
√

3k2 lnm ≥
√

3k lnm iff k ≥ 3 lnm.

Since 1− x ≤ exp(−x) for x ≥ 0, we derive for 0 < x < 1 that

1

x
ln

1

1− x
≤ 1

1− x
.

It follows that

n ln
n

n− τ
= τ

(
n

τ
ln

1

1− τ
n

)
≤ τ

1− τ
n

≤ τ

1− α
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Parallel Ordering Ranking SliverSorting
Accurate yes no yes yes
Efficient yes yes yes yes

Robust to churn no no yes yes
Handles yes no no yesnon-uniformity

Convergence time O(log2 n) O(log s) O

(
p(1− p)

d2

)
O
(√

max {k, log n} log n
)

(for stability)

TABLE I
COMPARISON OF SOLUTIONS TO THE SLICING PROBLEM. HERE s IS THE NUMBER OF SUCCESSFUL POSITION EXCHANGES

OF THE ORDERING PROTOCOL, p IS THE ESTIMATED NORMALIZED INDEX OF A NODE, d IS THE MAXIMAL DISTANCE
BETWEEN ANY NODE AND THE SLICE BOUNDARY AS DEFINED IN THE RANKING PROTOCOL AND k (THE NUMBER OF

SLICES) IS O(n).

Hence we expect all nodes to be stable (remain close) with high probability after

τ

1− α
+ η = O

(
max

{
3
√
k2 lnn,

√
k lnn

})
= O

(√
max {k, log n} log n

)
time steps.

The assumptions we use in the theoretical framework are rather strong (no churn, fixed attribute

values over time, infinite memory, all nodes start the protocol simultanously) so to highlight the

performance of the algorithm in practice, we make use of real-life churn traces in the experiments.

VI. PERFORMANCE EVALUATION

This section evaluates Sliver’s performance. First, it compares the performance of Sliver to

the performance of related solutions. Second, Sliver and the Ranking protocols are compared

using a real trace of storage space on a distributed testbed. Finally, we evaluate scalability by

simulated Sliver on thousands of nodes, using a realistic trace that embodies substantial churn.

A. Theoretical Complexity

We discuss the advantages and drawbacks of the sorting algorithms presented in Section III-A,

Ordering protocols presented in III-B, the Ranking protocols of Section IV, as well as our Sliver
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Fig. 1. Comparison of Sliver and the Ranking protocol for determining positions. Solid lines represent the positions given by
the Ranking protocol over time, while dashed lines represent the positions given by the Sliver algorithm over time.

protocol.

These protocols differ in many ways, making it is difficult to give a precise comparison. Their

complexity guarantees depend on a range of different parameters, such as the distance between

the position of nodes and their closest slice boundary, and the number of successful position

exchanges that occur during the execution. Despite these complexities, some observations are

particularly interesting. We show details of the comparison in Table I.

Notice that, were it not for dynamicism, parallel sorting would have the best complexity: an

impressive O(log2 n) convergence guarantee; Sliver can only compete with this for small values

of k, namely k = O(log3 n) in a static system. However, most of the scenarios of interest to us

are far more dynamic, and in such settings, as we will now see, Silver shines.

B. Distributed Experimentation
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1) Sliver performance: We ran an experiment on 90 machines of Emulab [26], all of which

run either RedHat Linux or FreeBSD. The Sliver protocol was executed among 60 machines

while the 30 remaining machines were emulating the physical layer to make communication

latencies realistic.

We implemented Sliver using GossiPeer [15], a framework that provides a low-level Java API

for the design of gossip-based protocols. The underlying communication protocol is TCP and

the average latency of communication has been chosen to match real latencies observed between

machines distributed all over the world in PlanetLab. Additionally, we used storage information

extracted from a real data set. The distribution of storage space used on all machines follows the

distribution of 140 millions of files (representing 10.5 TB) on more than 4,000 machines [8].

This experiment seeks to slice the network according to the amount of storage space used.

This sort of slicing would be of great interest in file sharing applications where the more files

a node has, the more likely it is to be useful to others. To bootstrap the protocol, we provide

each machine with the addresses of a few (five) others. While running, each node discovers new

neighbors by executing random walks.

Figure 1 compares the performance of Sliver and the Ranking protocol [9] in the settings

mentioned above with a timeout of 30 minutes and c = 1. The curves represent the evolution of

the position estimate over time on each of these 60 machines for both protocols. (Four curves

representing the nodes with the lowest position 0 and the largest position 1 are hidden at the

bottom and top edges of the figure.) Note that each node can easily estimate the slice to which

it belongs using this position estimate, since it knows the total number of slices k.

At the beginning of the experiment, all nodes have their position estimate set to 0, and time 0

represents the time the first message is received in the system. In the Sliver protocol, a majority

of nodes know their exact position after 1,000 seconds and remain stable. In contrast, observe that

with the Ranking protocol, even if no nodes join or leave, the random walks may not sample

enough nodes to rapidly get a precise position estimate. As a result, even at 1700 seconds,

no node knows its exact position with the Ranking protocol. Moreover, the estimates remain

unstable. Since Sliver keeps track of the identity of the sending nodes, it stabilizes as soon as

the values are known. Consequently in a larger system, even if the number of slices is linear in

the system size (e.g. k = n), each node would know the slice to which it belongs.

This position is exploitable by a node to determine its slice. Depending on the portions of
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Fig. 2. Convergence time depending on the number of slices k.

the network the slices represent, the position can be approximated to a better or worse accuracy.

For instance, if slices represent small portions (i.e., the number k of slices is large), then the

position must be learned to high accuracy to compute the correct slice estimate. In contrast, if

slices represent large portions (i.e., k is low), then a rough approximation of the position suffices

to determine the right slice.

To better understand the impact of approximating the position on determining the slices,

we illustrate how fast nodes using Sliver determine their slice index compared to the Ranking

protocol while varying the number of slices k. Figure 2 indicates the slice disorder measure

obtained by the Ranking and the Sliver protocols on the exact same experiment. Recall that the

slice disorder measure is the sum over all nodes of the distance between the correct slice and

the slice to which the node believes it belongs. The first observation is that in both protocols

the convergence slows down as the number of slices enlarges. As mentioned previously, if k

grows larger, then the portion represented by each slice shrinks; this forces us to compute a finer

approximation of the positions, hence requires longer execution time. The second observation is

that for varying number of slices k, the Sliver protocol reduces the slice disorder measure more

rapidly than the Ranking protocol. For instance, after 60 seconds, the slice disorder measure

obtained with the Ranking and the Sliver protocols are respectively 1 and 0 when k = 2, and

are respectively 87 and 0 when k = n.
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(a) Close or distant neighbors are chosen with the same probability.
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(b) Close neighbors are chosen preferably to distant neighbors.

Fig. 3. Comparison of Sliver and the Ranking protocol for determining positions depending on the choice of neighbors.

2) Geographical Network: Up to now, we have focused on experiments in which link delays

were similar. To confirm that this did not bias our conclusions, we tested Sliver on a 50

node network composed of two distant datacenters communicating through long latency links

hosting 25 machines each. In these experiments, the network has been configured using a NS2

configuration file as two LANs separated by WAN links. The communication latency intra-LAN

is about couple of milliseconds whereas the communication latency inter-LAN is three hundred

milliseconds. The view size has been extended to c = 5. As before, these experiments aim at

slicing the system along the storage space metric extracted from the real trace of 140 millions

of files.

We implemented a biased version of Sliver where each node communicates preferentially

with nearby nodes and rarely with distant nodes. This reduces demand on the WAN links and

is a common technique in gossip systems. As a result we obtain two different versions of the
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Fig. 4. Impact of the way neighbors are chosen on Sliver convergence time, as the number of slices k varies.

Sliver algorithm: the original unbiased one described earlier, and this new biased version. In the

unbiased version, namely p2, when sending messages the probability that node i communicates

with a node j of the distant LAN is identical to the probability of communicating with a local

node: 1
2
. In the biased version, namely p10, the probability that a node i of communicates with

a distant node is reduced to 1
10

.

The results for the unbiased version appear in Figure 3(a) and the results for the biased version

appear in Figure 3(b). As expected and due to view size extension, we observe that the time

taken to converge is shorter than in the former experiment. It is noteworthy that the time taken

to converge is generally longer in the biased version than in the unbiased version. Even though

the attribute values are uniformly distributed, communicating mostly with nearby nodes does not

seem to shorten convergence time.

In order to get a closer look at the impact of neighbor choice on the convergence speed,

we compared the convergence time of two distinct biased protocols and the unbiased protocol

while slicing the network into k = 10, k = 20, k = 30, and k = 40 slices. In the first

biased protocol, distant nodes are chosen with probability 1
6

and close nodes are chosen with

probability 5
6
, whereas in the second biased protocol, distant nodes are chosen with probability

1
10

and close nodes are chosen with probability 9
10

. As before, the unbiased protocol is simply

Sliver as originally presented (i.e., all nodes are chosen with the same probability). The results

are shown in Figure 4. As expected, Sliver’s convergence time is longer when the number k of

slices is large. Preference for mearby nodes does not reduce convergence time, which confirms

our former result. Nevertheless, biased versions multiply the convergence time of the unbiased
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Fig. 6. Global slice disorder of Sliver with and without gossip support on the first 40,000 seconds of the Skype trace.

version by a factor of at most 3 for various values of k. In situations where a WAN link is very

slow, one might accept this delay for greatly reduced WAN traffic.

C. Churn in the Skype Network

Next, we explored the ability of Sliver to tolerate dynamism in a larger scale environment. We

simulated the Sliver protocol on a trace from the popular Skype VoIP network [24], using data

that was assembled by Guha, Daswani, and Jain [16]. The trace tracks the availability of 3,000
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nodes in Skype between September 1, 2005 to January 14, 2006. Each of these nodes is assigned

a random attribute value and we evaluate our slicing protocol under the churn experienced by

the nodes in the trace.

The goal of this experiment is to slice n = 3, 000 nodes into k = 20 slices. We assume

that every node sends its attribute value to c = 20 nodes chosen uniformly at random every 10

seconds. Attribute values that have not been refreshed within 5, 000 seconds are discarded. The

top curve in Figure 5 shows the number of nodes that are available at a given point in time. The

results show that on average less than 10% of the active nodes at any given time report a slice

index off by one (or more), and the network quickly converges to have very low slice disorder.
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Figures 7 and 8 illustrate the sensitivity of convergence time to k, the number of slices; the

results are within the analytic upper bounds derived in Section V. For each of these figures,

we ran the algorithm continuously within the Skype trace, identified erroneous slice estimates,

and then averaged to obtain a “quality estimate” covering the full 100,000 seconds of the trace.

Each node gossips every 10 seconds. Modifying this parameter effectively scales the convergence

time by the same amount. We discard values that have not been refreshed within the last 5, 000

seconds. Note that when churn occurs, or a value changes, any algorithm will need time to react,

hence the best possible outcome would inevitably show some errors associated with this lag.

We also evaluated the gossip-based modification of Sliver on the Skype trace, to evaluate its

quality when faced with heavy churn. Each node retains at most R = 300 records of other values

at any time, accounting for 10% of the total number of nodes. We used a timeout of t = 500

seconds, and nodes communicate every 10 seconds. In Figure 6 we compare the original Sliver

protocol to this new variant by considering the slice disorder over time in the first 40,000

seconds. We can see that gossip version has 33% lower slice disorder on average, and rarely

exceeds the disorder produced by the original Sliver algorithm. This experiment suggests that by

using gossip, nodes can learn attribute values faster than without it, and the spread of records for

nodes that have left the system (“ghost” values) that occurs in gossip does not have a significant

impact on the quality of the estimate.

VII. CONCLUSION

This article evaluates a number of possible solutions to the distributed slicing problem. We

introduce a new protocol called Sliver, and offer an analysis of its convergence properties.

Some prior protocols converge slowly, some do not guarantee accuracy, and some are too easily

disrupted by churn. We believe that Sliver offers the best overall balance of simplicity, accuracy,

rapid convergence and robustness to churn.
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